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THE OUT-OF-KILTER ALGORITHM

AND SOME OF ITS APPLICATIONS IN WATER RESOURCES

INTRODUCTION

It has been mentioned on many occasions that the
conventional techniques are inadequate to plan and formulate
complex water resources systems. Unfortunately it may
never be possible to take all the many variables, inputs
and outputs fully into account in a wholly systematic
manner. Assumptions and simplifications will continue to
be necessary. Nonetheless, application of the "systenm
approach" provides water resources planners with a much
better set of tools than were available 10 to 15 years ago.

The purpose of this paper is to present a simple
water resources allocation model based on the Fulkerson's
out-of-kilter algorithm [4]. This algorithm is a special
purpose linear programming method which has been efficiently
used for the solution of a number of water resources problems,
just to mention the Texas Water Plan in the USA [9], the
Vistula River Project in Poland [10], and the Trent River
System in Canada [8]. The model is presented in form of a
complete computer program OKAY written in the Fortran
language. Potential applications of the model are
illustrated by few computational examples. Although in
principle this is an allocation model for a single time

period, the possibilities of its extension to multiperiod



analysis are also briefly discussed. For complete
description of some of the large scale simulation-optimiza-
tion packages "driven" by the out-of-kilter algorithm, the
interested reader may refer to references [9, 10] given at
the end of this paper. The model presented herein is of a
general nature and can be considered as a base for development
of more complex computer programs designed according to

the specific character of a problem subject to analysis.
Its original feature is iterative use of the out-of-kilter
algorithm to take care of the so-called consumptive losses
which as a rule occur in all water resources systems.

The out-of-kilter computer code used in the OKAY
program (XILT and PACKUP subroutines), has been developed
by the Texas Water Development Board in cooperation with
the Water Resources Engineers, Inc., Walnut Creek,
California, USA. Although at present there is a number of
other codes available (e.g. developed by Boeing, General
Motors, Share and most recent very efficient versions by
R.S. Barr, F. Glover and D. Klingman), they are not
discussed in this paper and the interested reader should
refer especially to [1]. The out-of-kilter code presented
in this paper was successfully applied for studying water
resources development alternatives in the Vistula River
Basin, within the framework of the UN sponsored first
phase of the "Vistula River Project".

Description of the algorithm is based especially

on [1], [3] and [4].



THE OUT-OF-KILTER ALGORITHM

An abstract definition of a network is a collection of
nodes and a collection of arcs which connect these nodes.
Following [1], the problem which is solved by the
out-of-kilter algorithm is that of finding the optimal flow
in a circulatory network, and is defined as follows:

minimize ) Cis Xy (1)
(i,9)em 3 *J

subject to:

P x,o -l x., =0 i=1,...,m (2)
3

< x.. < k.. (i,j) €M (3)

where xij is the flow from node i to node j, cij is the
cost associated with sending one unit flow from node i
to node j, lij and kij are, respectively, the lower and
upper bounds on the amount of flow in arc (i,Jj), m is the
number of nodes and M is the set of all arcs in the network.
The arcs are identified by naming the nodes they connect,
for example arc (i,j). It is further assumed that all costs,
flows and bounds are integers. 1In addition flows and bounds
are nonnegative values.

For such a network, a feasible circulation is defined
as a set of flows satisfying relationships (2) and (3). An

optimal circulation satisfies (1), (2) and (3).



Associated with this problem is a dual problem which
may be stated as:

imi 1.. .. — k.. u.. 4
maximize (igj)EM( 15 Ui; i3 lJ) (4)

subject to:

u; - uj + (uij - uij) < cij (i,3) €M (5)
1]
i3 uij >0 (i,j)e M (6)
u. unrestricted i=1,...,m

The dual variables u, are called "node prices", and
the expression Eij = cij + u, - uj is called "marginal cost"
or "net cost" associated with arc (i,j).

Assuming the reader has no knowledge of duality theory,
Durbin and Kroenke [3] have described the nature of "node
prices" by means of a simple economic example. Let us
assume that the total transportation cost of certain
commodity in the network depends not only on the distribution
charges cij on each arc (i,]j), but also on the prices which
consumers located at some or all nodes must pay for a unit
of flow commodity. Therefore u; denotes the price of a unit
of flow commodity at node i. The above defined net cost
Eij’ represents the total cést to the system (consumer and
distributor), of transporting one unit of flow from node i

to node j. If (cij + ui) is greater than uj, the cij will



be positive and the flow from node i to node j should be kept

as low as possible. For example, let us assume that

cij = 3, u, = 4 and uj = 6,(cij = 1). If we can sell one
urit of flow at node i for 2, = 4, it does not pay to ship
a unit from i to j for cij = 3 and to sell it at node j
for uy = 6. In case one unit of flow is sold at node i,

the system's profit is equal to 4; moving it and selling
at node j means the system's profit is only 3. On the
other hand, if (cij + uij) is smaller than uj, the Eij
will be negative and the shipment from i to j is profitable.
If the value of Eij = 0, the system is indifferent to an
additional unit flowing from i to j.

It can be proved on the basis of the linear programming

theory, that feasible circulation is optimal if and only if

one of the following conditions is satisfied by each arc

(i,3)EM:
If c.. <0 then X.. = k.. (7)
ij ij ij
If c.. =0 then 1.. < . < (8)
ij ij - 7ij - 7ij
If c.. >0 then x.. =1,. (9)
ij ij ij

Condition (7) states that when net arc cost is negative,
flow on the arc ought to be as large as possible. Condition
(8) states that when net arc cost is zero, the flow level
is unimportant as long as it meets upper and lower bounds.
Finally, condition (9) states that when net arc cost is

positive, flow on the arc ought to be at the minimum level



possible. The algorithm is designed to construct a
circulation meeting these conditions.
Any arc that meets the optimality conditions
(7), (8) or (9) is said to be "in-kilter"; otherwise,
the arc is said to be "out-of-kilter". An "out-of-kilter"

arc must then satisfy one of the following conditions:

I. cij < 0 and xij < kij
IT. cij > 0 and xij > lij
ITI. c.. > 0 and X.. < 1..
1] 1] 1]
IV. c.. =20 and X.. < 1..
1] ij 1]
V. cij =0 and xij > kij
VI. c.. <0 and X.. > k..
1] 1] 1]

The general thrust of the algorithm is to bring each
out-of-kilter arc in-kilter by adjusting its flow or by
changing appropriately the node prices. In order to change
the flow of an out-of-kilter arc (s,t), a suitable path must
be found from note t to node s which, in conjuction with
(s,t), forms a cycle. Flow is then adjusted on each arc of
the cycle by amounts which maintain node conservation and
contribute towards bringing (s,t) in kilter. A path is being

searched by alternative use of labelling rules and a

node price changing rules. : Excellent description of these

rules may be found in [3] and [7]. It should be noted that

the algorithm arbitrarily selects an



out-of-kilter arc, and tries to bring that arc into kilter

while not forcing any other arc farther out-of-kilter. 1If

the selected arc can be brought into kilter, the algorithm
selects another out-of-kilter arc and repeats the procedure.

The procedure terminates when all arcs are found to be in kilter.
If any arc cannot be brought into kilter, the probléem

cannot be solved.

THE NETWORK MODEL OF WATER RESOURCES SYSTEM

The network representation is one of the most natural
ways of describing a water resources system. Nodes represent
all fixed points in the system, such as reservoir, water with-
drawal and waste discharge points, water use points,
control and balance profiles, gauging profiles, etc. Arcs
are inserted for all river reaches, pipelines and other water
transfer facilities, demands, supplies, storage quantitites,
etc. It should be noted that all arcs must have compatible
units (m3/sec or m3).

In principle the attached program can be used for optimi-
zation of the water resources allocation problem in a single
time period. It is well known, however, that in reservoir
systems it is normally desirable to optimize allocation (and
at the same time operation of the reservoirs), taking into
account more than one time period. Otherwise, the final
storage will always be depleted to meet the demands of the
period at hand, with no hedging against future requirements.
For multiperiod analysis the final storage from one period

becomes the initial storage for the second period and so on.



Although such analysis can also be made with the help of the
attached program (by proper formulation of the network), in

such case the usual way is to implement a special program for
multiperiod analysis (e.g. the Water Resources Management Model
developed for the Vistula Project study which uses KILT and
PACKUP as its basic subroutines). The one period network may be
thought then as being expanded into the third dimension with
interconnection of time-period planes by the storage arcs.

In all cases the objective is to minimize the penalties
associated with not meeting the water user target demands or
in-stream target flows, or to minimize the sum of these penal-
ties and the system operating costs (e.g. pumping costs).
Determination of these penalties or in other words, development
of loss functions associated with water shortages, which is one
of the fundamental problems in most of the water resources
studies, is outside of the scope of this paper.

Referring to the second paragraph of this paper, it should
be noted that if arc cost c,. expresses unit operating costs

1]
of one of the system's elements, it must be a positive value.

Otherwise, if arc cost cij expresses unit penalties associated
with not meeting the target value on this arc (upper bound), it
must be taken with a negative sign.

An additional advantage of the networks solved by the
out-of-kilter algorithm is the possibility of considering
linearized nonlinear loss (penalty) or cost functions, providing
these functions are convex. As far as the loss functions are
concerned, this restriction is met in most of the real problems.

Unfortunately, this in not always the case with the cost functions.



Target demands and flows, as well as discharge and
storage capacities make upper bounds on the appropriate arcs.
The supply arcs have lower and upper bounds equal to the
actual supply rate.

Adequate representation of a water resources system requires
also insertion of the consumptive loss arcs. The consumptive
losses are assumed here to be proportional to water use, in
other words they are expressed as a certain percentage of the

amount actually delivered to the water user.

DESCRIPTION OF THE PROGRAM OKAY

The attached program OKAY uses the out-of-kilter algorithm
to allocate flows in a network to minimize the total cost of
flow in the network. Subroutine PACKUP constructs a packed
list of arcs entering each node. Multiple arcs between any
pair of nodes are allowed, however, the total number of arcs
entering and leaving any single node should be less than 14
(see TEMP in PACKUP). DIMENSION must also be changed in case
of networks containing more than 800 arcs or 250 nodes. Sub-
routine KILT is the proper out-of-kilter algorithm. Subroutine
CONSOL is provided to check if the consumptive loss percentages
are satisfied.

As an input, the program requires the follwoing information:

A, TITLE CARDS (13A6) 3 cards

Col.l - 78 - TITL
B. CONTROL CARD (4I10)
Col. 1 - 10 - ARCS No. of arcs in the network

11 - 20 - NODES No. of nodes in the network



- 10 -

21 - 30 - CONS No. of consumptive loss arcs
31 - 40 - ITER Max. number of iterations on
the subroutine KILT (at least 1)

C. NETWORK CARDS (7I10) 1l card for each arc

Col. 1 - 10 - N Arc number
11 - 20 - NF(N) Source node for aré N
21 - 30 - NT(N) Sink node for arc N
31 - 40 - LO(N)N Lower bound of low in arc N
41 - 50 ~ HI(N) Upper bound of flow in arc N
51 - 60 - COST(N) Cost per unit flow in arc N
61 -~ 70 (if positive) or penalty for

deficit (if negative)
61 - 70 FLOW(N) Initial flow in arc N

(usually zero)

D. CONSUMPTIVE LOSS CARDS (3I10) 1 card for each consump-

tive loss card
Col. 1 - 10 - MAR(I) No. of arc entering the

consumptive loss node

(supply arc)
11 - 20 - NAR(I) No. of consumptive loss arc
21 - 30 - LAR(I) Consumptive loss expressed

as precentage of water supply

rate

In application to water resources allocation problems
usually an extra node must be created. This is the so-called
balance node to and from which all demands and supplies are

routed (see the main program).



Referring to the FLOW variable, at the start of solution all
flows in the network must satisfy continuity either by a
consistent initialization or setting them equal to zero.

The program requires also that initially the consumptive
loss arcs have lower and upper 5ounds equal to the consumptive
loss associated with delivery of the target water demand.

Output from the program consists of a set of optimal
flows in the network, value of the objective function corre-
sponding to the optimal solution, final values of
node prices and the actual number of iterations performed
(iterative use of Subroutine KILT).

The iterative application of the out-of-kilter algorithm
converges very quickly and produces the optimum solution,
what has been computationally tested by the parallel application
of the standard linear programming code.

Although some experience is called for in formulating
the network to describe a given problem, it is hoped that
the enclosed examples will give the reader a "feel" for the

operation of the out-of-kilter algorithm and the OKAY program.



Example 1

Example 2




EXAMPLE 1 - 13-

NETWORK EXAMPLE TAKEN FROM =DISCHETE UPTIMIZATION®* BY

PLANE D.Res AND MC MILLAN C.JR.

ARCS = B NODES = 5 CONSe LOSS DEMANDS = 0

NETWORK JATA

N NF (N) NT(N) LU (N) HI (N) COST (N) FLOW(N)
1 1 2 o) 6 -0 -0
2 2 4 V] 6 1 -0
3 4 1 3 10 -0 -0
4 2 5 -0 6 2 . -0
5 3 4 =0 4 4 -0
6 3 5 -V 4 3 -0
7 1 3 4 4 -0 -0
8 9 1 7 10 -0 -0
EXAMPLE 1

NETWORKX EXAMPLE TAKEN FROM #DISCRETE UPTIMIZATION* By
PLANE DsRes AND MC MILLAN Co.JHe

NUMBER OF ITERATIONS = 1

OPTIMAL FLOWS IN NETWORK

NI W -
]
NS P DWL WO

TOTAL PeNALTY COST = 21

NODE PRICES

N & W -
[S200 A U PV



EXAMPLE 2

- 14 -

PROBLEM FORMULATED HY ERIC w0O0D Frouv II1ASA

ARCS =
N
1
1
1
1
EXAMPLE 2

13 NODES = 6
NETORK UATA

NF (N) NT (N)
1 1 2
2 1 2
3 3 2
4 2 3
5 2 )
6 3 4
7 1 4
B 4 1)
9 4 5
0 5 4
1 5 6
2 6 1
3 4 )

CuUN3Se LOSS DEMANDS

LO(N)

460
0
200
0

0
1100
0
1200
0

0
150U
0

PROBLEM FORMULATED BY ERIC wOUD FrROi IIASA

NUMBER OF ITERATJIONS = 1

OPTIMAL FLOWS IN NETWORK

VOI~NOUN W~

TOTAL PENALTY COST =

NODE PRICES

PUTEF WY~

21

27
21
21
21

HI(N)

260
460
260
260
720
260
1100
1500
1200
1200
1200
1560
260

5400

= 0

COST(N)

FLOW(N)



Example 3

|
I
|
l
!
|
|
!
|
|
|
!
|
|
\

Input Data

~Roservolr capacity 1000
~Digcharge capacity of wator transfer 300
=Demand I /ceasocn 1/, 30+40+50 120
~Donand I /soasea 2/, &0+50+G0 150
-Domand II /coasca 1/, £0+100-+3200 480
~Domand IT /soasca 2/, 200+120+340 6C0
-Congunptive loco assce, with Donmond I 5%
~Consuuptive leos ascos, with Domand I1 8%
-Minim:m accoptable flow /oseasea 1/ 50
-Tiniuun accoptable flee /season 2/ 50
~Rogervolr inflow /ocasca 1/ 50
-Rosoxvoir inflcew /scasca 2/ 150
«Initial storago /soasca 1/ 260
Notwoxic Ronrocontaticn /are noa,/ 8°ason 1 ocasca 2
- FRaogseorvoir inflow 3 18
- Initial storage 1 4
- Iinal storago 4 20
- Water transfer /pumping/ 2 19
« Rivor chanael 5B 017 21,32,33
- Auxiliary arcg 12 23
- Conosunptive lougs 1% 29
- Vagtowater diccharge 14 0
- Vininum acceptablo flow 15 31

Note : Puuping and ponalty costs indicated ca tho noxt
page and on the computer printout /page 16/.



Penalty functions assoc.with Demand 1
(orcs no 8,7,8 ¢ 22,23,24)

Loss A

3000
2400
1800
1200

600

Season 1
Season?

10—

e
100 110 120 130 140 150 Deficit

80

U 1 | ] l |
0 10 20 40 50

Penalty functions assoc.with Demand 1I
(arcs no 9,10,11 ¢ 25,26,27)

Loss A

o7 T~

30 9

11000
000
7000
5000
3000

1000
0 ,
0

Season 1

Season 2 .

|
|
{
|
|
!
|
|
|
|
|
|
) |
} |
| |
| |
I |
| |
1 1

| l | | | 1 | ] | 1l |

50

100 1

50 200 250 300 350 400 450 500 550 600 650 70

Pumping costs function (arcs no 2¢ 19)

>
0 Deficit

Cost A }
3000 - i
|
- |
|
2000 |- :
|
B 12— |
{
1000 - |
|
i |
|
0 I | , —
0 100 200 300 Pumping rate



EXAMPLE 3 - 17 -

AN EXAMPLE HOW OKAY PROGRAM CAiv GE USEU FOR SOLUTION OF
SIMPLE MULTIPERIOD PROBLEMS /2 TIMt PERIODS/

ARCS = 33 NODES = 10 CONSe LOSS DEMANDS = 2

NETWORK DATA

N NF (N) NT (N) LO (N) HI(N)  COST(N)  FLOW(N)
1 11 1 200 200 -0 -0
2 11 1 -0 300 12 -0
3 11 1 50 50 -0 -0
4 1 b -0 1000 -0 -0
5 1 2 -0 99999 -0 -0
6 2 11 -v 30 -10 -0
7 2 11 -0 40 =20 -0
3 2 11 -0 50 -30 -0
9 2 3 -0 80 -5 -0

10 2 3 -0 100 -25 -0

11 2 3 -0 300 -35 -0

12 3 4 -0 480 -0 -0

13 4 11 24 24 -0 -0

14 4 5 -0 456 -0 -0

15 2 5 -0 50 =40 -0

16 2 5 -0 99999 -0 -0

17 5 11 -0 99999 -0 -0

18 11 6 150 150 -0 -0

19 11 6 -0 300 12 -0

20 6 11 -y 1000 -0 -0

21 & 7 -0 99999 -0 -0

22 7 11 -0 40 -10 -0

23 7 11 -0 50 -20 -0

24 7 11 -0 60 -30 -0

25 7 3 -0 200 -5 -0

26 7 8 - 120 -25 -0

27 7 3 -0 340 -35 -0

28 8 9 -0 660 -0 -0

29 9 11 53 53 -0 -0

30 9 10 -0 607 -0 -0

31 7 10 -0 40 =40 -0

32 7 10 -0 99999 -0 -0

33 10 11 -0 99999 -0 -0
CONS. LOSS DATA

12 13 5

28 29 b



EXAMPLE 3 -18 -

AN EXAMPLE HOw OKAY PROGRAM CAN s USED FOR SOLUTION OF
SIMPLE MULTIPERIOD PROSLEMS /2 TIsmc PEKRIODS/

NUMBER OF ITERATIONS = ¢

OPTIMAL FLOWS IN NETwWORK

1 200
’ 300
3 50
4 90
5 460
6 0
7 0
8 50
9 0
10 50
11 300
12 360
13 18
14 342
15 50
16 0
17 392
18 150
19 300
20 0
21 540
22 0
23 0
24 60
25 -0
26 100
27 340
28 440
29 35
30 405
31 40
32 -0
33 445

TOTAL PENALTY COST = 12600

NODE PRICES

1 25
2 s
3 0
4 0
5 0
6 b
7 5
8 0
9 0
10 0
11 0



(1]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

[(10]
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PROGRAM OKAY



200

300
8500

900

400
500

675
680
685

684
202

- 21 -

PROGRAM OKAY (INFUTsQUTPUT «TAPES=INPUT s TAPE6=0QUTPUT)
INTEGER FLUwWwoHIsCOSTeARCSsPIsDEFCIT9CONSSPER
LOGICAL INFES

COMMON /ADATAZ NF (300)sNT(800) oFLOW(800) sHI(800)sLO(800)
1eCOUST(A00)+PI(250) s ARCSeNODES s INFES
ZeMAR(50) sLar(9U0) o NAR(S0)

SIMENSTON TLITL(39)

ReEaD(oe1) TITL

WRITE(Aelu0) TITL

BEAD(9492) ARCSINODESICONSSITER

WRITE (ps10Gi) AHMCSaNOUVES.CONS

REAVD(S93) (NeNF (N)aNTIN) sLOINYeHI(N) sCOSTI(N) »FLOW(N) 9 L=19ARCS)
WRITE (Bel02)

NODES=HODES+]

KEy = 1

DO 200 N=1sAKCS

IF(NF (N) oEQab) NF(N)=NODES

TF(NT(N) cEQa0) NT(N)=NODES

IF (NF (N) e EQeNUUESURJNT(N) cEWJNODES) KEY=2
CONT INUE

IF(KEYorWol) NODES=NOVES-1

WRITE (Hhell2)

WRITE (6s103) (NeNFIN)oNT(N)oLOIN)sHI(N)sCOST(N)+FLOW(N) 9N=19ARCS)
IF(CONSaEHa0) GO TO 800

WRITE(H59104)

DO 300 I=1+CONS

READ(Ss2) MAR(I) o NAR(I) oL AR(I)
WRITE(€a110) MaAR(I) oNAR(I) sLAR(I)

O 400 NITER=LsITER

CALL KILT

IF(CUNS.cQ.0) GO TO 500

IFLAG=0

DO 900 IK=1+CONS

I = MAR(1K)

J = NA&(IK)

PER = LaR(IK)

CALL CONSOUL (IsJsPERGJCOR)

IFLAG=IFLAG + JCOR

CONTINuLE

IF(IFLAGeEQWCG) GO TO 500

CONTINLE

CONTINUE

WRITE(69100) TITL

WRITE(S6s111) NITER

WRITE(69104)

WRITE (64105) (NsFLOW(N)s N=1sARCS)

ITOT = @

DO 202 N=14ARCS

IF(COST(N)) 675¢680+685
DEFCIT=FLOW(N)=HI (N)

GO TO o848

DEFCIT=0

GO TO 688

DEFCIT=FLOW(N)

ITOT=ITOT+COST(N)*DEFCIT

CONTINUE

WRITE(6s106) 1T0T




WRITE(6107)
DO 203 N=1.NODES
203 WRITE(£4108) NePI(N)
1 FOKMAT(13Ab)
2 FORMAT (41i10)
3 FORMAT(7I10)
100 FORMAT (1A1/(1Xs13A6))
101 FORMAT (1X96HARCS =9I5412H NODES =+15926H CONS. LOSS DEMAN
1DS =419
102 FORMAT (1H010Xe 1ZHNETWORK DATA/)
103 FORMAT (1Xxe7110)
104 FORMAT(1HOs1X924HOPTIMAL FLOWS IN NETWORK//)
105 FORMAT (1Xs1501[3)
106 FORMAT (///21X«20HTOTAL PENALTY COST =,110)
107 FORMAT (///21Xs11HNUDE PRICES//)
108 FORMAT(Z21Xs15:5XsT10)
109 FORMAT(//10Xe¢19HCONS. LOSS DATA/)
110 FORMAT(3I10)
111 FORMAT(1HOs1X922HNUMBER OF 1TERATIONS =,15)
112 FORMAT (SXs1HN3sDX9SHNF (N) sSXsSHNT(N) 9SXeSHLO (N) 95X9SHHI (N) 93X
1THCOST(N) 9 3Xe THFLOW (N) /)
STOP
END



200

240
2560
280
300
320
340

360

380

400
420
440

460

480
500

- 23 -

SUBROUTINE KILT

INTEGER FLOWsHIsCOST9ARCSIPIsDEFCIT9sCONSePER

INTEGER AIKsCoESAINICOKIEPSySNKIAL9SRCsAOKICUTIDELSA
LOGICAL INFES

COMMON /ADATA/ NF (800)sNT(800)+sFLOW(B00)sHI(B00)sLO(800)
1+COST(800) sP1(250) sARCSyNODESy INFES
2aMAR(50) s LAR(S0) ¢ NAR(50)

COMMON IPT(250) sLARCS(250) 9LLNsNARCSsLIST(1600) +sLN(250)4CUT(800)
1sNA(250) sNB (£50)

CALL PACKUP

JKL = 0

INFES=.TRUE «

DO 200 4=1,ARCS

IF(C HI(A) = LOU(A) ) 34002009200

CONTINUE

INFES = oFALSEt.

INF=9959939

ACK =

ALK =0

AIN=AIK + ]

DO 320 A=AINIARCS

1A NF (A)

JAa NT (A)

AIK = 4 -1

IF( LOCA) = FLOW(A) ) 240+240+360

IF( A (A) = FLOW(A) ) 380+260+260

IF( COST(A) + PI(IA) = PI(JA) ) 280+320,300

IF( HI(A) - FLOWC(A) ) 32093209360

IF( LO(CA) = FLOW(A) ) 36093205320

CONTINUE

CONTINUE

RETURN

SRC

wu

NT (A)
SNK NF (A)
F +1

GO TO 400
SRC NF (A)
SNK NT (A)
E
IF(C A - AOK ) 44094204440
IF( NA(SRC) ) 4B0+4404480
AOK = A

DO 460 N=1,NODES

NA(N) = 0

CONTINUE
NAa (SRC)
NB (SRC)
K =20
LU =1
LN(LU) = SrC

COK = COST(A) + PI(IA) - PI(JA)
LLN = LN(LU)

LN(LU) = 0

LU = Ly - 1

IADD = LARCS(LLN)

MAX = IPT(LLN)

DO 740 AL = IADDs MAX

SNK*E
A0KH*E



5290
240

560
580
500

520
640
060
680

700
720

BOO
820
340
860
880
900
920
940
960

980
1000

1020

JKL = JKL + ]

A = LIST(AL)

I6 = NF (A)

Ja = NT(A)

IF (A (IA)) 52090200520

IF(MA(JA)) T3UH40+740

CONTINUE

IF( HI(8) - FLUW(A) ) 72097209560
IF( LO(A) = FLUW(A) ) 580e5804600
IF( COST(a) + PI(IA) = PI(JA) ) 600+600,720
CONT INUL

NA(JA) = IA
N&E(JA) = A

LU = LU+l
LN(LU) = JAa
GO TU 700

IF( LO(A) = FLUW(A) ) 640+720+720

IF( HI(A) = FLOW(A) ) ABDs660+660

IF( COST(A) + PI(IA) = PI(JA) ) T20+680+680
CONTINUE

NA(TA)
NB(TA)
.U Lu+l

LML) IA

1F (A (SNK) ) ToUeT4U0e7h0

K = K + 1

CUT(K) = A

CONT IMUE

IF(C LY ) luovsl060s900

EFPS INF

NI SRU

NJ [ABS{NAINT))

A TESS(NB(NI))

TA=NF (4a)

JA=MT (A)

C=COST(A)+PI(IA)=-PI(JA)

IF( NE(NI) ) 900e8004800

IF( C ) #860+8004820

IF(C LO(A) = FLOw(A) ) 1000910009840
FPS = MINO( EPSe LO(CA) = FLOW(A) )
G0 TO 1000

IF( RICA) = FLOW{(A))1000+1000,880
EPS = MINO( EPSe HI(A) = FLOW(A) )
GO TO 1000

IF(C C ) 960992049920

IF(C LOCA) = FLOW(A) ) 940910001000
EPS = MINO( £EPSe FLOW(A) = LO(A) )
GO 70 1000

IF( HI(CA) = FLOwW(A) ) 9809100051000
EPS = MINQ( EPSy FLOW(A) = HI(A) )
NI = NJ

IF( NI = SRC ) T780+1020,780

NJ = TABS(NA(NI)).

A = TABS(NB(NI))

FLOW(A) = FLOW(A) + ISIGN(EPSeNB(NI))
NI = NJ

IF( NI = SKC ) 10204104G+1020

~JA
- A

([ TR 1}

oo



1040 AUK=U

GO TO 220
1050 DEL = INF

IC = §

DO 1200 I=1eK

A = CUuT(I)

1A = NF (A)

JA = NT (A4)

C = COSTa) + PL(IA) = PI(JA)
IF(NA(JA)) 114U9108091140
1080 CONTINUE
IF( HI(A) = FrLUW(&) ) 11409114001100
1100 TF( DEL = C ) 1200+9120041120
1126 OEL = C
iC =1
NSN = LA
60 TO 1200
1140 IF(NACIA)) 1200411601200
1150 CONTINUE
IF(C LO(A) = FLuw(A) ) 1180912004+1200
11R0 IF (~CebrauEL) LU T 1200

DEL = =C

IC =1

NSH = JA
1200 CONTINUE

Ly = 1

CNILU) = SN

IF( DEL = INF ) 13U04122091300
1220 1IF( HI(aOK) = FLOW(AOK) ) 1240+1260491240
1240 IF( LOCAOK) = FLOW(AOK) ) 1280+126051280
1260 DEL =I14aB35(CUK)

NSN = SHC

LN(LU) = NSN

GO 70 1300
12R0 IMFES = oTRUE.

WRITE(642000) AUKsNF (AOK) sNT(AOK) 9LO(AOK) 9HI (AOK) s FLOW (AOK)

1sCOST (A0K)
2000 FORMAT (5A0 ARCsISe58n CANNOT BE BROUGHT INTO KILTER. DATA FOR ARC

I LISTED gELvw/6110)

RETURN
1300 DO 13490 N=14NODES

IF(NA(M)) 1340913201340
1320 CONTINUE

PI(N) = PIL(N)Y + DEL
1340 CONTINUE

IF{ IC +Ede U ) GO TO 220

CUT(IC) = CuT(K)

K = K -1

GO TO 220

END
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SUBRQUTIE PACKUF

INTEGER FLOWAIsCOSToARCSsPLeDEFCITICONSHPER

INTEGER OVeRAsOVERNIUVERSZsTEMP+DIMEN

LLOGICAL INFES

DIMENSION 1EMP (1las250)

COMMON /ADBATA/ NF (500) oNT(B00) +»FLOW(B00) +HI(800)+L0(B00)
1:COST(=00) oI (250) s AKCSINODESSINFES
PyMAR(50) 9L AR (D0) o NAR(S0)

COMMON IPT(250) ¢LARCS(250) sLLNeNARCSSLIST(3600)
1s0VE“A(500) «OVERN(S500)

EQUIVALENCE(TEM= (1) oL IST(101))

DIMEN=La

OVERHSZ=504

LOC=0

MAX =

NO 200 J=1+NODES

IPT(J) =0

CONT INUE

DG 350 L=learkCS

IF(HTI (L) eEaolLUO(L) e ANDHI (L) sEQ.FLOW(L)) GO TO 360

J=NF (L)

DO 34U I=1ls2

IPT(I)=IPT (u)+1]

M=I+T(J)

IF(M=DIMEN) 31043102300

CONT INUE

LOC=L0C+1

IF(LOC.LTOVERSZ) GO TO 700

OVERN(LOC) =J

OVERA(LUC) =L

G0 Tu 329

CONT INUE

TEME(MeJ) =L
CONT InUE

J=ENT (L)

CONT INUE
CONT INUE

TaD=0

LO 420 J=1sNUUES

LARCS (J)=Ia0D0D+1
LIMIT=IPT (J)

IF(LIMIT=DIMEN) 37693750362
LIM=DImEiN+]

L=1
DO 370 M=LIMsLIMIT

IF(DVERN(L)=J) 36893669368

IADD=14aDD+1

LIST(IADD)=0VERA(L)

L=L+1

GO TO 370

L=L+1

IF(L=-LOC) 36493644370

CONT INUE

LIM=DIMEN

GO TO 378

LIM=L1IMIT

DO 380 M=1lsLIM
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1a0dD=1a0u+1
LIST(IADD)=TEMP (Med)

380 CONTINuCL

400 IPT(U)=1ADD

420 CONTInNuC
RETURIN

700 wRITE(A92001)

9GO0l FORMAT (5ol SI7Ze LIMIT OF OVERSZ EXCEEDED EXECUTION TERMINATED)
STOP
END

SUHROUTINE CONSOL (IeJsPER9JCON)
INTEGE FLUWIRL sCOSTIARCSyPI«DEFCITeCONSsPER
COMMON ZADATAZ NFE (B00) «NT(8UD) +FLOW(B00)sHI(800)sLO(B00)
LaCUST{m0C) sPI(2590) s ARCSsNODESINFES
PeMAR(S() s LAR(DU0) s NAR(DQ)
JE=(FLOwW(I)#rEr) /100

JCOR=FLON{(J) =dr

[F(JCOK.EQeQ) RETURN

HI(J) =JF

LO(J) =JF

RETURN

BN




