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VS.
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CATASTROPEES®

Dixon D. Jones
C.S. Holling
R.M. Peterman

I. INTRODUCTION.

This paper is meant to serve two purposes. First, to extend the use-~
fulness of catastrophe theory as a tool to aid our perception of a partially
known world., This theory is a newly emerged branch of topology and, as
such, begins to fill a large void in our arsenal of qualitative analytical
tools. It is not appropriate for all important and interesting situations,
particularly those requiring precise numerical results. But it is hoped
that it can provide an important missing element for our envirommental
management tool kit.

The second purpose is to report upon same deliberations precipitated
by a recent paper of Beer and Casti (1975). We shall follow, to same degree,
their development, We shall also borrow some of their examples and termin-
olegy in order to emphasize some fundamentally different strategies for

map~ging unexpected events.

* The Fail-safe/Safe-fail dual was coined by W.C. Clark while attending

the 1974 IIASA Energy Project Status Report.




Two poles on the spectrum of strategies are fail-safe and safe-fail.
The goal of a fail-safe policy strives to assure that nothing will go wrong.
Systems are designed to be foolproof and strong enough to withstand any
eventuality. Efforts are made to radically reduce the probability of
failure. Often the managers of such systems operate as if that probability
were zero.

A safe-fail policy acknowledges that failure is inevitable and seeks
systems that can easily survive failure when it comes. Rather than rely
on reducing the occurrence of failure, this policy aims at reducing the
cost of that failure.

The central aim in this paper is to emphasis that there can be quite
viable alternate modes of coping with unexpected events. Our traditions
generally lead us to attempt to minimize the probability of crises, failures
or unexpected. There are many examples of this fail-safe approach: the
engineering for safety designs of nuclear power plants, the setting of,
and adherence to, fixed envirommental or health standards, and, the de-
sign of dams for flood control. The words of this tradition emphasize the
undesirability of step change. In the risk assessment literature, risks
are labelled as acceptable or unacceptable or individuals identified as
risk taking or risk averse. The words suggest that unexpected events are
uniformily undesirable, ard if they occur they are "lived-with" grudgingly
only because that is the price required for the great benefits that accrue
when our designs work well. In its most sensitive expression, well represent-
ed by the Beer and Casti paper and the nuclear safequard approaches, the
inevitability of unexpected events is explicitly recognized. The goal,

then, is first to design systems with broad operational limits; second to




confine the operation of the system to a limited region well away fram
these limits of catastrophe. The latter requires an efficient monitoring
system and feedback controls that can correct deviations. The former pro-
vides the time to detect and correct the deviations.

The undoubted success of this approach has led inexorably to the design
of larger and larger systems providing enormous benefits with extremely
low probabilities of failure. But in partner with this scale of design
and benefits is an equally high cost if failures do occur. So much so,
that the trial-and-error approach that has been at the heart of technological
advances becames increasingly dangerous, No one can now possibly propose
a trial nuclear plant with the expectation that failure will provide the
necessary information to f£ill in our gaps of knowledge. The scale of the
costs of error are too great. And for the first time a moratorium has
been voluntarily applied to certain genetic engineering experiments be- ‘
cause of the scale of possible experimental failures. Technology and in-
dustrial society have expanded explicitly because failures have provided an
essential probe into the unknown -- a probe that generates information
that knowledge must feed upon. But if trial-and-error and the learning
from mistakes is increasingly too dangerous, how can we proceed in attempts
to design for the betterment of mankind? That is at the heart of the issue
of "hypotheticality” raised by Haefle (1973). We are locked in a world
of hypothesis because we dare not test our hypotheses.

But whatever this traditional goal, there are individuals, at least,
with apparently different ones. They do not accept failure grudgingly

but seem explicitly to embrace the unexpected. Individuals so consituted




are the entrepeneurs, the ones that explicitly need risks, need unexpected
events for personal enrichment. Tradition would have it that such individuals
weight benefits fram success more heavily than cost of failure. But it

could equally be argued that a certain probability and cost of unexpected
events is; in itself, given high value almost irrespective of benefits.

And to a degree, no ne could be happy, for long, in a utopia of unlimited
blessings and no disturbing unexpecteds.

And what is true of individuals is true of institutions. Consider
a research institute. 1In no sense could a research institute remain pro-
ductive if it explicitly avoided extremes of ideas and concepts. A consis-
tent effort to contain activities within a narrow spectrum might be neces-
sary during a transient phase of consolictation, but if maintained for
long, normal cultural forces would gradually reduce the flexibility, the
operational limits of the institute. To some degree, at least, perturba-
tions, and partially uncontrolled and unmonitored, are healthy. Every
institute needs its Beers and Marchetti.

And same societies seem to have evolved similar goals. As but one
example, Rappoport (1968) presents an interesting analysis of the role of
ritual in the regulation of envirommental relations among a New Guinea
society. In its simplest form this society obtains its food from the sur-
rounding forest, market gardens and pigs. But there is a taboo on eating
pigs except on special ceremonial occasions. These ceremonial occasions
are triggered when the social temperature - conflict - reaches a critical
point in the village. At this point a ceremony of propitiation to the gods
occurs in which the key element is the exclusive consumption of pigs. But

by and large the reason the conflict occurs is because the high pig populations



begin to interfere with the market gardens. Neighbour becames irritated
with neighbour and, magically, after the feast of propitiation the prob—
lems disappear.

This is in no sense an example of an optimal food production system
that produces low degrees of fluctuation. In fact, quite the opposite.
It is as if a ritual is that not only is the fluctuation assured but, more
significantly, strong mechanisms are developed to turn the society away
fram a stability boundary as the signals are detected. Rather than minimizing
the probability of difficulty this society seems to have a designed method
of generating detectable but controllable "failures". They occur frequent-
ly enough to prevent stability regions fram contracting by maintaining
flexibility of institutional response.

These examples at least raise the possibility of an alternate goal
for management and institutional design. If the traditional goal is term-
ed fail-safe the alternate could be called safe-fail. It hypothesizes that
catastrophes are not necessarily lead but can, in fact, be the source of
system flexibility and the cause of its maintenance. By experiencing period-
ic step changes, natural or cultural selection forces can act to maintain
flexibility. Eliminate those periodic "disasters" and the same forces
could cause an evolution towards reduced flexibility. Just as the present
danger of trial-and-error approaches lies at the heart of Haefele's hypothetical-
ity issue, so the safe-fail strategy lies at the heart of the ecologist's
resilience concept (Holling 1973).

Ecological systems have a remarkable ability to absorb unexpected
events and still persist. But in partner with this ability, is a high

degree of variability and periodic sharp shifts of behaviour as variables




move fram one stability region to another. Such shifts are exactly con-
gruent with the jumps of behaviour shown by folded catastrophe manifolds.
The real question is whether the occasional experience of those shifts

is a necessary condition in order to maintain the system's capacity to ab-
sorb the unexpected. If that is the case, then there might well be a
place in envirommental, institutional or societal management for disaster
design —- periodic "mini-disasters" that prevent the evolution of inflex-
ibility. That, combined with traditional fail-safe design for those parts
that are more surely known, monitored and controlled could lead away fram
the hypotheticality trap to systems with rich options for experimentation,
mistakes and hence learning.

Hypotheticality raises an issue. Resilience presents a possible con-
ceptual framework for descripton and prescription. Catastrophe theory
1s a methodology focussed on step changes. We will, in what follows, ex-
plore the value of this methodology in illuminating the issue and in making
the concept operational.

For the remainder of this paper we will focus attention mainly upon
systams that are not camplicated by ecological or cultural selection pres-—
sures that cause a collapse in the domain of stability. The underlying
structures we examine are not static, but we do assume that they are not
affected by the occurrence, or not, of occasional collapses. In a later
paper we will expand the scope to include systems where the "brink of dis-
aster" closes in if flexibility and variability are restricted.

We would hope to develop criteria for manipulating systems so as to
have same degree of control over the antecedents, frequency and severity of
"disaster". The form of manipulation considered by Beer and Casti is

investment in selected segments of a system of organization.



The system manipulations used in this paper are not linked explicitly with
investment per se. We do, however, acknowledge that in most situations
allocation of capital and other resources will be required to accomplish
results,

By "disaster" we mean any change in a system variable that occurs
suddenly and unexpectedly and which is of sufficient magnitude to carry
that variable beyond acceptable limits. "Suddenly" is relative to our
perception and to other variables in the system. The element of unexpect-
edness relates partially to our ignorance about the system. It also
implies a severe inconsistency with recent trends, in short, a discontinuity
of behaviour. We restrict the term "catastrophe" to its mathematical
interpretation.

The types of systems that we shall consider are assumed to be only
partially known and partially influenceable. Clearly, if it is important
to maintain a system variable, x, at same optimm value x opt’ then all

that need be done is to design a system such that x = - (x-x ). With

opt
this system x is campletely safe fram disaster since it is uncoupled fram
all disruptive factors and any deviations are restored by the system it-
self. We suggest this amnipotent example to remind the reader that in
most real, camplex systems such a comfortable form of behaviour is remote
and such a mathematical representation so trivial as to be delusive.

Let us consider the same ecological example used by Beer and Casti
of the coral reef and the crown of thorn starfish. The proposition is
that the coral reef organisms and their predator, the crown of thorn star-
fish ordinarily maintain a modestly fluctuating but stable relationship, .

neither deviating alarmingly from their average abundance. Occasionally,



however, the starfish population increases. (We assume momentarily that
the cause is related to some unknown, external influence.) Initially
the coral can withstand the added pressure until the predator population
surpasses a critical threshold. A rapid collapse of the coral follows
soon after, The time sequence of these events is suggested in FIG. 1.

It might be that the population "explosion" of starfish stems fram
a similar mode, in that some lower level control variable drifted below
a critical threshold level as shown in FIG. 2.

As an ecological aside it should be noted that the existing evidence
is not yet adequate to say whether this is truly an "unnatural" disaster
or if it is a typical and necessary event in the ecological history of coral
and its associates. There is an emerging conception among some ecologists
that such periodic disasters are a critical and necessary feature for
maintaining the integrity and diversity of many ecosystems.

Recent travellers to Eastern Africa report vast areas of devastation
to forest land by "marauding" elephants. The situation is visible enough
to initiate programs on elephant - control (Read: Liquidation) by some affect-
ed govermments. However, this periodic tree destruction might well be a
necessary force in the maintenance of the typical savannah/grassland character
utilized by ungulate herds.

Fire has been cited as playing a similar role in the maintenance of
grassland ecosystems (Copper, 1961; Kozlowski and Ahlgren, 1974). A per-
missive attitude toward fire is beyinning to find its way into forest and
parkland management policy.

The periodic "disasters" of spruce budworm outbreaks have also been

cast in this light (Holling, 1973; Holling, et. al., 1975). Occasional



devastation of balsam fir, the preferred budworm host, robs it of its com-
petitive advantage over other tree species and a rich forest diversity
results.

We return to figs.l and 2 and describe a general disaster mode.
Whether or not coral collapse is "good" or "bad" in the broad context, in
fact whether or not figs. 1 and 2 truly represents the starfish/coral
system, a simple and useful paradigm is suggested. Beer and Casti temm

the system variable experiencing the disaster the Collapsing Factor (CF).

The collapse occurs following the passage of some Implicated Factor (IF)

beyond a particular threshold value. The general time trace is shown in
FIG. 3 (taken fram Beer and Casti, 1975).

This figure lends itself quite easily to the introduction of the
tools of catastrophe theory. A useful feature of that theory is that seeming- ;
ly dissimilar and complex situations can be related to simpler, topological-
ly equivalent forms where mathematical analysis is more convenient. Con-
clusions can then be related back to the original problem.

In this paper we shall investigate the so—called canonical forms
of the elementary catastrophes. These are defined as the lowest degree
polynamial representations that are topologically equivalent to catastrophes
occurring with the same dimensionality. By focusing on a canonical form
we shall have a specific object at our disposal. The purpose here is to
illustrate same of the control options and trade-offs available to manage-

ment.

Any real situation will of course be more camplex than the simple
forms used here. Also, just because our catastrophe manifolds are topological-

ly equivalent, it does not follow that our trade-off curves will be also.
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The point to be made is that any difficulties we.encounter with the

canonical forms will not likely be less in a real, more camplex situation.

II. A MODEL FOR DISASTER

Our first example is the scenario suggested by fig. 3. The collapsing
factor CF remains at an upper equilibrium until the implicated factor IF
exceeds same threshold value. Thereupon CF collapses to some lower value.
This leads us (following Zeeman (1972)) to the two dimensional catastrophe —
the fold. This fold is shown in FIG. 4 together with the trajectories of
CF and IF taken fram fig. 3. Figure 5 is a more dramatic representation
by the inclusion of the time axis. There is an added, ard key, feature
in this figure: at the end of the trajectory IF returns to a level below
its threshold value but the collapse is not reversed.

The trajectories in FIG. 5 behave as they do because the system is
assumed to be dissipative. That is, it moves so as to minimize same potential
functjon f. This is a basic requisite'of catastrophe theory. The canonical

form of the potential for the fold catastrophe is

4 2
fx,b) = :lx—- +b (1)

le

where x corresponds to CF and b corresponds to IF. The system dynamic is

fx,b)

_ __d

=-(x3-—x+b). (2)

Stationary values of x define the manifold Mf shown in FIG. 6. The manifold

therefore represents all possible equilibria.

In standard terminology b (or IF) is the control for the behavior
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variable x (or CF). In this system, if we wish to prevent a collapse we
should manipulate b. The safest action would be to reduce b to keep it
as far fram the edge of the fold as possible. This, however, may not be
a feasible solution.

Consider the situation where b cannot be manipulated by management
efforts. We assume that the magnitude of b fluctuates in some manner
associated with a probability distribution p(b). How is this reflected
in the probability of disaster?

Figure 6 has two metrics that describe the size of the manifold:

the height of the fold h_ and the width W_. The total height of "fall"

f f
is Hee In the canonical form
hf = v1l/3
Hf = 3hf (3)
We = 2(/I73)°
Note that W. = 2h 3 (4)
f f
Disaster occurs whenever b exceeds Wf. Thus the probability of collapse
is
Ioo
P, = Pc (WE) = We p(b) db. (5)

It is almost by definition that p(WE) << 1, Otherwise collapse would be
a camon occurrence and perceived as a nuisance rather than a disaster.

The configuration of fig. 6 invites an additional persepective. There
is not only the frequency of occurence, as measured by Wf, but also the

severity, as measured by hf. If these factors were independent, they could
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be treated separately. But often this is not the case. In our present
exercise with canonical catastrophe structures we can see just how interre-
lated these two properties are.

Associated with a collapse in the system will be a certain cost, C.e
For purposes of illustration we take this to be same increasing function

of h,.:

f
C, = ¢ lhg), (6)
¢$(0) = o
(7)
d
a-h ¢(hf) > O,
f
We define the system liability as
L=C, " P, 8)
Suppose
Ah
cC = e £ (9)

And o . :b _ bo)
P =J' — exp |-~ db (10)

a '/27{ 202

(see FIG. 7).

For a fixed system (i.e. one where x3 - x + b = 0) the actual liability
will be the result of the interplay beween A, the cost parameter; bo’
the mean b coordinate; and ¢, the size of deviations.

The management schemes suggested are of three types: (1) reduce

o, or otherwise distort p(b) so as to prevent high values of b near Wf.
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(2) Shift the mean value of bb' (3) Reduce the cost parameter.\.
Both (1) and (2) are aimed at P,i the former is the reactionary approach
while the latter is cautionary. Scheme (3) is ameliorative.

We should also bear in mind that there are other price tags on collapse.
One is the cost of restoration (if it isn't included in Cc). In our
canonical example x must be incremented by Hf = 3hf, the same distance as
the fall. But if b is set less than -W_, the restoration is autamatic,
though perhaps traumatic, because of another rapid shift in state.

A secord price is not a cost, but a value -- the value of information.
When a disaster occurs, we locate W_, or at least the critical increment
Gdf - bo). Knowledge of where the cliff face is has value to those who
would allocate resources to manipulate b. Because of perceptual time lags
this information arrives too late to avert the present disaster, but it
is useful for coping with future ones. This information will be of little

value, however, if restoration is not possible.

ITI. MANTPULATIONS AND MANAGEMENT

The management strategies derived fram the last section involve an
acceptance of the system as it is. Changes are made through the available
control variables. In this section we begin the transition to higher levels
of system design and alteration. To this point we have paralleled Beer
and Casti's system description as it pertains to disasters; now our paths
begin to diverge.

In the fold system of the last section (eg.Z) the parameter b was term-
ed a control. But it is a control "as seen by" the system -- the collapsing
factor x responds directly to the magnitude of b, However, fram the manager's

point of view the control variable may be something other than b, Perhaps it
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is an investment level directed at the implicated factor b. Call the
factor under direct managerial control B. Then (assuning same degree of

effectiveness) there will be same functional "transducer"

b =g (B) (11)

That translates effort B (investment, say) into its realization b.

If the function gb(e) changes monotonically with 8, the control is
well behaved (one-to-one). A typical example might appear as in FIG. 8a.
A negative investment in this context is one that reduces b —— the amount
spent is the absolute value of B. The use of either b or B as the implicated
factor differ only by a rescaling of figs. 4 or 5. The beauty of the
topological approach is that such rescalings result in equivalent manifolds
and unchanged qualitative conclusions.

Attention should be given to two other forms of the function gb(B) .
In FIG. 8b. the function is no longer monotonic. An element of redundancy
exists as more than one B value can produce the same b value. This redun~
dancy produces "multiple images" of the manifold in the space of (x,8).
This camplexity can be eliminated by finding the subprocesses involved in

Fig. 8b that have a monotonic form. Such a step is called Component analysis

by Holling (1963) and has been used effectively in studying ecological systems.
If formally pursued, this technique could possibly became one of the fund-
amental tools of systems analysis.

If the function gb(s) is shaped as in Fig. 8c, there is an indetermin-
ancy over same range of 8. This figure is topologically analogous to fig. 4
and can be addressed by analogous techniques. We have one catastrophe

structure aembedded within another.
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Beer and Casti postulate continual changes in the effectiveness of
investment on the implicated factor (i.e. changes in the function gb(s))
and changes in the sensitivity of CF to IF. "Management is ... investing
resources for all purposes in such a way as to impinge on incipient dis-
asters to a varying degree as time unfolds" (pg. 15). In their model,
investments in various segments of an organization have impacts on many
"organizational hameostats" and these impacts impinge through the cyber-
netic milieu upon the incipient disaster. In terms of the last section,
the total investment activity produces changes,in the catastrophe manifold
of figs. 4 and 5. Since they contend that these changes are occuring con-
tinually through time, they introduce time as the variable that alters the
character of the incipent disaster.

The implication appears to be that the time course of all impacts on
the "organizational homeostats" is unidirectional and irreversible.

(Could it be that the authors are saying: "First the bad news. Systems
are likely to evolwe into a potential catastrophic configuration. But now
the good news. If we wait it out, the cusp will spread and those menacing
bifurcation lines will recede to the far corners of the control space.")

It is possible that system evolution at a higher level can trigger
the creation of a catastrophe manifold with time as one of the control
axes. In the present context there is no fold until same t = to and
then a growing fold thereafter. As suggested with the crown-of-thorns
example, a catastrophe at one level (Fig. 2) can trigger a catastrophe
at ‘another level (Fig. 1). The useful manifolds of catastrophe theory
can be viewed as cross-sections of manifolds of a higher dimension Wood-

cock and Poston, 1974).
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In this paper we shall not use time explicitly as a control variable
but shall seek the causal factor that directly leads to changes in system
dynamics. This is the proximate factor that impinges on the CF/IF hameostat.
In the next step of added camplexity we introduce the control variable
a as this impinging causal factor.

Again a 1is the control "as seen by" the system. The actual control
lever available to the manager .may be o, which is related to a through
same function a = = () .

In the organizational system of Beer and Casti the factor a (or
time's impact) was the net result of a camplex of positively and negatively
acting feed backs from campeting resource accocations. For our purposes,
we assume that a wanders about, seemingly at randam, under the influence
of unknown interdependencies between segments of the system. We might
also consider an a factor that is at least partially controllable through
the influence of same action a. We have, of course, the special case where
a increases unhaltingly into the future, or at least until some higher
level change produces a new manifold form.

The next step introduces an additional factor to the CF/IF system.

This factor can be campletely uncontrollable, completely controllable, or
as is most likely, some mixture of the two. To illustrate we use the canon-
ical form of elementary manifold in three dimensions — the cusp catastrophe

manifold.

IV THE CANONICAL CUSP CATASTROPHE
When there is one dynamic variable, x, and two control variables, a

and b, the canonical form of the manifold is given by
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x3+ax+b=o. (12)

This equation can bederived fram the fold by the addition of an enhancement
term (1 + a)x. The factor a has the required ability to alter the dimen-
sions of the fold and thereby alter the charactristics of collapse.

An oblique perspective drawing of the canonical cusp manifold is
shown in FIG. 9 for the range -2 < (a,b) < 2. As the origin of the coor-
dinate system is at the center of the manifold, the control plane (a,b)
has been lowered for easier visualization.

If our goal is to prevent disasters, an obvious prudent control manoeuver
would be to first move b - -0o, and then, if desired, move a >~ +o0. (As a
bonus you end up with a lot of x.).

Clearly, this is no more relevant than designing a system as X = -(x - x
The point is that one clear way to avoid disaster is to move away fram the
dangerous cusp region. In the present context our interest lies with cases
where the manipulation of a and b are restricted due to infeasibility,
inaccessibility, ignorance or extenuating circumstances.

It is illuminating to examine the case where the factor b is not
available for manipulation. We assume it fluctuates with some distribution
p(b) with a central value b = bo' We further restrict the "controllable

factor" to the range a < o. Thus a has the capability of Broadening the

fold. This example allows us to further investigate the recammendations
of Beer and Casti,

According to those recommendations the correst prescription is to
broaden. the range of the implicated factor (or b) without causing a collapse.

That is, the threshold for collapse is increased and a stochastic excursion

opt

).
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of b will be less likely to reach the outer edge. But there is a price
to pay and that price lies at the philosophical heart of the fail-safe/
safe-fail dichotamy. By making collapse less likely we run the risk of
making it more severe when it does occur.

As we shall be using eq.(12) as a specific vehicle for illustration,

we should review its geametry. The generating potential function is

4 2
£(x;a,b) = ’4‘—- + a’z‘— + b. (13)

The cusp manifold is defined by the set of points (x,a,b) that satisfy

af _ .3 _
= "X +ax +b=o. (14)

The fold lines occur in the manifold where tangents became vertical; that

is, where

2
—£=3x2+x=o. (15)

%QJ

Cambination of (14) and (15) and elimination of x produces the image of

these fold lines in the control plane (a,b). These lines are given by

ONCR

These are the cusp-shaped lines in the perspective plot, FIG. 9. They are
reproduced in FIG. 10.

At any particular (negative)} a value, the manifold is a fold as in

Fig. 6.

Now
1/2
he = (- 3 a7
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And
2/3
a
Wf =2( - §')
a 1/2
The point on the lower sheet below the fold is at x = - 2 (- -5) i

The total "fall" is always 3 ° hf. The fold height, hf, is also shown on
the same scale in FIG. 10.

In any meaningful situation there will be some trade-off between the
cost of failure

C. = ¢ (hy) (19)

and the probability of failure

= | =
P g p(b)db = P_ (w.) (20)
The liability is defined as before:
L=C,"P =% (hf) Pc(wf) (21)

(We use a zero discount rate and side step the necessary "orthodax calcula-
tions about the present worth of investments discounted up to the date of
catastrophe that goes unrecognized because it does not occur.")

How does L change with changes in We for h.,, or a)? Since ¢(0) = o,

£
L(o) = o. If p(wf) > o then L"(0) > 0. In words, when a=o the liability is zero,
and as the cusp is broadened (a decreased) the liability increases. Whether

or not L reaches a finite maximum depends upon % obtaining a zero

f
value. The change in L is

- . [ d
) P (Wf) ¢ (hg) + fb(hf) . dh_f Pc(wf)

& |&

. 2
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(22)

A value of hf (with w,. = 2hf3) that equates eq. (22) with zero will be the

£
"worst" case. Things will improve for higher or lower a values. We leave
it for the reader to investigate eq. (22) under various functional forms

of ¢(hf) and p(b).

Because of the strength of the relationship w_. = 2h f3, an extremely

£
steep cost function ¢ (hf) is required to override the diminishing probabil-
ity of occurrence. In short, a broader cusp results in a lower probability
of disaster but with a higher cost of that disaster.

There is an alternate perspective that supports. the broad cusp re-
commendation. It is more closely aligned with Beer and Casti, but it de-
pends upon different assumptions. Given that the implicated factor has
been properly identified and given that it is being monitored, a wide cusp
allows more time to react once aberrantly large deviations in IF are
detected. If successful, one never knows how close one came to disaster,
only that observed values of IF did not cross out of the cusp region.

In the canonical cusp example a broader cusp means a higher fold., To
the extent that this is a model for more camplex systems we might conser-
vatively expect the same association to apply.

In the canonical form changes in the control b could affect Pc
without affecting CC because the cusp width is not affected. But changes
in a affect both PC and Cc' In any general case a arnd .b will not
be orthogonally aligned as they are in FIG. 9. We can expect changes in hf
whenever We changes.

To prevent disaster is not foolproof; we can only hope to delay it.

One of the main points of this paper is to suggest that by postponing a

disaster it may be worse when it finally cames.
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The ubiquitous spruce budworm of New Brunswick has been the object
of control for over 25 years. Control thus far has been fairly success~
ful at least within the terms of reference of the managers. They have
known, and have had to live with the knowledge, that if the control ceased
to operate or to be effective, a "disaster" would strike that would be
much worse than the one originally at hand. Recently same aminous sig-
nals point to an even higher level disaster despite continued successful
control action -- 1975 or 76 could be a very bad year.

Are several small earthquakes less devastating than one big one? The
accumulated strain in the San Andras Fault System in California has been
estimated to be greater than 20 feet. If this strain were to be relieved
in one "event", the result would dwarf the famous 1906 earthcquake. Proposals
have been made to "trigger" periodically such fault systems so that danger-
ously high potentials do not arise. To add a bit of charm to this sensi-
tive idea, same proposals recamnend using nuclear "devices" for the trigger.

Talk about hypotheticality...

V  CONCLUSION.

Minimization of L is not b dng recammended as the best criterion.
Although arguments abound that justify this measure as being optimal for
society as a whole, a little reflection will show that it will lead to
sub-optimal conclusions for the survivors as well as the victims.,

Traditional engineering has often opted for minimizing P, while leaving
amelioration of Cc for sameone else. Beer and Casti appear to be marching
with this drummer. Others (cf. Haefele, 1973) see the emergence of situ-
ations where the cost of failure is above the acceptability threshold.

The scale of many systems has became so large that collapse would bring
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.extraordinary consequences.

The preceding discussion suggests that managerial control strategies

can be ranked into the following hierarchy:

1. Relocation of the control point

2. Addition of new controls

3. Distortion of the operating manifold without addition

of controls,

We have not focused much upon type 3. Before it will be useful to do so,
two issues must be addressed. First, wemust beable to resolve the con-
ceptual questions that arise fram management at the 1 and 2 level. The issue
of selecting trade-off objectives must find articulation b efore meaningful
assessment can be made at level 3.

The second reason for the moratorium on level 3 is an uncertainty about
its accessibility relative to the lower levels. In large, highly unknown
systems,will management have to work its way up through levels 1 and 2
rather than jumping straight to 3? Of course, system changes can cause dis-
tortions of type 3, but if the lower levels are not understood, these dis-
tortions will be harmful or fortuitous willy nilly and beyond the reper-
toire of deterministic policy actions.

We close with a comment on the two auxiliary "prices" that come
with collapse. First, the cost of recovery. In many situations this
cost will be inseparable from the cost of collapse. In other situations
this cost will invole manipulations of a, b and X in order to return
® te its former level. In systems that resemble the cusp manifold

this cost will increase with distance fram the cusp point.
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The second price is not a cost but the beneficial value of informa-
tion. As one wanders around the topography of fig. 9, the only real
landmark is the cliff face of the fold. If we can discover where we are
in relation to that fold, wiser use can be made of resources that affect
excursions in the control variables. If we can learn " eperimentally"
the threshold value of the implicated factor, we are in a bett e position
to apply investments to control it., However , a onetime knowledge may not
be good enough if the system is evolving and changing through extraneous
and undiscovered factors. In such situations repeated monitoring of the
threshold will be necessary. As one eminent scholar has recently put

it: "A little disaster now and then can be good for you" (Fiering, 1975).
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