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Introduction

The idea of utilization penalty functions for nonlinear
programming was suggested first by R. Courant. Later this
approach was developed, generalized, and extended signifi-
cantly and a great number of important results have been
obtained. Extensive literature exists on penalty function
methods. For the basic result refer to Fiacco and McCormick
DJ. The list of references at the end of this paper includ-
es only articles closely relevant to the methods presented.
Penalty function methods have several disadvantages. The
main ones are as follows.

1) The methods are time-consuming. They.do require multiple
solving of unconstrained minimization sub-problems.

2) Solution of minimization sub-problems becomes

exceedingly cumbersome when the penalty coefficient increases,
since a minimization function becomes ill-conditioned.

3) The usual penalty methods cannot be used for determining
a solution with great accuracy. These methods are subject

to numerical instabilities because the derivatives of the
penalty functions increase without bound near the solution

as computation proceeds.

The methods suggested below essentially simplify standard
penalty function procedure and remove, to some extent, the
first two shortcomings.

Statement of Problem and Some Definitions

We consider the following primal nonlinear programming




problem:

minimize F(x) (1)
subject to constraint

xe X = {x ¢ Enlg(x) = 0, h(x) < 0}

where F, g, h are given functions defined on En, Euclidean
n-space, x = (xl,xz,...,xn) is a point in En, functions

F, g, h define the mappings F: En+El, g : En+Ee, h : En+Ec,
where Ei is i-dimensional Euclidean space.

Introduce the solution set X, of problem (1) and the

strictly interior points set of X:

X, = {x,|min F(x) = F(x,) , X4 & X},
xeX
X, = {x |g(x) =0 , hi(x) < 0}

O
Problem (1) is called a convex programming problem if F(x),
h(x) are convex functions and g(x) is affine.

In this paper a number of methods will be suggested for
solving problem (1l). They can be used when (1) is a general
nonlinear programming problem, but here we shall prove the
convergence of the methods only for the simplest case when
(1) is a convex programming problem.

We shall consdier mainly continuous versions of numerical
methods which would be governed by an ordinary differential

equation
x = f(x, t) (2)

where a super dot denotes differentiation with respect to



time independent variable t, and f(x, t) is a continuous
function of both arguments.

The solution of system (2) with a given initial condition
X = Xq

function f(x, t) in order to obtain such a system (2) that

at t = O is denoted by x(xo, t). We shall choose the

its solution x(xo, t) converges to a point which belongs to
solution set X,.

For simplicity, we assume the existence of a unique
solution of (2) in some vicinity of the point t = O for any

given x Uniqueness is not an important restriction and

0°
can be easily omitted.
The distance p(x, M) of the point x from the set M is

defined as
p(x, M) = inf ||x - y||, y e M

where || * || is the euclidean norm.

Definition: The system (2) is called Lagrange stable if

1) a solution (may be non-unique) x(x t) exists for any

OI
X5 and for all t > O; 2) a bound B(xo) exists such that

||x(xo, t) || < B(xy) for all t > O (and all solutions).

Definition: The set M is called invariant with respect to

the system (2) if, for any Xy € M, the solution x(x t)

OI
belongs toM for all t > O.

Definition: The set(u(xo) is called the positive limit set

of a bounded motion x(t, XO) if, for any point p in w(xo) a

sequence of times {ti} exists tending to infinity as i » «



so that

lim |{x(t;) - p|l| =0

] >0

Definition: The method (2) converges globally (on set M) to

set X, if positive limit set w(xo)<i X, for any x5 € En

(for any x. e M).

0
In other words method (2) converges to the set X, if
any limit point of the solution x(xo, t) of system (2) solves
problem (1).
Methods similar to (2) are suitable for use on an analog
computer. If we solve the problem on a digital computer,

then instead of (2), the following simplest discrete version

of (2) can be utilized

X = x_ 4+ o f(x

crl = Xg + Og t), s =0,1,%° (3)

SI

where x. is given, step length O is a monotonically decreas-

0
ing sequence which satisfies the following conditions
k
0 < a a_ > 0 lim 2 a_ +» . (4)
s ! S " Ksw g=0 S

All definitions presented above can be reformulated for
difference system (3). Convergence of (2) does not imply the
convergence of its discrete version (3). Nevertheless, some
results obtained for (2) are of importance for investigation
of system (3). 1In [2] it was shown that if (2) is an auton-
omous system, then proof of convergence of a method (2)
ensures convergence of the discrete version (3) under condition

(4) and another rather simple assumption. Investigation of a



continuous system is much simpler than investigation of a
discrete one. Therefore, the result we obtained for (2) will
be considered as the first step of the investigation of
system (3).

Exterior Point Technique

To simplify and shorten the presentation here, we will
hencefoith assume that F(x) and h(x) are continuously differ-
entiable functions. The auxilliary exterior penalty function

for proklem (1) is defined as

P(x, 1) = F(x) + 1 S(x),

e . .
s(x) = Z v(lgt(x)]) + I ¥(hi(x))
=] i =

i=1

Here O < T is a scalar, hi(x) = max [O, hl(X)],and ¥Y(y) is a
scalar-valued function of the single variable y, defined for
all positive y. Suppose that this function is twice different-

iable and satisfies the following conditions:

¥(0) = 0, ¥ () = d¥(0)/dy = O ,
(5)

a%¥(y)/dy? > u> 0 for ally >0 .

It is easy to verify that if F(x), h(x) are convex diff-
erentiable functions, g(x) - affine then P(x, 1) is also
convex and differentiable in x function.

If we use the routine penalty function technique, then
we have to select a monotonically increasing sequence {Ti}

such that Ty > 0 and T, *® as i + «, and compute X which



minimizes P (X, Ti) on En for i =1, 2,*++ . The limit of the
sequence {xi} will belong to solution set X,. A minimizing

point X; can be found using the following differential equation

X = - Px(x! Ti) , x(0) = Xq (6)
where
N | ¢ ii
pX=FX+T[E ¢ (lg7 g, + I (h})h]
i=1 i=1

is the column vector of derivatives.
Method (6) is analogous to Cauchy's method of steepest descent.

Via convexity the solution x(x t) of system (6) converges to

OI
X; as t > » for any Xy € En.

The penalty function procedure can be simplified signif-
icantly if, instead of multiple solving of system (6), we solve

only once a system similar (6) with a continuously variable

parameter T T(t). For example the following system can be

used

X = - Px(x, T(t)) , x(0) = x (7)

0

where 1(t) is a differentiable function which satisfies the
inequalities
0 < 1(t) < dr(t)/dt for any t > O . (8)
We will now prove below that in che case of a convex prog-
ramming problem under certain assumptions, every limit point

of the solution of system (7) belongs to solution set X,.

If the Slater condition holds (XO is non empty), then for any



X, € X, vectors p; ¢ Ee and w, € Ec exists such that

w, > O, w*hl(x*) =0, 1l<ic<c ,
€ i i € i )
F_(xy) + I gx(x*)p* + I hX(x*)w* o .
i=1 i=1
e . C .
Denote Yy = [ z (pi’)2 + I (Wi)é]/Z .
i=1 i=1

We shall now establish a preliminary lemma which will be
followed by the convergence theorem for method (7).
Lemma 1 If (1) is a convex programming problem, the set X,

is compact, X, and X. are non empty sets, then for any x, € X,,

0

xeE,O0<T<T the following inequalities hold
F(x,) - v/T < P(x, 1) < P(x, T). (10)
This lemma was proved in E3, 4]. Nevertheless, taking into

account the importance of this result for further consideration
we shall give brief proof of this lemma.

Applying the Taylor formula for second-order expansions
and taking into account (5), we obtain

2¥(y) > u y® 2 0 (11)

By convexity and (9) we have for any x, € X,, X € E

~ O

F(x) ~F(x,) > (F, (%), x - x) By (95 (%4) ) Xu - %)

i=1

(X%) s X4 = X) (12)

O T |
+ I w*(hx

where (*,°+) is euclidean scalar product.



Combining (9), (11), and (12) we find that left-hand side
inequality (10) holds

e c o
P(x, 1) - F(x,) > - E P9 (X) - Zl wihi(x) +

u [ € iq2 ¢ in2 2 2
t '21 [97] +'21 (1% 2 = Vsl 12+ [ wel [7] /2t

l:

Since P(x, 1) is increasing function of t for all x ¢ En’

we obtain that P(x, 1) < P(x, T) for any O < 1 < T.

The following theorem guarantees the convergence of system (7)
to the solution set X,.

Theorem 1 If F(x), h(x) are continuously differentiable
functions of x, g(x) is affine, X, and Xy are non empty, X,
is compact, inequalities (5), (8) hold, then method (7)
globally converges to the solution set X,.

We first prove that system (7) is Lagrange stable.

Introduce the real scalar function v(x, 1) = % p;(X, Xe) + y/r—l
which is analogous to the Liapunov function [5]. This function

in contrast to the Liapunov function is not equal to zero for

any x € E  and any finite 7 > 0. Function v is differentiable in
x and t for any x, t > 0. Let v(x,T ) be the total derivative

of v(x, 1) along the solutions of (7) passing through the state

x at t. It is given by:

v = (%{(X:T), X, - X) - YT_ZdT/dt (13)

where

Xo € Xyp ||xp = x(£)[] = p (x(£), Xy)



Making use of (8), (10) and taking into account the convexity

of P(x, 1) in x, we conclude that
v < F(xy) - P(x, 1) - Y/T <0 . (14)

Hence along the motion x(xo, t)

PP (x(xg, £), Xa) <€ P2 (X, Xe) + 2Y/T(0) . (15)
Let the bounded set Rl be defined by
_ 2 2 }
Rl = {x : p"(x, X)) <p (xo, X,) + 2y/t(0)

From (14) it follows that a trajectory x(x t) generated by

OI

(7) can never leave the set R, for t > O. Hence trajectory

1

x(xo, t) exists and is bounded for all t > O, the positive
limit set w(xo) is non empty and w(xO)CZ R, .
Now to prove the theorem it is enough to show that

w(xo)cz X, for any x, ¢ En' Let X be an arbitary point belong-

0

ing to the set w(xo) and {ti} is an increasing sequence of

time t, tending to infinity as i » «, such that x(x t) » x,

OI
t € {ti}. The sequence v(xo, ti), T(ti)) is non increasing

and is bounded below by zero. It therefore has a limit

1 2

vix(xgr ty), T(E;)) > 5p (x, X,). Here we take into account

OI
inequalities (8) which imply that t(t) tends to infinity as

t > o, From boundness of v(x, T(t)) on Rl it follows that a
subsequence {ts}CZ{ ti} exist such that G(x(xo, t), t(t) » O,

X(x., t) > x if t € {ts}. Otherwise there are some positive

OI
numbers 6 and T(t) such that G(x(xo, t), 1(t)) < - ¢§ for all
t > T(8). By integrating this inequality we would find

v(x(xo, t), t(t) < - &8(t - T) and it would follow that



v(x(xo,

_lo_

t), 1(t)) » -» as t » x,contradicting the positive-

ness of v(x, t) on Rl‘

Using convexity and exploiting the continuity of F(x)

we obtain from (13) that

F(x,) = F(x) = lim 1(t) S(x(xy, t)) (16)

lim (P (x(x
te{ts} .

te{ts}

o’ t), T(t))l Xe — X(XO, t)) =0 . (17)

Since the left-hand side in (16) is restricted on the set

1

must go to zero. Hence we arrive at an important conclusion

X € X, i.e. X is a feasible point for problem (1). If the

right-hand side in (16) has a limit equal to zero then

F(x,) = F(x) and therefore x ¢ Xy

Fx(x(x

ti)) +otlty) s, (x(xy, t5)) > 0, t, € {ti}(lB)

ol OI
Define
P (xg, £) = () ¥(|gT(x(xg, £
wh(xg, t) = T(t) ¥(hi(x(x,, t)) for 1 <i e, 1<3j ¢

Introduce the following set of integers

B =

The limits of pl(x

{i|hi(§) =0 , 1i<1ic<c}

o’ t), wl(xo, t) as t ¢ {ts} exist

and are equal to El and wo respectively. To prove this, note

that via condition (5) wl(xo, t) > O for any 1 < i < ¢ and

R and T(t) tends to infinity as t - ©, each term in S(x(xo, t))

Otherwise condition (17) implies

C
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t > 0. If ie B then h'(x,, t) < O for sufficiently large

t and therefore lim wl(x t) exists and is equal to zero.

OI
te{ts}
Let
e . .
i i
Clxg, ) = L [p(xg, )] + T wilxg, t)
i=1 ieB
at=p)c , pl=wyc , 1l<i<e , l<jc<cC ,
= . \ -i . i =1 . j
C = . ltmic(xo, t), a = lim a (XO’ t), b = 1im bj(xo, t)
Le{usj te{ti} te{ti}

If C = + » then dividing (18) by C and taking the limit as

t e {ts} yields

atgr ) + r Bl =o
1 ieB

|| o]

i

where all bJ > 0. But this contradicts the Slater conditions.

Thus C < » and from (18)

519;(2) + £ wrht

1l ieB

(x) = 0O

o

Fplx) +
i
Hence vectors p and w associated with the limit point x
satisfy the Kuhn-Tucker necessary and sufficient conditions
for x to be a solution of problem (1). 4herefore X e X,

lim V(x(xo, t), t(t)) = O. Segquence v(x(xo, t), T(t))
te{t_}

monotonically decreases, and possesses subsequence V(X(XO, t),
T(t)), t €{ts} which converges to zero. Therefore the entire
sequence must converge to zero (see [2, 6]). For any conver-

gent subsequence x(xo, tj) the sequence v(x(xo, tj), T(tj))
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has the same limit equal to zero, consequently(u(xO) Z Xy

The starting point x_. is arbitary, hence method (7) converges

O
globally, for any x. € En. This completes the proof of the

(0]
theorem.
We also obtain an important additional by-product result:
every limit points of pi(xo, t), wi(xo, t) coincide with dual
variables pi, wi respectively (see (9)).

As an illustration of this approach consider the simplest

exampl:. We seek a solution to the problem
minimize x subject to x = O.

The solution to this problem is trivial x = O. Use a partic-

ular penalty function
P(x, 1) = x + Yetx4/4 '

where O < y is arbitary scalar. Using method (7), we obtain
the following differential equation

X = -1 - Yetx3 , x(0) = Xy -
Solution x = 0 = X, is not an equilibrium point for this
system and is not stable in the sense of Liapunov. Meanwhile
any solution x(xo, t) converges to X, for any y > O and any Xy

Consider the following maximin problem associated with

problem (1).

I = max min P(x, 1) (19)
T<T ern

where O < T is some fixed number. Introduce two new sets:
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Z = {z|min P(x, T) = P(z, T)}
ern

R, = {x|p2(x, Z2) < 2T + pz(xo, Z)} .

A pair (T, %), where X € Z, solves maximin problem (19).
N
If X € %, x4 € X, then F(x,) - y/T < P(X, T) < F(x,). If

function F(x) is bounded below (F(x) < ¢ for all x € R,) then
v
s(x) < [F(x,) - &8]/T.

By making T sufficiently large we can thereby find an approp-
riate solution to problem (1) with any required accuracy.

For solving maximin problem (19) it is sufficient to solve
the following problem: minimize P(x, T) over all x € En.
Regretably this unconstained problem is extremely difficult
to solve. Since for large T the function P(x, T) is ill-
conditioned. It is more convenient (see [7]) to let the
parament T véry continuously from zero to T and solve diff-

erential equation of the form

x==-P (x, 1), T =8(X)(T - 1), x(0) = Xgr T(O) =0 .
(20)

The simplest discrete version of this method is
Xgpl T Xg T 0P (X, T)y Ty = Tg ooy ST - 1),
S=O, l, 2’ a s oo ' (21)

We shall call the constraints essential in problem (1) if

the unconstrained infinum of F(x) differs from the solution
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to (1).

Theorem 2 Let F, h be convex, continuously differentiable
functions, g(x) be affine function, X, and Z be non empty
compact sets, the constraints be essential, and the inequal-
ities (5) hold. Then method (20) converges globally to

solution set Z for any x. € En. Discrete method (21) glob-

0

ally converges to & if O g is a monotonically decreasing

secuence satisfying (4) and if 0g is sufficiently small.

To prove tnis theorem we shall use the following

Liapunov function

vix, 1) =T -1 + pz(x, Zy/2 .

Making use of convexity, we obtain that the total derivative

of v(x, 1) along the solution of (20) satisfies inequality

vix, 1) < P(X, 1) - P(X, T) + P(X, T) - P(x, T) <O
where
x = x(t), T = 1(t), = = ®(t) € Z, p(x(t), 2) = ||x(t) - x(t)]]|
Hence, along the motion x(xo, t)

2 2 2

p (x(xo, t), Z2) < 21 + p (xo, Z) < 2T + p (xo, Z)
Therefore for any t > O all trajectory x(xo; t) belongs to the
bounded set

-2 2
R, = {x|[p"(x, Z) < 2T + p%(xy, 2)}

and x(xo, t) can never exit from R2. It is obvious that
T(t) < T for all O < t. Consequently, system (20) is

Lagrange stable. Positive limit set m(xo) of a motion
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x (x t) is non empty and is contained in R, -

OI
The functions v(x, 1), - G(x, T) are positive definite

functions of vector X on Ean, i.e. v(ix, 1) > 0, - G(X, T) > 0

for any x ¢ %2, O <t <Tand vi(x, 1) = v(x, 1) =0 if x ¢ Z.
Prove that P(x, 1) < P(x, T) for any Xe 2,0 <1t < T. We

shall construct a contradiction. Suppose that a number

1

only if S(x) = 0, i.e. x e X. Therefore F(x) = min P(x, Tl)
xXekE
Since .. maximizes P (x, Tl), it is necessary that

T = 7. < T exists such that (t - Tl) S(x) = 0. It is possible

= F_(x) = O. Hence x is a stationary point of convex
function F(x) and consequently is a global minimum of F(x).
This contradicts our assumption that constraints are essential
in problem (l1). The monotonically decreasing along the traj-

ectories of (20) Liapunov function v (x(x t),T(t)) 1is

OI

always positive and therefore a sequence ti + ¢ exists such

that x( ), t.), = O.

ti) > Xy T(ti) > Ty and V(x(xo, ti 3

X
Since Q(x, T) 1s negative except the case Xi € Z, T £ 7T,
we cbtain that V(Xi’ T) = 0. For any convergent pair
(x, T) - (X, T) we must have v(x, 1) = V(Xi' Ti) = 0.
Finally, any convergent pair solves the maximin problem
(19) .

The presented convergence proof for autonomous system
(20) implies the convergence of discrete version (21) (see

-

Interior Point Technique

Define the general interior penalty function for problem
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plgt(x) + 7t 6 (bt (x))

1 i

H(x, 1) = F(x) +

I ™~
It~

i 1

where p ¢ Ee' T =1(t), ¢ = ¢(y) are scalar-valued functions
of a single variable, defined for all O < t < «, = © < y < O

respectively and satisfies the following conditions

O < t(t), O < 1" =dr(t)/dt, lim 1(t) = « ,
t>o

(22)

O < ¢(y) < -y¢' (y) = =-ydod(y)/dy, lim ¢(y) =« .
y>=-0

Using approach [1] and [7] consider the system which is des-

cribed by the differential equation

e . c
x = - H, (%, T(t)) = _[%x + ii gyp~ *+ T.E

We shall choose in such a way p(t) so that function g(x)
would be a first integral of this system. Differentiating

g(x) along the solutions of (23) yields

. i . . .
gl = - (gX' HX) = Q ? l=l,Z,...,e . (24)

Let Iy be n x m matrix whose ij-th element is equal to
6gj(x)/6xi.

We can assume without loss of generality that the matrix
Iy has maximum rank e. Then the vector p(t) can be found
from linear system (24) of e equations in e unknowns. Sub-

stituting the solution obtained in (23), we get
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1
T

i

o (25)

nh™a

ot (nt (x)) hi(x)], x(0) € x
l X

where N = I - gx(gz gx)_l gi, I is unit n x m matrix, super-

script T denotes the transpose of a matrix, superscript -1
denotes the inverse of a matrix.
Theorem 3 1If (1) is a convex programming problem, X, and XO
are non empty, X, is a compact set, inequalities (22) hold,
the matrix Iy has maximum rank e, then the method (25) con-
ver«ces on XO to the solution set X,

This theorem was proved in [2].

Consider a particular case when primal problem (1) has

no equality constraints (e=0). Then for solving problem (1)

we use the following modification of Newton's method

L ] _ —l _
X = - HXX(HX + er)’ x{(0) = X € XO (26)
where H is the Hessian
XX
%X=Fm{+r ﬁ(h(m)p(xq + ¢ (hi mh xq
B g ¢ opdpd
Het = ¢ (h7) X

Theorem 4 If (1) is a convex programming problem, e=0,
functions F(x), h(x) and ¢(y) are twice continuously differ-

entiable, F(x) is strictly convex, X, is a compact set, XO

and X, are non empty sets, then the method (26) converges

on X, to X,.

Because of our assumption that Fxx(x) is a positive definite
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matrix, hi(hi)T and hix are positive semi-definite matrices.

From conditions (22) it follows that ¢"(y) > 0 for all y < O.
Therefore Hxx(x, T) is a positive definite matrix for any

X € XO and T > O. Hence matrix Hxx(x, 7) has an inverse and

a solution of system (26) exists at last for small t when the
solution x(xo, t) remains in XO. Since system (26) has a

trivial first integral

H (x, ©) = H_ (x5, 0)e” " (27)

the norm of vector H, is decreasing and solution x(xo, t)

can never leave the feasible region X, since the norm of
vector Hx(x(xo, t), t(t)) would have infinity value there, con-
tradicting the strictly monotonic decreasing property ensured
by (27). Consequently, the solution of system (26) exists

for any t > O and the set X, is invariant with respect to

0]
this system. Further proof proceeds in a manner similar to
the proof of theorems 1 and 3.

Techniques for Solving a Set of Egquations

The methods of exterior point can be used for solution
of a set of equations. Suppose we have to find a feasible
point x € X and this set is non empty and compact. Define

function

v ([gtx)]) +
i=1 i

™M O

P(x) =

H~MQ

L)

Assume that conditions (5) hold. Hence P(x) is a differen-
tiable function and the set X coincides with the set of points

that solve the equation Px(x) = 0. That is, a primal problem
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is transformed to the problem of finding the stationary
points of a function P(x). Using the simplest gradient

method yields the following differential equation

e , . . c ys
s _ _ _ i i ci,.al, x(0) e X
X = p_= [.E ¥ (|g (x)])gx + .E ¥ (n+)n¥] 0
i=1 i=1
(28)
Theorem 5: If h(x) is convex, continuously differentiable

fun~tion, g(x) is affine, X is a non empty, compact set
conditions (5) hold, then method (28) globally converges to
the set X for any Xy € En'

Tw Liapunov functions can be used for the proof of this

theorem

vl(x) = p2(x, X) , v2(x) = P(x) .

Taking into account convexity, we obtain that the total
derivatives of vy and Vs along the solution of (28) satisfy
inequalities

v

<-2P(x) 0 , v, <-||p
Proof of convergence follows immediately from these formulas.

In a particular case when h(x) is affine, ¢ (y) = y2 this
method coincides with the method suggested in [8]. If v, or
v, satisfy Lipschitz condition then a discrete version of
(28), similar to (21), also converges to the set X [2].

If h(x), g(x) ¢(y) are twice differentiable functions

then Newton's method can be used.

P (%) X = - P (x)
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Proof of convergence is exactly the same as the proof of

theorem 5.

Iterative Numerical Methods for Solving a Linear Programming

Problem
Let us consdier the following linear programming problem
. N
minimize I C™x (29)
i=1
subject to x ¢ X = {x|A x=Db , x > O} where

1 2

c= (ct, c4,...,cMhe E, beE,Ais m x n matrix.

ml
The dual problem is

maximize ? blyl (30)
i=1

subject toy € Y = {y| c - ATy}, where superscript T denotes
the transpose of a matrix.

Let X, and Y, be the solution sets of problems (29) and
(30) respectively. Suppose that they are non empty, compact.

The methods described above are applicable to these
problems. For example, consider method (20). To simplify

formulas we use the quadratic loss function to absorb the

constraints and define penalty functions as

i

P(x, T) cTx + T['lAX - b||2 + | [x _||2]/2'

Wiy, s) = bly = s||w _|[?/2

where

w=C - Aly, zi = max [O, -zi] >0, z_ = [2E, zE,...,zE]
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Appyling (20) to problems (29), (30) yields
. T . _
x=—Px=—C—T|:A(Ax—b)+x_:|,1'—(T TR (31)
.=' = _— .= - 32
y wy b - s Aw_, s (s - T)W, (32)

It is easy to show that the following evaluations hold

Wiy, ) - o=l | %017 < e = bly, < Plx, 1) +

2 T 2
v & [lval1? + e = 2™l 1?]

CTX* - §%‘[J|Y*||2 + ||C - ATY*||%} < min P(x, T) < CTX*:
xXelB
n
N T
Ty, + o= |lxul|? 2 max W (v, s) 2 by,

yeEm

where x, € X,, Vi € Ygi. o J

Theorem 2 ensures the convergence of these‘methods and their
discrete versions. Therefore these methods permit us to find
an approximate solution for problem (29) or (30) with any
required accuracy. Simplicity of calculations is the obvious
advantage of these methods. Moreover the amount of computation
is only slightly dependent on the dimensionality of the problem.
But these methods can not be used for high precision calcul-
ations. This disadvantage is due to increasing penalty

function coefficient.
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