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Application of Credibility Theory to

Material Accountability Verification

R. Avenhaus and W.S. Jewell

1. Formulation of the problem

The nuclear materials safeguards system of the Interna-
tiopal Atcomic Basrgy 2gancy (IBER) in Viemna cousists of two
parts (see Reference [l]): the verification of the material
flow and inventory data reported by the operator of a nuclear
plant; the estahlishment of a material balance at the end of
an inventory periocd with the help of the operator's reported
data, which mesns that the book inventory (initial physical
invantory plus reczipts minus shipments) is compared with the
ending physical inventory (see e.g., Reference [2]). By def-
inition it is necessary that the plant operator maintains a
complete measursment system for all nuclear materials pro-
cessed in the plant.

In this paper, we consider an alternative inspzction
scheme which is bassd on material accountability toco, but
which does not make use of the data reported by the operator.
Contrary to the IAEL safeguards system, the material balance
in this system is closed only with the help of the data
obsarved by the insp=sction team itself. Such a system could
be important in situations where there is no reason for a
plant operator to maintain a complicated mesasurement system,
or where, for some reason, the records are not available.

It is clear that if the inspection team cannot measure
the data of all mat=rial batches processed in the plant under
consideration (2.g9. if the inspection budget or time is
limited) , then some prior information about the average mate-
rial contents of the different batches as well as the batch-
to~batch variation have to be used. Therefore, a Bayesian
approach seems to hz natural for the treatment of problems of
this kind. O©n the other hand, this prior information will not
be very detailed, and so we will use the principles of
eredibility theory (see e.g., References [3],[4]) where only
the first two moments of the prior distribution have to be
known.

In the following, we first considser only one class of
material, and then R different classes (inputs, outputs, etc.)
with the problem of material balance closure. Finally we



discuss the problem of optimization of a given inspection
effort.

As the batch—~to-batch variation of the true material
contents within one class normally is much larger than the
measurement variance, we will neglect the measurement errors
here; they could easily be taken into account, if necessary.

2. One class of material

Let us consider one class of material consisting of N
batches. 2n inspection team measures the material contents
cf n of thrga N batchss precisely and wante to =2s3timate the
totzl material content of the class with the help of the n
data. The true values of the material content of the batches
vary from batch to batch; because of long term experience,
however, the inspection team has a prior information about
the average wvalus and the batch-to-batch variation of the true
material contents.

This prior informaticn may be specified in the following
way: the true material contents x: of the ith batch is a random
variable with a likelihood density p(i-|6), where 0 'is the
paramatar (possibkbly a vector), represeating the unknown varia-
ticon which has occurred in this production run. In Bayesian
analysis, the parameter 6 jitself is considered as a random
variable with a prior demnsity p(0). _We do not assume that
the complete forms of p(i-|e) and p(8) are known to the in-
spection team, but only tﬂe expectation value m,

m: = £y} =@%°{ij|6} ’ j=1...N (1)

and the two components of variance

E:

W{ijlé} (2)

Ds

1]

Vé’{ij|é} p j=1...N . | (3)

(3s we have to diffzrentiste carefully hetween random variables
and their actual valuss, we indicate random variables by a
tilde.) Notice thai, even though the {X.} are independent,
given 6, they are, a prioxi, dependent rgndom variables; in
other words, it is possible to make inferences about future
values of the {%X.} from observed values because they have the
same (unknown) value of 8.,

Assume that the inspection team has measured the material



contents of n < N batches (for simplicity we relabel the
batches so that theses are the first n batches); 1let

2= (% o0 xn) ba the result of these measurements. The
prohlefl is t0 estimate the total material content of the
class using these data and the prior information (1), (2),
(3). Since we know X, we must newly estimate (§n+l"' ﬁN).

The idea of the credibility approach is to take an

estimate £ (x) for the material content X1 of the n + 1st

batch which is lZnear in the data and which minimizes the
preposterior variance of the forecast error defined by

_ ~ _ ~v ) 2
Hx—é’{(xn+l £ (%)) } . (4)
(Hx is, in fact, a variance since fn(g) will be an unbiased
estimate, i.e. é{in+l-fn(i)} = 0.)

As a linear form, we take
1 n
£(R) =zy+z, = - £ % (5)

since there is no reason to use a different weighting factor
for each xj. Then Hx is given by

2
N ) 2, %1 oo N
H = ép{xn+l} + ZO+7£{< ) xj) }— 2zO g{xn+l} +

n j=1
z, { n } Zl ? }
-2—=4&<Xx .r+ 22 —é”{ X. (6)
n n+l j=1 3 On y=1 3

and we get with

é’{iﬁﬂ} = ¥(x) +m2 = D+E+m2 y
n 2 2 2
67(2 % =n(D+E+m”) + n(n-1)(D+m7) .
j=1
X . Xsr = n(D+m”) ’
n+1l J=1 J

from equation (6)



H =D+ E + m2 + 22

z
x O+—nl-(n(D+E+m2)+n(n—l)°(D+m2))

2
-2z0m - 2zl(D+1n) + Zzozlrn .

The optimal values of zZq and z, are determined by

BHX _ 8Hx

= =0 , == =0 ,

Bzo 1

which finally gives

- el
= e : Z

2] T n+E/D =m{l-zy) . (7)

o)

Notice that (5),(7) can, in fact, be used to estimate any
futvre {%. }, J = n+l ... N. The minimum of the preposterior
variance is given by

-1
. - _ _n°D - -1 -1
mlnIg{ = D + E Hfr§7ﬁ E + (nE +D ) . (8)

These results have an intuitive interpretation: for nD >> E
we obtain zq ™ 1, zo==0 and therefore, i

1 I
£x) ~ = zx. , |

i.e, we vuse primarily the information containad in'the data.
Note that this could happen either because the number of
examples was very large, or because D, the variance for our
prior information, was large. For nD << E we obtain z << 1
and therefore, |

f,(x) = m
i.e. we use primarily the prior information m.
i
We now estimate the sum S of all material in the class,

!




n
s = 3 x. (9)

by the true values of the material contents in the first n

n
batches, |} Y plus the sum of the estimates of the remain-
j=1

ing N-n material contents, given by esquation (5):

e

X, + (N-n) £ () . (10)

j=1

Using (7), we obtain the following estimate Fn(g) of the sum S:

n
Fn(_)_{_) = (N- n) - (l-zl) em + (N;n_ zl+l)-.zlxj « (11)
J=

The preposterior variance of the forecast error of this estimate,
which is defined by

H, = a’{(§ -F(%)) 2} (12)

is not just the sum of (N-n) terms Hx in (8), because the

same value of 0 applies throughout, and thus the error terms
are correlated. However, it can be written in simplified
form as:

n N
Hs =’V{}. Z X. + E x } (13)

where

N-=-n

*Z
Therefore, we get

Hy = (% n + (N - n) TR} + (ntn-1))+0® + (N=-n)e(N-n~-1)

+ 2n(N=-n)- a)qggij,ij.ﬁ}



which gives with%{i 'in}:j} = D the final result

H, = (N-n) -[((N-n) tz,+1)E +(N—n)(l—zl)2D] . (14)

For n=N we get HS = 0, since the "estimate" is

i.2e. the true value of the total material content is known.
For n = O we get

Hs =N-*E + N2° D ,

which shows that D behaves like the variance of a éystematic
error, which persists in all estimates because 6 remains the
same. ;

J

3. Severxal classazs of material; no diversion of material

Let us consider now one inventory period and assume for
simplicity that the physical inventories at the beginning and
at the end of the inventory period are zero. The material
flowing through the plant during this inventory period may be
classified into R class=ss of material: Rl input and R--Rl out=-

put classes. Let xij be the true material contentjof the jth

batch of the ith class which will be measured by the inspection

team in case this batch is selected for measurcment. xij is

positive if i is an input class, negative otherwise.

In case that no material has been lost or diverted (null
hypothesis H.) the material balance principle postulates that
at the end 09 the inventory period the algebraic sum of all
throughputs must be zero; in other words: '

R Ny |
izl jzlxij =0 . | (15)

We assume that the random sampling scheme of the inspec-
tion team is to selsct n, out of the N, batches of each class
at the end of the inventory period; for example, one may
imagine a chemical plant, where samples from all batches are

i
i
!



drawn and stored and where only a fraction of these samples is
analyzed at the end of the inventory period.

Let the mean value, given 6, of the material contents of
a batch of the ith class be defined as

m; (0): = &{%; 518} jo=1l...N;, i=1...R (16)

and let the covariance of material contents of the ith and the
jth class given 6 be defined as

Cii'(e): =%{Xij;xi'j'|e} ’

(17)
j=1... Ni' ' =1... Ni" i,i'=1...R
We assume in the following
Cii.(e) = 0 for i #i' , (18)

which means that the batch-to-batch variations between batches
of different classes do not depend on each other.

Note: This assumption seems to contradict egquation (15) where
such a dependence is given explicitly. However, this
equation is a material balance equation which may be
interpreted in such a way that the last output batch
can only contain the amount of material which has been
left (and which may be excluded from the random sampling
procedure.) This means that only the last batch depends
on the foregoing batches; it does not imply a non zero
correlation between all batches of the R classes under
consideration.

Corresponding to the case of one class of material we now
assume that the prior information available to the inspection
team is the knowledge of the values of the parameters:

m; = &gmy {8} (19a)
Dyyr = %%{mi(ﬁ);mf(é)} . (18c)



In the following, we denote the vector (m; ...mR)' by m and

the matyvices corresponding to (1%9b) and (19c) by E and D,
respectively. According to (18) E is a diagonal matrix; D
is not assumed to be diagonal as one can imagine that distur-
bances of the plant operations (expressed by variations of
the parameter 6 may cause common changes to all class mean
values mi(e).

Let ii be the sample mean of the observed values of the
ith class,

n,
- 1 i
;0= ] x . (20)
ij=1 i3
We then get
é’{iile} = m;(8) ; g{il} = m, ‘ (21a)
%, [6F = = c..(8) ; fy’{}:{]’=—l—E +D (21b)
i n, Cii ; if T, P17 P
and because of (19) ;
cg{ii;ii.} = Dy - | (21lc)

We ncw consider a vector x, of unobserved values of ‘batch data.
A credibility forecast for this vector x, is glven‘by

l
|
|
)

£(x) = (22)

LN

om-}-

1IN

0 1'g ’

where g is the vector of the sample means (20).

Minimization of the trace of the preposterior 'variance
matrix of the forecast error, H, defined by

|
|
_— 2 f
i = o{x, - £ % | (23)
i
gives after some calculations similar to those in the fore-
going part (see e.g., Reference [3]).

|

-1 :
- -1 = (I, -2) |
E—.l = (]_;]04. E 2 ) . 1;]0, z~ = (I =l) ‘ (24)



where the diagcnal matrix is defined by

and where In is the Rx R unit matrix. The preposterior
variance of the forecast error then is given by

ey
i
i
+
=
'
N

RTZ1)°D . (25)

In the same way we estimated in the foregoing part the sum

of all material contents of one class we estimate now the sum

Si of all material contents of the ith class by

% |

g, (x) = n, - §i + (N;-n

g i )£ (x) (26)

1

which gives with (24) in explicit terms

R
9; () = (Ny-ny) e ] (I~ zpy) om 4
n k=1 (27)
R k ( 2y
) (N.-n.)--——+I.)-x. .
k=1 j=1 i i n, ik kj
Defining the diagonal matrix
Nl--nl 0]
N = .
0 NR—nR
we get the vector forecast
g(x) = ¥yox + N, £(x)
which gives with (22) and (24)
g(x) =8y« (Ig=z)'m+ (By+N; “z,)x . (28)



- lo..
The preposterior covariance of the forecast error of the sums
Si is then given by
o .. 2
H, = &1(5-g(x))

where S = (S, ... SR) which gives after some calculations

1
I-Is=I\Il»E+Nl(IR—Z)~D°Nl . (29)
The elements of this covariance matrix are given by
Hiy = (Ni—ni)Eij + lzi E (N; = ny) (Ikz‘zkz)'ij' (Nj —nj)
(30)

Finally, the preposterior variance of the forecast error of
the sums is given by

=\ 2
ss 5{(§(Si - g5 (x) )) }

- iZi.@@{(si = 93 (X)) (8, - gi‘@)} (31)

H

izi

r

H, .
, ii'

where Hii'is given by (30).

4. Optimization of inspection effort

In the following we assume that for the inspection of
the met=rial £low during the inventory period under consider-
ation therz is only th=2 amount C of inspection effort (given
in manhours or in monetary terms) available. Furthexmore,
it is asswmed that the observation of one batch datum of the
ith class needs the effort &.. Therefore, the question arises
how to distribute the effort among the different classes, in
other words how to choose the class sample sizes n; such that
the boundary condition

R
c> J & -n (32)
i=1



is met.

In Rafarsnce [5] erguments have been given that the
effort should be distributed in such a way that the probability
of detection in case the operator diverts the amount M of
materzal should be maximized. In case the plant operator wants
to divert matzrial dnring the inventory period under consider-—
ation (alternztive hvpothesis H,), equation (15) does not hold
anv moxe. Let ns assumne that the operator does not change the
nuomber of bhatches in =sach class by simply taking away some of
the batches but rather diverts from r, batches of the ith class
the amount p, of material. Let us assSume furthermore, that
the operator decides at the beginning of the inventory period
whaether or not he will divert any material. Finally, let us
assume that the diversgion takes place in the first R, classes
after the inspection team's measurements, and in the remaining
R~ R, classes before the inspection team's measurements (the
reason being that input bastches are measured immediately after
their arrival, and output hatches immediately before their
shipment). Then we have instead of equation (15) the following
relation for the true material contents of the batches ' 3 to
be measured by the lnspectlon team:

R Nj R
4 ley” ) i£1 S S 133

An example for this relation is given in Figure 1 for R = 2,
Nl =5, N2 = 4, rl = 2, r2 = 1.
Let us define now the set Ai of batches of the ith class from

which the operator diverts the amount vy of material. Then

we have
Xya ™ My for all batches from A
J i=R +1...R
yij= (34)
xij otherwise

where xij is the material content of the jth batch of the

ith class to be measured by the inspection team in case of
no diversion, and wheve accordingly

x4} = my (35)



As we get from (15)

and as |Ai|, the number of elements of A,, is hypergeometrically

distributed, we have

~ Iy °ny
ol - T

and the expectation value of the sum of the class sum forecasts
is given by

& 9-(§) H = i3
{; i'= ' l} . % N.
(36)

In the same way, we can calculate (gﬁz gi(i))lel} and there-
i

fore the variance‘V{Z qi(é)lH;} of the forecast 2 gi(g) under
. 1

the glternative hypothesis H, (diversion of the amount M of
material). Because of its length, and as we will not use it
in the following, we will not giwe its explicit form here.

We now assume that the random variable § gi(g) is approximately
i

normally distributed with expectation value and variance given

as above. Then the probability of detection 1~ 8 based on a

significance test for the null hypothesis.g{z 91(E)|Ho} = 0,
i

is given by the following expression

A e

o y{igi(i)“‘ll}

% i

1-8=19 (37)
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where a is the significance level, ¢ the normal distribution
function and U its inverse.

According to the principle mentioned at the beginning of
this chapter the optimal distribution of the inspection effort
is determined by maximizing the probability of detection 1-8
undexr the boundary condition (292) for the case that the
operator wants to divert the amount M of material. As the in-
spection team do=2s not know the 'diversion strategy’® (rl... rR)

of the operator, and as one is furthermore interested in de-
termining the guaranteed probability of detection, the inspec—-
tion team will maximize the probability of detection for that
case that the opserator minimizes the probability of detection
subject to the boundary condition

M << § Hy*T; - ‘ (39)
I ;
!

This means that the optimal distribution of inspection effort
is gained by solving the following optimization problem

max min l-B(nl... Npily - .. rR) .
nl...nR: rl,..rR: :
c > géEni M < g“iri ‘ (40)

Because of the complicated structure of 1 - 8, given'by
equation (38) this problem can be solved only numerically.
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Figure 1. Illustration of the Matexial Balance

(Zero beginning and ending physical
inventories)

s material contents Xij measured by the inspection

tzagm in case of no diversion

— — — — material contents yij measured by the inspection

team in case of diversion
mHMHm diverted material

Null hypothesis (no diversion):

4
x5+t 1 % =0
i=1l

e~

i=1

Alternative hypothesis (diversion):

4
Yii + ) You = 2°u, + ley
1 1i j=1 2i 1 2




[1]

[2]

[31]

[4]

[51]

References

"The Structure and Content of Agresments between the
baymncy and States Required in Connection with the
Treaty on the Non-Proliferation of Nuclear Weapons.”
Intexnational Atomic Energy Agency, Report No.
INFURC/153, Vienna, May 1971.

Avenhzaws, R,, and Frick, H. "Game Theoretical Treatment
of Material Accountability Problems." International
Institute for Applied Systems Analysis, Laxenburg,
Austria, Report No. RR-74-2, January 1974.

Jewell, W.S. "Payvesian Regression and Credibility Theory."
International Institute for Applied Systems Analysis,
Laxenburg, Bustria, TIASA RM-75- , March 1975.

Avenhaus,. R., and Jewell, W.S. "Bayesian Inverse Regression
and Discrimination: An Application of Credibility
Theory." International Institute for Applied Systems
2nalysis, Laxenburg, Austria, IIASA RM-75-27,

June 1875,

Avenhaus, R. "Entscheidungstheoretische Analyse von
Uibexwachungsproblemen in kerntechnischen Anlagen."”
To he published as a post-doctoral dissertation,
University of Mannheim, Federal Republic of Germany,
1874.



