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On the Determinationof an On-Demand.

Policy for a Multilayer Control System

Abstract

The cost-performancetradeoff problem associatedwith a multilayer

control system for controlling a class of static.nonlinear.multivari-

able systems is considered. The multilayer control systemhas a ,

number of layers of control functions each of which updatesdifferent

subsetsof the manipulatedvariables at different costs.

A favorable cost-performancetradeoff is achievedby determining

at each control decision time which subsetof the control variables

is to ｾ ･ updated. In this paper, we presenta mathematicalrrodel which

describesthe operationof the multilayer control system. Also we show

that the problem of determininga. decision rule (policy) which results

in an optimal cost-performancetradeoff can be formulated as a problem

in Markovian Decision Processes. Consequently,an optimal policy can

be identified by solving a linear program.

In order to reduce the computationaleffort required for identi-

fying the optimal policy, a class of parameterizedpolicies is intro-

duced basedon ｾ measureof deviation of the disturbance. This approach

provides a designerwith a practical methodof determininga control

policy which achievesa favorable cost-performancetradeoff.

An example is given for demonstratinga possibleapplication to

processcontrol.
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I. INTRODUCTION

In many cases,industrial systemsare subject to uncontrollable

disturbances,and the performanceof the systemdependson thesedis-

turbancesas well as on the variableswhich can be controlled. Due to

changesin the disturbances,the implementedvalues for the control

variablest at a particular instant of time (for example, the values

of rn which maximize a performancefunction P(m,u) for a particular

value of disturbanceu) may not be very appropriateat some later time.

In order to compensatefor this, we considera control strategywhich

updatesthe vector of control variables from time to time, ｲ･ｳｰｯｮ､ｩｮｾ

to the observedchangesin the disturbance. Since the complexity of

the systemmay result ill ｳｩｾｮｩｦｩ｣｡ｮｴ costs for computation,measure-

ment alld implementationeach time an update is performed, the effect;ve-

ness of performing an updatebecomesvery important. That is, there

exists an economic tradeoff betweenthe averagedperformanceachieved

and the averagedcost of control over a long period of systemoperation.

This tradeoff dependson the relative frequencyof ｣ ｡ ｲ ｲ ｹ ｩ ｮ ｾ out the

updatesand also on the structureof the control system. For instance,

we would expect that more frequent updateswould achievea better

averagedperformanceat the expenseof a higher cost. Also, we expect

that it would cost more, in general, to perfonn an optimization and

control action with respect to all of the control variables than with

respectto only a subsetof them.

The general multilayer control systemproposed.byDonoghue[l]

provides one way of incorporatingthe cost-performancetradeoff

t We use the term IIcontrol variablell to denotegenerally the output of a
decisionmaking or control process.
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associatedwith the structureof the control system. In his general

multilayer control system. he considersvarious control functions each

of which affects only ii subsetof the control . variables; the con-

trol variables are orderedand the control system is structuredso that

those variables to'which the performanceof the systemis most sensi-

tive tend to be updatedmore frequently and by simpler functions. The

structureprovides a basis for investigating the heuristic1deasa

designermight considerwith regard to the cost-performancetradeoffs

as mentionedbefore.

In this paper, we presenta mathematicalmodel of both the multi-

layer control systemand the cost-performancetradeoff for the case in

which the control functions at the different layers in the systemare

basedon updating different subsetsof the control variablesat different

costs. A favorable cost-performancetradeoff is achievedby deciding

at each control decision time which supsetof the control variables

is to be updated. We refer to this decision rule, in the subsequent

sections,as an updating policy, or more simply, as a policy. Thus,

the tradeoff problem is reducedto determiningan updating policy which

achievesa favorable cost-performancetradeoff.

In section IV, we show that the tradeoff problem can be formul ated

as a Markovian Decision Processand that an optimal policy can be ob-

tained as a solution to a linear program. In sectionV , a class of

parameterizedpolicies are introducedand the designproblem is

reducedto determininga set of parameters. This approachmay not lead

us to an optimal solution. Nevertheless,it is consideredto be prac-

tical for determininga policy which gives a favorable ｣ｯｳｴＭｰ･ｲｦｯｲｾｮ｣･
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tradeoff becauseof the significant reduction in computationaleffort.

II. Multilayer Control System

The structureof the multi 1ayer control systemwhose cost-

performancetradeoff is to be examinedis shown in Fig. 1. The process

performanceis assumedto be given by P(m,u), where m is the vector

of control variables and u is the vector of disturbances. The

block G is the measurementand data processingunit where the set

of raw data describing the disturbanceinput is transformedinto an

information vector (e.g., current observationu(t), mean and vari-

ance values, density function, etc.), which is denotedbye. It is

assumedthat there is a ｰｲ･ｾ､･ｴ･ｲｭｩｮ･､ orderingtamongthe control

u
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ｾ The ordering is basedon the sensitivity of systemperformanceto
each variable. If i < ｪｾ then systemperformance;s more sensitive
to mi than nlj .
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variables so that the following partitioned form of the vector m is

given:

m= (1ll1, .•. ,mp mi+.1,. .. ,mt ). (1)

Note that mi may itself be a vector. Let mi be a subsetof m

defined as follows:

The control function Fi , in general,determinesthe subsetof

m, i.e., mi , basedon the current value of e and mi +1 which is

the output of the control function Fi +1. However, we assumethat Fi ,

in effect, changesonly mi , i.e., the i-th Ｈ ｾ ｡ ｲ ｴ ｩ ｴ ｩ ｯ ｮ ･ ､ Ｉ ･ Ｑ ･ ｭ ･ ｮ ｴ ｯ ｦ ｾ

control variables. Therefore,we may expressthe relationship

among the variables mi , mi +1, and e as follows:

. ·+1 ·+1 ·+1 ·+1
m1 = (mi ｾ m1

) = ( f i (a ,m1
) ｾ m1

.) = F i (e ,m1
) •

mR. =m = f (a) =Fn(a),R. R. I(,

i =1.2,..• ,R.-1,

(3)

where f i , i=1,2,•••• R. are given functions. As an example, f i may

be the result, of a maximization operationon some perfonmanceindex

with respectto the indicatedsubsetof m(see [1],[2]).

We also assumethat there is a ｰｲ･ｾ､･ｴ･ｲｭｩｮ･､ period on which

the operationof the control systemis based,which will be referred

to as the "basic periodll
• In the decision ｭ ｡ ｾ ｩ ｮ ｧ block, we assume

the following: the information vector, a, is made available to the

control systemevery time So is closed; Fi is performedevery time

Si is closed. The decision maker determineswhich switches are to

be closed-every basic period of time. In the most general situation,
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the way the switches are closed is completelyarbitrary, however, with-

out loss of generality, we can restrict our attention to those decisions

describedbelow for convenience.

First, it is assumedthat the decision as to which control func-

tion should be performedwill be made only when So is closed.

Second,we define the control actions as follows:

Control action i denotesthat all of the control functions

F., F. l, ••• ,Fl are performed in this order, where i=l, ••• Ｌ ｾ Ｎ, ,-
(4)

We identity- the control action i simply by i, and define the set of

alternativedecisions ｾ as follows:

(5)

where 0 denotesthe decision that none of the control functions is

to be performed. It should be ｮｯｴ･､ｾ from the definitions (3) and (4),

that control action i results in an updateof only a subsetof m,

i.e., ml ,m2, ••• ,mi • It is assumedthat once the subsetof m is

updated, then the values are kept constantuntil the next time of

measurementand decision.

The following control costs are consideredexplicitly:

1) ｾｇｈ = Cost of measurement,data processingand decision

making which is incurred every time So is closed.

2) Ci = Cost of the control action i, which is incurred

every time the control action i, ｩ ｾ ｴ Ｎ is taken.

The cost Ci includes the cost of computing the new setof values for

the 'control variables and the costs associatedwith implementing

the results. We assumezero cost for no control action, i.e., Co=O.

After each decision making, the processproducesa performancetlhich
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is measuredby the given function P(m,u). Thus, the cost-performance

tradeoff problem is now reducedto the problemof determiningan up-

dat"ing policy ( a decision rule which producesa ｳ･ｱｵ･ｮ｣ｾ of integers

from ｾ ), which gives a favorable balancebetweenthe performance

achievedand the cost of control. It should be noted that the struc-

ture of the multilayer control systemdescribedhere reflects the

various ideas of the cost-performancetradeoff mentionedin section I.

III. Formalizationof the Tradeoff Problem

In this sectiong we derive a mathematicalmodel of the control

systemand define the cost-perfol'mancetradeoff problemexplicitly.

Let the basic period be normalizedto unity and let t=O,l, ••• be

the discretetime index for the operationof the control system. Let

ｾ be an integerwhich representsthe decision as to whether the

switch So is closedor not. That is,

A =J 1,

10,
if So is closed,

otherwise. (6)

Let t5 be an integerwhich representsthe control action 15 , ｴＵｅｾＮ

Let ｭｾ be the value of the vector of control variablesafter

taking a control action.· Then, there is a function ｾ such that

ｭ ｾ = ｾＨｭＬ｡ＬｊＬｴＵＩＬ

where ｾ is defined as follows:

1) (A=O, t5€6) or (..&=l, 15=0) =;> ｭｾ = m., for all je{l, •• .,.Q,}.
J J

2) Ｈ Ｎ ｾ ］ ｬ Ｌ cSE{l, •• .,JI.-l}.) *
ｾ Ｈｾ ｾmj=fj 0, mj+p.. .,mJl,

ｾmj = mj ,

) fo r all j G{l II ••• ,t5} II

for all jE-{t5+l, ••• ,Jl,}.
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3) ＨＮＶ］ｬＮ｣ｓ］ｾＩ * for all jet1•••••R.-l}.

(7)
r
I

, ,J

The table is derived by consideringthat control action <5 implies

the executionof Fa' Fa_l •••.• Fl in this order. resulting in only

a subsetof m being updated. Supposingnow that m. a,..d. m; cS are

functions of time and consideringthe assumptionthat the implemented

value of m is kept constantover the basic period. the dynamic

behaviourof the control systemis describedby

m(t+l) = m'1'(t) :: '1'( m(tL a(t),'A(t), a(t) ). t=O.l ••••• (8)

Now. we consideran expressionfor a measureof the cost-perfor-

mance tradeoff associatedwith the control systemoperation. Let

{u(t)} • t=O.l •••• be a discrete time stochasticprocessrepresenting

the disturbance. Supposeat time t. the values m(t). a(t). A(t)

and <5(t) are given and supposethe actual value of the disturbanceis

u(t). Then. the performanceactually achievedover the next basic

period'can be expressedas

Wt = P(m'1'(t) •u(t)) - J (t H CGH + C<5 ( t) ). t=O.1• • • • (9 )

over all Infinite
T
2: E｛ｾＯｴ｝Ｇ (10)

t=O
PlanningHorizon = Pnet(H.m(O) = lim 1

1-+00 T+l

We will refer to this quantity as the net performanceover the basic

period. Wt • t=O.l •••• is a sequenceof random variableswhose sto-

chasticnature dependson {u(t)} • the initial value m(O) and the

policy denptedby H. An appropriatemeasureof the cost-perfonnance

tradeoff is representedby taking the expectedaveragenet performance

over an infinite planning horizon. i.e.• we define

ExpectedAverage Net Perfonnance
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where E denotesthe mathematicalexpectation. It is now possible

to define our. cost-performancetradeoff problem formally as folaows.

Cost-PerformanceTradeoff Problem:

maximize Pnet(H,m(O)) (11)

where maximization is taken over all feasible policies and over all

possible initial values for In. In the subsequentsections"we will

show methodsfor ｳ ｯ ｬ ｶ ｩ ｮ ｾ this problem.

IV. Markovian Decision ProcessApproach

The cost-performancetradeoff pl'Oblem formulated by (11) is a

sequentialdecision process. One of the most powerful tools for

sequentialdecision proceSsesis the theory for Markovian Decision

Processeswhich has been developedextensivelyover the last ten years.

In this section,we show that the behaviourof the multilayer

control systemcan be describedas a Markovian Decision Processby

introducing an alternativestateexpression. Some assumptionsare

made for this purpose.

1) Measurementand decisionmaking is performedevery basic
period of time, i.e., ..b(t)=l, for all t=Og1g....

2) The vector of disturbanceinformation e(t) may take on only
a finite number of possiblevalues denotedby ai, i=l, ••• ,N,

where N is the total numberof possiblevalues for a(t).·

Alternatively, we will characterizethe disturbanceas the

i-th disturbancelevel when e(t) = ai • We denote the set of

possibledisturbancelevels by S, i.e., S ={l, •••• N} •
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3) The stochasticnatureof the process{e(t)}t. t=O.l •••• is

Markovian and ergodic. Let the transition probability for the

process(e(t)}. denotedby qij' i,jES. be given.

Under the assumption 2). let xi(t) representthe Ileve1" of

disturbanceat the most recent time prior to t when control action

i \'/as performed.where Xi(t)ES for i=1 ••••• 1 and for t=O.l ••••

Then it can be shown that the vector X(t) = (xo(t).x1(t) •••••xR,(t))

may be consideredas the "state" of the mul til ayer control system.

Here. xo(t) representsthe presentlevel of the disturbanceat time t.

From the assumptions2) and 3), X(t) takes on only a finite number
"-

of poss"ib1evalues and. therefore, the statespace S is finite. i.e••

5=S1+1.

In terms of this stateexpression,the operationof the control

systemunder the assumptions1) through 3) can be describedas follows.

Supposeat some time t. the stateof the control systemis found to be

X= (xo,x1•••• ,x
1
). where the argument t is suppressedfor notational

convenience. If the decision maker now selectsa control action. say 6,

then X changesimmediately to some new state ｘ ｾ because,by defini-

tion. the first (t5+l) elementsof the state vector X are reset to the

presentlevel of the disturbance. That is. there exists a functiontt, ｾ

defined as follows which expressesthe results of control actions.

j =0.1 ••••• t5

(12)

t{e1t)}is the processinduced from tu(tJJ through G.
tt This function ｾ correspondsto the function ｾ defined by (7) where

J:J =1 •
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The state may then move to soma new statedue to a changein the

current disturbancelevel.

Note that the last ｾ elementsof the statevector X{t) con-

tain sufficient information for determiningthe values of m unique-

ly. That iS g for each component Xjg j=1,2g•.• Ｌ ｾ Ｌ there is a

correspondingvalue of the information vector which can be denotedas
)(.eJ g and it can be shown that there exists a function g such that

( ) -- (e'l(,It)e'Xt!'tl eXIt) 11 ( ). h f hm t g g go •• g for a tg where mt 1S testate0 t e

control systemdefined by (8). The function 9 can be easily derived

from (7).
A

We may considerg in general, the transition from a state X€:S
ｾ

to a state Y€:S. Then, the behaviourof the control systemcan be

describedby the following diagram.

time t time t+1

x = ( XogXp " . Ｌｸｾ ) VI RTUAL >- Y= ( Yo gyp•• .,yR. )

TRANSITION

ｄｅｔｅｒｉｾｉｎｉｓｔｉｃ

TRANSITION BY

CONTROL ACTIONS

X'P= ＧｐｻｘｧｾＩ

Fig. 2 Transition Diagram

PROBABI LI STIC

ｔｒａｎｓｉｔｉｏｉｾ DUE TO

CHANGES IN DISTURBANCE



- 11 -

Fig. 2 shows that the operationof the control systemis a

ｍ｡ｲｫｯｶｾ｡ｮ Decision Processexplicitly. The transition probability to

state V given that the presentstate is X and the control action
ois 0 , denotedby PXV ' can be expressedby

-iqxaYo '
o , otherwise. (13)

where X<P = 4>( X, 0), as defined in (12) and of;.li ,X,VEt

The cost associatedwith the transition from state X to state
oV by taking control action' 0, denotedby rXV ' can be expressedby

the following equation:

(14)
K
I

k=l

where X<P representsthe state right after control action 0, and
<P

m
X representsthe unique.numerical value for the contro.l

variable vector correspondingto the state ｘ ｾ Ｎ ＿ ｾ ｏ representsthe dis-

crete probabi11ty corresponding to the present1eve1 of the di sturbance

i.e. ,
?xO, k = (15)

(16)

Note that if the information vector 0 provides the numerical

value of u directly, then (14) reducessimply to

o x4>
r XV = P( m II JCo) - (CGH+Co ).

The net performance Wt given by (9) becomes

, (17)
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and the expectedaveragenet performanceover an infinite planning

horizon can be written as

lim
T-+<»

1 T
L E[Wt ]

T+l t=O

T
:I ｔ ｬ ｾ "T1l L' L" L ry

k Prob(X(t)=y,6(t)=kDH,X(0», (18)
-or- t=O Yt: S ｫｾｾ .

where

(19)

Thus, the problem is to determinea policy which maximizes Pnet over

all possiblepolicies and over all initial states.

It is well known that if a Markovian Decision Processis complete-

ly ergodic, then the linear programmingformulationproposedby Manne[j]

determinesan optimal policy. When a Markovian Decision Processis not

completelyergodic, Manne's linear programonly identifies an ergodic

chain which gives an optimal expectedaveragecriterion[4]. It can '!

easily be shown that the tradeoff problem is not completelyergodic.

However, it is enough to identify only an optimal ergodic chain, be-

causefor any state ｘ ･ ｾ Ｌ we can calculate the value of m a ｰｾｩｯｲｩ

and thereforewe can always set the stateof the multilayer control
.'

sytem to one of'the statesin the identified ergodic chain. Thus,
,

Manne1s linear program is consideredto be appropriateand it is shown

in the following:

6Find {w y} to maximize (20)
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subject to

L..
XfS

\' 0 0
t.. PXV 1TXoc6

=0,
1\

VeS , (21 )

(22)

The objective function representsthe quantity given by (18). The

constraintsare derived from the familiar steadystate relationships

between the state distribution and the set,of transition probabilities

in Markov chains where ｐｾｶ is given by (13). It can be shown that

for each Vt:g, at most one 06.6 such that Ｑ ｔ ｾ ＾ ｏ Ｌ ｗ ｩ ｬ ｬ appearin every

basic feasible solution of the above program..Therefore.an optimal

policy can be identified by taking the pairs (V.o) such that

AO 0 h ｾｯＢ t" 1 1" h1TV > ,were 1TV 1S an op 1ma so ut10n of t e linear program.

V. ParameterizedPolicy Approach

The linear program ＨＲＰＩｾＨＲＲＩ identifies an optimal ergodic chain

whose expectedaveragenet performanceis a maximum. However. the size

of the linear program may becomevery large as Nand 1 increase.be-

causethe number of rows is given by N1+l (which is the same as the

number of possiblestates). Therefore, atechniquewhich requires

much less computationaleffort is desired. In this section.we develop

a method which determinesan approximationto an optimal policy with

considerably Ｑ･ｳｳｾｯｭｰｵｴ｡ｴｩｯｮ｡Ｑ effort.

ParameterizedPolicy

Let r be a function which representsa measureof difference'.
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betweentwo disturbancelevels, i.e.,

p{a,b) ｾ 0, equality holding if a=b.

p{a,b) = p{b,a), a,b€S. (.23)

It should be noted that the numberof possible values that p can

take on is finite because S is finite. We refer to this function as

a testing function. An example of p is p{a,b) = (a_b)T B (a-b),

where a > a is a weighting matrix. The idea of a parameterizedpolicy

is as follows: Let a be the disturbancelevel at the last time of up-

date and let b be the presentdisturbancelevel. Then, using the

function p, we can considerthe following updating rule:

update

do 'not update

if

if

p{a,b) ,? a

p{a,b) < a (24)

where a >0 is some real numberwhich is refer-red to as the testing

criterion. In other words, an updatewill be carried out only if the

value of the testing function equalsor exceedsa certain prescr"ibedlimit.

We can extend this idea to the general multilayer control system

under consideration. Now, let a = (a1,a2,••. ,a
t

) be the vector of

testing criteria where ai is the criterion for control action i. Then

a parameterizedpolicy Ha can be defined by

0, if p{xo'xj ) <'aj , j=1,2,••. ,t.

Ha{X) =

k, if p{xo'xk) ｾ ak for some kE{1, ••• ,t-l}

and if

p(xo' xj) < aJ fo r all j E{k+1,••• ,i,} •

t, if p{xo'xt ) ｾ at-

/\

where X= ( xo,xl" •• ,Xi ) E S. (25)
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The parameterizedpolicy determinesthe control action as follows:

starting from control action 1, we calculate the value of the testing

function.

performed.

If the value equals or exceeds a, control action 1 is to be
1

If the value is less than a1, then we evaluatethe testing

function again for control action 1-1. In this way, the control action

to be taken is determinedas the first one (counting from control action

1 ) whose value of the testing function is not less than its testing

criterion. lhus, this class of parameterizedpolicies assignsa unique

control action to each state in 5, and gives priority to the higher

layer control actions. Note that the numberof possible parameterized

policies is finite for given P and 1.

As an example, considera 2-layer control system in \'Jhich the dis-

turbance takes on only three values, i.e., S= {l,2,3l. A state for this

case is representedby the vector (xo'xl ,x2), where xicS, i=0,1,2.

Let P be chosen as

p(a,b) = la - bI , a ES, bE:S. (26)

Then, according to (25), the control action for the state (Xo,xl ,x2) i s

deternrined by

Ha(xo 'X l 'x2) = 0 if Ixl-xo I<al and Ix2- xo l < a
2

1 , if Ixl-xo ｉｾ｡ｬ and Ix2-xo l < a2

2, if Ix2-xo ｬｾ｡ＲＧ

where a= ( a
l

, a2).

(27)

For instance, if the policy vector a =(1,2), then the control actions

associatedwith the states (1,1,1), (1,2,2), (1,2,3) are given by 0,1,
, .

2p respectively.
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Having defined the class of parameterizedpolicies, our next

concern is to develop a method for evaluatingthe expectedaveragenet

performance(Pnet) for a given parameterizedpolicy. Basedon the

virtual transition illustrated in Fig. 2, the statesof the multilayer

control systemoperatingunder the class of parameterizedpolicies form

a Markov Chain which, in general,may contain a number of ergodic chains·

*dependingon the initial starting state X. Let us denote the ergodic

* * tchain for gi ven a and X by A(a,X ). Then the expectedaveragenet

performanceover an infinite horizon defined by (18) exists and is

given by

ｾ Ha(X) *
l * r X wX(a,X ),

XeA(a,X )

/) *where rX is defined by (19) and wX(a,X ) representsthe steadystate

probability that the stateof the multilayer control systemis X, and

is given as a solution to the following set of equations.

L
*XEA(a,X )

Ha(X) * *PXY wX(a,X) =0, YEA(a,X ) (29)

L
*XE A(a,X )

(30)

Thus, the tradeoff problem is reducedto determining the set of

*values a and the initial state X so that Pnet is maximizedover all

*possiblea and X.

*For given a and X, Pnet can be calculatedby first identifying

A( a,X*) f\nd then solving (29) and (30) for wx(a,X*). Since the number

t Since an arbitrary initial starting state may be a transientstate
and may lead to two or more distinct ergodic chains, the range of A
must be appropriatelyrestricted.
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*of statescontainedin the ergodic chain A(a,X } may be very large,

solving (29) and (30) directly may still require an excessivecompu-

tational effort.

The amount of computationcan be reducedby consideringan al-

ternative "virtua1 transition". Considerthe state transition of the

multilayer control systemunder the class of parameterizedpolicies

h ' ,as s own in Fig. 3, where Xt ' Xt +1 denotethe states before taking

control actions, and where Xt ' Xt+1 denotethe statesimmediately

after taking control actions.

Xl
t

ｬＢ］ＡｉｾｍＩ
Xt

Fig. 3 State Transition under a ParameterizedPolicy

Since the control actions associatedwith the states Xi, Xt+1
are determinedby the given parameterizedpolicy, we Y'fl'l:i..y considerthe

virtual transition Xt -t>X t+1 insteadof Xi ｾｘｩＫＱ t. Then, it is

*clear that for each ergodic chain A(a,X } generatedby the transition

Xi -+ Xi+l • there ｾ ｳ an ergodic chain (we denote this chain by AS(a,X*)}

generatedby the vi rtua1 transition Xt - Xt+1 • Basedon the chain

AS(a,X*}. we can show that (28};y(30) may be modified to the following

set of equationsfrom which the averagedperformancePnet can be determined.

t Note that this new interpretationof virtual transition is not
appropriatein the formulation of the Markovian Decision Processdeveloped
in section IV •
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(31)

where

*where xo' Yo are the first elementsof X,V, respectively,and ｾｘＨ｡Ｌｘ )

is given as a'solution to the equations

where ｐｾｶＨ｡Ｉ denotesthe transition probability betweenstatesX and

V in AS(a,X*). ｐｾｶＨ｡Ｉ is given by

if the last t-elementsof V and ｘｉｾＬ

respectively,are identical, where

ｘｉｾ］ ｾＨｘｉＬ Ha(X' », and where

Xl = (yo,x1,x2, .•. ,x
t
).

o , otherwise. (35)

In the expression(35), the function ｾ is defined by (12) in section IV:.

The advantageof this formulation is the fact that the numberof

statesin AS is usually much less than the numberof states in A (See

Appendix). Hence, it requires much less computationaleffort to use

(31) through (35) insteadof (28) through (30).
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Search Method
ok

The discussionso far is concernedwith the evaluationof Pnet(a,X )

*for given a and X. In order to obtain the best parameterizedpolicy,

a searchproceduremust be considered. Since Pnet is not continuouswith

respectto its arguments,we have to rely on so-calleddirect search

methods,such as Hooke and Jeeves[5],Rosenbrock[5],Nelder and Mead[5].

*For each index state X , thesemethods may be applied to detenn'jne the

best value for a. The best parameterizedpolicy is then determinedby

*taking the best combinationof a and X •

It should be noted here that due to a special property of the mul ti-

layer control systemoperatingunder parameterizedpolicies, the rangeof

a for which an optimal value is searchedcan be restricted. We call this

the "Collapsing Property" and it is describedin the following.

Collapsing Property

Let us considera two-layer control system.asin section V. The

parameterizedpolicy is defined by (27), and let us assumethat al ｾ a2•

Supposeat some instant of ｴ ｩ ｭ ･ ｾ control action 2 was taken. Immediately

follows the control action, the statesatisfiesthe condition xo=x1=x2,

becausecontrol action 2 has reset the values of xland x2 to the current

disturbancelevel xo' Therefore,at the next time testing, we observe

that IX1-xol=lx2-xol. However, since al ｾ a2' Ix1-xo' ｾ a1 always

implies Ix2-xo' ｾ a2. Thus, the next control action cannot be control

action 1. By repeatingthis argumentfor each time of testing, we can

show that control action 1 will never be carried out under the condi-

tion a1 ｾ a2' As a result, the two-layer control system, in effect,

"collapses" to a one-layercontrol systemfor which only control action

2 is implemented.
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The above property is valid in the general R.-layer control system.

That is, if ai ｾ｡ｩＫｬ for some i, then control action i will not be

implemented.

Supposea given parameterizedpolicy Ha has a testing criterion

ai ,ai+l such that ai ｾ ai+l . Then, the collapsing property quarantees

that \'le can obtain an equivalentpolicy by replacing ai by ai +l •

Therefore,we conclude that it is sufficient to consideronly the values

of a which satisfy

(36)

and this reducesthe range of a to be searchedconsiderably.

VI. An Example

In order to demonstratea possibleapplication of the multilayer

control approach,the static control of a simple stirred tank reactor

processis considered.

. The reactor processhas been studied in [7] from whi ch the desc-

ription is taken. The inflow to the reactorcontains two components

RX and Ry with concentrations(x
o

and ¥Yo ,respectively. The out-

flew contains components RX' Ry and RZ with concentrationsYX' ¥y,

and YZ ' respectively. The only reactions taking place in the reactor

are given by

(37)

where Ki are the reaction rate coefficients

K - V A -B./T '-1 2 ( )i - q i e 1 , 1 - , , 38

and T is the temperature,and V is the volume of the reactionmixture,
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q is the throughput rate and A1, A2, 81 and B2 are given constants.

The steadystate relationshipsare given by

ryo - Yy (l y K2) + K1¥x = a

K£ty - YZ = a

6'X
o

+ 'tYo = 1

Yx + 'ty + Yz = 1.

The measureof systemperformanceis taken to be

y(t) = 61 Yy(t) q(t) - < 62K2(tH'y(t)-S3>2

-84T4(t) -8ST(t)q(t) - (S6q(t)-S7)

, where Si' i=1,2,••• ,7 are given constantsand

(39)

(40)

＼ｾ＾］ ＵｾＧ ｾ >0

10 , ｾ ｾｯＮ (41 )

The fi rst term -; n (40)' is the value of the desi red product Ry, the

secondterm is a loss due to the high concentrationof the side pro-

duct RZ' the third term representsthe heat loss due to radiation,

the fourth term is the cost of heating the mixture, the fifth term is

the cost associatedwith the input stream.

The volume V and the temperature T are considered as 'the

contro1 'variab1es and the throughput rate q is consideredto be

the disturbance. Using the relationships(39), the measureof system

performance(40) can be expressedin terms of only V, T and q, i.e' D

y(t) = P(V(t),T(t),q(t)). (42)
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If the throughputrate q is a constant, then the values for V

and T can be chosenso as to maximize (42), and they can be kept cons-

tant throughout the operationof the system. When q varies with res-

pect to time, however, the values for V and T should be updatedin order

to keep the systemin its bestoperatingcondition. In this example.

we assumethat there are costs associatedwith updatingV and/or T and

the tradeoff problem consideredin the previous sectionsbecomesimportant.

We considera two-layer control systemwhere the first layer

updatesT and the secondlayer updatesV (See Fig. 4). and define

control actions 1 and 2 according to (4) as follows:

Control action 1 =Calculatethe value of T so that P(V.T.q)
is maximizedwith respectto T and·
implement the result on the system.

Control action 2 =Calculate the values of both T and V so
that P(V,T,q) is maximizedwith respectto
T and V, and implement the result on the
system.

We assumethat there are costs Cl and C2 associatewith control

actions 1 and 2, respectively. For simplicity, q(t) is assumedto be

measureddirectly with no cost(this implies that G is an identity and

CGH in section II is zero).

A sample record for q is assumedto be given as in Fig. 5. Since

q is continuousvalued, it is necessaryto quantizethe value of q in

order to apply the techniquesin the previous sections. The number of

disturbancelevels N is chosentobe 3 and the ｱ ｵ ｡ ｮ ｴ ｾ ｬ values for each

level are determinedby the method suggestedin [7] and the transition

probabilities are calculatedfrom this sample record. These results

are shown 1n Table 1.
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q

UPDATE

V V
UPDATE

T ｲＭＭｾｐＨｖＬｔＬｱＩ
V,T

Fig. 4- Two Layer Control System

DLSCRETIZATION OF DISTURBANCE

DISTURBANCE RANGE Ri'i€f l ,2,31 QUANTUM VALUES ui t i f. {1 ,2,3}LEVEL

1 ｱｾｊＧＭＰＮＴＳＲｱＭ］ 10.78 ul =,u-0.969q-= 10.52

2 ＱＰＮＷＸ＼ｱｾｐＫＰＮＴＳＲ｣ｲＭ］ 11.19 u2= f = 10.98

3 q> 11.19 u3=f+0.9690" = 11.45

TRANSITION PROBABILITY: qij = ｰｲｯ｢ｦｵＨｴＫｬＩｾｒｪｬｵＨｴＩｅｒｊ

q11 q12 q13 0.904 0.096 0.000

q21 q22 q23 = 0.095 0.833 0.072

q31 q32 q33 0.000 0.068 0.932

Tab1e.1 Discretizationof DisturbanceRecord
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The state of the two-layer control systemis expressedby

X = (xo'xl ,x2), where Xo is the presentdisturbanceｬ･ｶｾｬＬ xl is the

disturbancelevel at most recent time of control action 1, and x2 is

the disturbancelevel at most recent time of control action 2, where

xi E{1,2,3} , i=O,l ,2. There are 27 states in the statespace.The

net performanceassociatedwith the transition from stateX to Y

taking control action ｾ Ｌ i.e., ｲ ｾ ｹ is approximatedby the following

expression:

1 ｘ ｾ ｘｾ ｘｾ ｘｾ
ｲｾｹ = 2 [P{V , T , qXO)+ p{V , T , qYO)] - ｃｾＬ (43)

where ｘｾ = ｾＨｘＬｾＩ as in (12) and VX is the result of performing

Maximize P{V,T,qX2),
V,T

and TX is the result of performing

Maximize P{VX,T,qXl):

The following numbers are used °in the example.

Al =14000, A2=80, 81=4000, 82=2500, ｾｹｯ］ｏＮｬＬ ｾｘｯ］ＰＮＹＬ

6 -3 -661=25000, B2=5.0xlO, 83=5.0xlO , 84=3.0xlO , 85=5.0,

86=3590, 8t26500; . --

Cl =50, C2=200, Co=O, CGH=O.

(44)

(45)

The linear ｰ ｲ ｯ ｧ ｲ ｡ ｭ ｟ Ｈ Ｒ Ｐ Ｉ ｾ Ｒ Ｒ Ｉ was set up using thesenumbers. An optimal

policy was determinedby taking those variables in the optimal basic

feasible solution whose values are strictly positive-. This procedure-

resultedin identification of the following policy:

State Optimal Action State Optimal Action

ｾＱＬＱＬＱｾ 0 P,2,3) 2
2,1 ,1 1 2,2,3) 0

(1,2,1) 1 P,2,3) 1
ｾＲＬＲＬＱＩ 0 2,3,3) 1
3,2,1) 2 (3,3,3) 0_
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The parameterizedpolicy approachin sectionV was also applied

to the example. Here, we used the testing function (26) and the policy

is determinedby (27). The best parameterizedpolicy identified was

a = (l,2) with the initial state (l, 1,1). This policy happenedto be

exactly the same as the policy identified by solving the linear pro-

gram. This may not always be true in general,becausean optimal policy

may not be expressedin the form of a parameterizedpolicy.

VII. Conclusions

A general mul ti 1ayer control systemis developedwhi ch improves the

balancebetweenthe control cost and the performanceachievedfor a class

of static, nonlinear, multivariable systems. The control systemis

formalized as a generalizationof the multilayer control approach. A

convenientmathematicalmodel describingthe behaviourof the control

systemis obtainedwhich admits a simple stateexpression. The problem

of determiningan updating policy is then shown to be formulated as a

Markovian Decision Processunder some assumptions. Consequently,a

policy which is optimal over all possiblepolicies can be identified as

a solution to a linear program. Since the computationsof an optimal

policy becomequite tedious, a parameterizedpolicy approachis proposed,

which results in an identification of a suboptimal control policy with

much less computationaleffort.

It should be noted that the developmentdescribedin this paper

did not really take the effect of the measurementcost on the expected

averagenet performanceinto account. This follows from the fact that
r ' .

we have made the assumptionthat measurementand decisionmaking are
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performedevery basic period (refer to assumption.1) in section IV).

However, it is rather straightforwardto extend both the Markovian Deci-

sion ProcessApproach and the ParameterizedPolicy Approach to the case

where the effect of CGH on Pnet is significant [2]. The key is to

include the interval of two successivemeasurementsinto the set of

decision alternatives. This results in defining a Markovian Decision

Processsimilar to the one discussedin [8].

The above investigationprovides an extensionof the multilayer

control strategy in Donoghue'sdevelopment,and also formalizes an

important notion of controlling on-demand(i.e., controlling only when

it is economically worthwhileto do so) for the class of static systems.

Some of the importantquestionssuch as the optimality of the

best parameterizedpolicy, the treatmentof non-Markoviandisturbance

and extensionsto the class of dynamic systemsneed further investiga-

tion.
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Appendix

The superiority of using the ergodic cha'in AS(a,X*) insteadof
* -using A(a,X ) is illustrated in Table 2 in which the numbersof states

s * * *in A (a,X ) and in A(a,X ) are comparedfor some valuesof a and X •

Note also that this table shows an indication of the computational

reduction in the ParameterizedPolicy Approach,because,inthis example,

the numberof rows in the linear program ＨＲＰＩｾｻＲＲＩ is given by 625.

Table 2 Comparisonof the number of states in A and AS
3-1ayerexample (R,=3)! Number of disturbancelevels N=5 ..
{qij} is given by

...
'"0.5 0.3 0.2 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.3 0.4 0.1 0.2 0.0
0.0 0.0 0.4 0.1 0.5
ｾｏＮｏ 0.0 0.0 0.6 0.4

ｾ
The numberof statesin
* AS (a X*)A(a,X }

ｐｏｬｩｃｙｾ (1.1.1.ll {3.3.3,3} (1.1.1.ll {3,3.3.3}

(l,l,l) 15 15 5 5
(1.2,3) 29 21 9 7

(l ;2,4) 31 21 10 7

(1 ,3,4) 39 ·15 12 • 5:

(2,3,4) 33 11 16 ,. 7
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