
New Societal Equations

Häfele, W., Avenhaus, R., Bell, D.E., Gruemm, H.-R., 
Winkler, C. and Schrattenholzer, L.

IIASA Working Paper

WP-75-067

1975 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33891833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Häfele, W., Avenhaus, R., Bell, D.E., Gruemm, H.-R., Winkler, C. and Schrattenholzer, L. (1975) New Societal Equations. 

IIASA Working Paper. WP-75-067 Copyright © 1975 by the author(s). http://pure.iiasa.ac.at/361/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


NEW SOCIETAL EQUATIONS

R. Avenhaus, D. Bell, H.R. GrUmm, W. Hafele,
J. Millendorfer, L. Scrattenholzer,C. Winkler

June 1975 WP-75-67

Working Papersare not intended for
distribution outside of IIASA, and
are solely for discussionand infor-
mation purposes. The views expressed
are those of the authors, and do not
necessarilyreflect those of IIASA.





May 1975

New Societal Equations

by

R. Avenhaus, D. Bell, H.R. Grumm, W. ｈｾｦ･ｬ･Ｌ

J. Millendorfer, L. Schrattenholzer,C. Winkler

I. Introduction

In a recent paper, W. ｈｾｦ･ｬ･ 111 establisheda number of

phenomenologicalequationsdescribing the behavior of a

model society. The state variables of this model society

were gross national product, population, energy consumption

and risk acceptance.

In this paper, the state of the discussionwithin the IIASA

energy project at the time being shall be fixed. Several new

sets of equationswill be establishedwhich extend the set

given by ｈ ｾ ｦ ･ ｬ ･ and Manne 121 in the following sense:

- capital will be included as another state variable

- a finite asymptotic population will be assumed

- there are several primary energy sources (fossil and

nuclear)

In the following sections,we will outline three different

approaches,namely

- an ｡ ｰ ｰ ｲ ｯ ｡ ｾ ｨ where a complete system of equations, including

one primary energy source, is establishedand where the

topological features (separatrices,fix ｾ ｯ ｩ ｮ ｴ ｳ Ｌ etc.) can

be studied in detail,

a "control theoretical approach", includi;l.g two primary

energy sources,where we limit the number of state variables

in such a way that there remains only one :'control variable"

subject to optimization with respect to an qppropriateob-

jective function,
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a "linear programming approach" where we introduce the

same number of energy supply variables as in the work of

Hafele and Manne /2/, and where we optimize the (more

than one) free state variables according to different ob-

jective functions. The total energy demand is either

taken from a model of the first kind or is assumedto be

an independentcontrol variable subject to optimization.
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2. Complete System of Equations for one Sort of Energy

We consider the following state variables:

Total gross national product G

Total population P

Per capita gross national product g, l.e.,

G = g.p (2-1)

Total energy demand E

Risk acceptancer

Total energy operating costs K

Total energy investment costs i

Total capital M
Total consumptionC

Per capita consumptionc,

C = c·p (2-2)

The following equationsare assumedto describe the develop-

ment of the state variableswith time.

We consider a special Cobb-Douglasproduction function

where

ｾ Ｋ ｂ Ｋ ｹ ］ Ｑ Ｌ

(2-3)

(2-3')

which means that we consider a function without economies

of scale.

The assumptionthat A is independentof the time may be

questioned. In Appendix I a different objective functiqn

with time dependentA is considered.

We assumeoperating and investment costs to be inversely

proportional to the risk acceptancer for all energy
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resources:

K =Ko

r
o

r
(2-4)

r o
r (2-5)

The risk acceptancer and the per capita consumptionare

assumedto be related In the following way

r
r o

(2-6)

We describe the population growth in the following way:

1
P ddtP = a . ＨＱＭｾＩ - a ·a .g

p Po c v
( 2-7)

The per capita gross national product g lS assumedto

develop as follows:

dg = ｾＮｧＮ (1- ｾ ｧ )
dT a

(2-8)

In the spirit of a CD function which includes P, M and E as

production factors, M should not include capital invested in

the energy sector. Thereofre, the total gross national product

is assumedto be distributed as:

G = C + (K-K )E + (i-i) dE + dM + i dE
o 0 dt dt odt (2-9)

where

C = a
v

. G . (2-10)

non-productiverisk expenditures(K-K )·Eo
the pure investment costs i o . ｾｾＮ The

Ko . E does not occur for it would mean a

We have separatedthe

( . .) dE fand l-le . dt rom

correspondingterm

double counting.

Eqs.(2-1)-(2-10)representa complete set of equationsfor the

ten variables G,p,g,E,r,K,i,C,c,M.

We can reduce the system of equationsgiven above to the following

system

dg
dt ::: ｾ • g . (2-11)
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1 dP · (1- ｾ Ｉ (2-12)P dt = ap ac
. c

PA

G = A·pa.MB·EY (2-13)

g.p = c.P+(K-K ).E+(i-i )dE + dM (?-.14)o 0 dt dt
.',

K = K · ＨｾＩＲ (2-15)
0 go

i = i o
• ＨｾＩＲ (2-16)

go

c = av
.g . (2-17)

In this system, the risk acceptancer which has not been

quantified anyhow, does not occur anymore. This means

that we could proceed in such a way that we take from the

very beginning only the equations (2-11) to (2-17) as a

descriptionof the model society.

Values or ranges for constants,and;ilinitial conditions

have been fixed as follows:

o.03 ｾ ap ｾ o.06

3*10
8 ｾ ｐａｾ 8*10

8
[capJ

10-6 ｾ ac" 3 *10-
6

[cgPJ
0.5 ｾ ｡ ｶ ｾ 0.7

Ｐ Ｎ Ｖ Ｕ ｾ ｡ ( 0.7

Ｐ Ｎ Ｑ Ｕ Ｇ ｂ ｾ 0.'2 such that a+B+Y = 1

0.1 ｾ Y , 0.15

Ko = 10 ｛ ｫ ｾ ｡ ｊ
i o = 160

[ ｾｷｊ
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g = 6 *'103
[ c:p]Q

Po
8

= 2.1 * 10 cap

Eo
10 [kwa]

Po
= e =a cap

Mo = 4 * 10
12 [zJ

Preliminary results of the analysis of the system (2-11)

to (2-17) are given in Appendix II .
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3. Two Energy Options; Control Theoretical Approach

We consider two different primary energy sources,fossil

energy Ef and nuclear energy En. Then the total energy

demand E is given by
,..,

(3-1)

In addition, we assumethat the use of fossil energy does

not pose any risk, whereas the use of nuclear energy does.

Therefore, we have instead of (2-14)

dE
g.p = c·p + (K-Ko)·En + (i-i o) dtn

+ ｾｾ (3-2)

All the other equationsof section 2 we will keep. Furthermore

we assumethat only a finite amount of fossil energy can be

spent:

Pinnlly, we assume a ｾｲｯｾｴｨ restriction on the ｾ ｲ ｯ ､ ｵ ｣ ｴ ｩ ｯ ｮ

of nuclear energy of the type

or (3-4)

The first constraint would representlimited abilities of

industry to construct nuclear power plants, the second one,

f'.1. ,inner growth limitations of a breedereconomy. Due

to the current abundanceof plutonium, we prefer a constraint

of the first type, which will not make any difference as

to the qualitative ｦ ･ ｡ ｴ ｵ ｲ ｾ ｾ of the model.

Compared to the set of equationsin section 2, we have one

additional variable, but no additional equation. We will

use this situation to introduce an optimization criterion

with the help of which we optimize an appropriately chosen

"control variable", e.g., En/E.
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We now remark that equ. (3.3) express the limitations

of control we can exert over the evolution of society

according to the model. When all fossil fuel resources

｡ ｾ ･ used up, .the deterministic evolution according to

sec. 2 and appendix III takes over. At least from. this

time-denotedby Tf -, we can talk about the model in

terms of separatrix, fixed point etc. and thesewill

be the same as in the'deterministiccase.

With respect to the selectionof the appropriateoptimization

criterion, we may proceed as follows: one would try as a

first approachto take an nonlinear function of the per

capita consumptionas a preferencefunction, i.e.

00

J B -ptW = c(t) . e dt

o

where W is the level of preferencefunction, c(t) is per

capita consumptionat time t, B is the elasticity of the

preferencefunction with respect to consumption, and p

is a discount factor used to relate the weighting of con-

sumption of different generations.

This would become trivial in our model since, according to

equ. (2-11) and (2-17 c(t) is given deterministically. We

therefore have to look for other objective functions. A

possible candidatewould be the total discountedenergy pro-

duction costs, like in the model by Hafele and Manne [2[.

But in the spirit of the resiliencediscussion,we can

also introduce a resiliencemeasureof the following kino

as an objective function (see app. II for further discussion).
00

R = 1/ J dtav Ｍ Ｍ Ｍ Ｚ Ｚ ｾ _

Tf Yx(t)lct(x,S)
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or, for simplification, even Rf = d(x(Tf),S).

The integrals, resp. infima in R , resp. R. could
av mlD

also be taken from 0 instead of Tr.d(x(t),S) denotes

the distancesuitably scaled, from the systemstate

x(t) at time t to the spearatrixS of the deterministic

model. We avoid, at least partially, the conceptual

difficulties of the question "distance from which

separatrix", since as remarked, from Tf on,the model

is deterministic.

Finally, a suitable,possiblylinear combination of these

two types of objective functions could be tried. This

would avoid the artificiality of pure maximization of

distance to the separatrix. However, it is a difficult

value judgment to find the right scaling for this

combination.

An outline of a dynamic programming optimization procedure

is given in Annex III.
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4. Coupling the ｈ ｾ ｦ ･ ｬ ･ Ｍ ｍ ｡ ｮ ｮ ･ Model

to the New Societal Equations

by

Carlos Winkler
'.',

Introduction:

In the ｈ ｾ ｦ ･ ｬ ･ Ｍ ｍ ｡ ｮ ｮ model the energy demand over time; is an

exogenousvariable that has to be met at a minimum cost. The

new societal equationsare an attempt at relaxing these con-

ditions. It is assumedthat they govern the developmentof

society and that from them we can obtain the energy demand,

and as long as there are some degreesof freedom, the demand

itself could respond to then adapt best to the objective to

be minimized.

The highly non-linear nature of the new societal eqtlations

constitutesan apparentdrawback, since it seemsto foreclose

the use of the powerful linear programming techniques. A

closer inspectionof the equationsreveals that this is not the

case, and that with a slight modification in the assumptionswe

can get away with a linear programmingoptimization. Moreover

it can be argued that the changeof assumptionsgeneralizesthe

societal equationsinsteadof restricting their application.

The ｓ ｯ ｣ ｩ ･ ｴ ｡ ｬ Ｍ ｈ ｾ ｦ ･ ｬ ･ Ｍ ｍ ｡ ｮ ｮ ･ Equations.

As mentioned in ａ ｶ ･ ｮ ｨ ｾ ｵ ｳ Ｌ Grftmm, ｈ ｾ ｦ ･ ｬ ･ Ｌ et al. the system

of equationsfor the society is given by
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ｾ］
dt ｾ ｧ Ｈ ｬ - ｾＩ (2-11)

1 dP
ap(l ｾ Ｉp dt = - - ac

. cPA

gP = G = A pa M(3 EY

(2-12)

(2-13)

gP cP + L {(k
j kj)E j

+ (i j . j ) dE
j

} + dM + L
. j dEj

= - - 1
0

1
0 dt

j 0 dt dt j
(4-4)

k j k j (9/ ) 2 jEJ k j k j - (2-15)= = jEJ0 gO 0

.j .j (g/ ) 2 jEJ i j .j - (2-16)1 1
0 = .1

0
jEJgO

c = a . g (2-17)v

-where J is the set of indices for high risk energiesand J is

its complement.

E \' E j= L _
jEJUJ (3-1)

In addition we have that if we define by yj the reservesof

the j-th type of energy we then have

t

yj = ｹｾ - J Ejdt > 0

o

Observe that the above equations, togetherwith the

initial conditions give:

4-2
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from (2-11) ］ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ g (t) R-l

2-12 and R-l a;:...:;.-_.•.. -> P(t) R-2

2-17 and R-l ﾣ Ｍ ｾ ｾ ｾ ＾ c(t) R-3

2-15 and R-l ｾ Kj (t) I"f. R-4
J

2-16 and R-l -----> i j (t) I"f.. R-5
J

Thus we can remove equations2-11, Ｒ ｾ Ｑ Ｒ Ｌ 2-15, 2-16 and

2-17 from our optimization model and introduce g(t), (Ft), c(t),

k j (t) and ij(t) as known exogenousfunctions of time in the

remaining equations.

Using discrete time intervals (and using gt' P
t

, etc. to

denote the known exogenousvalues of g, P, etc. during time

period t) we are left for period t with

gtPt = A ｾ｡Ｎ !-is EY
t t t

gt':?t = CtPt
+ I ｻＨｫｾ - kj)E j + j) Ｈ ｅ ｾ Ｋ ｬ - ｅｾＩ } + Mt +l - Mt

j o t t

Et == I Ej

I"f.
t

J

j
= yj - Ej

I"f.Yt+l t t J

(2-13) I

(4-4) I

(3-1) I

(3-3) I

plus the usual non-negativityconstraints.

Observe that three of the four remaining equationsare linear.

The only nonlinear term appearsin equation (2-13) I which defines
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Notice that the expressionon the right hand side is a convex

function of Et . Thus if insteadof an equality in (2-13) we

haa an inequality

..";> Mt

we could linearize the right hand side and use linear prog-

ranuning to obtain a global optimum (assuming the objective

function is also linear). That ｩ ｳ ｾ if lEt' ... 'MEt are a

discrete set of possiblevalues for E (covering its range) we

have the following linear model

for t = 1, ... ,T

Mt ｾ ＨｾｴＺｴＺｲ S

M

L kEt oak
k=l

(LP-I)

(LP-2)

I = (LP-3)

(LP-4)

V.
J

4-4

(LP-S)



Plus non-negativity cunstraintson all linear variables. To

the above equationswe have to add other linear constraints

already in the Hafele-Mannemodel, which restrict the rate

growth of some forrns 01:: en2rgles, etc. '1'hey do not change

the nature of the ｲ ｅ Ｚ Ｎ ｳ ｵ ｬ ｴ ｾ ｮ ｧ JrlodeL

Conclusions:

It is possible to couple the New Societal Equationswith

the Hafele-Mannemodel. 'rins is achievedby r.-elaxing the

eequality constraint in eyuaLion (2.13). In other words,

insteadof requiring all energy capacity and a capital stock to

exactly achieve d. certain per capita UiCome, we :L'equire that

they are at a level to at least achieve that per capita income.

If they are at a higher level we can interpret it as unused

capacity. In a minimizing cost optimization this latter case

is unlikely to occur.
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ANNEX I

A Different Set of Societal Equations

Millendorfer and Gaspari,/AI-1/ proposedthe following per

capita production function g for the gross national product

of a society:

1

.!. [(a.eli)-p
g = ａＨｴＩＮ･ＴＮ･ｸｰ｢ＮｾＮ e+

2 expb

where

1

(
eXPb 1 )-p ] -p
a ·eil'

e
(1 , )

A(t) is a function of time which describesthe technological

progress,

e is the per capita energy demand of the population'

[kw/cap] , and

b is the level of education.

We assumestrict proportionality between total capital M and

total energy demand E:

the product,ion function the

which is in line with usual

M = a ·E.M

This has the consequencethat in
1

total capital has the exponent -
4

assumptionsfor Cobb-Douglasproduction functions

(2 )

and observa-

tions /AII-2/.

In the following we put p= 1 which is approximately correct.

We assumethat on the long term educationalpolitics is done

in such a way that the production function is optimized.
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As

l [
a °e ｾ

expb
1

] = {
1 for ae °e ｾ be = exp+expb ｡ ｾ °e it

<1 fo.r ae °e ｾ 1- exp b

we put
1

a
e

o e
4

=,exp b ("equilibrium relation")

(which correspondsto the differential equation

Therefore, we obtain
i
2·

g = A(t)oe· ° (1 )

The technologicalprogressA(t) is assumedto be the same for

all the nations of a group df nations (eogo, North Western

Europe) and dependson the effort for educationand research

of the group of nations, w0ich goes parallel with the increase

of capital and energy consumption:

A(t) = ae exp 2b =

The efforts for researchand educationwhich stimulate innova-

tion capacitiesare complementary:

1

b = [ 01 (br)-P + 02(bi )-P] -P ,
,

where br and bi are the researchand the educationefforts of

the groups of nations, and where
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In the long run one may assumean optimum ratio between these

two efforts such that in the long run the total per capita

educationand researcheffort 0 of the group of nations re-

mains the relevant variable. This variable may be assumedto

depend on the gross national product in the ｦ ｯ ｬ ｬ ｯ ｷ ｾ ｲ ｩ ｧ way:.
,."

(4 )

If we insert eq.(3) into eq.(1) we get for the averagesg, e

and 6 for the groups of nations

g = a exp 2b -
a' ｟ ｾ . e

e
= a·y , ea e

where Ye is the efficiency of the use of energy which depends

on the "intellectual intensity" per energy unit.

Numerator and denominatorof the fraction

are similar to < the "equilibrium relation" of the nations.

However, contrary to the fractions in eq.(1') which correspond

to the equilibrium relations of the nations, the efficiency of

the energy use of the group of nations is not assumedto be

constant.

A higher intellectual intensity causesa shift of the energy

use from primitive and not efficient to more sophisticatedand

efficient sorts of energy. This is describedby the following

equation:
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where

es qre the more sophisticatedand efficient sorts of energy,

ep are the less,sophisticatedand therefore, less efficient

sorts of energy, and

as ｾ 0.5 if es is identified with eiectricity and ep is identi-

fied with the remaining energy.

Note:

Eq.(5) is a first attempt to describethe effect of using more

or less sophisticatedsorts of energy. This attempt may be

used to take into account empirical studies on this sUbject

(see, e.g., referencesAII-3 and -4).

If we divide eq.(5) by

,_ exp 2b
y ,- 1

e e2
=

-e2 we get

Ｎ ｛ Ｍ ｾ ｲ (6a)

..·1'
,

(6b)+

-p

A different way of representingYe in such a way that t-he re-

lation betweenmore and less efficient sorts of energy is used

results from the assumptionof the complementaritybetweenre-,

lation of sorts of energy and energy intensity,
1-p --
P

Eqs.(6a) and (6b) may be modified for special questionsin such

a way that nuclear energy en is identified with es ' e.g., e2=en .

Note:
ｾ

In eq.(1) and in eqs.(6a) and (6b) the two main problems of a

future energy policy are formulated: Increaseof energy con-

sumption and/or increaseof the efficiency of energy consumption.
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The formulations (6a) and (6b) are only two out of many possible

philosophies.

The change of the total capital is given by the fraction of the

gross national product which is safed minus the extra current

costs for reliability:

where EN is the nuclear energy demand, minus the extra invest-

ment costs for reliability:

Therefore, we have

dM G (K K ) E (..) dEdt = as· - - o· + 1-10 . dt .

Between costs K, i and the acceptablerisk r there are the

relations

K i K
r a

(8) (9)K- = ...--
ｋ ｾ

= -
1 ra a

The acceptablerisk and the per capita gross national product g

are related by

(10)

Finally, we assumethat the total energy demand is given by the

demand for fossil energy EF and the demand for nuclear energy EN:

(11)

and that the increaseof the population is describedby the

A 1-5



(12)a . g
g= ap

dP
dt

1
P

following relation:

P
(1- p-)

o

In addition, we have the following boundary condit,ion: 'The
"

change of the gross national product has to be greater zero:

dg > 0
dt -

and the total consumptionof fossil energy has to be limited:

t
V = V0 - f EF ' d t > 0 (14 )

Q

This means, we have 8 equations ((1),(2), (7)-(12» for the

9 time functions g, E, EF , EN' P, M, K, rand i.

The societal equationsas given above have been established

in view of easy tractability. For the determinationof the

numerical values of the constantsand the initial conditions

there exist empirical data which can be used.

If more time can be spent for the developmentof the equations

listed above, an objective function should be introduced which

correspondsto the concept of the health definition of the

WHO IAII-5/. A simple approach in this direction was the

objective function of the Bariloche model; this objective

function should be developedfurther on the basis of new

investigations. If one would introduce an objective function

strong assumptionsas equation (4) could be replacedby an

appropriateoptimization ｰ ｲ ｯ ｣ ｾ ､ ｵ ｲ ･ Ｎ

A 1-6.
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Appendix II

by H.R. GrUmm.

I. Introduction

The purpose of this paper is a qualitative study of the phase

portrait for the equation system (2.11)-(2.17). By the phase

portrait we denote the totality of orbits ｻ ｾ evolution

histories) as curves in phase space, disregardingthe

labelling of points on them by the "independentvariable"

time. This qualitative study is essentialfor the location

of fixed points attractors,separatricesand basins; only

after its completion numerical evoluation of their actual

position can take place. The model is given by a causal

differential equationof the form X = f(x), x denoting the

state vector of the system, i.e. its componentsare the.

state variables.

We shall be looking especially for a separatix, i.e. a

hypersurfacein state space separatingtwo basins of attraction.

For discussionof this point, see IA1/, where separatrices

were identified as stable ｭ ｡ ｮ ｩ ｦ ｯ ｬ ､ ｾ of codimensionone.

Therefore, the interestingfixed point of the 'model will

have just one unstabledirection.

II. The reduced equations

As the model is written down, it is four dimensional: the

phase-spacecoordinatesare g, P, E, M. The Cobb-Douglas

ansatzequ. 2.13, however, plays the role of a first integral

of the differential equation:
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g= ｡ｾ + ｳｾ + yi (A1)

with a' constant'A to be ｾ ･ ｴ ･ ｲ ｭ ｩ ｮ ･ ､ from the initial conditions.

Therefore, the 4-dimensionalspacesis divided into invariant
hypersurfaceson wfui.ap·..we can use as- coordin?-tesg, P and E.

After elimination of M, the equationslook like:

g :: ｰｧＨＱＭｾ )
gA

P = p(ap ( 1-& ) - ac avg)
vA

E = N(g, P, E) with
D(g, P, E)

N ( ) = g P (1-a
v

) - (K- Ko ) Eg, P, E

(A,2. 1 )

(A2.2)

(A2.3)

(A2.4)

1] (A2.5)

1
In these ･ ｱ ｵ ｡ ｴ ｩ ｯ ｮ ｳ ｾ M denotes the function (g p1- cr /A'EY)E
of g, P and E. One notes that equ. (A2.1) and (A2.2) are

independentof E, therefore all solution curves will lie on

cylinders having as base curves the solutions of those two

equations. We call these cylinders solution cylinders.

In the (g-P) plane, Fig. 1 shows an example with the

"canonical" choice of parametersp = 0.04, a = 0.044,, p
a = 3x10-6

, a = 0.7.c v

One reorganizesimmediately a fixed point of the restricted

set of equationsat:

(A3)
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ｾｰ｡ｲｴ from other ones at g = 0 or P = 0 in regions which lie

out of the validity domain of the model assumptionS,and

outside of realistic initial conditions). This fixed point

is stable and attracts every trajectory in the region

{g > 0, P > o}. Its eigen values are.,givenby

(A4)

III. The divel'gencesurface

The important fixed point of the whole set of model equations

lies at

=

Before we discuss its stability, we have to point out a

mathematicalcomplication of ,the ｭ ｯ ､ ･ ｬ ｾ due to equ. (A2.3):

at the zeroes of N, E is undefined. Indeed, at'such points,

the evolution of the system cannot be prolonged to future'

times. One way of looking at the situation is to realize

that the condition N = 0 can be written as:

E(i-i )o

M
=

y
(A6)

and representstherefore the condition for economic

optimum, since y and E are the elasticitiesfor E and M resp.

Thus, at- zeroes of N, the modelassumDtionsof prescribed

economic growth and of equ. (2'.14) are inconsistent1) •

1) I am indebted for this observationto W. Nordhaus.
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If we only want to describethe phase portrait then there is

an easy remedy since it is not changed by multiplication with

a scalar function: only the time scale and, possibly, the

time direction is changed. For this discussion,we replace

the defining equ. (A2) by

,
I1g( ｬ Ｍ ｾ ｌ Ｉ Ｇ ｄg =

ga

ｾ P g] DP := P[a (a--) ac a .
p P

a v

E' = N(g, P. E)

(A7.1)

(A7.2)

(A7.3)

the' now denoting derivative w.r.t. some ｰ ｡ ｲ ｡ ｭ ｰ ｴ ｾ ｲ ｳ s,

defined by ds/dt = D. The right-hand-sidesare now continuously

differentiable in state space and a familiar theorem assures

that the solution curves ran be extendedat each point in the

state space {g, P, E > O}. However, one has to be conscious

about three facts:

1) As soon as a solution of (A7) crossesthe divergence

surface (defined by D = 0) it ceasesto have realistic

significance for the model, for reasonsexplained above.

2) "Above" the divergencesurface (= for larger values

of E). D < 0, so, as we follow the trajectory, time is

running backward and stability and instability direcLions of

fixed points become interchanged.

3) Spurious fixed-points will be introduced, i.e. fixed

points which do not exist in equ. (A2). In fact, a whole

fixed curve (= a curve consisting of fixed points) appears

at the intersectionGf the surfacesD = 0 and N = O. However,

In one situation, a separatrixof the original model emerges

from a spurious fixed point. The stability characterof those

points is determined in the following way: the fixed curve

intersectseach solution cylinder in at most two points. The
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only intersection,or if there are two, the one at smaller g,

is a stable focus; the other intersection, if it exists, is

a saddle. Although the focus does not appear in equ. (A2),

it attracts their solution curves as they are the same ones

as those of equ. (A7).

The stability characterof the "real" fixed point is determined

by L,he sign of:

A
3

BE
=

dE

K-KQ= , taken at Ef ,
D lX

(A8)

In the other case,

two intersectionsand

A lS positive if and only if the fixed point lies below the
3

divergencesurface, i,e, if Ef , < Ed' , where Ed' denoteslX lV lV
the intersectionof the divergencesurface with the line

{g = gf' , P = P
f
,}, If A > 0, the fixed line intersectslX lX 3

every solution cylinder exactly once,

there will be solution cylinders with

others with no intersection.

We know how to distinguish three differently structuredphase

portraits:

1) Fixed point below divergencesurface. Ef , < Ed' .lX lV
In this case, the fixed point is a saddly point with two

stable and one unstabledirection, the latter coinciding with

the direction of the E - axis. Its stable manifold therefore

satisfies the conditions given in / / for a separatrix, The

shape of this surface is shown in fig. 2. Points "below" it

tend towards gf' and Pf ' at high values of M and low valueslX lX .
of t; those above it are attractedby the spurlous fixed

line and cross the divergencesurface; at the time of

crossing, the given growth rate of GNP cannot be maintained

any more and the solution curve cannot be extended into the
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fu t ur'e; simi larly fu(' in i t ial conditions above the di vergence

surface. Fig. 3 sketchesthe phase plJrtrait restricted to

one solution cylinder in this situation.

.... -.... _. __.... :::;.....

----. E=O
-'-': divergence

surface
S: spurious fixed

point

i
!
I

\(
gf' IP f "

lX lX

\ II
I ,

I

｜Ｌ＼ｾ

.....
I ,.

_' \I,
•.-" I .

/
J

--..--
1\

/

Separatrix

Fig. 3

The dotted arrows indicate time running backwards above the

divergencesurface.

2) Fixed point above divergencesurface, Efix > Ediv '

Fixed line intersectsthe solution cylinder. In this case,

the fixed ｰ ｯ ｩ ｾ ｴ is totally attractive as ﾷ ｾ ｾ ｉ ｾ ｯ Ｎ (i.e.
flx

repulsive in the phase portrait). The spurious fixed line

intersectsany cylinder twice; the intersectionat smaller

values of E is again an attracting focus as in situation 1)

but the other one is a saddle. Its stable manifold is

therefore ｡ ｧ ｾ ｩ ｮ a separatrixbut above the separatrix,due

to the reversal of time direction, one has to take the other

branch. The phase portrait on a cylinder therefore looks as

in fig. 4.
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stable

Fig. 4

,
i

sebaratrix

----, E=O
-.-.: divergencesurface
S: spurious fixed points

-- _.>
G,P

i \

- ",
gf' IP f ·lX lX

goes straight

Points below

Since 6
1

is no real fixed point, the trajectory

through and continues towards the stable Ef ..lX
the separatrixgo again to low E-high M, points above it again

end up on the divergencesurface, but now points exactly on

the separatrixend up at an attractor separatedfrom the.
other tra-sectories. If Efix would be taken as desirable, the

system should there have be steeredtowards the separatrix

since the only point to cross the divergencesurface is on it

3) Ef · > Ed' , fixed line does not intersect
lX lV·

the solution cylinder and the divergence

surface plays the rnle of a "pseudo-separatrix": every

point below it tends to low E-high M, every point above it

to the now unique fixed point. See fig, 5
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Insertinr; the "canonical choice" of parametersinto the

equations for Ef . and Ed' shows that we are in situation 1lX lV
in this case. Further quantitative study of the systen therefore

will always assumethe qualitative structureof situation 1.

v. Numerical results; the computationof the separatrix.

A true separatrix--astable manifold of a fixed ｰ ｯ ｩ ｮ ｴ Ｍ Ｍ ･ ｭ ･ ｲ ｾ ･ ､

in the first two situationsdiscribed in IV 2). Numerical

eV8.]uation of such stable manifolds is hampered by the fact that

the separatrixcannot be defined by local data, e.g. a partial

differential equation, from the ｧ ｩ ｶ ･ ｾ dynamical system; it

depends on global features of the system if a given point will

be on the separatrix.

The way chosen for numerical evaluation of the separatrixwas

the following: the tangent phase to the separatrixat the

fixed point ｾ ｡ ｮ be determined by the local stable manifold

theorem /A4/: it is the hyperplanein tangAnt space belonging

to the eigenvaluesof the ｊ ｡ ｣ ｯ ｢ ｩ ･ ｮ ｴ ｡ ｦ ｾ ｜ evalwlted at the fixed
\3xJ/

-------,---------
2)" . . /I .

The pseudo-separatrlxof sltuation 3 is given ir closed
ｦ ｯ ｲ ｾ by the ･ ｾ ｵ ｡ ｴ ｩ ｯ ｮ D = O.
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point, with negative real parts. We ｾｩｶ･ the formules for the

Jacobianat (Gf " , Pf " , Pf . ):
lX lX lX

Clg Clg ClP = 03P = ClE = ClE

Clg ap aE K-K
+ 0

Clg = -\.1, aP = a avacgfix' 3f = -D-
P

Clf = ac·av·PfixClg -

ClE 1 {P f " (1-a)- 2 k Ig 2 + Mf · *Clg = D gfixlX v o 0 lX

*(\.1/gf · + (i-a) a .a )IR,}
lX v c

ClE 1
{gf' . (i-a) Mfix (1-a)aplR, Pf' }815 = IS +

lX V lX

(A9.1)

(A9.2)

Using a theorem from IA1/, the separatrixcan be approximated

by starting on its largest phaseat the fixe point a samll

distanceoff the fixed point and evaluating the differential

equatior. backwards in time. The numerical error of this

approximation is kept small by the fact that, with time increasing

points close to the manifold, f.i. on its tangent phaseand

close to the fixed point, will move away from it exponentially

fast. 20 different starting points were taken; a plot of the

results as viewed under an oblique angle is given in Fig. 2.

As mentioned in the main paper, the knowledge of the separatrix

is crucial in the non-deterministicsituation of a dynamic

programming, too.

Literature:

IA11 H.R. GrLimm, "Stable manifolds and separatrices",

IIASA working paper, to appear.
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Annex III

A Dynamic ProgrammingOptimization

using the ｾ ･ ｷ Societal Equations

by

Carlos Winkler

Our aim here is to outline a dynamic programming procedure

to optimize functions of the form

00

I -ptf(g,P,M,E)e dt

o

subject to the New Societal Equations. By New Societal Equations

we refer to equations2-11 through 2-17 and 3-1 through 3-3 in

the handout of the same name by Avenhaus, GrUmm, ｈｾｦ･ｬ･ et ale

We start by noting that 'theseequationstogetherwith the

initial conditions have the following implications:

equation 2-11 gives

eq. 2-12 with Rl

g (t)

］ ］ ］ ］ ］ ［ ［ ＾ ｾ Ｎ Ｎ P 1t)

(Rl)

(R2)

and similarly

2-15 and Rl )0 k(t) (R3)

2-16 and Rl ) i(t) (R4)

2-17 and Rl )0 c(t) (R5)

That is g, P, c, K and i can be viewed all as exogeneous
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functions of time which do not dependon the demand for

electricity or Capital.

So we are left with

dE
3-2) g(t)P(t) = c(t)p(t) + (k(t) ··ko) En +.. (i(t) - iO)dt

n
+ :+ 10:.

2-13) g(t)P(t) = AP(t)uMS EY

3-1) E = E Ｋｾn
t

3-3) f E nt < V
F -

0

It will be convenient to work with discrete time. Also we define

t

Y = V - JEF dt

o

Then

D-2

D-3

D-4 t+l = yt _ Et (t subscriptendogenousi.e. fixed)
y F (t superscriptvariables

and non negativity constraintson all variables.

Notice that we have

t t+l t t+l t t t+l t t+l .
9 variables (En' En ' E , M , ,M , EF, y , , y , E ) and 4 equatl0ns.

That leaves5 variab(les1ＺｾＩｓｩＮＮ｡ｴＧＺｾｐＱｕｓ decisionvariables. Notice though that

t t gtPt Y Y
ｄＭＲｾｅ = F(M ) = A M V t SubstitutingE = F (M) in

D-l leaves 4 variabJesas stateplus decision variables. Three
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of them appearwith indices t and t+l so those can be quite

naturally consideredas statevariables

statevariableS!

period t
...,

Note all statesare allowed. From

0-3 '> Et < Et = F (Mt )
n -

Also from 0-3, 0-4 and non-negativity

and t+lY =

. Hence the allowable statessatisfy

S-l

S-2

(these considerationsshould help in reducing the computational

effort) .

Assuming we have a Value function

( t+l Mt+l, yt+l)
Vt + l = Vt + l En '

Vt+l = 00 for statesthat do not satisfy S-l and S-2) arid a

cost function for period t

then the dynamic programming recursion can be written
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t t t t+l t t
Vt(En,M ,y ) = max {C t + A Vt+l(En ,M,y)}

s.t. D-l if ｅ ｾ Ｌ Mt , yt are feasible

+ 00 otherwise.

Thus an outline for the ｉ ｾ ｲ ｮ ｡ ｭ ｩ ｣ ProgrammingOptimization for

this problem would proceedas follows .

.-------------DO for t = T, T-l, ... ,l

t t t
DO for M = Ml' ... 'MN

m
(N possiblediscretevalues of Mt )m

0 for Et t t
(NE possiblediscrete Et )= E , ... , E values ofn n

1
nN n

if Et
>

t E
(Et t .) andF(M j ) let V

t M. , = + 00n. n. ' J1 1
ｾ +- ｾ ｾ ｾ ｾ ｾ go to end of loop, otherwise

t t tDO for y = y Yl' ••• , N
Y

if t ｆＨｍｾＩ Et
let Vt

t t tYk < - (En. ' Mi , Yk) = 001 n.
J J

ｾ ｾ ｾ ｾ ｾ ｾ ｾ go to end of loop, otherwise

let t+l t
F (Mi) Ety = Yk - - n.

J

and chooseMt +l to

min {C t + A ｖｴＫｬＨｅｾＫｬＬ Mt +l , yt+l)}

and

s.t. gtPt"= CtPt + (kt - ｫｯＩｅｾＫ (it

+ io(F(Mt +l ) - F(Mt )).

Observe that the minimization consistsof a unidimensionalsearch.

Let

V (E t T..(t t)tn' Ｑ Ｇ ｾ , Y

ｾＭＮＮＮ［ｾｾ CONTINUE
........ＭＭＭｾ CONTINUE

"-------i> CONTINUE
ｌＮＭＭＭＭＭＭＭＺｾｃｏｎｔｉｎｕｅ

minimum abov:e



Other programming considerations:

T = number of time periods

NM = number of grid points for M at which Pay-off functions

are evaluated'

NE idem for En

N idem for yy

Then the total number of evaluationswill be

and it can easily be seen to increasevery rapidly with the

number of grid points. F or this reason it probably will

become necessaryto store the value functions out of core.

Even so probably no more than

should be taken on a trial basis for the first runs.

Notice also that to start the optimization for t = T, we

need to have a value function ｖ ｔ Ｋ ｬ Ｈ ｅ ｾ Ｋ ｬ Ｌ MT+l , yT+l), that for

each possiblestate at period T+l gives as the value or desir-

ability of having ended it.
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