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Introduction

The idea of utilization penalty functions for nonlinear

programming was suggestedfirst by R. Courant. Later this

approachwas developed,generalized,and extendedsignifi-

cantly and a great number of important results have been

obtained. Extensive literature exists on penalty function

methods. For the basic result refer to Fiacco and McCormick

[lJ. The list of referencesat the end of this paper includ-

es only articles closely relevant to the methods presented.

Penalty function methods have several disadvantages. The

main ones are as follows.

1) The methods are time-consuming. ｔ ｨ ･ ｹ ｾ ､ ｯ require multiple

solving of unconstrainedminimization sub-problems.

2) Solution of minimization sub-problemsbecomes

exceedinglycumbersomewhen the penalty coefficient increases,

since a minimization function becomes ill-conditioned.

3) The usual penalty methods cannot be used for determining

a solution with great accuracy. Thesemethods are subject

to numerical instabilities becausethe derivatives of the

penalty functions increasewithout bound near the solution

as computationproceeds.

The methods suggestedbelow essentiallysimplify standard

penalty function procedureand remove, to some extent, the

first two shortcomings.

Statementof Problem and Some Definitions

We consider the following primal nonlinear programming
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problem:

minimize F(x)

subject to constraint

X E X = {x E E !g(x) = 0, h(x) ｾ O}
n

(1)

where F, g, h are given functions defined on E , Euclideann
1 2 nn-space, x = (x ,x , ... ,x ) is a point in E , functions

n

F, g, h define the mappings F: ｅ ｮ ｾ ｅ ｬ Ｇ g : ｅｮｾｅ･Ｇ h : ｅｮｾｅ｣Ｇ

where E. is i-dimensional Euclidean space.
1

Introduce the solution set X* of problem (1) and the

strictly interior points set of X:

X* = {x*lmin F(x) = F(x*) x* E X} ,
XEX

X = {x Ig(x) = 0 h(x) < O} .0

Problem (1 ) is called a convex programming problem if F (x) ,

h(x) are convex functions and g(x) is affine.

In this paper a number of methods will be suggestedfor

solving problem (1). They can be used when (1) is a general

nonlinear programming problem, but here we shall prove the

convergenceof the methods only for the simplest casewhen

(1) is a convex programming problem.

We shall consdiermainly continuousversions of numerical

methodswhich would be governedby an ordinary differential

equation

'.x = f (x, t) (2)

where a super dot ､ ･ ｮ ｯ ｴ ｾ ｳ differentiation with respect to
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time independentvariable t, and f(x, t) is a continuous

function of both arguments.

The solution of system (2) with a given initial condition

x = Xo at t = 0 is denotedby x(xo' t). We shall choose the

function f(x, t) in order to obtain such a system (2) that

its solution x(xo' t) convergesto a point which belongs to

solution set x*.

For simplicity, we assumethe existenceof a unique

solution of (2) in some vicinity of the point t = 0 for any

given x O. Uniquenessis not an important restriction and

can be easily omitted.

The distance p(x, M) of the point x from the set M is

defined as

p(x, M) = inf Ilx - yll, y EM

where I I • I I is the euclideannorm.

Definition: The system (2) is called Lagrange stable if

1) a solution (may be non-unique) x(xo' t) exists for any

Xo and for all t > 0; 2) a bound B(XO) exists such that

I !x(xo' t) I I < B(XO) for all t ｾ 0 (and all solutions).

Definition: The set M is called invariant with respectto

the system (2) if, for any X o E M, the solution x(xO' t)

belongs to M for all t ｾ O.

Definition: The setw (x
O

) is called the positive limit set

of a boundedmotion x(t, x
O

) if, for any point p in w(xo) a

sequenceof times {t.} exists tending to infinity as i ｾ 00
1
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so that

1im I Ix ( t .) - p I I = 0
. 1
1+00

Definition: The method (2) convergesglobally (on set M) to

set X* if positive limit set w(xo) C X* for any Xo € En

(for any Xo € M).

In other words method (2) convergesto the set X* if

any limit point of the solution x(xo' t) of system (2) solves

problem (1).

Methods similar to (2) are suitable for use on an analog

computer. If we solve the problem on a digital computer,

then insteadof (2), the following simplest discreteversion

of (2) can be utilized

s = 0,1,··· (3 )

(4 )a + 0so < a s

where Xo is given, step length as is a monotonically decreas-

ing sequencewhich satisfiesthe following conditions

k
lim L: a + 00

k+oo s=o s

All definitions presentedabove can be reformulatedfor

difference system (3). Convergenceof (2) does not imply the

convergenceof its discreteversion (3). Nevertheless,some

results obtained for (2) are of importance for investigation

of system (3). In [2J it was shown that if (2) is an auton-

omous system, then proof of convergenceof a method (2)

ensuresconvergenceof the discreteversion (3) under condition

(4) and another rather simple assumption. Investigationof a
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continuous system is much simpler than investigationof a

discreteone. Therefore,theresult we obtained for (2) will

be consideredas the first step of the investigationof

system (3).

Exterior Point Technique

To simplify and shorten the presentationhere, we will

henceforthassumethat F(x) and h(x) are continuouslydiffer-

entiable functions. The auxilliary exterior penalty function

for problem (1) is defined as

P(x, T) = F(x) + T S(x),

e
S (x) = L: '11 ( Igi (x) I) +

i=l

iHere 0 ｾ T is a scalar, h+(x) = max [0, hi(x)],and '¥(y) is a

scalar-valuedfunction of the single variable y, defined for

all positive y. Supposethat this function is twice different-

iable and satisfiesthe following conditions:

,
'11(0) = 0, '11 (0) = ､ｾＨｏＩＯ､ｹ = 0

(5)

2 2
d '11 (y)/dy ｾ ｾ > 0 for all y > 0

It is easy to verify that if F(x), h(x) are convex diff-

erentiablefunctions, g(x) - affine then P(x, T) is also

convex and differentiable in x function.

If we use the routine penalty function technique, then

we have to select a monotonically increasingsequence{T.}
1

such that T. > 0 and T. + 00 as i + 00, and compute x. which
1 1 1
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minimizes P(x, T.) on E for i = 1, 2,···
1 n

The limit of the

sequence{x.} will belong to solution set X*. A minimizing
1

point x. can be found using the following differential equation
1

where

.
x = - P (x, T.)

X . 1
x(o) = Xo (6 )

P = Fx x

e
+ T [ 2:

i=l

c
2:

i=l

is the column vector of derivatives.

Method (6) is analogousto Cauchy'smethod of steepestdescent.

Via convexity the solution x(xo' t) of system (6) convergesto

xi as t ｾ 00 for any Xo € En'

The penalty function procedurecan be simplified signif-

icantly if, insteadof multiple solving of system (6), we solve

only once a system similar (6) with a continuouslyvariable

parameterT = T(t). For example the following system can be

used

x = (7 )

where T(t) is a differentiable function which satisfiesthe

inequalities

o < T(t) ｾ dT(t)/dt for any t ｾ 0 (8)

We will now prove below that in ｾ ｨ ･ case of a ｣ｯｮｖｾａ prog-

ramming problem under certain assumptions,every limit point

of the solution of system (7) belongs to solution set X*.

If the Slater condition holds (Xo is non empty), then for any
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x* E X* vectors p* E E and w* E E exists such thate c

1 < i < c

e i i c i i
L gx(x*)p* + L hx(x*)w* = 0

i=l i=l

Denote y ｾ [i!l (p;>2 + i!l Ｈ ｗ ［ Ｉ Ｒ ｊ Ｏ Ｒ ｾ

(9)

We shall now establisha preliminary lemma which will be

followed by the convergencetheorem for method (7).

Lemma 1 If (1) is a convex programming problem, the set X*

is compact, X* and Xo are non empty sets, then for any x* E X*,

X E En' 0 < T ｾ T the following inequalities hold

F(x*) - Y/T ｾ p(x, T) < P(x, T). (10)

This lemma was proved in [3, 4J. Nevertheless,taking into

account the importanceof this result for further consideration

we shall give brief proof of this lemma.

Applying the Taylor formula for second-orderexpansions

and taking into account (5), we obtain

By convexity and (9) we have for any x* E X*, X E En

(11)

F (x) -F (x*)
e

> (F (x*), x - x*) = L
x i=l

c
i i

+ L w*(hx(x*), x* - x)
i=l

(12)

where (0,0) is euclideanscalar product.
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Combining (9), (11), and (12) we find that left-hand side

inequality (10) holds

e
L:

i=l

Since P(x, T) is increasingfunction of T for all x E E ,
n

we obtain that P(x, T) ｾ P(x, T) for any 0 ｾ T ｾ T.

The following theorem guaranteesthe convergenceof system (7)

to the solution set X*.

Theorem 1 If F(x), h(x) are continuouslydifferentiable

functions of x, g(x) is affine, X* and Xo are non empty, X*

is compact, inequalities (5), (8) hold, then method (7)

globally convergesto the solution set X*.

We first prove that system (7) is Lagrange stable.

1 2 -1
Introduce the real scalar function v(x, T) = "2 'p (x, X*) + Y/T

which is analogousto the Liapunov function [5J. This function

in contrast to the Liapunov function is not equal to zero for

any x E En and any finite T > O. Function v is differentiable in

x and t for any x, t > O. Let V(X,T ) be the total derivative

of v(x, T) along the solutions of (7) passing through the state

x at t. It is given by:

.
v =

where

(P (x,t), x* - x) - YT- 2dT/dt
x

(13)
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Making use of (8), (10) and taking into account the convexity

of P(x, t) in x, we conclude that

.
v < F(x*) - P(x, t) - y/t < 0

Hence along the motion x(xo' t)

(14)

Let the bounded set Rl be defined by

2 2
Rl = {x : p (x, x*) ｾ p (xO' x*) + 2y/t(0)} .

From (14) it follows that a trajectory x(xO' t) generatedby

(7) can never leave the set Rl for t > O. Hence trajectory

x(xO' t) exists and is bounded for all t > 0, the positive

limi t set w (xO) is non empty and w (xo) C Rl .

Now to prove the theorem it is enough to show that

w (xo) c X* for any X o E: En. Let x be an arbitary point belong-

ing to the set W(xo) and {til is an increasingsequenceof

time t i tending to infinity as i + 00, such that x(xo' t) + x,

ｾ ｨ ･ sequencev(xo' t.), T(t.» is non increasing
ｾ ｾ

and is bounded below by zero. It thereforehas a limit

v(x(xo' t i ) , T(t i »
1 2 -

X*) . Here we take into account+"2P (x,

inequalities (8) which imply that T(t) tends to infinity as

t + 00. From boundnessof v(x, T(t» on Rl it follows that a

subsequence{ts}c { til exist such that v(x(xo' t), T(t) + 0,

x(xo' t) + x if t E: {t s }. Otherwise there are some positive

numbers 0 and T(T) such that v(x(xo' t), t(t» < - 0 for all

t ｾ T(o). By integrating this inequality we would find

v(x(xo' t), t(t) ｾ - o(t - T) and it would follow that
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v(x(xo' t), T(t» ｾ -00 as t ｾ OO,contradictingthe positive-

ness of v(x, t) on Rl .

Using convexity and exploiting the continuity of F(x)

we obtain from (13) that

F(x*) - F(i) = lim T(t) S(x(xo' t»
tE.:{t

s
}

(16)

lim (P (x(xo ' t), T (t», x* - x(xo' t» = 0 (17)
tE.:{t} x

s

Since the left-hand side in (16) is restrictedon the set

R
l

and T(t) tends to infinity as t ｾ 00, each term in s(x(xo' t»

must go to zero. Hence we arrive at an important conclusion

i E.: X, i.e. x is a feasible point for problem (1). If the

right-hand side in (16) has a limit equal to zero then

F(x*) = F(i) and thereforex E.: X*. Otherwisecondition (17) implies

F (x (xo' t.» + T (t .) S (x (xo ' t.» ｾ 0, t. E {t.}( 18)x 1 1 X 1 1 1

Define

Introduce the following set of integers

I i -
B = {i h (x) = 0 i < i :. c}

The limits of

and are equal

i iP (xo' t), w (xo' t) as t E {t s } exist

-i -i
to p and w respectively. To prove this, note

that via condition (5) wi(X O' t) ｾ 0 for any 1 < i < C and
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it > o. If i E B then h (xo, t) < 0 for sufficiently large

t and therefore lim Wi(X o' t) exisGand is equal to zero.
tE{t

S
}

Let

c (xo ' t) =

1 < i < e 1 < j < C

C = -i
ｬ Ｎ ｩ Ｎ ｲ ｲ ｾ C (x -, t), a

-l-E {-l- 1 U
.... ""sJ

If C = + 00 then dividing (18) by C and taking the limit as

t E {t s } yields

c -i i -
l, a g (x) +

. 1 x1=
L:

iEB

where all Ej > O. But this contradictsthe Slater conditions.

F (x) +x

Thus C < 00 and from (18)

ｾ pig;(x) +
i=l

L: ;:;ihi(x) = 0
iEB

Hence vectors p and w associatedwith the limit point x

satisfy the Kuhn-Tucker necessaryand sufficient conditions

for x to be a solution of problem (1). Thereforex E X*

lim v(x(xo' t), T (t)) = o. Sequencev(x(xo' t), T(t))
tE {t }s
monotonically decreases,and possessessubsequencev(x(xo' t),

T(t)), t E{t
S

} which convergesto zero. Therefore the entire

sequencemust converge to zero (see [2, 6J). For any conver-
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has the same limit equal to zero, consequentlyw (xo) =X*.

The starting point Xo is arbitary, hence method (7) converges

globally, for any Xo E En. This completesthe proof of the

theorem.

We also obtain an important additional by-product result:

every limit points of pi(XO' t), wi(xo ' t) coincide with dual

variables p;, ｷ ｾ respectively (see (9)).

As an illustration of this approachconsider the simplest

exarn?l:. We seek a solution to the problem

minimize x subject to x = o.

The solution to this problem is trivial x = o. Use a partic-

ular penalty function

where 0 < y is arbitary scalar. Using method (7), we obtain

the following differential equation

. t 3
x = - 1 - ye x x(O) = Xo

ｾｬｵｴｩｯｮ x = 0 = X* is not an equilibrium point for this

system and is not stable in the senseof Liapunov. Meanwhile

any solution x(xO' t) convergesto X* for any y > 0 and any xO.

Consider the following maximin problem associatedwith

problem (1).

I = max
T<T

min P (x, T)
XEEn

(19)

where 0 < T is some fixed number. Introduce two new sets:
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z = {zlmin P(x, T) = P(z, T)}
xEEn

'V 'V
A pair (T, x), where x E Z, solves maximin problem (19).

function F(x) is bounded below (F(x) < 8 for all x E R2) then

By making T sufficiently large we can thereby find an approp-

riate solution to problem (1) with any required accuracy.

For solving maximin problem (19) it is sufficient to solve

the following problem: minimize P(x, T) over all x E En.

Regretablythis unconstainedproblem is extremely difficult

to solve. Since for large T the function P(x, T) is ill-

conditioned. It is more convenient (see [7J) to let the

paramentT vary continuously from zero to T and solve diff-

erential equationof the form

.
x = - Px (x, T), T = S (x) (T - T), X (0) = X O' T (0) = 0

(20)

The simplest discreteversion of this method is

s = 0, 1, 2, ••• (21 )

We shall call the constraintsessentialin problem (1) if

the unconstrainedinfinurn of F(x) differs from the solution
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to (1).

Theorem 2 Let F, h be convex, continuouslydifferentiable

functions, g(x) be affine function, X* and Z be non empty

compact sets, the constraintsbe essential,and the inequal-

ities (5) hold. Then method (20) convergesglobally to

solution set Z for any X o E En. Discrete method (21) glob-

ally convergesto Ｌ ｾ if as is a monotonically decreasing

ｳ ･ ｾ ｵ ･ ｮ ｣ ･ satisfying (4) and if aO is sufficiently small.

To prove this theoremwe shall use the following

Liapunov function

2
v (x, T) = T - T + P (x, Z) /2

Making use of convexity, we obtain that the total derivative

of v(x, T) along the solution of (20) satisfies inequality

v(x, T) < P(x, T) - P(x, T) + P(x, T) - P(x, T) S. 0

where

x = x(t), T = T(t), x = x(t) E z, p(x(t), Z) = Ilx(t)'- x(t)11

Hence, along the motion x(xO' t)

2 2 2
p (x(xO' t), Z) S. 2T + P (xO' Z) ｾ 2T + P (xO' Z)

Therefore for any t > 0 all trajectory x(xO' t) belongs to the

bounded set

2 2
R2 = {x Ip (x, Z) ｾ 2T + P (xO' Z)}

and x(xo' t) can never exit from R2 . It is obvious that

T(t) ｾ T for all 0 < t. Consequently,system (20) is

Lagrange stable. Positive limit set w (xO) of a motion
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x(xo' t) is non empty and is contained in R2 ·

The functions v(x, T), - v(x, T) are positive definite

functions of vector x on E xZ, i.e. v(x, T) > 0, - v(x, T) > a
n

for any x E Z, a ｾ t < T and v(x, T) = v(x, T) = a if x E Z.

Prove that P(x, T) < P(x, T) for any x E Z, a < T < T. We

shall construct a contradiction. Supposethat a number

T = T l < T exists such that (t - T l ) S(x) = O. It is possible

only if S(x) = 0, i.e. x E x. Therefore F(x) = min P(x, T1)
XEE

Sirl,-,,':': rllaximizes P(x, T1) , it is necessarythat

Px(x, T l ) = Fx(X) = O. Hence x is a stationarypoint of convex

function F(x) and consequentlyis a global minimum of F(x).

This contradictsour assumptionthat constraintsare essential

in problem (1). The monotonically decreasingalong the traj-

ectoriesof (20) Liapunov function v(x(xO' t) ,T(t)) is

always positive and therefore a sequencet i + ｾ exists such

that x(xo' t.) + x., T(t.) + T. and V(x(xo' t.), t.), + O.
1 1 1 1 1 J

Since v(x, T) is negative-except the case x, E Z, T E T,
1

we obtain that v(x., T) = O. For any convergentpair
1

(x, T) + (x, 1) we must have v(x, T) = v(x., T.) = O.
1 1

Finally, any convergentpair solves the maximin problem

(19) •

The presentedconvergenceproof for autonomoussystem

(20) implies the convergenceof discreteversion (21) (see

[2J) .

Interior Point Technique

Define the general interior penalty function for problem
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(1)
e

H(x, T) = F(x) + E
i=l

i iP g (x)
-1

+ T
c
E

i=l
¢(hi(x»

where p € E , T = T(t), ¢ = ¢(y) are scalar-valuedfunctions
e

of a single variable, defined for all 0 ｾ t < 00, - 00 < y < 0

respectivelyand satisfiesthe following conditions

o < T(t), 0 < T' = dT(t)/dt, lim T (t) = 00

t-+oo

(22)

o < ¢(y) < -y¢' (y) = -yd¢ (y)/dy, lim ¢(y) = 00

y-+-O

Using approach [lJ and [7J consider the systemwhich is des-

cribed by the differential equation

ｾ
e i i

= - F + L gxp +x . 1}.=

(23)

We shall choose in such a way p(t) so that function g(x)

would be a first integral of this system. Differentiating

g(x) along the solutions of (23) yields

·ig = ( i H ) = 0gx' x i=l, 2 , ... ,e (24)

Let g be n x m matrix whose ij-th element is equal to
x

ogj (x)/oxi .

We can assumewithout loss of generality that the matrix

gx has maximum rank e. Then the vector p(t) can be found

from linear system (24) of e equationsin e unknowns. Sub-

stituting the solution obtained in (23), we get
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T -1 T
where N = I - gx(gx gx) gx' I is unit n x m matrix, super-

script T denotesthe transposeof a matrix, superscript-1

denotesthe inverse of a matrix.

Theorem 3 If (1) is a convex programming problem, X* and Xo
are non empty, X* is a compact set, inequalities (22) hold,

the matrix g has maximum rank e, then the method (25) con-x

verCies on Xo to the solution set X*.

This theorem was proved in [2].

Consider a particular case when primal problem (1) has

no equality constraints (e=O). Then for solving problem (1)

we use the following modification of Newton's method

x = H-l(H + H ) x(O) = Xo E Xoxx X XT'
(26)

where H is the Hessianxx

Hxx = Fxx + ｔＭｬｩｾｬ｛ｾＢＨｨｾＨｘＩＩ ｛ｨｾＨｘＩｊｔ + ¢ ＨｨｩＨｘＩｨｾｸＨｘＩｊ

H =XT

Theorem 4 If (1) is a convex programming problem, e=O,

functions F(x), h(x) and ¢(y) are twice continuouslydiffer-

entiable, F(x) is strictly convex, X* is a compact set, Xo
and X* are non empty sets, then the method (26) converges

on Xo to X*.

Becauseof our assumptionthat Fxx(x) is a positive definite
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matrix, hi(hi)T and hi are positive semi-definitematrices.
x x xx

II

From conditions (22) it follows that ｾ (y) > 0 for all y < o.

Therefore H (x, T) is a positive definite matrix for any
xx

X E Xo and T > o. Hence matrix H (x, T) has an inverse andxx

a solution of system (26) exists at last for small t when the

solution x(xo' t) remains in XO. Since system (26) has a

trivial first integral

H (x, 1:)x
(27)

the norm of vector Hx is decreasingand solution x(xo' t)

can never leave the feasible region X, since the norm of

vector Hx(X(X O' t), T(t)) would haVe infinity value there, con-

tradicting the strictly monotonic decreasingproperty ensured

by (27). Consequently,the solution of system (26) exists

for any t > 0 and the set Xo is invariant with respectto

this system. Further proof proceedsin a manner similar to

the proof of theorems 1 and 3.

Techniquesfor Solving a Set of Equations

The methods of exterior point can be used for solution

of a set of equations. Supposewe have to find a feasible

point x E X and this set is non empty and compact. Define

function

P(x) =
e
l: '¥ ( Igi (x) I) +

i=l

c i
l: '¥ (h+ (x) )

i=l

Assume that conditions (5) hold. Hence P(x) is a differen-

tiable function and the set X coincideswith the set of points

that solve the equation P (x) = O. That is, a primal problemx
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is transformedto the problem of finding the stationary

points of a function P(x). Using the simplest gradient

method yields the following differential equation

x = Px

(28)

Theorem 5: If h(x) is convex, continuouslydifferentiable

funstion, g(x) is affine, X is a non empty, compact set

conditions (5) hold, then method (28) globally convergesto

the set X for any X o E En'

Tw Liapunov functions can be used for the proof of this

theorem

2vl(x) = P (x, X) v 2 (x) = P(x)

Taking into account convexity, we obtain that the total

derivatives of v l and v 2 along the solution of (28) satisfy

inequalities

.
v l ｾ - 2P(x) ｾ 0

Proof of convergencefollows immediately from these formulas.

In a particular case when h(x) is affine, ¢(y) = y2 this

method coincideswith the method suggestedin [8J. If v l or

v 2 satisfy Lipschitz condition then a discreteversion of

(28), similar to (21), also convergesto the set X [2J.

If h(x), g(x) ¢(y) are twice differentiable functions

then Newton's method can be used.

P (x) X= - Px(x)xx
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Proof of convergenceis exactly the same as the proof of

theorem 5.

Iterative Numerical Methods for Solving a Linear Programming

Problem

Let us consdier the following linear programming problem

n
minimize E Cix i

i=l

subject to x E X = {xiA x = b x > O} where

(29)

1 2 n
C = (C , C , ... ,C )E En' b E Em' A is m x n matrix.

The dual problem is

m
maximize E biyi

i=l
(30)

subject to y E Y = {yl C - ATy} , where superscriptT denotes

the transposeof a matrix.

Let X* and Y* be the solution sets of problems (29) and

(30) respectively. Supposethat they are non empty, compact.

The methods describedabove are applicable to these

problems. For example, considermethod (20). To simplify

formulas we use the quadratic loss function to absorb the

constraintsand define penalty functions as

P(x, T) = CTx + T [II Ax - b 11 2
+ I Ix _ I 12J/2 ,

W(y, s) = bTy s Ilw _11 2
/ 2

where

T i i __ r:z_l , z_2, •.. , zn_Jw = C - A y, z = max [0, - z ] > 0, Z ｾ
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Appyling (20) to problems (29), (30) yields

x = (31)

.
y = Wy = b - s Aw_, s = (s - T)Ws

It is easy to show that the following evaluationshold

1 2 T T
v'1(y, s) - 2sl1 x::ll ｾ e x* = b y* < P(x, T) +

+ 1
[lly*11

2
+ lie - ATy* 11

2J2T

T 1
[lly* 11

2
I Ie - ATy * I 1

2J min P(x, -r) Te x* + < < e x*,2T - -XE:En
.T +.l:- 2 T
D y* Ilx* II > max W (y, s) > b y*2s - yE:Em

where 'f* .E: X*",y* £,y*.

(32)

Theorem 2 ensuresthe convergenceof thesemethods and their

discreteversions. Therefore thesemethods permit us to find

an approximatesolution for problem (29) or (30) with any

required accuracy. Simplicity of calculationsis the obvious

advantageof thesemethods. Moreover the amount of computation

is only slightly dependenton the dimensionality of the problem.

But thesemethods can not be used for high precision calcul-

ations. This disadvantageis due to increasingpenalty

function coefficient.
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