
Again On Holling's Puzzle

Evtushenko, Y. and Sokolov, V.

IIASA Working Paper

 

1975

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33891853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Evtushenko, Y. and Sokolov, V. (1975) Again On Holling's Puzzle. IIASA Working Paper. WP-75-047 Copyright © 1975 by 

the author(s). http://pure.iiasa.ac.at/381/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


AGAIN ON HOLLING'S PUZZLE

Yu. Evtushenkoand V. Sokolov

April 1975 WP-75-47

Working Papersare not intended for
distribution outside of IIASA, and
are solely for discussionand infor-
mation purposes. The views expressed
are those of the authors, and do not
necessarilyreflect those of IIASA.



Again on Holling's Puzzle

In ｾ ｝ c. Holling introducesa new concept of Resilience

as an important characteristicof the behavior of complex

ecological systems. He writes

1) In mathematicalanalyses,stability has tended to assume

definitions that relate to conditions very near equilib-

rium points.

2) Resiliencedeterminesthe persistenceof relationships

within a system and is a measureof the ability of these

systems to absorb changesof state variables, driving

variables, and parameters,and still persist. In this

definition resilience is the property of the system and

persistenceof probability of extinction is the result.

3) Stability on the other hand, is the ability of a system

to return to an equilibrium stateafter a temporary

disturbance.

4) The more rapidly it returns, and with the least fluctuation,

the more stable it is. In this definition stability is the

stability is the property of the system and the degreeof

fluctuation around specific statesthe result.

With thesedefinitions in mind a system can be very resil-

ient and still fluctuate greatly, i.e. have low stability.
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These forms of definitions are rather vague and under-

estimatethe achievementsof modern stability theory. The

subsequentexamplesdo little to clarify the definitions.

Meanwhile, defining stability as behavior not only near

\

. equilibrium but also in the large and allowing for existing

oscillations even in stable systems, the concept of stability

may be extendedto a broaderclass of problems and in partic-

ular to Holling's conceptof resilience. These broad defin-

itions are in current use in stability theory [1,2,3,4J.

The vague nature of Holling's approachresulted in the

appearanceof severalmathematicaldefinitions of resilience

when this topic was discussedamong the IIASA methodology

staff in February, 1975.

This note is another attempt to solve a loosely specif-

ied problem and it is certainly open for any criticism and

comments. As the conceptsof stability and resilienceappear

very often together in Holling's presentationwe shall try to

relate them directly through rigorous conceptsof stability

theory.
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Resilienceversus Stability

Let us try to give a mathematicaldefinition of resilience

which may approximateHolling's descriptionas given above.

To make this definition more illustrative we confine
.
ourselvesto consideringthe systemswhich are governed by a

system of ordinary differential equations.

Assume we have an ecological system representedin the

following way:

dz =dt f(z,t,u) zo
(I)

z(t) = an n-dimentional statevector at time t.

t = time (independentvariable).

u = a vector of disturbancesapplied to the system and

given as a parameter.

UEU, U = a set of feasible disturbances

Zo = given initial conditions.

Introduce the notation:

p(z,S) = a distancebetween the point z and a set S which is

determinedas

p (z,S) = min
'V
ZES

liz - ｾｉｉ (2 )

nu = a set of equilibrium points for a given u, i.e.

nu = {z: f (z,u, t) - O} (3 )
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a union of nu for all UEU, i. e.

(4 )

If r is a boundedset then the follo'v'ling definitions may be introduced.

Definition 1: The solution z(z ,t) of the system (1) is saido
to be uniformaly stablewith respect to UEU if for any £ > 0

there exists O(E) > 0, such that for any zo' satisfying the

condition

the inequality

p{ ? (zo ' t), r} < E

will hold for all t > to'

Definition 2: The solution z(zO t) of the system (1) is said

to be uniformaly asymptoticallystable in the large with respect

to UEU, if for any Zo the following condition holds

lim p{z(zo,t), r} = 0
t+oo

Example 1: Let the system (1) be

dz
dt = U - Az

(5 )

where A = is a fX}sitive definite matrix, Le. zTAz > 0 for Vii z II t- 0,
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UEU, which is bounded. In this particular case

where A- l is the inverse matrix.

Let us show that the solution of (6) satisfiesthe definition

(1). Introduce a new variable y:

-1z = -A u+y

Then y should satisfy

(7 )

dy = Aydt -
-1

Y = +A u + Zoo (8)

Since A is positive definite the solution y(yo,t) is asymp-

totically stable in the whole i.e.

lim y(yo,t) = 0
t-+oo

for any YO.

From this follows

-1= A U E nu E r

The above definitions of stability allow us to specify the

whole set of stable points in the system state space. In

practical systems, however, singular points may exist in this

set. For example, in ecology a very important point is z= 0,

which correspondsto extinction. Introduce the concept of
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resilienceas some characteristiGwhich representsa poss-

ibility to escapesingular stable points.

Definition 3: The system (1) is said to be globally and ideally

resilient with respectto the set U, if it satisfiesdefinit-

·ion 2 and z = 0 does not belong to the set f.

-1
Example 2: If in Example 1 AUf 0, for all UEU, then the

system is globally and ideally resilient as statedby definition 3.

Definition 4: The system (1) is said to be locally and ideally

resilient with respectto set V, if it satisfiesdefinition (1)

and z = 0 does not belong to set f.

Definition 5: If z = OEf, then there exists a point

* * *U EU , U EU which generatesz = 0 and the system is not ideally

resilient.

*In this case U\U makes the system (1) ideally resilient

To deal with non-ideally resilient ｾ ｹ ｳ ｴ ･ ｭ ｳ __ the Qomain of

attractionof the simpler point z = 0 should be specified.

Definition 6: The domain of attraction, S of the point z = 0

is a set of initial points zo such that the solution of the

system (1) z(zo,t) tends to zero as t tends to infinity, i.e.

as t + ｾｽ (10)

To characterizeresiliencepropertiesof non-ideally resilient

systems let us introduce the conceptof the area of the domain

of attraction as

*UEU (11)
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If the point z = 0 is not stable then S consistsof only

one point z = 0 and its area P = o.

Definition 7: The measureof resilience for non-ideally

resilient systemsis

1
R = P

Example: Assume

dz
dt = zu and o < u < 00

(12)

(13)

In this case ｾ consistsof a single point z = 0, hence, theu >

system is not ideally resilient. The system (13) has the

f 1 ut d' f .allowing so ution: z = zOe >. Thus ｯ ｭ ｡ ｾ ｮ a ｡ｴｴｲ｡｣ｴｾｯｮ S

consistsof a single point Zo = 0; and consequently

P = 0

The system (13) which is not ideally resilient has an infinite

measureof resilienceR according to (12).

This representsthe fact that the system (13) has an infin-

ite number of alternativeways to persist. Any initial point

Zo t 0 and any feasible u(- 00 < u < 00) provide for an infinite

life-time of the system and only z = 0 correspondsto extin-

ction where z(zo,t) = O.

Example: Assume

dz =dt - sin z u, u>o (14) >
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2 'IT
The set $tu consistsof the points u • k, where k = 0, ± 1,

+ 2, ... ,. The system (14) is not an ideally resilient one.

Let us show that the domain of attraction of the point

z = 0 consistsof the points z which satisfy (IS)

'IT 'IT< Z <
U U

(IS)

To do this we may either integratethe system (14) or use the

Lynpunov functions. Assume as a Lynpunov function

v = 1 - cos zu

This function is positive over the entire interval

and is zero only if z = O.

(16)

- (2!. 2!.)u' u

Its total time derivative along the integral curves of

system (14) is

dv
dt =

. 2
- Sln zu < 0 (17)

Thus all the solutions of system (14) converge to zero if

initial point zo satisfies (IS). One can easily show with

the same method that if initial point satisfies

+ 'IT k < z < + 'IT (k+2)
u u k = + l,± 2.···· (18)

then solution of system (14) convergesto

'IT (k+l) :f 0
u if k :f -1 (19)
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Thus the area of the domain of attraction of point z = 0 is

2n/u, and the measureof resiliencefor our system is

u
R = 2n (20)

7he bigger u is the smaller the area of attraction and the

higher resilience.

All reasoninggiven heretoforeassumethe constantvalue

of u over the analysestime. The results may be generalized

for the casewhen u = u(t) is a given function of time.

System (1) can be rewritten then as

dz =dt
f(z,u(t) ,t) = l/J(z,t)

A further analysismay be performed on the basis of the

Lynpunov method and all the conceptsintroduced above are

still valid.
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