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Multiregional Population Projection

Populationprojections illuminate the impacts of current schedulesof

births, deaths and migration by drawing out the future consequencesof the

maintenanceof present rates. Methods for developing population projections

for single regions are well known, and the mathematicsof such exercises

have been documentedin countlessarticles,and more recently, in several

texts (e.g., Keyfitz, 1968; Pollard, 1973). The mathematicsof population

projection for multiregional systems that experienceinternal migration,

however, are less known, and it is only recently that conceptssuch as the

multiregional life table have given them a methodologicalconsistencywith

the conventionalmechanicsof single-regionpopulation projection.

This paper is an exposition of the mathematicsof multiregional

population projection. We begin by outlining the notion of a multiregional

life table. Next, we show how the stationaryregional populationsof such

a life table serve as inputs to numerical calculationscarried out with the

multiregional versions of the discrete and continuousmodels of demographicgrowth

[e.g., Leslie, 1945, and Sharpe and Lotka, 1911, respectively].

We then concludewith a brief considerationof some of the spatial consequences

of zero population growth.

Although some mathematicsis inevitable in an article such as this

we have attemptedto relegateas much of the mathematicaldetails as possible

to the Appendix. Further details also may be found in the text by Rogers (1975).

Finally, an important ingredient of effective strategiesto understandand

resolve complex problems of a mathematicalnature is a powerful notational

system. In extending the principal results of single-regionpopulation

mathematicsto multiregional population systems,we generalizeconventional



,.

notation as set out, for example, in Keyfitz (1968); although we do not

distinguish notationally betweencontinuousand discrete functions. The

regional dimension is introduced by means of two subscriptswhich refer to

regions of birth and residence. As in the single-regiontheory, the argument

of a variable usually refers to age, and the right superscript,also enclosed

in parentheses,refers to time. The Glossary below brings togethermost of

the variables used in this paper.
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GLOSSARY

ObservedPopulation

3

F. (x)
ｾ

= Number of individuals aged x to x+4 years at last birthday
in region i at time t who were born in region j.

Annual rate of childbearing in region i among individuals
aged x to x+4 years at last birthday.

Stationary (Life Table) Population

.J" (x)
J ｾ

q. (x)
ｾ

Pij(x)

. L, (x)
J ｾ

,T, (x)
J ｾ

,e, (x)
J ｾ

,R, (0)
J ｾ

B.
ｾ

= Number of individuals at exact age x in region i who were
born in region j.

= Probability of dying within the next 5 years for individuals
in region i at exact age x.

= Probability of residing in region j at exact age x+5 for
individuals in region i at exact age x.

Probability of residing in region i at exact age x for
individuals born in region j.

Proportion of x-to-(x+4)-year old residentsof region i
alive and x+S to x+9 years in region j 5 years later•

= Number of individuals aged x to x+4 years at last birthday
in region i who were born in region j. (Also interpretable
as the number of person-yearslived in region i by j-born
individuals between ages x to x+4 years.)

Total person-yearslived in region i from age x to the end
of life by j-born individuals.

Expectationof remaining life in region i for j-born
individuals at age x.

Net reproduction rate in region i of j-born individuals.

= Number of births in the stationarypopulation of region i.

Stable Population

Stable S-year growth ratio.

r Intrinsic rate of growth.



o.
J

i.
J

(%).
J

=

=

=

=

=

=

=

Intrinsic birth rate in region j.

Intrinsic death rate in region j.

Intrinsic outmigration rate in region j.

Intrinsic inmigration rate in region j.

Intrinsic net migration rate in region j.

Proportion of the total stable population in region j that is
x-to-(x+4)-yearsold.

Proportion of the total multiregional stable population that
is in region j.

Stable equivalent of region j.

Number of births in the stable population of region j.

4
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1. The Multiregional Life Table

A multiregional life table exhibits the mortality and migration history of

an artificial population, called a cohort, as it gradually decreasesin size

until all of its membershave died. Normally it is assumedthat the age-specific

mortality and migration experienceto which this cohort is exp.osed remains

constantand that the cohort is undisturbedby emigration and immigration.

Consequently,changes in the cohort's membershipcan only occur in the form of

a decreasedue to deaths.

The data set out in a multiregional life table originate from a set of

m

probabilities of outmigrating and of dying within each interval of age, p.. (x)
ｾ ｊ

and q.(x), respectively,where ｾ p.. (x) + q. (x) = 1. Life tables that deal
ｾ . 1 ｾｊ ｾ

J=
with age intervals of a year are frequently referred to as complete life tables,

whereas those using longer intervals are called abridged life tables. We,

however, shall ignore this somewhat spurious distinction and for convenience

will, without loss of generality, deal only with 5-year age intervals throughout.

Let the regional radix 1.(0)
ｾ

. ... h .th .
ｾｮｳｴ｡ｮｴ ｾｮ ｴｾｭ･ ｾｮ t e ｾ ｲ･ｧｾｯｮ

denote the number of babies born at a given

of an m-region multiregional population system.

Subjecting these regional cohorts to the age-specificmortality and mobility of

an observedpopulation, we may obtain 1.(x), the expectednumber of individuals
ｾ

who survive to exact age x in region i. However, we need to keep track of where

these survivors were born. Consequently, let us introduce an additional subscript

on the left-hand side of the variable to designatethe region of birth, such that

.1.(x) denotes the expectednumber of survivors alive in region i at age x who
J ｾ

were born in region j.

m
They are survivors of the r .fh(x) j-born individuals who at age

h-l J

Consider the .1. (x+5) residentsof region i at age x+5 who were born in
J ｾ

region j.
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x resided in anyone of the m regions (h = 1, 2, ... , m). Denoting by Phi(x)

the probability that an individual in region h at age x will survive and be

in region i 5 years later, we have the relationship:
m

It has beeQ estimatedthat the probability that a female at age 10 and

(1)

residing in California in 1958 would be living in the rest of the United States

5 years later is 0.058749, and the probability that a female resident of the

rest of the United Statesat the same age in 1958 would still be living

there in 1963 is 0.985997. Thus the number of California-born life table

survivors at age 15 in the rest of the United States is

85,751 (0.058749) + 11,544 (0.985997)

5,038 + 11,382

16,420 ,

a quantity that appearsin the second row-first column position in the lower

half of the array set out in Table 1. The regional radices for that table

were both arbitrarily set to 100,000.

Let ,L.(x) denote the total person-yearslived in region i, during the
J ｾ

5-year age interval (x, x+5) by individuals who were born in region j.

Assuming a uniform distribution of outmigrationsand deathsover the 5-year

unit interval of age, we may define the following multiregional generalization

of the single-region linear integration formula for deriving L(x):

.L. (x) = 2.2 [.J,. (x) + .J" (X+5)]
J ｾ J ｾ J ｾ

(2)



TABLE 1- STATIONARY LIFE TABLE POPULATION, REGIONAL FERTILITY RATES, AND MULTIREGIONAL NET

MATERNITY FUNCTION: UNITED STATES FEMALES, 1958, TWO-REGION MODEL

Region Age 1.e1(x) 2f,1 (x) lL l (x)/.e1(0) 2L1 (x)/.e2(0) F
1

(x) 1ｾ 1(x) Ｒ ｾ 1(x)
x

10 85,751 2,291 4.16220 0.14050 0.00032 0.00134 0.00004
15 80,737 3,329 3.92220 0.18953 0.04959 0.19451 0.00940
20 76,151 4,252 3.65597 0.25690 0.12323 0.45052 0.03166
25 70,088 6,023 3.33854 0.33460 0.08945 0.29862 0.02993

California 30 63,454 7,360 3.06113 0.39018 0.05262 0.16109 0.02053
35 58,991 8,247 2.86151 0.42907 0.02387 0.06831 0.01024
40 55,469 8,916 2.70519 0.45559 0.00606 0.01640 0.00276
45 52,738 9,308 2.57330 0.47038 0.00030 0.00078 0.00014
50 50,194 9,507 2.44204 0.47586 0.00002 0.00004 0.00001

Region Age 1.e2(x) 2.e2(x) 1L2(x)/.e1(0) 2L2(x)/.e2(0) F
2

(x) 19i2(x) Ｒ ｾ 2(x)
x

10 11,544 94,672 0.69909 4.70382 0.00048 0.00034 0.00225
15 16,420 93,481 0.92960 4.64493 0.04584 0.04261 0.21291
20 20,764 92,316 1.18150 4.56260 0.12567 0.14848 0.57338
25 26,496 90,188 1.48124 4.46573 0.09311 0.13792 0.41582

Rest of U.S. 30 32,754 88,441 1.73468 4.38419 0.05477 0.09502 0.24014
35 36,634 86,926 1.90037 4.30997 0.02825 0.05369 0.12177
40 39,381 85,473 2.00486 4.22927 0.00819 0.01642 0.03463
45 40,813 83,698 2.05530 4.12971 0.00048 0.00100 0.00200
50 41,399 81,490 2.06703 4.00307 0.00001 0.00003 0.00005
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We have estimatedthe number of California-born life table survivors at age 15

in the rest of the United Statesto be 16,420. Table 1 gives 11,544 as the

correspondingtotal for those 5 years younger. Hence the total number of

person-yearslived in the rest of the United Statesbetweenages 10 and 15 by

the 100,000 California-born females is

= 69,909 •

or 0.69909 years per California-born female.

The remainderof the multiregional life table follows directly. First, we

complete the survivorship and migration history of the mu1tiregiona1cohort of

babies. Next, we compute the total person-yearsin prospectbeyond age x by

The

.T(x)
J

Ｎｾ (x)
J

=
,T, (x)
J 1

ＬｾＮ (x)
J 1

beyond age x for j-born individuals then follows directly as:

y=x

life
m

t
i=l= m
I:

i=l

of residence,.T,(x)say. for each birth cohort ｾ Ｎ Ｈ ｏ Ｉ Ｌ where
J 1 J

z
.T.(x) = t ,L.(y), z being the last age interval of life.
J ｾ J 1

region

,e(x)
J

expectationof

and
. T. (x)

= J 1

m
I: ,1,. (x)

. 1 J 11=

= (4)

Thus, we conclude that a j-born individual currently at age x can expect

to live a total of je(x) more years, of which ,e. (x) years will be spent in
J J

region j and .e.(x) years will be spent in region i, i=l, 2, ••• , m, ＨｩｾｪＩＮ
J 1
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Summing the various columns of person-yearslived in Table 1 and adding

to these totals the person-yearslived by those under age 10 and over age 55,

we may find the total person-yearslived beyond each age, by region of

residenceand birth, and the correspondingexpectationsof remaining life at

each age. From such calculationswe conclude, for example, that a

California-born baby girl,under the regional mobility and mortality schedules

that prevailed in the United Statesin Ｑ Ｙ Ｕ Ｘ ｾ ｨ ｡ ｳ an expectationof life at

birth of 73.86 years of which 24.90 years, on the average,will be lived in the

rest of the United States. A baby girl born in the rest of the United States,

on the other hand, has a life expectancyof 73.11 years, of which only 5.75

years, on the average,will be lived in California.

Table 2 presentsthe regional expectationsof life at birth by region of

residencefor the same 1958 data that generatedTable 1 but disaggregates

California into four regions: the San Francisco, Los Angeles, and San Diego

StandardMetropolitan StatisticalAreas, and the rest of California. For

purposesof comparison, the correspondingexpectationsof life at birth for

males are also included.

The data in Table 2 indicate that the migration patternsof males and

females are remarkably similar, with males exhibiting slightly higher levels

of geographicalmobility. (The proportions of expected lifetimes to be lived

in the regions of birth are higher for females born in all but the rest of

California region.) The heaviestmigration level out of California occurs in

the San Diego region, where almost a half (45 to 47 percent) of a baby's

expected lifetime is expectedto be lived outside of California. This no doubt

is due to the large number of births that are attributable to Navy and other

military personnelstationedin that region.



TABLE 2 REGIONAL EXPECTATIONS OF LIFE AT BIRTH

10

BY REGION OF RESIDENCE: UNITED STATES MALES AND FEMALES, 1958,

FIVE-REGION MODEL

A. Males

Region of Region of Residence
Total

Birth 1. 2. 3. 4. 5.

1. San Francisco S.M.S.A. 32.51 5.50 1.10 5.59 22.92 67.62

2. Los Angeles S.M.S.A. 4.11 36.06 1.56 3.62 22.16 67.50

3. San Diego S.M.S.A. 3.64 7.67 21.72 2.46 31.95 67.44

4. Rest of California 8.81 7.39 1.27 27.09 22.78 67.35

5. Rest of U.S. 1.34 2.69 0.58 0.87 61.26 66.74
,

B. Females

Region of Region of Residence

!
! Total

Birth 1. 2. 3. 4. 5.
I

1. San FranciscoS.MgS.A. 35.96 I 6.61 1.18 6.02 24.22 73.98

2. Los Angeles S.M.S.A. 4.77 40.81 1.79 3.82 22.97 74.15

3. San Diego S.M.S .A g 4.22 9.05 24.63 2.61 33.26 73.78

4. Rest of California 10.59 9.09 1.37 27.97 24.71 73.73

5. Rest of U.S. 1.42 2.99 0.55 i 0.83 67.35 73.14
i



2. The Discrete Model of Multiregional Demographic Growth

Populationprojectionswork out the numerical consequencesto an initial

population of a particular set of assumptionsregarding future fertility,

mortality, and geographicalmobility. The mechanicsof such projections

typically revolve around three basic steps. The first ascertainsthe

starting age distribution and the age-specificschedulesof fertility,

mortality, and migration to which this population has been subject during a

past period. The second adopts a set of assumptionsregarding the future

behavior of such schedules. And the third derives the consequencesof

applying these schedulesto the initial population.

The discretemodel of multiregional demographicgrowth expressesthe

population projection processby means of a matrix operation in which a

multiregional population, set out as a vector, is multiplied by a projection

matrix that survives that population forward through time (see Appendix-A.2).

The projection calculatesthe region and age-specificsurvivors of a multi-

regional population of a given sex and adds to this total the new

births that survive to the end of the unit time interval. This processmay

be describedby the following systemof equations:

11

m
ｾ

j=l
ｾ Ｍ Ｕ s x ｾ ｾＭＵＬ

i = 1, 2, ... , m
(5)

m
ｋｾｴＫｬＩＨｸＫＵＩ = ｾ
ｾ j=l

x=O, 5, 10, •.. , z
i = 1, 2, ... , m

(6)

where we continue to assumea time and age interval of 5 years, and where

b., (x)
ｊ ｾ

the averagenumber of (female) babies born during a 5-year

unit interval and alive in region i at the 'end of that

interval, per (female) person in region j aged x to x+4

years at the beginning of the interval;
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s .. (x) = the probability that a (female) resident of region j aged
J1.

x to x+4 years will be alive and in region i 5 years later;

ｋ ｾ ｴ Ｉ Ｈ ｸ Ｉ = the (female)population in region j aged x to x+4 years at time t·,
J

a = the first age of childbearing;

ｾ the last age of childbearing;

Z ｾ the last age interval of life (e.g., 85 years and over).

As in the single-regionmodel, survival of individuals from one moment in

time to another, 5 years later, is calculatedby diminishing a regional

population to take into account the decrementdue to mortality. In the mu1ti-

regional model, however, we also need to include the decrementdue to outmigration

and the increment contributed by inmigration. An analogousproblem is presented

by surviving children born during the 5-year interval. Some of thesemigrate

with their parents; others are born after their parentshave migrated but before

the unit time interval has elapsed.

In the United Statesan estimated446,634 [ =Ki
t
)(20)] and 5,149,902

[ ］ｋｾｴＩＨＲＰＩｊ women, aged 20 to 24 years at last birthday, were living in

California and in the rest of the United States, respectively,at mid-year of

1958. Recalling the two-region life table population for California and the

rest of the United States that appearsin Table 1 and using the formula for

s .. (x) that is developed in Equation ｾ Ｎ Ｑ Ｒ Ｉ ｯ ｦ the Appendix we may compute,
1.1.

for example,
lL l (25) 2Ll (25) 3.33854 0.33460
lL 2(20) 2L2(20) 1.18150 4.56260

s11(20) = = 0.90596 .lL l (20) 2Ll (20) 3.65597 0.25690
lL 2(20) 2L2(20) 1.18150 4.56260

Analogous calculationsyield the outmigration proportion s2l(20) = 0.02232.
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(t) (t).
The sum of the two products sll (20) K

l
(20) and s21(20) K2 (20) ｧ ｾ ｶ ･ ｳ the

expectednumber of women aged 25 to 29 in California in 1963 [Equation (6)J:

K(t+l) (25)
1

(0.90596)(466,634)+ (0.02232)(5,149,902)

= 537,719.

Utilizing the formula for the fertility rates b .. (x) set out in Equation
ｾ ｊ

(A.13) of the Appendix we may calculate the contribution made to the first

age group in the rest of the United States in 1963 by surviving female children

of 20-to 24-year-oldwomen residentsof California in 1958:

b12(20) = ｾ｛ＨＰＮＱＱＲＶＰＩｆｬ (20) + (0.90596)(0.11260)Fl (25)

+ (0.09050)(4.90700)F2(25)J

into which we may substituteF
l

(20) = 0.12323, F
l

(25) 0.08945, and

F
2

(25) = 0.09311 to find

b
12

(20) = 0.03217.

Applying this rate to the estimated446,634 females in California aged

20 to 24 years in 1958, we find their contribution to the first age group in

the rest of the United States in 1963 to be 446,634 (0.03217) = 14,368 girls.

Adding this total to the correspondingcontribution made by 20-to 24-year-old

females in the rest of the United States in 1958 we obtain the total contribution

(t+l) ..to K
2

(0) made by U.S. women aged 20 to 24 ｾｮ 1958, and ｡ ｧ ｧ ｲ ･ ｧ ｡ ｴ ｾ ｮ ｧ all such

totals across the childbearingages [Equation (5)J, we find ｋ ｾ ｴ Ｋ Ｑ Ｉ Ｈ Ｐ Ｉ = 9,638,313,

the resident population aged 0 to 4 at last birthday in the United Statesat

mid-year 1963. Adding this total to the resident population at all other ages

gives the rest of the United Statesa projected grand total of 86,612,665

females for 1963. California's projected total female population for the same

year is 8,646,045. In Table 3B we find that the correspondingtotals in 1958

were 80,844,419and 7,395,438, respectively.
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It is well known that a regional population which is closed to (i.e••

undisturbedby) migration will. if subjectedto an unchangingregime of mortality

and fertility, ultimately achieve a stable constant age composition that increases

at a constant stable growth ratio. ｾ say. In Rogers (1975) it is shown that this

same property obtains region-by-regionin the caseof a multiregional population

system the totality of which is closed to migration and subjectedto an unchang-

ing multiregional scheduleof mortality. fertility. and internal migration.

Knowledge of the asymptotic propertiesof such a population projection

helps us understandthe meaning of observedage-specificbirth. death. and

migration rates. In particular. the quantity r = 0.2 In A gives the intrinsic

rate of growth that is implied by the indefinite continuationof observed

schedulesof mortality. fertility. and migration. Table 3 shows that this rate

is 0.02064 in the 2-region projection and 0.02065 in the 5-region projection.

Both rates are below the 0.02070 yielded by the single-regionmodel. The

differencesare a consequenceof aggregationbias.

A related but equally useful demographicmeasureis the stable eguivalent

Y (Keyfitz, 1969) of each region and its proportional allocation acrossage

groups in that region. C.(x), which is the region's stable age composition.
ｾ

The former may be obtained by projecting the observedmultiregional population

forward until it becomesstable and dividing the resulting age-region-specific

1 b h bl h · . d h th h i htota s y testa e growt ｲ ｡ ｴ ｾ ｯ A ｲ｡ｾｳ･ to ten power. were n s t e

number of iterations that were neededto achieve stability. Summing across

all age groups in a region gives the regional stable equivalentY.• whilst
ｾ

dividing the number in each age group in region i by Y. gives C.(x). region i's
ｾ ｾ

age composition at stability. Finally. dividing each region's stable equivalent

by the sum total of all regional stable equivalentsgives (%) .• the stable regional
ｾ

share of the total multiregional population in region i at stability.
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Table 3 presentsthe above describeddemographicmeasuresfor our

California-rest of the United Statesdata of 1958. Also included are intrinsic

rates of birth, death, and migration. (These are defined in Appendix A.2.)

Note that if the 1958 schedulesof growth were to continue unchanged,California's

populationwould ultimately stabilize at about 18 percent of the national total

(doubling its 1958 share) and would increaseat an annual rate of approximately

20.6 per 1000. Three-fourthsof California's stable populationwould reside

in the San Franciscoand Los Angeles SMSAs and about one-third of the population

would be under 15 years of age. Net migration into the statewould be positive,

but both the San Diego SMSA and the rest of California each would experiencea

slight net outmigration of about 0.4 per 1000. Both the highest birth rate

and the highest proportion of the aged would be found in the San Diego SMSA,

a reflection of San Diego's dual roles as military base and retirement haven.



TABLE 3 - MULTIREGIONAL PROJECTIONSTO STABILITY AND ASSOCIATED
PARAMETERS: UNITED STATES FEMALES, 1958

A. FIVE-REGION PROJECTION

16

Projections REGION OF RESIDENCE
and Stable
Growth l. San Francisco 2. Los Ange1esT3. San Diego 4. Rest of Cal 5•Res t 0 f U. S•(Parameters ｓ Ｎ ｾ Ｎ ａ Ｎ S,MSA. S11SA.,
I K(1958) 1 941.994 3.723.919 446.390 1.283.135 80 844 419

'70 (1958) 0.0220 0.0422 0.0051 0.0145 0.9162

K(2008) 7.561.538 14.488.817 2.334.043 ! 4.634 969
,

180.567.030r

%(2008) 0.0361 0.0691 0.0112 0.0221 i 0.8615•
I Y 3.620.347 6.612.727 1 023.696 2.210.093 t 61.171.949

!

% 0.0485 0.0886 0.0137 0.0296 • 0.8196

C(0-14) 0.3275 0.3297 0.3404 0.3520 0.3456

C(15-64) 0.5953 0.5904 0.5570 0.5717 0.5828

C(65+) 0.0773 0.0799 0.1027 0.0763 0.0716

A l.10878

r 0.02065

b 0 0 02593 ! 0.02612 f 0.02826 0.02780 0.02744ｾ

A=b-r 0.00528 I 0.00547 { 0.00760 0.00714 0.00679l

d 0.00652
,

0.00628 0.00721 0.00676 0.00665

i 0.02242
}

0.01832 0.03163 0.02920 0.00245

0.02117
,

0.01751 0.03202 ! 0.02958 0.002590 I

•n 0.00125 J 0.00081 -0.00039 -0.00039 -0.00014

B. TWO-REGION AND AGGREGATED MULTIREGIONAL PROJECTIONS

Projections TWO-REGION MODEL
AGGREGATIONS OF SINGLE-

and Stable MULTIREGIONAL MODELS
Growth

REGION

Parameters l. California 2. Rest of U.S. TWO-REGION FIVE-REGION MODEL

K(l958) 7.395.438 80,844.419 88.239,857 88.239.857 88.239.857

K(2008) 28,704.425 180.787.223 209.491,647 209.586.397 209.416,093

Y 13 182 724 61.427.080 74 609 804 74.638.813 74.172,787

% 0.1767 0.8233 1.0000 1.0000 1.0000

C(0-14) 0.3337 0.3456 0.3435 0.3435 0.3443

C(15-64) 0.5865 0.5828 0.5835 0.5834 0.5835

C(65+) 0.0798 0.0716 0.0730 0.0732 0.0722

A 1.10874 \ 1.10874 1.10878 1.10905

r 0.02064 0.02064 0.02065 0.02070

! b 0.02651 0.02744 i 0.02728 0.02727 0.02734

6=b-r=d 0.00587 0.00680 I 0.00663 0.00662 , 0.00664



children in region i per year.
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3. The Continuous Model of Multiregional Demographic Growth

The principal contribution of the continuousmodel of demographicgrowth

lies in its ability to trace through the ultimate consequencesof applying a

given s±eduleof fixed age-specificrates of fertility, mortality, and migration

to a population of a single sex. It is, therefore, a natural generalization

of the multiregional life table's stationarypopulationwhose total births

are equal to total deaths. When births are not forced to equal deaths, but

insteadare assumedto occur according to rates that are forever fixed, we

obtain the more interestingmodel of a stablemultiregional population. By

associatingthe births of a current generationwith those of a preceding

generation,one can develop several important constantsthat describethe

ultimate growth and regional age distributions of such a population.

A continuousmodel of single-sexpopulation growth may be defined foca

multiregional population systemby means of a straightforwardgeneralization

of the correspondingsingle-regionmodel. Beginning with the number of female

births at time t in each region, B.(t), say, we note that the number of women
1

aged x to x+dx in region i at time t, were born since time zero and are survivors

of those born x years ago anywhere in the multiregional system and now living
m

in region i at age x, that is E B.(t-x).p.(x)dx, where x ｾ t. At time t, these
j=l J J ｾ

women give birth to

[ ｾ B.(t-x).p.(x)lL,(x)dx
j=l J J 1 J1I1

Here .p,(x) denotes the probability that a
J 1

baby girl born in region j will survive to age x in region i, and m.(x)dx is
1

the annual rate of female childbearingamong women aged x to x+dx in region i.

Integrating the above expressionover all x and adding w.(t) to include
1

births to women already alive at time zero gives the fundamental integral
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equation system

B, (t)
1.

t r m ]= W,(t) + JL ｾ B,(t-x),Pi(x) m,(x)dx,
1. 0 j =1 J J 1.

i = 1, 2, ... , m (7)

For all t beyond the last age of childbearing, those surviving from time

zero will no longer contribute to current births, i.e., W.(t) :: 0 for e>a, and (7)
1.

then reduces to the homogeneousequation system

t > a

t m t

B.(t) - J ｾ B.(t-x),p,(x)m.(x)dx = S
1. 0 j::1 J J 1. 1. 0

m
ｾ

j::1
B, (t-x) . ｾＬ (x)dx

J J 1.

i = 1, 2, •.• , ro,

(8)

where Ｎ ｾ Ｎ Ｈ ｸ Ｉ = .p.(x)m,(x) is the mu1tiregiona1generalizationof the net
J 1. J 1. 1.

maternity function of the single-regionmodel (Keyfitz, 1968, Ch.6). With

this mu1tiregiona1net maternity function we may associatethe moments

f
a n

.R,(n) = x ＮｾＬＨｸＩ､ｸ
J 1. J 1.

et

i,j = 1, 2, "', m (9)

among which jRi(O) is of particular interest inasmuch as it defines the

number of (girl) children expectedto be born in region i to a (girl) baby

now born in region j. Summing this measureover regions of residencewe find the

region-of-birth reproductionrate for region j:
m

ｾ ,R, (0)
i=l J 1.

Alternatively, summing the same measureover regions of birth we obtain the

region-of-residencereproductionrate for region i:

B
1 B

2
m
ｾR. (0) :: 1Ri(0) +- ZRi(O) + = r: .R. (0)B. B.

...
Bi

1.
j=l J 1.

1. 1.

where the weights introduced into the summation reflect the total number of

births in each region.

(10)

(11)
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As in the single-regionmodel, the solution of (7) can be found by first

obtaining a solution of (8) and then choosingvalues for the arbitrary constants

in that solution so that in addition to satisfying (8), B.(t) also satisfies (7).
1.

Following the procedureused in the single-regionmodel (e.g., Keyfitz, 1968, Ch.5)

we adopt the trial solution B.(t) = Q.e
rt

and rewrite (8) as
1. 1.

-rx
Q.e .p.(x)m.(x)dx

J J 1. 1.
, i = 1, 2, ... , m,

where the range of integrationhas been narrowed to take into account that

m.(x) # 0 only for a ｾ x ｾｾＮ Finally, dividing both sides of the equation
1.

by Q. gives the mu1tiregional characteristiceguation system
1.

m
1 = L:

j=l
i 1,2, •.. , m, (12)

-- ｊｾwhere . 'i'. (r)
J 1. a

-rx
e

ｾ
.P. (x)m. (x)dx = J
J 1. 1. a

-rx
e ＮｾＮＨｸＩ､ｸ

J 1.

Single-regionargumentsmay be used to show that the system of equations

in (12) can have only one real root and that any complex roots which

satisfy (12), must occur in complex conjugatepairs (Keyfitz, 1968, Ch.5).

Furthermore, the real root r is greater than
co

the real part of any complex r09t.
rht

Qhie is increasinglydominatedConsequently,the

by the first term

birth sequenceB.(t) = L
1. h=l

rlt
Q1ie as t becomes large. Thus, ultimately

B. (t) ｾ Q1'
1. 1.

rt
= Q.e

1.

Exponential births lead to an exponentiallygrowing population with a

stable distribution in which each age-by-regionsubpopulationmaintains a

constantproportional relationship to the total population and increasesat

the same intrinsic rate of growth, r. The influence of the initial population

distribution is forgotten as time goes by, a condition known as ergodicity.
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In the single-regionmodel one normally evaluates ｾ Ｈ ｲ Ｉ with the numerical

approximation

ｾ Ｈ ｲ Ｉ ｾ ｾ ｾ Ｕ e-r(x+2.5) 1,(x)F(x)
1,(0)

5
in which the integral J

o
-r(x+t)

e p(x+t)m(x+t)dt is replacedby the product of

-r(x+2.5) L(x)
e , 1,(0) and F(x), the observed fertility rate. The summation is

over ages x which are multiples of 5.

An analogousapproachmay be followed in the multiregional model. We

evaluate the integral

5Je-r(x+t) .p.(x+t)m.(x+t)dt
o J 1 1

-r(x+2.5) .L.(x)
as the product of e , J 1

1,j(O)

Thus we have

and F. (x).
1

ＮｾＮＨｲＩ］
] 1

Using the data set out in Table 1, we may compute, for example,

50
Ｒ ｾ Ｑ Ｈ Ｐ Ｉ = 2Rl(0) = ｾ

x=lO
Fl (x) = 0.105 ,

which defines the number of baby girls by which a woman born in the rest of

the United Stateswill be replacedin California. Analogous computationsgive

We conclude therefore, that under the 1958 scheduleof growth. a girl born in

the rest of the United Stateswill be replaced, in the subsequentgeneration.by

ZR(O) = 0.105 + 1.603 = 1.708 baby girls of whom 0.105 will be born in California.

Correspondingmeasures for a California-born girl are 1.687 and 0.495, respectively.



But r = 0 is clearly not the solution of Equation (12). This can be

readily establishedby substitutingthe values of Ｎ ｾ Ｎ Ｈ ｏ Ｉ into (12) and solving
J 1

for Q
2
/Q l and Ql /Q2 ,respectively. Solving the first equation

we obtain Q2/Q l = -1.829; the solution to the second is Q
l
/Q

2
= -1.218 or,

equivalently, Q2/Q l = -0.821. Since we have two different estimatesof the

same quantity it is clear that we have not yet found the correct value for r.

By a processof iteration we ultimately converge to r = 0.02059, for which

21

ｬｾｬ (r) = 0.711

Substitutingthese into Equation (12) gives Q
2
/Q

l

0.711 + (4.823)0.060 = 1

4.823 in both cases, i.e.,

(1/4.823)0.282 + 0.941 1



22

4. The Spatial Consequencesof Zero Population Growth

During the past decade, severalWhite House task forces. countless

congressionalcommittees, and scores of public interest groups have attempted

to define the outlines of a desirablenational population growth policy. taking

as their starting point the widespreadconviction that such growth is not

taking place the way it should. Even though these committeesand task forces

span more than a decadeand several administrations,their respectiveproducts

have been remarkably similar in coverage.major themes. and proposals. Most

begin by projecting the nation's population growth to a net increaseof anywhere

from 80 to 145 million Americans by the turn of the century. Almost all

of these study groups then assert that without public intervention, a majority

of citizens will inherit steadily growing, already overcrowdedand poorly

planned metropolitanareas. (See, for example, the various reports of the U.S.

Commission on Population Growth and the American Future, 1972.)

The contention that America's population crisis stems from a propensity to

overbreedoverlooks the evident fact that any demographic imbalance in the U.S.

today is less one of absolutenumbers than of their maldistribution. The notion

of a population distribution policy thereforehas wide appeal but. unfortunately,

insufficient substance. An important contributing factor to this lack of sub-

stanceis our poor understandingof the dynamics of multiregional demographic

growth and distribution.

Demographersagree that becauseof the large number of young people in

America's population today. immediate zero population growth is not a .practical

objective. Consequently,most projectedpaths toward a stationarypopulation

assumean averageof approximately2.11 births per woman from now on and hold

mortality fixed. On the assumptionof zero or negligibly small net immigration,

such a projection leads in about 70 years to a stationarypopulation that is
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approximately40 to 50 percent larger than the current population. Much has

been made of the social and economic consequencesof such a population and

particularly important have been the analysesof its stationaryage composition--

an age composition that would have a higher median age and virtually constant

numbers from age zero to 50. (See, for example, Coale, 1972.)

But what of the spatial distribution of such a stationarynational population?

What are the alternativepaths in a geographiccontext? Will we, for example

have as Alonso (1973, p. 191) puts it "a nationally stable population

composedof many localities declining in population, many localities growing,

and only some remaining stable"?

A nationally stationarypopulation may arise out of a growth processwhich

exhibits a zero growth rate in each short interval of time or it may develop out

of a long-run averagezero growth rate which occurs as a consequenceof a

combination of sequencesof positive growth, of zero growth, and of decline.

Since no obvious advantagesarise from the latter case, demographersquite

naturally have viewed the attainment of a stationarypopulation as arising from

a continuationof zero growth in the short-run. Thus the normal assumption

involves a fixed mortality scheduleand fertility set at replacementlevel.

An analogoussituation arises in the case of a multi regional population.

By augmentingthe assumptionsof fixed mortality and replacementlevel fertility

with the assumptionof fixed migration we may obtain a stationarymu1tiregiona1

population. In such a case, each region in the systemwill grow at a zero rate

of growth. (Alternatively, we may assumethat zero growth for the mu1tiregiona1

system is a consequenceof an aggregationof zero and nonzero growth rates in

its constituentregions. The dynamics of this situation are more complex and

will not be consideredin this paper.)
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If mortality is fixed and one thousandbaby girls born at each moment

replace themselves,on the average,with a thousandbaby girls as they move

past their childbearingyears, we will ultimately obtain a stationaryzero

growth population. But the women who survive to the childbearing ages must

have enough daughtersto replace not only themselvesbut also those women who

have not survived to become mothers. Thus we specify that the net (and not the.......-

gross) reproductionrate of the female population be unity, i.e., R(O)=l.

Reducing observedage-specificfertility rates proportionally to obtain a net

reproductionrate of unity then is one way of achieving a stationarypopulation.

The last column in the lower half of Table 4 shows that had the U.S. female

population in 1958 immediately moved to replacementlevels, the 88 million

female population of that year would have grown to 113 million (the stationary

ｾ ｵ ｩ ｶ ｡ ｬ Ｚ ｾ ｾ Ｌ Y) before attaining zero population growth.

The multiregional analog of the above calculation is straightforward. We

simply reduce the observedage-specificre?ional fertility rates proportionally

until region-of-birth net reproductionrates are all equal to ｵ ｮ ｩ ｴ ｹ ｾ i.e.,

.R(O) = 1, j = 1, 2, ..• , m. (To avoid interrupting the flow of the argument, we
J

have relegatedthe discussionof such a calculation to the Appendix.) The

mechanicsof the population projection processitself, however, remain unchanged.

Table 4 sets out some of the more interestingconsequencesof an immediate

movement to replacementlevels of fertility by the 1958 U.S. female population.

that has served as our numerical example throughout this paper. (Note that

Table 4 is the zero ｧ ｲ ｯ ｾ ｴ ｨ counterpartof Table 3, which illuminatep the long-run

consequencesof an unchangingcontinuanceof presentrates.)

are of some interest and merit elaboration.

Several findings

First, observe that the spatial allocations or sharesof the stationary

multiregional population in Table 4 do not differ significantly from those of



TABLE 4 - MULTI REGIONAL PROJECTIONSTO ZERO GROWTH AND ASSOCIATED
PARAMETERS: UNITED STATES FEMALES, 1958

A. FIVE-REGION PROJECTION
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Projections REGION OF RESIDENCE
and Stable
Growth l. San Francisco 2. Los Angeles 3. San Diego 4. Rest of Cal. 5. Rest of U.S.
Parameters S.M.S.A. S.M.S.A. S.M.S .A.

K(1958) 1 941.994 3,723 919 446 390 1,283,135 80.844.419

%(1958) 0.0220 0.0422 0.0051 0.0145 0.9162

K(2008) 4 132.157 7,869,750 1,216,643 2 398.295 95,274,261

%(2008) 0.0373 0.0710 0.01l0 0.0216 0.8592

y 5.887,834 10,558 059 1,546,379 3 337,595 92.180,796

% 0.0519 0.0930 0.0136 0.0294 0.8121

C(0-14) 0.1997 0.1960 0.1705 0.1979 0.2014

c(1S-64) 0.6296 0.6223 0.5874 0.6212 0.6309

C(65+) 0.1707 0.1818 0.2422 0.1810 0.1677

A- 1.00000

r 0.00000

b 0.01359 0.01317 0.01l78 0.01315 0.01375

t.=b-r 0.01359 0.01317 0.01l78 0.01315 0.01375

d 0.01334 O. 01305 0.01599 0.01438 0.01366

i 0.01906 0.01624 0.03167 0.02775 0.00224

0 0.01931 0.01636 0.02746 0.02651 0.00233

n -0.00025 -0.00012 0.0042L 0.00124 -0.00009

B. TWO-REGION AND AGGREGATED MULTIREGIONAL PROJECTIONS

Projections TWO-REGION MODEL AGGREGATIONS OF
SINGLE-and Stable MULTlREGIONAL MODELS

Growth REGION

Parameters l. California 2. Rest of U.S. TWO-REGION FIVE-REGION MODEL

K 7 395 438 80 844 419 88 239 857 88 239 857 88 239 857

K 15 442 904 95 404 038 110 846 942 110 891 106 110 653 183
y 20 765 005 92 670 056 ll3 435 061 113 512 666 ll2 988 412

% 0.1831 0.8169 1.0000 1.0000 1.0000

0.1927 0.2014 0.1998 0.1997 0.2003

C 0.6249 0.6310 0.6299 0.6296 0.6308

C 0.1824 0.1676 0.1703 0.1707 0.1689

A- 1.00000 1.00000 1.00000 1.00000

r 0.00000 0.00000 0.00000 0.00000

b 0.01322 0.01375 0.01365 0.01364 0.01369

6=b-r=d 0.01322 0.01375 0.01365 0.01364 0.01369
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the stable mu1tiregiona1population in Table 3. In both cases,California

receivesapproximately18 percent of the national population with the San

Francisco, Los Angeles and San Diego SMSA's receiving 5, 9, and Ｑ ｾ percent,

respectively. Thus it appearsthat the spatial allocation effects of

proportionally reduced fertility are negligible.

Although the redistributiona1effects of proportionally reduced fertility

are negligible, the age compositionaleffects are not. As in the single-region

model, reduced fertility producesan older population which has a much higher

percentageof its members in the 65 years and over age group. However, the

interaction of reduced fertility and fixed migration schedulesproducesan uneven

regional allocation of the aged. Thus although California under zero growth

would have about 18 percent of its population in the 65-year and over age group,

San Diego would have more (24 percent) while San Franciscowould have less

(17 percent). The spatial population dynamics leading up to this result are

clear. San Diego, becauseit is a retirement haven, receivesrelatively "older"

inmigrants than does San Francisco. As the proportion of the aged increases·

nationally, San Diego will receive a heavier than averagenet inflow of migrants.

This is why its net migration rate changesfrom a negative 0.4 per 1000 in Table

3 to a positive 4.2 per 1000 in Table 4. San Francisco'scorrespondingrates,

on the other hand, exhibit a reverseshift, decreasingfrom a positive net

migration rate of 1.2 per 1000 to a negative rate of 0.2 per 1000.

Finally, Table 4 shows that regions which exhibit higher than averagebirth

rates prior to zero growth will have lower than averagebirth rates during zero

growth. Once again San Diego offers an interestingcase study. According to

Table 3, it has the highest intrinsic birth rate of all 5 regions in the system

(28 per 1000). Yet in Table 4 its intrinsic birth rate is the lowest (12 per 1000).

The population dynamics producing this reversalare the same as those outlined
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earlier and result from the relatively older population that San Diego would

have under zero growth. (Note that San Diego's intrinsic death rate is the

highest both before and during zero growth).

In one of his contributions to the final reports produced by the Commission

on Population Growth and the American Future, Peter Morrison (1972, p. 547)

observed:

" •.•demographicprocessesinteract in subtle and often complex ways,

and the mechanismsby which declining fertility would influence

population redistribution are only partially understood."

It is hoped that this paper has identified and illuminated some of these

mechanisms.
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APPENDIX

THE MATHEMATICS OF MULTI REGIONAL POPULATION GROWTH

A.1 The Mu1tiregiona1 Life Table

The componentsof a mu1tiregiona1 life table originate from a set of sur-

ｶ ｩ ｶ ｾ ｳ ｨ ｩ ｰ Ｍ ｯ ｵ ｴ ｭ ｩ ｧ ｲ ｡ ｴ ｩ ｯ ｮ matricesR(x), x = 0, 5, 10, ••• , z-5, which are applied

in the appropriatesequenceto a collection of survival matrices ｾ Ｈ ｸ Ｉ which

describe the number of individuals attaining age x by region of birth and

residence.

we obtain

Starting with the first survival matrix

1,(5) = P(O)t(O)
'" - '"

teO), a diagonal matrix,
'"

where, for example, in a two-region system

[

PH(0)

K(O) =
P12(0)

t (0)
'"

More generally, we may define the following matrix counterpartto Equation (1):

t (x+5) = P(x) t (x)
ｾ - '"

(A.1)

th ,th
where the elements in the i row and J column of t(x) and R(x) are .t.(x)

'" J 1

and P.,(x), respectively.
J1

Observe the transposedsubscripting in the matrices, and note the Markovian

assumptionthat is implicit in (A.1), i.e., the same probabilities are applied

to all residentsof a region irrespectiveof their previous life-residencehistory.

We have elected to defy traditional matrix notation and use transposed

subscripting in order to preservea 1eft-to-right ordering of places of residence

while retaining the usual "matrix-times-a-vector"multiplication processused in

the single-regionmodel (e.g., in Keyfitz, 1968 , Ch. 3).

Integrating (A.1) over 5-year intervals to find
5

hex) = J ｾＨｸＫｴＩ､ｴ
o
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we use the linear approximation

S'-- ]
ｾＨｸＩ = 2" ｾＬｧＬＨｸＩ + i(x+S) (A.2)

where the element in the i
th

row and jth column of 1(x) is .L.(x).
J ｾ

Summing the various person-yearslived to obtain
z

T(O)...., ｾ ｾＨｸＩ

x=O
(A.3)

we may calculate the matrix of expectationsof life at birth by place of birth

and residence:

e(O) = T(O) t(O)-l
...., ...., '"

h h 1 . h . th d .th 1 f (0) .were teeement ｾ ｮ t e ｾ rowan J co umn 0 Z ｾｳ

(A.4)
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A.2 The DiscreteModel of Mu1tiregiona1 DemographicGrowth

The mu1tiregiona1growth and distribution processdefined in Section 2 of

this paper enablesus to express the relation between the population at time

t and time t+1 as a set of linear, first-order, homogeneousdifference

equationswith constantcoefficients. These can be expressedcompactly in

matrix form. Two of the most logical formulations use alternativegeneralizations

of the so-calledLeslie matrix for the single-regioncase. The arrangementof

elementsdefined in Rogers (1966) was of the form

.911 Q21 G-m1

Q12 .222
G-m2

G
'"

G G G
'" 1m '" 2m "'mm

i CA.5)
: I

!

I
I
I

• s .. (z-5) ｾ1J

where

G.. =
"'1J

r
i 0
I
I

!Sij(O)

I

o b .. (a-5) ••• b .. Ｈ ｾ Ｍ 5 )
1J 1J

s .. (5)
1J •

o .... o

for i,j = 1, 2, • III ., m.

An alternativearrangement,suggestedby Feeney (1970), is

10
,

0 ](0'-5) ｾ Ｈ ｾ Ｍ Ｕ Ｉ 0 0I ,.. ,.,. ,.,.

.§ (0)

H == ｾＨＵＩ

ｾＨｺＭＵＩ 0



We shall follow Feeney'sdesignationof Q as the multiregional matrix growth

operator and of !:! as the generalizedLeslie matrix. The matrix expression

of the multiregional growth processusing the multiregional matrix growth

operator is

ｻ ｾ Ｈ ｴ Ｋ ｬ Ｉ ｽ = Q ｻｾＨｴＩｽ (A.6)

where ( , ,
ｾ

I
I

I K(t) K(t)(O)

I
...... 1 i i

I
J

{!S(t)}
I K(t) l ｻｾｩｴＩｽ ｋｾｴＩＨＵＩ= \ and < "i

......2 ( l.

I i
I K(t) I

ｋｾｴＩｃｺＩ!

J !l "'m l. )

The same growth processexpressedwith the generalized1eslie matrix is

32

where

r K:(t) (0) I r '1
...... I Kit) (x) I

J

I I

I
{K:(t) 'I K:Ct) (5) I

{gCt) (x)} ｋ ｾ ｴ Ｉ Ｈ ｸ Ｉ". J = ) and = I". I

i
I .

K(t) (z)
I K(t)(x)

I l, m
'"

CA.7)
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Survivorship and Outmigration

Consider an m-region population systemwith k.(x) individuals at age x in
1

region i. Then, as in the life table population, we have that

k. (x)
1

m

+ ... = L:
j=l

.k. (x)
J 1

i = 1, 2, ... , m, (A.8)

where .k.(x) denotes the number of j-born individuals who are in region i at
J 1

age x. The expected survivors of the multiregional population after five years

are

k. (x+5) =
J

m

L:
i=l

k.(x)p .. (x)
1 1J

j 1, 2, ..• , m,

where Pij(x) is the probability that an individual in region i at age x will

be in region j at age x+5. Substitutingthe definitional relationshipof (A.8)

into the above equation and utilizing the fact that i-born individuals can

never becomemembersof a j-born population, and vice-versa,we have that

.k. (x+5)
J 1

m
= L:

h=l
i,j = 1, 2, ..• , m

or, in matrix form,

ｾ Ｈ ｸ Ｋ Ｕ Ｉ = R(x) ｾ Ｈ ｸ Ｉ

whence

-1
P(x) = k(x+5) k(x)- '" '"

The expectedsurvivor.s of this multiregional population aged x to x + dx,

k(x)dx, say, after 5 years are....

k(x+5)dx = P(x)k(x)dx- - '"

and those betweenages x and x+5 expected to survive 5 years are

,g(x+5)
5

=J
o

k(x+5+t)dt....,

5
= JR(x+t) ｾ Ｈ ｸ Ｋ ｴ Ｉ ､ ｴ

o
(A.9)
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As in the single-regionmodel, we assumethat the survivorship and out-

migration behavior of the stationary life table population adequatelyrepresents

that of the empirical population. Thus, substitutingthe life table matrix

product ｾ Ｈ ｸ Ｋ Ｕ Ｉ ｾ Ｈ ｸ Ｉ Ｍ ｬ for K(x) in (A.9), we obtain

5 1
ｾＨｸＫＵＩ =S ＡＨｸＫＵＫｴＩｾＨｸＫｴＩＭ ｾＨｸＫｴＩ､ｴ

o

And adopting the multiregional analog of the numerical approximation to

this integral that is normally used in the single-regionmodel [e.g., Keyfitz,

1968 , p. 247J we find

5 5 J-l 5
!(x+5) = JｾＨｸＫＵＫｴＩ､ｴ [ JｾＨｸＫｴＩ､ｴ JｾＨｸＫｴＩ､ｴ
000

= ｾＨｸＩｾＨｸＩ

where

-1
S(x) = L(x+5)L(x),.., ..... '"

-1= L(x+5)L(x) K(x)
'" .... ,..,

(A.lO)

(A.ll)

In the case of a two-region model, Equation (A. 11) yields, for example,

.L. (x+5)
ｾ ｾ

. L. (x)
ｾ ｾ

.L. (x)
ｾ J

.L. (x+5)
] ｾ

.L. (x)
J J

.L. (x)
] ｾ

.L. (x)
J J

(A.12)

Generally population projectionsdo not call for population totals

disaggregatedby place of birth. Hence, we may consolidatethe ｾ Ｈ ｸ Ｉ matrix

into the vector

{g(t)(x)} = ｾＨｴＩＨｸＩ {l} , and post-multiply both sides of (A.lO)

We have added a t superscriptto denote time and have placed a bar over the

vector in order to distinguish it from the vector ｻ ｾ Ｈ ｴ Ｉ ｽ , to which we ascribed

a somewhatdifferent structure in (A.6).
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Fertili ty

To complete the multiregional population projection, we must include an

estimateof the total number of births during the unit time interval. Denoting

the age-region-specificannual birth rate by F.(x), we multiply it by the
ｾ

arithmetic mean of the initial and final populations of ages x to x+4 in region i:

K;t)(x) + ｋｾｴＫｬＩＨｸＩ

2
1 ( (t) m (t) "\
- K. (x) + L; s .. (x-5)K. (x-5) ,
2 '- ｾ j=l ｊ ｾ J /

and since this number is exposed for 5 years, we multiply it by 5. The women

in region i aged x to x+4 togetherwith those aged x+5 to x+9 at last birthday

will contribute, during the 5-year time interval, a total of

births. Of these, a proportion

F.(x) + 2
2
ｻｋｾｴＩＨｸＫＵＩ + ｋｾｴＫｬＩＨｘＫＵＩｊｬ F.(x+5)

ｾ ｾ ｾ ｾ

iLj(O) will be surviving residentsof region
5 1,. (0)

ｾ

j at the end of the time interval. Adding through all ages of childbearing,

ｾ through ｾ Ｌ rearranging,and adopting the more compact notation of matrix

ｾ ｬ ｧ ･ ｢ ｲ ｡ Ｌ we have

{g(t+1) (0)} 1
2

where ｾ (0) and !(x) are diagonal matriceswith regional radices and regional

fertility rates, respectively, set out along their principal diagonals.

We have therefore the age-region-specificfertility elements

b .. (x)
ｾ ｊ

1
= -

2

r·L.(O)
I ｾ 1
l. 1,. (0)

ｾ

Fh (X+5)] (A.l3)
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Stable Growth

Having expressedpopulation growth in matrix form, as in (A.6), we now

may examine, by means of repeatedmultiplication, the long-run implications

of maintaining current age-specificbirth, death and outmigration rates.

For example, observe that

{
K(t+2)1 = G ｻｋＨｴＫｬＩｾ =
- J ｾ ｾ )

and, in general,

(A.14)

The propertiesof such a projection as n increasesindefinitely have been

studied by Leslie (1945) and Keyfitz (1968), among others, and more recently

by Sykes (1969), Parlett (1970), and Rogers (1975). This body of theory,

commonly referred to as stable growth theory, draws on the propertiesof

matriceswith nonnegativeelements,and, in particular, on what is commonly

referred to as the Perron-Frobeniustheorem.

The Perron-Frobeniustheorem establishesthat any nonnegative, indecomposable,

primitive squarematrix has a unique, real, positive characteristicroot, A say,

that is larger in absolutevalue than any other characteristicroot of that

matrix. Moreover, one can associatewith this dominant characteristicroot

a characteristicvector that has only positive elements,which for convenience

we shall assumeare scaled so as to sum to unity.

To establishthe asymptotic propertiesof the projection processin (A.14),

we first partition each submatrix G.. of G at the highest age of reproduction
Ｍ ｾ ｊ

[i.e., after the column headedby b .. Ｈ ｾ Ｍ Ｕ Ｉ in (A.5)]. Then we permute the
ｾ ｊ

rows and columns of G to form the similar matrix G in which the upper partitioned

parts of each G.. are brought togetheras the submatrixy. to form the upper
Ｍ ｾ ｊ --

left corner of g. Since g and g are similar matrices, they have the same

characteristicroots. Because
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only the submatrix ｾ of G can affect the growth of the population below the

highest age of reproduction, it can be shown that the characteristicroots of

the submatrix V completely determine those of G, and therefore of G.- -
From here on we may follow the usual sequenceof argumentsused in the

single-regiontheory. First, we may establishthe primitivity of ｾ Ｌ under

certain conditions regarding the positioning of positive fertility elements in

that matrix. We then may draw on the Perron-Frobeniustheorem to establishthe

existenceof a unique, real, positive, dominant characteristicroot and

associatedpositive characteristicvector. Finally, we may show that successive

powers of ｾ converge to a limiting form with proportional columns, leading to

the observationthat the effects of the initial population distribution on

those at future points in time diminish as time increases,and ultimately

disappearentirely as the population assumesthe stabledistribution. This

feature of the projection processusually is establishedby diagonalizing ｾ

under the assumptionthat its characteristicroots are distinct (Rogers, 1971,

pp. 422-423).

The sequenceof argumentsoutlined above hinges on the establishmentof

conditions under which V is primitive. One such condition in the single-region

theory is that at least two adjacent fertility elements in the first row be

positive (Pollard, 1973, pp. 46-47). A natural generalizationof this condition

to the multiregional case is, of course, that two adjacent fertility elements

be positive in each and every submatrix V.. of V. However, as in the single-
ｾ Ｑ ｊ

region case this condition can be shown to be unnecessarilyrestrictive (see

Rogers, 1975, Ch. 5).



38

Intrinsic Rates

As Stone (1968) points out, classical work in stable population theory

has ignored migration and thereforehas not dealt with the notion of stable

migration rates. His proposedformulas for stable age-specificmigration

rates are our starting point for developing the notion of intrinsic migration

rates for the mu1tiregiona1 theory.

Stone defines

m
ｾｴＩＨｸＩｾ Shj(x)

h=l
5i .(x) hlj

J
ｋｾｴＩＨｸＩ

J

and

5
o.(x) =

J

m
E

h=l
hlj

to be the stable age-specific inmigration and outmigration rates, respectively,

of a regional population experiencingstable growth. Analogously,

5
d.(x) =

J
1 -

may be defined to be the stable age-specificdeath rate of the same population.

Thus among people aged x in region i at stability, a proportion 50. (x) leave
J

the region during a 5 year interval of time while, simultaneously,a fraction

5d .(x) die and a total of
J

individuals migrate into the region to give it an inmigration rate of 5i .(x).
J

But outmigrations, deaths, and inmigrations also occur among babies during the



same time interval. For example,

m

I: Ｌ ｾ Ｈ ｏ Ｉ /51.(0)
h=l ] ]
h#j

is the proportion of births in region j who migrate and survive to be members

of the first age group outside of region j at the start of the next unit time

interval. Hence, the consolidated"crude" 5-year stable outmigration rate of

region j is

z
(t) 5I: K. (x) o. (x)

.Lh(O)5 x=O ] ] 5
b

m
o. = + I: J

] z
ｋｾｴＩＨｸＩ

] h=l 5.e.(0)
l:

]

x=O ] h#j

where \ is the corresponding5-year stable birth rate:
]
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\
j

=
z
l:

x=O

By an analogousargument

z
ｋｾｴＩＨｸＩＵ､ＮＨｸＩ

m
I: I: ｪ ｾ (0)

x=O ] ]
h=l5

d + \. 1 -
] z

ｋｾｴＩＨｸＩ
]

5.e.(0)I: ]

x=O ]

｣ｾ､ 5 i . ｣｡ｾ be ｦ ｯ ｵ ｾ ､ as a residual since, ｾ Ｌ definition
J

ｾ ｾ ) -ｾ ｾ . -
u .} ｾ , -j j .J .J

where A is the dominant characteristicroot of the projection matrix E. and

r=0.2 In A' To transform (A.15) into the correspondingequation for intrinsic
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rates:

r = b, - d, - 0, +' = b, d, + n, b. t:.. (A.16)1,
J J J J J J J J J

we rewrite (A. 15) as

5r
- 1 = \, _ sd. 5 + 5.e - 0, 1.

J J J J

and multiply both sides of the equationby
r

to find (A.16) where
sr 1e -

b,
f_r 5b , d, -(es;-J5d ,

1
J \ esr_l J J J

\

f r 15 • ( r ) Si
(A. I?)

0, I 5 o. i,

J
J \er-lJ J J \e5r_l j

n. = i, o. 6, d, + o. - i. = d. - n.
J J J J J J J J J
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A.3 The Continuous Model of Multiregional Demographic Growth

the set of fundamental integral equations in Equation (7) may be collected

together in matrix form as the multiregional renewal equation

where ｾ Ｈ ｸ Ｉ is a diagonal matrix with diagonal

element in the i th row and jth column of £(x)

(A .18)

elementsm.(x) and where the
ｾ

is .P.(x). Note that [!\.(t)} and
J ｾ .-

ｦ ｾ Ｈ ｴ Ｉ ｽ are vectors, and observe that £(x) denotesa matrix that is different

from f(x).

For the casewhere t exceeds ｾ Ｌ the last age of childbearing, births among

those surviving from time zero will be zero, that is, ｦ ｾ Ｈ ｴ Ｉ ｽ = fQ}, and (A.18)

reduces to the ｨ ｯ ｭ ｯ ｧ ･ ｾ equation first set out by LeBras (1971):
ｾ

｛ ｾ Ｈ ｴ Ｉ ｽ = J ｾＨｸＩﾣＨｸＩ ｦＮｾＨｴＭｸＩｽ､ｸ
Ct

(A .19)

The matrix product M(x)P(x), which we shall denote by the matrix ｾ Ｈ ｸ Ｉ Ｌ is the
ｾ ｾ ｾ

multiregional net maternity function [Rogers, 1974 ] with which we may asso-

ciate the moment matrices

ｾ n
!(n) = J x ｾＨｸＩ､ｸ

Ct

To solve (A.19) we adopt the trial solution ｛ ｾ Ｈ ｴ Ｉ ｽ

ｲ ｾ -rx
gives [Q} =. e !1(x)!(x) f,9} dx

Ct

｛ｉ ｾ -rx ]= Q' e ,t(x)dx

= '¥",,(r) [.g},

rt
= [gJe which when substituted

into (A.19)

(Ao20)

where

:K(r)

t(x) = M(x)P(x) is the multiregional net maternity function and
"" ""' ....

J
13 -

= e-rx t(x)dx is the multiregional characteristicmatrix.
r:;

We now have reduced our problem from one of solving the integral equation

in (A.19) to that of solving (A.20) which, unlike (A.19), is a function of only

a single variable, r. To solve for r in (A.20), we rewrite that equationas
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from which we conclude that ｛ ｾ ｽ is the characteristicvector that corresponds

to the characteristicroot of unity of the matrix Y(r), and r is the number,..,

for which that matrix has a characteristicroot of unity or, equivalently,

1(r) - I I = o. (A.2l)

The matrix 1(r) normally has only positive elements. Consequentlyby

the well-known Perron-Frobeniusproperties of positive matrices [Gantmacher,

Vol. II, 1959 , pp. 53-66J it has a real and positive dominant characteristic

root, ｾ ｬ (r), say, which is a simple root and is greater than the absolute

value of any other characteristicroot. Moreover, we may associatewith ｾ ｬ Ｈ ｲ Ｉ

a characteristicvector [21}' say, that has only positive elements. Finally,

the dominant characteristicroot ｾ ｬ Ｈ ｲ Ｉ decreasesin value as r is increased.

The dominant characteristicroot ｾ ｬ (r) is in fact a function that assigns

to any value of r the dominant characteristicroot of the matrix !(r). This

function is continuous, concave upward throughout, and its values decrease

monotonically from + ｾ to 0 as its argument increasesfrom - =to Ｋ ｾ Ｎ Con-

sequently, ｾ ｬ Ｈ ｲ Ｉ = 1 can occur only once. And since ｾ ｬ (r) is the dominant

characteristicroot of Y(r), it will always assumethe value of unity at the,..,

highest value of those real roots r that satisfy (A.2l). That is, ｾ ｬ (r 1 ) = 1,
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A.4 The Spatial Conseguencesof Zero Population Growth

A baby girl born at a given moment in region j will, according to Equation

(10) , have a net reproductionrate of

m m ｾＭＵ

.R(O) = L: .R. (0) = L: L: .L.(x)F.(x) j = l, 2, ... , m.
J i=l J ｾ i=l ｸ ｾ

J ｾ ｾ

(A.22)

Supposethat we wish to reduce each of these m observedregional rates to

unity by proportionally reducing each region's fertility rates. That is,

imagine a set of m fractions Yl , Y2' ... , Vm such that

m ·m ｾ Ｍ Ｕ

L: y ..R.(O) = L: L: .L.(x) y. F.(x)
i=l ｾ J ｾ i=l x=a J ｾ ｾ ｾ

1 , j 1, 2, ... , m. (A.23)

or, more compactly, in matrix form

where the apostrophedenotestransposition. The requisite fractions then may

be obtained by premultiplying both sides of (A.24) by the inverse of the trans-

pose of the net reproductionmatrix , whence

(A.25)

By way of illustration, recall the net reproductionmatrix for our

2-region population example of California and the rest of the United States

set out in Section 3. The inverse of its transposeis

-0.26665]

0.64126

r-

[ ]

1 I 0.86263

ｾ Ｇ Ｈ ｏ Ｉ - =L-0.05635

h} = {:::::::?
and multiplying the two sets of regional age-specificrates in Table 1 by these

Thus

fractions gives the replacementlevels of fertility that lead to the zero-growth

results presentedin the lower half of Table 4. (It is of interest to note

that in summing the revised regional age-specificrates



and multiplying by 5 to obtain the regional gross reproductionrates, GRR.
ｾ

say, we find that they are not identical. The GRR for California is 1.0295,

while that for the rest of the United States is 1.0435.)
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