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On the Determination of an On—Demand;
Policy for a Multilayer Control System

Abstract

The cost-performance tradeoff problem associated with a multilayer .
control system for controlling a class of static,nonlinear, multivari-
able systems is considered. The multilayer control system has a .
number of layers of control functions each of which updates different
subsets of the manipulated variables at different costs.

A favorable cost-performance tradeoff is achieved by determining

at each control decision time which subset of the control variables

is to be updated. In this paper, we present a mathematical model which
describes the operation of the multilayer control system. Also we show
that the problem of determining a decision rule (policy) which results
in an optimal cost-performance tradeoff can be formulated as a problem
in Markovian Decision Processes. Consequently, an optimal policy can
'be identified by solving a linear program.

In order to reduce the computational effort required for identi-
fying the optimal policy, a class of parameterized policies is intro-
duced based on 4 measure of deviation of the disturbance. This approaéh
provides a designer with a practical method of determining a control
policy which achieves a favorable cost-performance tradeoff.

An example is given for demonstrating a possible application to

process control.
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I. INTRODUCTION

In many cases, industrial systems are subject to uncontrcllable
disturbances, and the performance of the system depends on these dis-
turbances as well as on the variables which can be controlled. Due to
changes in the disturbances, the implemented values for the control
variables™ at a particular instant of time (for example, the values
of m which maximize a performance function P(m,u) for a particular
value of disturbance u) may not be very appropriate at some later time.
In order to compensate for this, we consider a control strategy which
updates the vector of control variables from time to time, responding
to the observed changes in the disturbance. Since the complexity of
the system may result in significanf costs for computation, measure-
ment and implementation each time an update is performed, the effective-
ness of performing an update becomes very important. That is, there
. exists an economic tradeoff between the averaged performance achieved
and the averaged cost of control over a long period of system operation.
This tradeoff depends on the relative frequency of carryina out the
updates and also on the structure of the control system. For instance,
we would expect that more frequent updates would achieve a better
averaged performance at the expense of a higher cost. Also, we expect
that it would cost more, in general, to perform an optimization and
control action with respect to all of the control variables than with
respect to only a subset of them.

The general multilayer control system proposed .by Donoghue[1]

provides one way of incorporating the cost-performance tradeoff

+ We use the term "control variable™ to denote generally the output of a
_ decision making or control process.
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associated with the structure of the control system. In his general
multilayer control system, he considers various control functions each

of which affects only & subset of the control variéb]es; the con-
trol variables are ordered and the control system is structured so that
those variables to-which the performance of the system is most sensi-
tive tend to be updated more frequently and by simpler funcfions. The
structure provides a basis for investigating the heuristic’iqeas a
designer might consider with regard to the cost-performance fradeoffs

as mentioned before.

In this paper, we present a mathematical model of both the multi-
layer control system and the cost-performance tradeoff for the case in
which the control functions at the different layers in the system are
based on updating different subsets 6f the control variables at different
costs. A favorable cost-performance tradeoff is achieved by deciding
at each control decision time which subset of the control variables
is to be updated. We refer to this decision rule, in the subsequent
sections, as an updating policy, or more simply, as a policy. Thus,
the tradeoff problem is reduced to determining an updating policy which
achieves a favorable cost-performance tradeoff. |

In section [V, we show that the tradeoff problem can be formulated
as a Markovian Decision Process and that an optimal policy can be ob-
tained as a solution to a linear program. In section V , a class of
parameterized policies are introduced and the design problem is
reduced to determining a set of parameters. This approach may not lead
us to an optimal solution. Nevertheless, it is considered to be prac-

tical for determining a policy which gives a favorable cost-performance




tradeoff because of the significant reduction in computational effort.

II. Multilayer Control System

The structure of the multilayer control system whose cost-
performance tradeoff is to be examined is shown in Fig. 1. The process
performance is assumed to be given by P(m,u), where m 1is the vector
of control variables and u s the vector of disturbances. The
block G- is the measurement and data processing unit where the set
of raw data describing the disturbance input is transformed into an
information vector (e.g., current observation u(t), mean and vari-
ance values, density fuhction, etc.), which is denoted by 6. It is

assumed that there is a pre-determined orderingramong the control
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Fig. 1 Multilayer Control System

¥ The ordering is Based on the sensitivity of system performance to

each variable. If i < J, then system performance is more sensitive
to my than mj.
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variables so that the following partitioned form of the vector m is
given:

m= ( m'l.noo-’m.ipm.i_e_.‘]pcucgmz ). (])

Note that m; may itself be a vector. Let m1 be a subset of m

defined as follows:
i i+
m = ( MisMyyyseeesmMy ) = (mi’ m' ]). (2)

The control function Fi’ in general, determines the subset of

1 1+1

m, i.e., m based on the current value of 6 and m which is
the output of the control function Fi+1' However, we assume that Fi’
in effect, changes only m s i.e., the i-th (partitioned)element of”

control  variables. Therefore, we may express the relationship

among the variables m m1+], and 6 as follows:

i i+1y _ i+l i+l i+l
m = (miﬂ m ) = ( fi(e,m ), m ) -.Fi(e,m ),
i=] '29u 0-92-1 [
. ) ) :
mo=m = fz(e) = FQ(G). (3)

where fi, i=1,2,...,4 are given functions. As an example, f,

; may

be the result of a maximization operation on some perfprmance index
with respect to the indicated subset of m (see [1],[2]).

We also assume that there is a pre-determined period on which
the operation of the control system is based, which will be referred
to as the "basic period". In the decision making block, we assume
the following: the information vector, @, is made available to the
control system every time S0 is closed; Fi is performed every time
Si is closed. The decision maker determines which switches are to

be closed every basic period of time. In the most general situation,



-5 -

the way the switches are closed is completely arbitrary, however, with-
out loss of generality, we can restrict our attention to those decisions
described below for convenience.

First, it is assumed that the decision as to which control func-
tion should be performed will be made only when S0 is closed.

Second, we define the control actions as follows:

Control action i denotes that all of the control functions
Fis Fs_qs-..sFq are performed in this order, where i=1,...,4.
(4)

We identify  the control action i simply by i, and define the set of
alternative decisions A as follows:

A ={0,1,2,...,2 } (5)
where 0 denotes the decision that none of the control functions is
. to be performed. It should be noted, from the definitions (3) and (4),
that control action i results in an update of only a subset of m,
i.e., MysMoseeesy [t is assumed that once the subset of m is
updated, then the values are kept constant until the next time of
measurement and decision.

The following control costs are considered explicitly:

1) CGH = Cost of measurement, data processing and decision
making which is incurred every time So is closed.
2) C1 = Cost of the control action i, which is incurred

every time the control action i, ied is taken.
The cost Ci includes the cost of computing the new set of values for
the -control variables and the costs associated with implementing
the results. We assume zero cost for no control action, i.e., Co=0.

After each decision making, the process produces a performance which
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is measured by the given function P(m,u). Thus, the cost-performance
tradeoff problem is now reduced to the problem of determining an up-
dating policy ( a decision rule which produces a sequence of integers
from A ), which gives a favorable balance between the performance
achieved and the cost of control. It should be noted that the struc-
ture of the multilayer control system described here reflects the

various ideas of the cost-performance tradeoff mentioned in section I.

III. Formalization of the Tradeoff Problem

In this section, we derive a mathematical model of the control
system and define the cost-performance tradeoff problem explicitly.

Let the basic period be normalized to unity and let t=0,1 , be
. the discrete time index for the operation of the control system. Let
4 be an integer which represents the decision as to whether the

switch S0 is closed or not. That is,

A ={1, if So is closed,
0, otherwise. (6)
Let & be an integer which represents the control action § , 6€ 4.,

Let m

be the value of the vector of control variables after
taking a control action. Then, there is a function ¥ such that

m‘y = \y(msen“na)v

where ¥ is defined as follows:

1) (4=0, 8en) or (4=1, §=0) = m\g =My, for all je{l,...,4}.

2) (4=1, 6e{1,...,4-1} ) =
m§=fj(e, mgﬂ,...,m‘ﬁ ) for all je(l,...,6},

m‘;.’ = mj, : for all jE{6+1,...,L}.
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3) (£=1,6=0)% my = Fy(0, m3yq0eeey M), for all Jell,...,e-1}.

J

'}”

m

W & Cuae €

The table is derived by considering that control action § iﬁp]ies
the execution of Fg, Fy_y5...5 Fy in this order, resu]ting.in only

a subset of m being updated. Supposing now that m, 0, 4, m{ 6 are
funétions of time and considering the assumption that the implemented
value of m is kept constant over the basic period, the dynamic

behaviour of the control system is described by
m(t+1) = m'(t) = ¥( m(t), 6(t), A(t), §(t) ), t=0,1,... . (8)

Now, we consider an expressicen for a measure of the cost-perfor-
mance tradeoff associated with the control system operation. Let
{u(t)} , t=0,1,... be a discrete time stochastic process representing
the disturbance. Suppose at time t, the values m(t), o(t), A(t)
and 6(t) are given and suppose the actual value of the disturbance is
u(t). Then, the performance actually achieved over the next basic

period can be expressed as
= P(m¥(t),u(t)) - (L) Coy * C s(t) ), t=0,1,... . (9)

We will refer to this quantity as the net performance over the basic
period. wt, t=0,1,... is a sequence of random variables whose sto-
chastic nature depénds on {u(t)} , the initial value m(0) and the
policy denoted by H. An appropriate measure of the cost-performance
tradeoff is represented by taking the expected average net performance
over an infinite planning horizon, i.e., we define

Expected Average Net Performance over an Infin1te

Plarning Horizon = P . (H.m(0)) = lim —1 z e[V, 1. (10)
Téee T4]

f,(0). : (7 o
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where E denotes the mathematical expectation. It is now possible

to define our. cost-performance tradeoff problem formally as follows.
Cost-Performance Tradeoff Problem:

maximi ze Pnet(H’m(o)) (11)

where maximization is taken over all feasible policies and over all
possible initial values for m. In the subsequent sections, we will

show methods for solvina this problem.

IV. Markovian Decision Process Approach

The cost-performance tradeoff problem formulated by (11) is a
sequential decision process. One of the most powerful tools for
sequential decision processes is the theory for Markovian Decision
Processes which has been developed extensively over the last ten years.

In this section, we show that the behaviour of the multilayer
control system can be described as a Markov{an Decision Process by
introducing an alternative state expression. Some assumptions are
made for this purpose.

1) Measurement and decision making is performed every basic
period of time, i.e., A(t)=1, for all ¢=0,1,... .

2) The vector of disturbance information 6(t) may ?ake on only
a finite number of possible values denoted by 61, i=15...,N,
where N is the total number of possible values for 6(t).
Alternatively, we will characterize the disturbance as the

i

i-th disturbance level when 6(t) = 8'. We denote the set of

possible disturbance levels by S, i.e., S = {1,.,..N} .
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3) The stochastic nature of the process {a(t)}", t=0,1,... 1is

Markovian and ergodic. Let the transition probability for the
process {8(t)}, denoted by g4 1,3€S, be given.

Under the assumption 2), let xi(t) represent the "level" of
disturbance at the most recent time prior to t when control action
i was performed, where x;(t)€S for i=1,...,2 and for t=0,1,...
Then it can be shown that the vector X(t) = (xo(t).x](t)....,xz(t))
may be considered as the "state" of the multilayer control system.
Here, xo(t) represents the present level of the disturbance at time t.
From the assumptions 2) and 3), X(t) takes on only a finite number
of possible values and, therefore, the state space § is finite, i.e.,
§= st

In terms of this state expression, the operation of the control
system under the assumptions 1) through 3) can be described as follows.
Suppose at some time t, the state of the control system is found to be
X = (xo,x],.,,,xz), where the argument t is suppressed for notational
convenience. If the decision maker now selects a control action, say §,
then X changes immediately to some new state x? because, by defini-
tion, the first (6+1) elements of the state vector X are reset to the
~ present level of the disturbance. That is, there exists a function++,¢

defined as follows which expresses the results of control actions.

x¢ (xg.x$,...,xi ) = ¢(X,8), where

¢ e
xj { Xgs j=0,1,...,6

Xis  J=6+1,...,8, XES, SEA. (12)

J,
+{6(t)}is the process induced from {u(t)} through G.

++ This function ¢ corresponds to the function ¥ defined by (7) where
=1,
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The state may then move to some new state due to a change in the
current disturbance level.

Note that the last £ elements of the state vector X(t) con-
tain sufficient information for determining the values of m unique-
ly. That is, for each component xj, j=1,25...5 &, there is a
corresponding value of the information vector which can be denoted as
exj s and it can be shown that there exists a function g such that
m(t) = g(e""fe*":’... ,ex#)) for all t, where m(t) is the state of the
control system defined by (8). The function g can be easily derived
from (7).

We may consider, in general, the transition from a state Xe§

to a state Yeg. Then, the behaviour of the control system can be

described by the following diagram.

time v time t+]

x = ( XOQ‘X'IQo-o’x‘Q' ) VIRTUAL > Y = ( yogy'l‘onopyz )
TRANSITION

/7

REAL
DETERMINISTIC \RANSITIQ
TRANSITION BY

CONTROL ACTIONS

¢ PROBABILISTIC
X'= ¢(X,6)

TRANSITION DUE TO
CHANGES IN DISTURBANCE

| 4

d_ , 3% ¢ ¢
X'= ( XgsXyseseaXy )

Fig. 2 Transition Diagram
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Fig. 2 shows that the operation of the control system is a
Markovian Decision Process explicitly. The transition probability to
state Y given that the present state is X and the control action

is 6 , denoted by PiY , can be expressed by

s . ¢
P = . = s 9 e{ p.-.pz}v
XY % qxoyo , if Y5 xJ for all jelil
0 » Otherwise. : (13)

where X% = ¢( X, 8), as defined in (12) and 6 €4 X,Yég.
The cost associated with the transition from state X to state
Y by taking control action &, denoted by riY » can be expressed by

the following equation:

¢
gy = L PN, W - (Cgts)s (14)

where X¢ represents the state right after control action 6, and
¢ . .
m represents the unique numerical value for the control : -

variable vector corresponding to the state x°, 7i° represents the dis-
crete probability corresponding to the present level of the disturbance

b ji.e.,

o’ .7§° = Prob { u(t)=u¥ | o(t)=6%0}. (15)

Note that if the information vector © provides the numerical

value of u directly, then (14) reduces simply to

: |
gy = POt L ) - (Cgy Gy ). (16)

The net performance wt given by (9) becomes

8

e = TR(E ey (17)
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and the expected average net performance over an infinite planning

horizon can be written as

T

Protl Hs X(0) ) = Tlim

E[W, ]
T+ T+l t=0

.
. 1
“lingrl o L kEAr'; Prob(X(t)=Y,8(t)=k;H,X(0)), (18)

where ]
ry = L e Py - (19)
Y'é S :
Thus, the problem is to determine a policy which maximizes Pnet over
all possible policies and over all initial states.

It is well known th&t if a Markovian Decision Process is complete=-
ly ergodic, then the linear programming formulation proposed by Manne[3]
'.determines an optimal policy. When a Markovian Decision Process is not
completely ergodic, Manne's linear program only identifies an ergodic
chain which gives an optimal expected average criterion[4]. It can :
easily be shown that the tradeoff problem is not completely ergodic.
However, it is enough to identify only an optimal ergodic chain, be-
cause for any state Xé&g, we can calculate the value of m a ﬁ;iori
and therefore we can always set the state of the multilayer control
sytem to one'af?thg states in the identified ergodic chain. Thus,

Manne's linear program is considered to be appropfiate and it is shown

in the following:

. § . § 6
Find {my} tg maximize D) ry Ty (20)
YES sen
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subject to
I8 - - 5,7 ehut =0, veS, (21)
sén XS sén
I, =1, n 20, Vses, YeS. (22)
S€EA YeS ,

The objective function represents the quantity given by (18). The
constraints are derived from the familiar steady state relationships
between the state distribution and the set of transition probabilities

in Markov chains where ng is given by (13). It can be shown that

for each Yég. at most one 6 €A such that 1r$>0,w1'11 appear in every
basic feasible solution of the above program. Therefore, an optimal
policy can be identified by taking the pairs (Y,8) such that

%g > 0, where G$ is an optimal solution of the linear program.

V. Parameterized Policy Approach . '

The linear program (20)~/(22) identifies an optimal ergodic chain
whose expected average net performance is a maximum. However, the size
of the linear program may become very large as N and 2 increase, be-
cause the number of rows is given by N2+] (which is the same as the
number of possible states). Therefore, a technique which requires
much less computational effort is desired. In this section, we develop
a method which determines an approximation to an optimal policy with

considerably less_computational effart.

Parameterized Policy

Let § be a function which represents a measure of difference ' .
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between two disturbance levels, i.e.,

p(a,b) > 0, equality holding if a=b.
p(anb) = P(bna)t a,béS. ‘ (23)

It should be noted that the number of possible values that p can
take on is finite because S 1is finite. We refer to this function as
a testing function. An examp1e'of p is pla,b) = (a-b)T 8 (a-b),
where B > 0 1s a weighting matrix. The idea of a parameterized policy
is as follows:Let a be the disturbance level at the last time of up-
date and let b be the present disturbance level. Then, using the
function p, we can consider the following updating rule:

update if p(asb) 2 a

do not update if p(a,b) < a : (24)
where o >0 is some real number which is referred to as the testing
.criterion. In other words, an update will be carried out only if the
value of the testing function equals or exceeds a certain prescribed limit.

We can extend this idea to the general multilayer control system

under consideration. Now, let a = (a1.a2,...,a2 ) be the vector of
testing criteria where oy is the criterion for control action i. Then
a parameterized policy Ha can be defined by

( q, if p(xo,xj) <'a J=1,25...52,

J"

k, if p(x .xk) oy for some k€{1,...,2-1}

n
e

p(Xo,Xj) < oy for all je{k+l,...,2}.

L 2, if p(x ,xz) o,

where X = ( XysXpseeesX,y )€ s. (25)
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The parameterized policy determines the control action as follows:
starting from control action g, we calculate the value of the testing
function. If the value equals or exceeds oy control action 2 is to be
performed. If the value is less than s then we evaluate the testing
function again for control action 2-1. In this way, the control action
to be taken is determined as the first one (counting from control action
% ) whose value of the testing function is not less than its testing
criterion. Thus, this class of parameterized policies assigns a unique
control action to each state in S, and gives priority to the higher
layer control actions. Note that the number of possible parameterized
policies is finite for given p and 2. | .

As an example, consider a 2-layer control system in which the dis-
turbance takes on only three values, i.e., S= {1,2,3}. A state for this
case is represented by the vector (xo,x].xz), where xiEES. i=0,1,2.

'Let p be chosen as

p(a,b) = |a ~-b] , a€S, bes. (és)
Then, according to (25), the control action for the state (xo.x].xz) is
determined by

Ha(xo.x].xz) =(0, if |x]-x0|<a1 and |x2-x0| < ay

1, if |x]-xo|gg] and [x,-x,| < a,

2, if |x2-x0|g92, (27)
where a= ( o5 a2).

For instance, if the policy vector & =(1,2), then the control actions
associated with the states (1,1.1).|(1,2,2), (1,2,3) are given by 0,1,

2, respectively.
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Having defined the class of parameterized policies, our next
concern is to develop a method for evaluating the expected average net
performance (Pnet) for a given parameterized policy. Based on the
virtual transition illustrated in Fig. 2, the states of the multilayer
control system operating under the class of parameterized policies form
a Markov Chain which, in general, may contain a number of ergodic chains .
depending on the initial starting state X*. Let us denote the ergodic
chain for given a and X* by A(a,X*)*. Then the expected average net
performance over an infinite horizon defined by (18) exists and is

given by

Pooplank’) = ] . Ha(X) o (a,x™, (28)
X EA(a,X)

8 *
where Py is defined by (19) and "X(G,X ) represents the steady state
probability that the state of the multilayer control system is X, and .

is given as a solution to the following set of equations.

(et - I pHaX) o (X™) = 0, Yenex) (29)
X €A(a,X")
I me(onX') = 1. (30)
XEA(a,X )

Thus, the tradeoff problem is reduced to determining the set of
*
values @ and the initial state X so that Pnet is maximized over all
%
possible o and X .

*
For given o and X , P can be calculated by first identifying

. net | .
A(o,X ) and then solving (29) and (30) for wx(a,X ). Since the number

" %+ Since an arbitrary initial starting state may be a transient state
and may lead to two or more distinct ergodic chains, the range of A
must be appropriately restricted.
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of states contained in the ergodic chain A(a,x*) may be very large,
solving (29) and (30) directly may still require an excessive compu-

tational effort.

The amount of computation can be reduced by considering an al-
ternative "virtual transition". Consider the state transition of the
multilayer control system under the class of parameterized policies
as shown in Fig. 3, where XL, XL+] denote the states -before taking
control actions, and where Xt, Xt+] denote the states immediately

after taking control actions.

X xt+1

t
/,/, 5t=He{(>(gl) St‘fi =Hd(x¢’y)'7
Xt X

t+1
Fig. 3 State Transition under a Parameterized Policy

Since the control actions associated with the states X% Xé+1
9

are determined by the given parameterized policy, we may consider the

. cps . TINE S ey
virtual transition xt'—bxt+1 instead of Xt Xt+] . Then, it is

*
clear that for each ergodic chain A(a,X ) generated by the transition

] ]
xt_bxt

generated by the virtual transition xt->x

, 1)
4 there is an ergodic chain (we denote this chain by AS (o)X )
¢ £+ ° Based on the chain
AS(a,X ), we can show that (28) ~{30) may be modified to the following

set of equations from which the averaged performance Pnet can be determined.

+ Note that this new interpretation of virtual transition is not
appropriate in the formulation of the Markovian Decision Process developed
in section IV,
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Pnet(“’X*) = . ry(a) ux(a,X*) (31)
XeA®(a,X)
where
] KX Ky %o
l"X(m) - z { z P(ITI s )nk - (CGH + CHG(Y))} quyO (32)
YE S k=1 :

%*
where x , y  are the first elements of X,Y, respectively, and ux(a,X )

is given as a solution to the equations

w(aX) = I Pyle) wyaX) =0, YeR(,X") (33)
iVXGAS(a,X ) '
I wyleaX) =0, (34)
Xeh®(a,X )

where Piy(a) denotes the transition probability between states X and

.S * s . .
Y in A% (a,X ). PXY(a) is given by

Piy(a) = qxoyo , 1f the last t-elements of Y and X'¢,
respectively, are identical, where
X'%=  o(X"', Hy(X')), and where
X' = (yo,x],xz,...,xz).
0 , Ootherwise. . (35)

In the expression (35), the function ¢ is defined by (12) in section IV..
The advantage of this formulation is the fact that the number of

states in AS is usually much less than the number of states in A (See

Appendix). Hence, it requires much less computational effort to use

(31) through (35) instead of (28) through (30).
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Search Method

The discussion so far is concerned with the evaluation of Pnet(a,x*)
for given « and X*. In order to obtain the best parameterized policy,

a search procedure must be considered. Since Pnet is not continuous with
respect to its arguments, we have to rely on so-called direct search
methods, such as Hooke and Jeeves[5], Rosenbrock[5], Nelder and Mead[5].
For each index state X*, these methods may be applied to determine the

. best value for ao. The best parameterized policy is then determined by
taking the best combination of a and X*.

It should be noted here that due to a special property of the mulfi-
layer control system operating under parameterized policies, the range of
a for which an optimal value is searched can be restricted. We call this
the "Collapsing Property" and it is described in the following.

Collapsing Property

Let us consider a two-layer control system.as in section V. The
parameterized policy is defined by (27), and let us assume that @y 2 o,
Suppose at some instant of time, control action 2 was taken. Immediately
follows the control action, the state satisfies the condition Xy =X1X0s
because control action 2 has reset the values of x]and X, to the current
disturbance level Xy Therefore, at the next time testing, we observe
that |x;-x,| =|x,=x,|. However, since a; 2 ays [X)=x,| 2 a; always
implies [x,-x | 2 @, . Thus, the next control action cannot be control
action 1. By repeating this argument for each time of testing, we can
show that control action 1 will never be carried out under the condi-
tion a1 2 ay. As a result, the two-layer control system, in effect,
"collapses" to a one-layer control system for which only control action

2 is implemented.
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The above property is valid in the general 2-layer control system.

That is, if a; 2 a for some i, then control action i will not be

i+l
implemented.

Suppose a given parameterized policy Hao has a testing criterion

a such that a; 20 Then, the collapsing property quarantees

i+l
that we can obtain an equivalent policy by replacing oy by ®ig] -

Therefore, we conclude that it is sufficient to consider only the values

i %+

of a which satisfy

(36)

and this reduces the range of a to be searched considerably.

VI. An Example

In order to demonstrate a possible application of the multilayer
control approach, the static control of a simple stirred tank reactor
'process is considered. .

. The reactor process has been studied in [7] from which the desc-
ription is taken. The inflow to the reactor contains two components
RX and RY with concentrations Kko and X&o , respectively. The out-
flow contains components RX’ RY and RZ with concentrations Yx, X},
and Xi » respectively. The only reactions taking place in the reactor

are given by
K

] ~ 2 ~
RX > RY ,-RZ (37)
where Ki are the reaction rate coefficients
. Vv -B./T .
K_i = q Ai e 1 'Y 1—],2’ (38)

and T is the temperature, and V is the volume of the reaction mikture,
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q is the throughput rate and A], Az, 81 and 82 are given constants.
The steady state relationships are given by

Yy =Ty (1K) = 0

0
Vy, - ¥y (14Q) + Ky = 0

KY¥y =¥, =0 \
2'Y Z (39)
XXO + XYO =1
The measure of system performance is taken to be
y(t) = B Yy () q(t) = <B,Ky ()Y, (t)-B 7
-8,14(t) -B¢T(t)a(t) - (Bza(t)-8;) (40)
- where 8., i=1,2,...,7 are given constants and
<s>=§ g€, € >0
0! E i__Oo (4])

The first term in (40) is the value of the desired product Rys the
second term is a loss due to the high concentration of the side pro-
duct RZ’ the third term fepresents the heat loss due to radiation,
the fourth term is the cost of heating the mixture, the fifth term is
the cost associated with the input stream.

The volume V and the temperature T are considered as ‘the
control " variables and the throughput rate q 1is considered to be
the disturbance. Using the relationships (39), the measure of system
performance (40) can be expressed in terms of only V, T and q, i.e.,

y(t) = P(V(2),T(t).q(t)). (42)
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If the throughput rate q 1is a constant, then the values for V
and T can be chosen so as to maximize (42), and they can be kept cons-
tant throughout the operation of the syétem. When q varies with res-
pect to time, however, the values for V and T should be updated in order
to keep the system in its best operating condition. In this example, |
we assume that there are costs associated with updating V and/or T and

the tradeoff problem considered in the previous sections becomes important.
We consider a two-layer control system where the first layer

updates T and the second layer updates V (See Fig. 4), and define

control actions 1 and 2 according to (4) as follows:

Control action 1 = Calculate the value of T so that P(V,T,q)
is maximized with respect to T and-

implement the result on the system.

Calculate the values of both T and V so
that P(V,T,q) is maximized with respect to
T and V, and implement the result on the
system.

Control action 2

We assume that there are costs C] and C2 associate with control
actions 1 and 2, respectively. For simplicity, q(t) is assumed to be
measured directly with no cost(this implies that G is an identity and
CGH in section II is zero).

A sample record for q is assumed to be given as in Fig. 5. Since
q is continuous valued, it is necessary to quantize the value of q in
order to apply the techniques in the previous sections. The number of
disturbance levels N is chosento be 3 and the quantum values for each
level are determined by the method suggested in [7] and the transition
probabilities are calculated from this sample record. These resuits

are shown in Table 1.
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q q

UPDATE UPDATE .

r—

Fig. 4 Two Layer Control System

DLSCRETIZATION OF DISTURBANCE
DISTURBANCE . UANTUM VALUES 1
LEVEL RANGE R., €{1,2,3} Q u', 1€f1,2,3
1 qS #-0.4320- = 10.78 u'= 4-0.9690 = 10.52
2 10.78< g #+0.432~ = 11.19|u®= p= 10.98
3 . |q> 1.19 u3= 41+0.9690~ = 11.45

TRANSITION PROBABILITY:

Table.1

dpp Gp3| = 0.095

Q4 * Prob{u(t+1)éRth(t)eRJ ‘

0.096 0.000
0.833 0.072
435 933 0.000. 0.068 0.932

Discretization of Disturbance Record
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The state of the two-layer control system is expressed by

0
disturbance level at most recent time of control action 1, and Xy is

X = (xo,x1,x2), where x_ is the present disturbance level, Xy is the

the disturbance level at most recent time of cohtro] action 2, where
x16{1,2,3} » 1=0,1,2. There are 27 states in the state space. The
net performance associated with the transition from state X to Y
taking control action &, i.e., riY is approximated by the following

expression:

¢ ¢ ¢ ¢
riY = %[‘ P(VX s Tx ’ qu)+ P(VX ’ TX ’ Cl‘yo)] —CG [] (43)

where X? = ¢(X;8) as in (12) and v is the result of performing

Maximize P(V,T,q*2), (44)
vV, T

and TX

is the result of performing

Maximize P(VX,T,q*1): (45)
The following numbers are used in the example.

A]=14000, A2=80, B,=4000, B2=2500, 3Y°=0.1, KX°=0.9,

6

1

8,=25000, 32=5.0x106. 83=5.0x10'3, 8,=3.0x10°%, 8.=5.0,

86=3590, B7=26500;

C]=50, €,=200, C°=0, C.=0.

2 GH
The linear program.(20)~{22) was set up using these numbers. An optimal
policy was determined by taking those variables in the optimal basic
feasible solution whose values are strictly positive. This procedure

resulted in identification of the following policy:

State Optimal Action State Optimal Action
21,1,1; 0 21,2,3) 2
2,1,1 1 2,2,3) 0
(1,2,1) 1 $3,2,3) 1
52.2,1) 0 2,3,3) 1
3,2,1) 2 (3,3,3) 0
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The parameterized policy approach in section V was also applied
to the example. Here, we used the testing function (26) and the policy
is determined by (27). The best parameterized policy identified was
a = (1,2) with the initial state (1,1,1). This policy happened to be
exactly the same as the policy identified by solving the linear pro-
gram. This may not always be truelin general, because an optimal bolicy

may not be expressed in the form of a parameterized policy.

VII. Conclusions

A general multilayer control system is developed which improves the
balance between the control cost and the performance achieved for a class
of static, nonlinear, multivariable systems. The control system is
formalized as a generalization of the multilayer control approach. A

convenient mathematical model describing the behaviour of the control
system is obtained whicﬁ admits a simple state expression. The problem
of determining an updating policy is then shown to be formulated as a
Markovian Decision Process under some assumptions. Consequently, a
policy which is optimal over all possible policies can be identified as
a solution to a linear program. Since the computations of an optimal
policy become quite tedious, a parameterized policy approach is proposed,
which results in an identification of a suboptimal control policy with
much less computational effort.

It should be noted that the development described in this paper
did not really take the effect of the measurement cost on the expected
average net performance into accounf. This follows from the fact that

we have made the assumption that measurement and decision making are
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performed every basic period (refer to assumption 1) in section IV).
However, it is rather straightforward to extend both the Markovian Deci-
sion Process Approach and the Parameterized Policy Approach to the case
where the effect of Cy, on Pnet is significant [2]. The key is to
include the interval of two successive measurements into the set of
decision alternatives. This results in defining a Markovian Decision
Process similar to the one discussed in [8].

The above investigation provides an extension of the multilayer
control strategy in Donoghue's development, and also formalizes an
important notion of controlling on-demand (i.e., controlling only when
it is economically worthwhile to do so) for the class of static systems.

Some of the important questions such as the optimality of the
best parameterized policy, the treatment of non-Markovian disturbance

and extensions to the class of dynamic systems need further investiga-

tion.
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Appendix

The superiority of using the ergodic chain As(a.X*) instead of
using A(a,X*) is f1lustrated in Table 2 in which the numbers of states
in As(a,X*) and in A(a,X*) are compared for some values of a and X*.
Note also that this table shows an indication of the computational
reduction in the Parameterized Policy Approach,because,in this example,

the number of rows in the linear program (20)~(22) is given by 625.

Table 2 Comparison of the number of states in A and AS
3-layer example (2=3), Number of disturbance levels N=5. |/
{qij} is given by

0.5 0.3 0.2 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.3 0.4 0.1 0.2 0.0
0.0 0.0 0.4 0.1 0.5
0.0 0.0 0.0 0.6 0.4

EFQi The number of states in

6’3”\, : "
0} ‘' *' Q’X ) A (a X )
"°1‘M (0,1,1,1)](3,3,3,3) | (1,1,1,1)](3,3,3,3)

(1,1,1) 15 15 5 5
(1,2,3) 29 21 9. 7
(1,2,4) 31 21 10 7
(1,3,4) 39 15 12 ! 5
(2,3,4) 33 1 16 7
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