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AEE1ication of Credibility Theory to

Material Accountability Verification

R. Avenhaus and W.S. Jewell

1. Formu.lation of the Eroblem

The nu.cleo,:;c ma.terials ｳ ｡ ｦ ｾ ｾ ｧ ｵ ｡ ｲ ､ ｳ systemof the Interna-
tio))..al Atomit:: E!1t1X'gy ａ Ｙ Ｂ ｾ Ｓ Ｚ ｮ ｣ ｹ Ｈ ｉ Ｌ ｾ Ｌ ｅ ａ Ｉ in Vienna con.sists of ｴ ｾ ｾ ｔ ｏ

parts (see Referen.ce [1]): the verification of the material
flow and inventory data reportedby the operatorof a nuclear
plant; the establish.i'nentof a material balanceat the end of
an inventory period with the help of the operator'sreported
data, ｾ ｔ ｨ ｩ ｣ ｨ mee.DS t:h.at t.he hook. inventory (ini·tial physical
inventory plus :r-eosdpt.sminus shipments) is comparedlIIrith the
ending physical inv':"mtory (see e.g., Reference [2]). By def-
inition it is necessarythat the plant operatormaintains a
complete measurementsystem for all nuclear materialspro-
cessedin the plant.

In this papF.;ru lJITe consider an alternative inspection
schemewhich is basedon material accountabilitytoo, but
which does not make use of the data reportedby the operator.
Contrary to t.he ｉ ａ ｂ Ｎ ｾ Ｉ Ｎ sa.feguardssystem, the ma.terial balance
in this system is closed only with the help of the data
observedby the inspection team itself. Such a system could
be important in situationswhere there is no reason for a
plant operator to maintain a complicatedmeasurementsystem,
or where, for some reason, the records are not available.

It is clear that if the inspection team cannot measure
the da1:a of all ma.terial bcrtches processedin the plant under
consideration (e.g. if the inspectionbudget or time is
limited), then some prior information about the averagemate-
rial contentsof the different batchesas well as the batch-
to-batch variation have to be used. Therefore, a Bayesi.an
approach seems to be natural for the treatmentof problems of
this kind. On the other hand, this prior information will not
be very detailed, and so we will use the principles of
credibility theory (see e.g., References[3] ,[4]) where only
the first two moments of the prior distribution have to be
known.

In the following i If!e first consideronly one class of
material, and then R different classes(inputs, outputs, etc.)
with the problem of material balanceclosure. Finally we



- 2 -

discussthe problem of optimization of a given inspection
effort.

As the batch-to-batchvariation of the true material
contentswithin one cla.ss normally is much larger than the
measurementｶ ｡ ｲ ｩ ｡ ｮ ｣ ･ ｾ we will neglect the measurementerrors
here; they could easily be taken into account, if necessary.

2. One class of ｭ ｡ ｾ ･ ｲ ｩ ｡ ｬ

Let us consider one class of material consistingof N
batches. An inspection team measuresthe material contents
of n of ｴ ｨ ｦ ｾ Ａ Ｒ ａ Ｚ N ba.:tch!2:s preci.s.e.ly and l ..rants to estimatethe
total material content of the class with the help of the n
data. The true values of the material content of the batches
vary from batch to batch; becauseof long term experience,
however, the inspection team has a prior information about
the averagevalue fuid the batch-to-batchvariation of the true
material contents.

This prior information may be specified in ·the following
way: the true material contentsXj of the ith batch is a random
variable with a.likelihood density ｰ Ｈ ｩ ｪ ｬ ｾ Ｉ Ｌ where e'is the
pa.ram,et'0r (poSSJ,bly a vector) ｾ representlngthe unknown varia-
tion l ....hich has ｏ ｃ ｃ ｵ Ｎ Ｚ ｩ Ｇ Ｎ ﾷ ｾ ｅ Ｚ ､ in this produ.ction run. In Bayesian
analysis, the parametere ,itself_is con.sideredas a random
variable with a prior density p(e). _We do not assumethat
the complete forms of p(xjle) and pre) are known to the in-
spection team, but only tne expectationvalue m,

m: = &'{x.} =tffrff{x·le}
J J

and the two componentsof variance

j = 1 ••• N (1 )

E: = g"CY{ 5C. j Ie}
D: :;: !yg"{Xj I8} j = 1 ••• N

(2 )

(3 )

(.As ,:",e have to diff;::;rentiate carefully bet';l'een ra.ndom. variables
2.nd their a.ctual values9 we indicate random variablesby a
tilde.) Notice that, even though the {x.} are independent,
given e, they are, a prj.ori, dependentｲ ｾ ｮ ､ ｯ ｭ variaples; in
other words, it is possible to make inferencesabout future
values of the {xi} from observedvalues becausethey have the
same (unknown) value of e.

Assume that the inspection team has measuredthe material
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contentsof n < N batches (for simplicity we relabel the
batchesso that the:3e are the first n batches); let
x = (x, .0' x) be the ｲ ｾ ｳ ｵ ｬ ｴ of thesemeasurements. The
problem is dj es·tima'ce ｴ ｾ ･ total material content of the
class using thesedata and the prior information (1), (2),
(3). Sin.ce we know ｾ Ｌ ｾ ｲ ･ must newly estimate (Xn+ l ••· XN).

The idea of the cred:U:d.lity approachis to take an
estima.te f (x) for the material content x +1 of the n + 1stn - n
batch which is linear in the data and which minimizes the
preposterior variance of the forecast error defined by

(4)

(H is, in fact, a variancesince f (x) will be an unbiased

･ ｓ ｾ ｩ ｭ ｡ ｴ ･ Ｌ i.e. <ff{X
n

+
l

- f
n

(5e)} = o.)n-

As a linear form, we take

f (X.) = z + zn - 0 1
1 n. - . I x.
n j=l J

(5)

since there is no reason to use a different weighting factor
for each x j . Then Hx is given by

Hx; ＮｳｻｘｾＫｬｽ + ｺｾ + ＺｾＮｵｻ CL Xj ) 2} - 2Z0 • .s{Xn+l} +

and we get with

(6)

from equation (6)

2D+E+m , ,
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2 2 zl 2 2
= D + E + m + 2 0 + n . (n(D+E+m ) +n(n-l)·(D+m »)

The optimal values of Zo and zl are determinedby

aBx
= 0azO

which finally gives

= 0

n
zl = n + EjD (7)

Notice that (5), (7) can, in fact, be used to estimateany
future {xi}' j = n+l ... N. The minimum of the preposterior
varianceof Hx is given by

min Hx = D + E - nn+
o ｾＯｄ = E + (nE-1 + D-1) -1 . (8 )

These results have an intuitive interpretation: fot nD » E
we obtain Z 1 'll 1, Zo :::: 0 and therefore,

f (x)
n -

1 n:::: I x.
n i=l 1.

I

i.e. we use primarily the information containedinithe data.
Note that this could happeneither becausethe numli>er of
examples ｾ Ｌ ｡ Ｎ ｳ very large, or becauseD, the variance for our
prior information, was large. For nD « E we obtafn z « 1
and therefore, I

i.e. we use primarily the prior information m.

We now estimatethe sum S of all material in the class,
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S = 2 x.
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(9)

by the true values of the material contents in the first n
n

batches, l x., plus the sum of the estimatesof the remain-
j=l J

ing N - n material contents,given by equation (5):

n
l x.

j=l J
+ (N - n) • f (x)

n -
(10)

Using (7), we obtain the following estimate ｆ ｮ Ｈ ｾ Ｉ of the sum S:

= (N - n)" (1 - z ) - m + (N - n - Z + 1) - ¥ x .
1 n 1 j=l J

• (11)

The preposteriorvariance of the forecast error of this estimate,
which is defined by

(12)

is not just the sum of (N - n) terms Hx in (8), becausethe

same value of e applies throughout, and thus the error terms
are correlated. However, it can be written in simplified
form as:

where

HS = r{a I x. + ¥ x.}
j=l J j=n+l J

(13)

a = N-n- ---·zn 1

Therefore, we get

H = (a2.n + (N-n»'Y{x.} + (n(n-l»)-a2 + (N-n)-(N-n-l)s J
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which gives withCif{x ,x .• .!-.} = D the final result
J TJ

For n = N we get H = 0, since the "esti.mateI' iss

N
F N = LX.

j=l J

i.e. the true value of the total material content is knm..rn.
For n = 0 we get

,

which shows that D behii'ves like the varianceof a ｾｹｳｴ･ｭ｡ｴｩ｡
error, which persistsin all estimatesbecausee remains the
same.

3. ｓ ｳ ｶ ･ ｾ ｡ ｬ ｣ ｬ ｡ ｾ ｂ ･ ｳ of material; no diyersion of ｭ ｾ ｴ ･ ｲ ｩ ｡ ｬ

Let us considernow one inventory period and ｾ ｳ ｳ ｵ ｭ ･ for
simplicity that the physical inventories at the beginning and
a'c the end of th.8 inventory period arezero. The material
flowing through the plant during ,this inventory period may be
classified. into R classesof material: Rl input and R - Rl out-

I

put classes. Let x ij be the true material content/of the jth

batch of the ith class which will be measuredby the inspection
team in case this batch is selectedfor ｭ ･ ｡ ｳ ｵ ｲ ･ ｭ ･ ｮ ｾ Ｎ x ij is

positive if i is an input class, negative otherwise.
I

In casethat no material has been lost or div$rted (null
hypothesisHo ) the material balanceprinciple ｰ ｯ ｳ ｴ ｾ ｬ ｡ ｴ ･ ｳ that
at the end of the inventory period the algebraic sum of all
throughputsmust be zero; in other words:

R Ni
L L x.. == 0 (15)

i=l j=l 1.J

He assumethat the random sampling schemeof the inspec-
tion ·team is -to selectn. out of the N. batchesof each class
at the end of the invent6ry period; ｦ ｯ ｾ example, one may
imagine a chemical plant, where samplesfrom all batchesare
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､ｲｾｾｮ and stored an.d where only a fraction of these samples is
analyzedat the end of the inventory period.

Let the mean value, given e, of the material contentsof
a batch of the ith class be defined as

m. (e): = 8J X.. 1 e}
1. 1 1.J

, j.= 1 .•. Ni , i = 1 ••. R (16)

and let the covarianceof material contentsof the ith and the
jth class given e be defined as

cii,(e): = cc{x ..;X. I . lie}
1.J 1. J

,
(17 )

j=l ••. N i , j'=l ..• N i" i,i'=l ..• R

We assumein the following

Cii I (e) = 0 for i f i ' , (18)

Which means that the batch-to-batchvariations betweenbatches
of different classesdo not dependon each other.

Note: This assumptionseemsto contradict equation (15) where
such a dependenceis given explicitly. HOiArever, this
equation is a material balanceequationwhich may be
interpretedin such a way that the last output batch
can only contain the amount of material which has been
left (and which may be excluded from the random sampling
procedure.) This means that only the last batch depends
on the foregoing batches; it does not imply a non zero
correlation between all batchesof the R classesunder
consideration.

Correspondingto the case of one class of ｭ ｡ ｴ ･ ｲ ｾ ｡ ｬ we now
assumethat the prior information available to the inspection
team is the knowledge of the values of the parameters:

m. = <Semi{S} (19a)
1.

-E" , = <Se c .. .(e) (19b)
1.1. 1.1.

Dii, = et'e{mi (8) ; mil (8)} (19c)
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In the following, we denote the vector tml .•• mR)' by !!!. and

'che mat:z:-ices correspondingto (19b) and (l9c) by E and D,
respectively. According to (la) E is a diagonal matrix; D
is not assumedto be diagonal as one can imagine that distur-
bancesof the plant operations (expressedby variations of
the parametera may causecommon changesto all classmean
values miCa).

Let xi be the sample mean of the observedvalues of the

ith class,

m.
1

We then get

ｲ ｓ ｻ ｾ ｩ la} =

ｾｻｾｩｬ｡ｽ =

and becauseof (19)

n i
I x ..

j=l 1)

ｲ ｓ ｻ ｾ ｩ ｽ =

; ｾｻｾｩｽ = 1
E .. +D ..n

i
11 11

(20)

(21a)

(21b)

(21c)

We now consider a vector ｾ Ｊ of unobserved vaLues of ,batch data.
A credibility forecast for this vector ｾ Ｊ is given!by

!. Ｈ ｾ Ｉ = ｾｏﾷ ｾ + ｾｬ • ｾ , (22)

where x is the vector of the sample means (20).

Minimization of the trace of the preposterior!variance
matrix of the forecast error, H, defined by

(23 )

gives after some calculationssimilar to those in the fore-
going part (see e.g., Reference [3]).

(24 )
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where the diagonal matrix is defined by

ｾ ｯ = (n1
••• 0 )

o n
R

and where l R is the Rx R unit matrix. The preposterior

varianceof the forecasterror then is given by

(25 )

In the same way we estimatedin the foregoing part the sum
of all material contentsof one class we estimatenow the sum
Si of all material contentsof the ith class by

which gives with (24) in explicit terms

(26 )

g, (x)
l. -

R
= (N, - n,)· L (lkl.' - zkl.') • mk +

l. l. k=l

I nr (N, - n,) • Zki + I. k) . xk.k=l j=l l. l. n k l. J

(27 )

Defining the diagonal matrix

ｾ ｬ =

we get the vector forecast

ｾ Ｈ ｾ Ｉ = ｾ • !. + ｾｬ • !. ＨｾＩ ,

which gives with (22) and (24)

(28 )
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The preposteriorcovarianceof the forecast error of the sums
S. is then given by
ｾ

where 8 = (81 ... 8R) which gives after some calculations

H = N
l

• E + N (I - Z) • D • NsIR 1

The elementsof this covariancematrix are given by

(29 )

Hij = (N i -ni)Eij + kt (N i -nil (Iki -Zki)·Dkj • (N j -nj )

(30)

Finally, the preposteriorvariance of the forecast error of
the sums is given by

(31)

= I H .. ,. ., ｾ ｾ
ｾ Ｌ ｾ

where H .. , is given by (30).
ｾ ｾ

4. Optimization of inspectioneffort

In ｴ ｨ ｾ following we assumethat for the inspectionof
the material ｦ ｬ ｯ ｾ during the inventory period under consider-
a.tion there is only tb:2: amount C of inspectioneffort (given
in ma.nhoursor in monetary terms) available. Furthermore,
it is assumedthat the observationof one batch datum of the
ith class needs the effort ｾ Ｎ Ｎ Therefore, the question arises
how to distribute the ･ ｦ ｦ ｯ ｲ ｴ ｾ ｡ ｭ ｯ ｮ ｧ the different classes,in
other words how to choosethe class sample sizes n. such that
the boundary condition ｾ

C >
R

L
i=l

ｾ .• n.
ｾ ｾ

(32 )
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is met.

In Re.:t?:r.s,Dce [5] 2.::gUl.n,s,nts have been given that the
effort should be distributed in such a way that the probabiZity
of detection in case the operator diverts the amount M of
materiaZ should be maximized. In case the plant operatorwants
to divert material dn:ciDg t.he inventory period under consider-
c"tion. Calterna::::.tve hypothesisH

1
) f equation (15) does not hold

a.ny more. ｉ ｯ Ｌ ｾ ｴ ns':u:;sume that tJ':1e operatordoes not change the
nnmhsr of bat.ches in each class by simply taking ｡ ｾ ｔ ｡ ｹ some of
the bat.cheshu.t ra'che:r' diverts from r. batchesof the i th class
the amolmt 1.1. of material. I,et us ｡ ｓ ｾ ｨ Ａ Ｎ ｭ ･ furthermore, that
the operator

1
decidesat the beginning of the inventory period

ｾ Ｎ Ｗ ｨ ･ ｴ Ｎ ｨ ･ ｲ or not he '\!ldll elivert any material. Finally, let us
a.ssume tha.·t the divp.rsion takes place in the first Rl classes
after the inspection teamDs measurements,and in the remaining
R- R} classesbefore the inspection team'smeasurements(the
reasonbeing that input ba.tchesare measuredimmediately after
their arrival, and output batches immediately before their
shipment). Then we, have instea.dof equation (15) the following
relation for the true material contentsof the batchesYij to
be measuredby the inspection team:

R

l
i=l

N.
1

l y ..
j=l 1)

= :M (33)

Ｆ ｾ example for this relation is given in Figure 1 for R = 2,
Nl = 5, N2 = 4, r l = 2, r 2 = 1.

Let us define now the set Ai of batchesof the ith class from

which the operatordiverts the amount ｾ ｩ of material. Then

we have

for all batchesfrom Ai'
i = Rl + 1 •.• R

{

Xij - l.Ii

y .. =
1)

Xij ｯ ｴ ｨ ･ ｮ ｾ Ａ ｩ ｳ ･

(34)

where x .. is the material content of the jth batch of the
1)

ith class to be measuredby the inspection team in case of
no diversion, and ｾ ｨ ･ ｲ ･ accordingly

(35)
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As we get from (15)

R

l
i=l

N.m. = °1 1
,

and as IAil, the ｮ ｕ ｉ ｔ ｾ ･ ｲ of elementsof Ai' is hypergeometrically

distributed, we have

r. 0 n.
1 1.

= ----N.
1

and the expectationvalue of the sum of the class sum forecasts
is given by

R

L
i,k=l

(36)

In the same way. we can calculate ｾ ｻ ｱ g i ＨｾＩＩ 2\ HI} and there-

fore the variancer{r 9 i ＨｾＩ IHIJl of the forecast ｾ 9 i ＨｾＩ under
ｾ 1

the alternative hypothesis H1 (diversion of the amount M of

material). Becauseof its length, and as we will not use it
in the following, we will not ｧ ｩ ｾ ･ its explicit form here.

We now assumethat the random variable ? ｧｩＨｾＩ is approximately
J.

normally distributedwith expectationvalue and variance given
as above. Then the probability of detection 1 - a basedon a

significance test for the null hypothesisｾ ｻ ｩ ｧ ｩ Ｈ ｾ Ｉ IHO} = 0,

is given by the following expression

1 - 8 = 4>

ｾｬｉ gi Ｈ ｾ Ｉ ｉ ｈ ｬ ｬ Ｍ Ul - a Ｎｾｽ

ｾ r {f g i (!) IHI}
(37)
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where a is the significance level, ¢ the normal distribution
function and U its inverse.

According to the principle mentionedat the beginning of
this chapter the optimal distribution of the inspectioneffort
is det.erminedby maximizing the probability of detection 1 - a
under the bound.ary condition (29) for the case that the
operator ｷ ｾ ｮ ｴ ｳ to divert the amount M of material. As the in-
spection teB.m do:<;;;s not ｫ ｮ ｯ ｾ ｔ the 'diversion strategy' (r l ···r R)

of the operator, and as one is furthermore interestedin de-
termining the guaranteed probabiZity of detection, the inspec-
tion team will maximize the probability of detection for that
case that the ｯ ｰ ｬ Ｇ ｾ ｲ ｡ ｴ ｯ ｲ minimizes the probability of detection
subject to the boundary condition

M « ｾ
1

J1 •• r.
1 1

(39)

This means that the op·timal distribution of inspectioneffort
is gained by solving the following optimization problem

max

C > ｌｾＧ n.
ill

I

min 1- a(n l .•. nR;rl ... r R)

r l r R:

(40)

Becauseof the complicatedstructureof 1 - 8, given; by
equation (38) this problem can be solved only numerically.

I
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Figure 1. Illustrat:i,on of the Material Balance

(Zero beginning and ending physical
inventories)

Input:

Output:

rJ--i
ｉｴＬｾｾｾｾ __J

x 12 = Y12

ｲ ｾ ｾ Ｎ ｝
:L __

x14 = Y14

｛
Ｇ ｾ Ｍ ］ ｾ

I ,
I I

l ＭｾＱ

Ｍ］ｾ］］ｾ material contentsx .. measuredby the inspection
1.J

team in case of no diversion

---- material contentsy .. measuredby the inspection
1.J

team in case of diversion

rnITillTIID diverted material

Null hypothesis (no diversion):

5 4
I xl' + I x 2 · = 0

i=l 1. i=l 1.

Alternative hypothesis (diversion):
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