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ON THE OPTIMAL STOCHASTIC CONTROL

OF WATER RESOURCES SYSTEMS*

A. SzBllBsi-Nagy

ABSTRACT

To get an effective control of large river basin systems, the decision

maker wishes to develop optimal operatingpolicies. To establishthese

policies, the future behaviour of inputs, such as available resources,de-

mand to be satisfied, etc., must be known or rather predicted. Becauseof

the uncertaintiesinherent in water resourcesprocesses,both in quantity

and quality, the prediction scheme to be constructedshould be able to handle

stochasticeffects. Moreover, the algorithms should be recursive to avoid

cumbersomecomputationsand to be able to be used for real-time forecasting.

This is especially important in case of emergency,e.g. flash floods.

A general state spacebasedformulation of water resourcessystems 1S

given. It is sho,m that the general model of runoff control systems is able

to handle different kinds of uncertainties. Optimal sequentialprediction

algorithms for linear discrete time stochasticWR systemare presented.

In the framework of runoff control the case of optimal stochasticdynamic

water quality control is discussedand feedbackcontrol policies are

established.

The algorithms proposedmight help the decisionmaker in working out

the optimal operatingpolicies for a large river basin system in the pre-

senceof different kinds of uncertainties.

* to be presentedas a semi-tutorial paper at the UNDPfUN Interregional
Seminar on River Basin and" InterbasinDevelopment, September1975, Budapest.
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INTRODUCTION

It is rather a truism that the Large River Basin and/or Interbasin

problems are extremely complex. They involve physical, economical, social,

legal, poiitical and several other issues. The collection and dynamic

behaviour of the above listed issuesare usually called Water Resource(WR)

System.

There ｾ ｳ no question about the fact that the main problem dealing with

WR systems is how to bring them into the 'best' possible stateseither in

a short-termor in the long run. In other words, how to make decisions

during either the operationalor the planning phase in order to reach

maximum utility. The decisionsare generally sequential in time, e.g.

short-termreservoir policies or long-term investment strategies. The

different kinds of water resourcesdecisionsare imbedded here into the

collective term of runoff control [8]. The purposeof runoff control is

to regulate the distribution of water both from quantity and/or quality

standpoints. The runoff control problem is essentiallya stochastic

control problem, mainly due to (1) the randomnessof natural and man-made

environmental effects and (2) some uncertaineconomic effects. It is ob-

vious, that the role of predictions in the water resourcespolicy making. or,

as we term in selectingan optimal runoff control strategy. is highly im-

portant. (Throughout this paper the word prediction is understoodin a

fairly broad context. it might include economic forecastingas well as

hydrologic predictions.)

The purposeof the paper is to proposea systemsmethodology for solving

runoff control problems. As the indicated problems are fairly sophisticated,

the tools for their solution are, unfortunatelynot less sophisticated.

Here, we consider optimal sequentialprediction/controlalgorithms using

which the runoff control problems can be solved. In the first part, the

state spacedescriptionof WR systems ｾ ｳ given. Then the measureof system

performanceis discussed follpwed by the determinationof an optimal pre-

diction algorithm. The third part deals with the problem of optimal stochastic

water quality control. the later being an important issue in the general run-

off control. The proceduresdevelopedcan readily be applied for other run-

off control problems too. All in all. the author would like to clarify some

runoff control problems from a methodologicalpoint of view trying to

follow in the meantimeEinstein'sdictum that "an explanation should be as
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simple as possible but no simpler".

Before going into the details here 1S a remark on the terminology

used throughout the paper.

Although these are some rather standardterms, borrowed from econometrics,

1n water resourcesmanagementto name random WR systems,here we rather use

the terms of teh control science,noting that in many instanceswe are talking

about the same thing and nothing else but the 'name of the game' is different.

To prove this and to help the reader'sorientation in the labirinths of

different terminologiesTable I contains some technical terms of the control

field as well as the correspondingones of the econometrics. The table is an

extensionof that given by Mehra [19].

STOCHASTIC DISCRETE TIME WR-SYSTEMS

In the past decadesconsiderableefforts were made to describe the be-

haviour of WR systemsby using the so-called 'black-box' approach. The rain-

fall/runoff models as well as the input/output econometricmodels give good

examplesob this statement. The questions 'What is going on inside the box?'

'How can we relate the internal dynamics to the input/output behaviour?',

and 'How can we incorporateour a priori knowledge to the model?' lead to

the introduction of a new concept. This is the concept of state. In-

tuitively speaking, the state is the minimal amount of information about

the past history of a systemwhich is required to predict its future be-

haviour [3].

For deterministic systems it means that the stateof a system is a

set of quantitiesxl (t), x 2(t), ••.xn(t) which if known at t = to are de-

termined for t > t by specifying the inputs u(o) to the system for
- 0

t > t. Subsequentlywe are going to deal with discrete time systemsonly
o

where the systemsare evoling on the discrete time set T = {t : t =
t , t + l, ... ,tf }, but are continuous in the state. Here t is the
000

initial time, t f 1S the final time which may be specified t
f

= N or

'free' dependingupon the problem. For example, in long-rangedevelopment

problems t f is usually fixed (planning horizon, N) while in real-time WR

control problems it is generallyunspecified.

As Xstr8m [3] indicates for stochasticsystemswe naturally cannot

require that the future behaviour be uniquely determinedby the actual statex.
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TABLE 1.

TERMINOLOGY OF SYSTEM IDENTIFICATION

IN ECONOMETRICS ANO CONTROL

Control Theory

Input variable
Output variable
Control function
Identification

Identifiable model

Unidentifiable model
Noise
White Gaussiann01se

Colored noise

Measurementnoise

Processnoise
Stochasticstatevariables
Performanceindex
Separationtheorem
Markovian model
Rational z-transform
Impulse responsemodel
Filtering
Prediction
Impulse responsefunctiOn}
Markov parameters
Weighting pattern

Econometrics

Exogeneousvariable
Endogeneousvariable
Decision function
Specificationand estimation
of the model

Justidentifiedor overidenti-
fied model

Underidentifiedmodel
Error
Nonautocorrelatednormally

distributed error
Autocorrelatederror
Sample uncertainty
Measurementerror
ffudel uncertainty •
Natural uncertainty
Objective function
Certainty Equivalent Principle
Distributed Lag Model
Rational lag distribution
Final form model
Exponential smoothing
Forecasting

Impact, interim and
total multipliers
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A natural extensionof the concept of state to stochasticsystemswould be

to require that the probability distribution of the statevariable x at

future time be uniquely determinedby the actual value of the state.

Recalling the propertiesof a Markov process,we thus require that the

systembe describedas a Markov process.

Consider a general dynamic lumped WR ｳｹｳｴ･ｭｾ as depicted in Fig. 1.

the behaviour of which on the discrete time set T can be describedby the

stochasticdifference equation

x(t + 1) =3'ix(t),u(t),w(t),t] (1)

where x(t) is the n-vector of the system states,a vector in the n-dimensional

state spaceX C ｾｾＬ x(t) E X; u(t) is the vector of control variablesat

time t and is an element of the set of admissiblecontrols U ｃｾ［ u(t) € U;

wet) is the s-vector of uncertaindisturbances(essentiallythe process

noise), wet) € D5ls, while the given function ｾ ｣ ｨ ｡ ｲ ｡ ｣ ｴ ･ ｲ ｩ ｺ ･ ｳ the properties

of the ｳ ｹ ｳ ｴ ･ ｭ ｾ Ｎ First of all, a few words about the control u. As it

will be discussedlater the principal aim of applying any control is to

bring our system into a desired, either physical or economical (or both)

state. There are, however, certain constraintsto be consideredwhen

choosing a control strategy. Constraints,usually given either by physical

laws or by limited resources(monetary or whatsoever). A control which

satisfies the control constraintsduring the entire time interval [to,tfl

is called an admissible control and the set of admissiblecontrols is

denotedby U.

In order to evaluatethe performanceof the systemquantitatively a

performancemeasureshould be established. Here, the performanceof the

ｳ ｹ ｳ ｴ ･ ｭ ｾ ｩ ｳ characterizedby a scalar loss function of the type

t
f

J L Qt[x(t),u(t)]
t=t

a

where Qt > a is a given cost-functional. Clearly the system performancede-

pends on the statesreachedand the control efforts taken. Further, we

call a control u* E U optimal if it minimizes the loss J subject to the

behaviour ｯ ｦ ｾ Ａ given by (1). However, as the statesare random variables
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the loss J itself is also a random variable, consequentlythere is no way

of defining what is meant by the smallestvalue of J. Therefore, in the

following the expectedloss

(2)

where€f o } denotes the expectedvalue operator, will be chosenas a criterion

to be minimized subject to the same constraintsas above. To evaluatethe

systemperformanceone must know exactly the actual state x at time t. In

other words, it means that there is no measurementerror and sample un-

certainty 1n determining the state. One can expect intuitively that this

is rarely the case. There are rather inaccurate 'measurements',z(t), on

the statex(t). (Here. the 'measurement'should be understoodin a

fairly large context, it might mean real measurements.say of rainfall,

or the evaluationof certain economic issuessuch as market effects in water

pricing etc.) That is the measurementsare given by

z(t) =If[x(t),v(t).t] (3)

where z(t) ｅ ｾ is an m-vector of measurementson the systemstates

ｾ ｣ ｴ ｵ ｡ ｬ ｬ ｹ the outputs); v(t) is the m-vector of measurementnoise and the

ｦ ｵ ｮ ｣ ｴ ｩ ｯ ｮ ｡ ｌ ｾ ｩ ｳ given and characterizesthe measurement'device'. Obviously

m ｾ n indicating that sometimesnot all the statevariables are ob-

servable. In the case of complete state information z(t) = x(t) while for

incomplete state information we have a stochasticmeasurementvector

sequenceup to the current time t

T T T T'L = [z (t ).z (t + 1) ..... z (t)]too

consisting pf the previous measurementvectors. (The upper T refers to

transpositionand should not be confusedwith the discrete time set T.)

Clearly, ｾ ｴ is a vector in an m x (t - to + 1) dimensional space

Z .'V E Z and has the 'chain' propertyt' r.:t t

T rr T T:T
'Z't = ｌｾｴＭｬＧ z (t)J t E. T (4)
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Now, the stochasticcontrol problem can be formulated as follows:

IFind an admissiblecontrol strategyfor the WR system des-
cribed by (1) and (3) such that the criterion (2) is minimal.

As far as the possiblecontrol actions are concernedthere are two funda-

mental ways the control can be specified.

(1) Open-loop: u(t), t = t , t + l, ... ,tf - 1, is a
o 0

fixed time function completely specified before the

control starts;

(2) Closed-loop: u(t) is determinedas some specific function

of ｾ ｴ Ｇ

In the open-loop caseu(t) is a deterministic function. In the closed-loop

caseu(t), t = t • t + l, •••• t
f

- 1 is a stochasticprocess,as it is a
o 0

function of a stochasticprocessz(-). A special caSe of the closed-loop

control occurs when the system statescan be observedperfectly. i.e. when

z(t) = x(t)--no measurementn01se. Of course, even in this special case.

the control is a stochasticprocess. In this case, the admissible control

strategiesare functions which map the state spaceX into the control space

U. u: X -4 U. The closed-loopor feedback optimal control, in case of in-

complete state information. is 1n the form of

(5)

where the functional 5fis called the optimal control law or policy. Notice

that the optimal control policy specifieshow to generatecontrol value at

time t from the observed statevalues up to the time t. In this case the

admissible control strategiesare functions which map the space of ob-

served states (observedoutputs) Zt into the spaceof possible control

actions U. u: ZtxT --)U. Since the dimension of the spaceZt will in-

creaseas t increases,it is much more difficult to determine the con-

trol strategy.

As it will be shown later the predictionsplaya central role in the

choice of the proper control strategy. Now, the problem is as follows:

the actually observedvalues of a stochasticprocessover some interval of
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time are given, then the conditional probabilities of all future values

should be determinedbasedupon those given values. As a definition,
!/,

we call a ｦｵｮ｣ｴｩｯｮｾ !/'-step-aheadpredictor if it maps.Z into the !/'-step
t . t

'enlarged' state spaceX+JI,

(6)

The value of this function for a particular value of ｾ ｴ is called an

JI,"step-aheadprediction and is denotedby ｾ Ｈ ｴ + ｊｬＬｬｾｴＩＮ In the one-step-

ahead case the predictedvalue of the statewill be denotedby x(t + ｬｬｾｴＩＮ

Obviously, the 'goodness'of prediction must also be evaluatedthrough a

given loss function J(o). Now, the prediction problem can be formulated

as follows:

Given the set of measurementsｾ ｴ find and estimate

x(t + !/, ｉｾｴＩ of x(t + 1), !/, > 0, subject to the con-

dition that this estimation (prediction) should

minimize the chosenloss function.

Again, as the loss function J itself is a random varibale the minimization

should be carried out with respect to the expectedloss ｾ ｻ ｊ Ｈ ｯ Ｉ ｽ Ｎ The de-

tails will be given later.

THE MEASURE OF SYSTEM PERFORMANCE

The selectionof the proper performancecriterion 1S a basic issue.

Obviously, the better the criterion characterizingthe real goals, the

more efficient control is achieved. Some examplesof setting up performance

indices to differnt runoff control problems are given as follows:

Minimum-Time Problems,wherethe problem is to transfer a WR

system from an arbitrary initial statex(t ) to a specified
o

target set ｾ Ｌ in a minimum time by applying an admissible

control u(t) € U, t € [to,tf ]. The performancemeasure to

be minimized is

(7.a)
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with t f the first instant of time when x(t) and ｾ intersect

[17] . This is e.g. the caseof flash-floods when the flood

retention reservoirs should either be emptied or be brought

into a prescribedlower level 2 in a minimum time.

Terminal Control Problems, where the problem is to minimize the

deviation of the final state of a WR systemfrom its designed
nvalue d(t

f
) E' R. The performancemeasureto be minimized

might be the following quadratic form

Since positive and negative deviations are equally undesire-

able, the error is squared. A quadratic performanceindex is

chosennot only becauseof its easymathematicalhandling but

becausethe convergencein the mean square implies convergence

in probability [23]. To attachdifferent weights to the dif-

ferent deviationswe can insert a real symmetric positive semi-

definite nxn matrix Q and using matrix notations, the per-
o

formance measurebecomes

or 1n a short-handform

(7.b)

where

with

Ｂ Ｎ ｾ ｾ is the squarednorm of the deviation vector
o .

respect to Qo. To illustrate the terminai control

problems consider again a storagesystem consisting of n

reservoir and assume that certain irrigation demand d(t
f
)

should be satisfied by the time t
f

. In this example x(t
f
)

reflects the volume of stored water which can be used for

irrigation purposesat t f , and Q
o

consistsof the cost

associatedwith the economic lossesof the non-sufficient

irrigation.
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Tracking Problems, where the problem is to maintain the system

statex(t) as close as possible to the desired state d(t) ｅ ｾ

in the interval [to,tf ]. The performancemeasureof these

problems is generally in the form of

t
f

€U} = e{ L
t=t

o

2
II x(t) - ､ＨｴＩｾ Q }

1
(7.c)

where Q
1

is a real symmetric positive semi-definitenXn weighting

matrix. Note that Q1 may be time-varying rather than con-

stant. Some of the water quality control problems give ex-

cellent examples of these sort of tasks. The desiredvalues

for the water quality statevariables are generally given by

standards. For example, let d1(t) be that for the Biochemical

Oxygen Demand ＨｂｏｄＩｾ x1(t) and let d
2
(t) be the standardvalue

for the Dissolved Oxygen Ｈ ｄ ｏ Ｉ ｾ x2(t) to be maintained during

[to,tf ]· Moreover, let q11 resp. q12 be the cost associated

with the BOD resp. DO differences. Then the objective function

to be minimized is

e{.r}

Obviously, 1n this case

(More about the water quality control will be given later)

Minimum-Contral-Effort Problems, ｾ ｹ ｨ ･ ｲ ･ the problem is to trans-

fer a WR system from an arbitrary initial statex(t ) to a
o

specified target set ｾ Ｌ with a minimum expenditureof control

effort. Obviously, the control to be applied must also be

admissible; u(t) ED, t € [to,tf ]. The general performance

measureof this kind of problem is in the form of
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€'{-J} = e{ ;f II u (t) II Q2 1
t=t 21

o j

where Q2 is a real symmetric positive definite weighting

matrix consistingof the cost of 'energy' consumedby

applying a particular control policy. Of course, the

elementsof Q
2

may be functions of time if it is desired to

vary the weighting on control effort expenditureduring the

interval [to,tfJ. To illustrate this problem is straight-

forward. One might think of e.g. the long-rangedynamic

water resourcesplanning problems to be carried out with

minimum energy.

(7. d)

Unfortunately, the real-world problems are rarely so simple as the above

listed ones. They are more

Complex Problems, where there are multiple, sometimescon-

flicting, objectives to be reached. For example, a decision

maker wants to control a WR system in such a way that the

particular final statesof the system be close to their

desiredvalue and in the meantimethe deviations during the

operatingperiod alsobe small by applying as minimal con-

trol efforts as possible. In this case, the performance

measure

g{ J} = e{11 x(t f ) - d (t f ) ｉｉｾ +
o

tf-l

I
t=t

o

[ rx(t) - d(t) II
Q
2

+ II u(t)ll; ]}
1 '2

(7. e)

could be used. In the following we assumethat the weighting

matrices Qo,Ql and Q2 are being independentof time, noting

however, that the results developedare valid for time-de-

pendentmatrices too.

By comparing eqs. (7) with (2) the specialitiesbecome apparent.

LINEAR STOCHASTIC ｗｒｾｓｙｓｔｅｍｓ

In hydrology and water resourcesdevelopmentthe linear

models are of fundamental importance since.mostof
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problems can successfullybe tackled with the assumption

For linear systemsthe functionalsST and Ｐ ｾ Ｇ are linear.

then,that the ｳ ｹ ｳ ｴ ･ ｭ ｾ is governedby the linear stochastic

difference equation

{

X(t +1)
A:

z(t)

¢x(t) + fu(t) + wet)

Hx(t) + vet)

(8)

(9)

where again t E T, x E X cF,n, u E: U C RP, z E j<.m and the uncertainties

{w(t):: t E: T}, {v(t): t E T} are multivariate Gaussianwhite noise sequences

with zero mean values and the covariances

cov

cov

cov

[wet) ,wet) ]

[vet) ,v(t)]

[v(t),w(t) ]

e{w ( t) wT( T) }

e{v(t)vT
(T)} =

e{v(t)w
T

(T)} =

(10. a)

(10. b)

(10. c)

where 0 denotesthe Kronecker delta. In (8) ｾ is an nxn nonsingular
tT

matrix called state transition matrix andf is the nxp control ga1D matrix

while in (9) the rr.xn matrix H is called measurementmatrix. In caseof time

varying systems the matrices ｾ Ｌ f, H, R
l

and R2 depend on time. Here, for

notational simplicity we consider those matriceswith constant elements,

noting however, that the subsequentlydevelopedalgorithm are also valid

for time varY1ng cases, the only thing we ought to do is just to insert

the time as an argument of matrices. As it is indicated by (lO.c) we

assumethat the uncertaintiesare independentof each other. Anyway, this

is an obvious fact. Moreover, it is assumedthat wet) and vet) are inde-

pendentof x(t) and the initial statex(t ) is normal with
o

ｾｻｸＨｴ )} = x(t ) (11. a)
o 0

cov [x(t ) ,x(t )] = €'{(x(t ) - x(t )) (x(t ) - x(t ))T} = pet )
o 0 0 0 0 0 0

(11. b)

One can argue about the basic assumptionsof being the noise process

Gaussianwhite sequenceswith known covariancematrices. Specially he is

right 1n the second issue becauseit is hard to say that those values are

known 1n dealing with hydrologic time series. To overcome this difficulty,
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an adaptivenoise covariancematrix algorithm is introduced in (29].

As concernsthe handling of 'colored' noises, by augmentingproperly the

statevector with the dependentpart of the processes,the resulting

residual is a white sequence(for details see Porebski (20]).

As far as the performancemeasureis concerned, it might be selected

from eqs.(7) - always carefully considering the objective of the control

to be achieved.

OPTIMAL SEQUENTIAL PREDICTION ALGORITHMS FOR LINEARWR-SYSTEMS

In large river basin managementone of the most crucial issues, if not

that one, IS the lack of reliable predictions. Predictionsfor the future

resourcesas well as those for the future demand. The need for a reliable prediction

scheme is as old as civilization itself and dates back to the good old

Egyptian days. Nowadays, to achieve reliable predictions first of all a

reliable remote sensing network should be establishedwhich then makes

the quick collection of information possible, upon which the prediction

is based. Here, we do not touch this issue - some details can be found In

the WMO Casebook(34] or in [28J. Clearly, for real-time operationof

water resourcesystems, small computersare preferable. Hence, our pre-

diction algorithms must be suited for these small computers. But how? The

answer is simple: Using recursiveprediction algorithms in which there

is no need to store all the past measurementsfor the purposeof predicting

future behaviour of the time series in question. Moreover, these algo-

rithms offer:

(1) The treatmentof the information of each measurementIn a

sequentialmanner allows for on-line implementations(e.g.

by means of data-acquisitionby automatic measurementdevices

connectedin real-time mode with a central processor)

(2) Time variable parametersand different types of disturbances

can easily be treated. Hence, the suitable prediction scheme

should preferably satisfy the following requirements:

-it should be mathematicallytractable

-it should be easily implementedfor small computers

-it should be generally applicable
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-it should yield an 'optimum' prediction

-it should be adaptableto the varying environmental

conditions

-it should yield an acceptableconvergence.

As it will be shown soon, the state spacebasedprediction models are good

candidatesfor fulfilling the above requirements. We mention in advance

that the prediction schemegiven below can also be applied for economic

forecasting. A somewhat similar approach ｾ ｴ ｯ economic forecasting is dis-

cussed in [11].

It is well-known (see e.g. in Dooge [10] ) that a fairly large class of

lumped hydrologic systems (e.g. rainfall excess/sufacerunoff, runoff/run-

off transformationsof flood-routing etc.) can be describedby a single

input-single output discrete convolution type of model

q

y(t) = 2 g(T)h(t - T) t,T E T
T=O

where h(t) is the input of the system (either controllable or not), g(t)

is the impulse responseof the systemhaving finite memory q and y(t) is

the output process. In practice, however, we have only noise computed

measurements

z(t) = y(t) + v(t)

where v(t) 1S a Gaussianwhite noise process. Hence, the model is

q

z(t) = I g(T)h(t - T) + v(t)
T=O

t,T € T (12)

Note, that although the systemwas assumedlinear, in case of slight non-

linearities, the noise processv(·) might be sought as a term including

those non-linear disturbances. By defining the vectors

H(t) [h(t),h(t - l), ... ,h(t - q)]

Tx = [g(o),g(l), ... ,g(q)]
(13)
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Eq. (12) becomes

z(t) = H(t)x + v(t) (13)

This equation can be looked upon as a measurementequation for the above

defined statevector x, c.f. (9). The missing state equationcan also be

introduced without much difficulty. As it was assumedthat the system is

time invariant, its impulse responseg(o) does not changewith time,

i.e. it is assumedto be the same at time t + 1 as at time t. Using the

above defined statevector, x, this statementcan be formulated as

x(t + 1) <Px(t) + w(t) (14)

where we consider the uncertaintiesby adding a white Gaussiannoise term

w(t). Clearly, (14) plays the role of the state equation, c.f. (8), with

<P = I, the identity matrix and r = o. (Though it is absolutelyunnecessary

here to indicate <P, but becauselater on in the water quality control prob-

lem we deal with the <P 1 I casewe still use the general formulation of

(14). For notational simplicity, on the other hand, H(t) will be denoted

by H, bearing in mind that in this case it is obviously time variant.)

We also assumethat the noises have the propertiesas those of (10).

Now, in the sequentialprediction schemefirst we have to estimate the

state based upon the past and the newest measurementsand then to give a

prediction for the output process.

Assume that given a prior estimatex(tlt - 1) of the system statex(t)

at t E twhich is based on previous measurementsup to t - 1. Then we

seek an updatedestimatex(tlt) which takes into account the new measurement

z(t) at t e: T. Consider this updated estimationas being the linear com-

bination of the previous state arid the new (noisy) measurement

x(tlt) = K(t)x(t!t - 1) + K(t)z(t) (15)

where K(t) and K(t) are time varY1ng weighting matrices as yet unsepe,ified.

In fact, we wish to minimize, in a certain sense, the prediction error



x(tlt) x(tlt) - x(t)
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(16)

Introducing (13) into (15) and utilizing the 'whiteness'of the noise

process, it can readily be seen that (15) is an unbiasedestimationonly

if K(t) = 1- K(t)H. Hence, the state estimation, x(tlt) using the new

measurement,z(t) is

x (t It) = x (t It - 1) + K( t) [z ( t ) ;.. Hx (tit ;..' 1) ] (1 7)

where K(t) is still unspecified, and the initial condition at t = t for
o

the state estimation is given by (ll.a) since x(t It ) = x(t ). As a
o 0 0

measureof the goodnessof the estimation, we use the covariancematrix

p(o) of the prediction error defined as

(18)

the initial condition of which is given by (ll.b), ｳ ｾ ｮ ｣ ･ pet It ) = pet ).
o 0 0

It can also easily be seen that the covariancematrix of x(tlt) can be

projected from that of x(tlt - 1) as

p(tlt)

(19)

As far as the loss function ｾ ｳ concernedwe define it similarly to (7.c),

ｾ Ｎ ･ Ｎ

where Q ｾｳ any positive semidefinitematrix and for the sake of simplicity

let Q I. Having defined the loss function we seek that estimatex'(tlt)

of x(t)--in other words, that form of the yet unspecifiedK(t) - which

minimizes the expected loss (as sometimescalled Bayesianrisk) B
t

= ｾｻｊｴｽＮ
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Since B
t

is the trace of the error covariancematrix (18), the problem

is to minimize the trace norm IIp(tlt)11 of p(tlt), i.e. the length of the

estimationerror vector. Using the propertiesof matrix derivatives, it

can be seen that the weighting matrix K(t) can be obtained from

as

K(t) (20)

which is used to refer to as the Kalman gain matrix. Now, the next step

is the extrapolationof the statevariable. Consider the one-step-ahead

case, when £ = 1. In the processmodel (14) w(.) is a white noise se-

quence so no more information on it is contained in z(.) and thus the best

prediction of w(·) that can be made from z(.) is its mean value, i.e. 0,

consequently,the one-step-aheadprediction of the statevector, given

observationsup to t € T is

x(t + lit) = ｾｸＨｴｬｴＩ (21)

The propagationof predictionerrorsP(tlt) ｾ p(t + lit) can be determined

by computing the predictederror covariancematrix as

Using (21) and (14) and utilizing the fact that the prediction error and

model error are independentof each other, we obtain

(22)

Using the formulas in the order of (21), (22)--and then with t : = t + 1--

(20) (17) and (19) the celebratedKalman filter algorithms [14] [16J are

obtained. The algorithms should be used sequentially, t = 1,2,... , starting

with the given initial concitions at time t. The complete algorithms,
o
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togetherwith the initial conditions, are summarized in Table 2. We mentioned

that in order to obtain the best estimateof the statewe actually should com-

pute the conditional distribution of x(t + 1) given ｾ ｴ Ｎ As the distribution

is Gaussian, it is completely given by the mean x and the ｣ ｯ ｶ ｡ ｾ ｩ ｡ ｮ ｣ ･ P. An-

other interestingfact is that the P and K can be precomputed,so there is

no need to store all the past observationsas the calculationprogresses.

Due to this fact, the conditional distribution of x(t + 1) given ｾ ｴ is

uniquely given by the conditional mean x(t + lit) = ｾ｛ｸＨｴ + 1)1 ｾ ｴ ｝ Ｇ If f

denotes the conditional density we thus have

f[x(t + 1)1 ｾｴ｝ = f[x(t + l)lx(t + lit)],

which means that the conditional mean is a sufficient statistic for the conditional

distribution of x(t + 1) given ｾ ｴ Ｎ In other words, it means that the

knowledge given of x(t + lit) is equivalent to the knowledge of ｾ ｴ Ｇ This

arguementcan be extendedfor the ｾ > 1 caseas well. In fact, the col-

lection of algorithms summerized in Table 2. is the prediction functional

ｾ ｾ of (6). It can be seen that the algorithms fulfill the requirementsfor

a suitableprediction scheme laid down previously.

Although it was assumedthat the system is truly time variant, it

should be stressed,however, that .the above formulation can be used for des-

cribing slightly time variant systemswhichare, due to seasonalchangesmost

common in hydrology. The systembehaviour can however be consideredas being

time invariant within a well defined "data window". This data window, of

course, is of a moving type. As concerns the length of the moving data

window, it is essentiallyequal to the memory of the systemand might be es-

timated from cross-correlationanalysis performed on the input/output pro-

cesses. The moving data window createsthe basis of the sequentialprediction.

Up to this point we assumedthat the noise sequencesare Gaussianwhite ones

with known statistics. However, this is far from being true and the noise

variance estimation should somehowbe included in the algorithms discussed.

This can be done by an adaptive algorithm developedby Sage and Husa [24].

For details, the reader should refer to [29]. In that paper examplesare

also given to illustrate the utility of the proposedprediction scheme ｵ ｳ ｾ ｮ ｧ

simulated sequences. Finally, we note again that the algorithms can be



TABLE Z. OPTIMAL SEQUENTIAL PREDICTION ALGORITHM

SystemModel x(t + 1) = ｾｸＨｴＩ + wet) , w(t)-N(O,Rl )

MeasurementModel z(t) = Hx(t) + vet) , v(t)-N(o,RZ)

Initial Conditions e{x(t )} = x(t )o 0

cov[x(t ),x(t )] = pet )
000

Other Assumption T
ｾｻｶＨｴＩｷ (T)} = 0

State Prediction x(t+llt) ］ ｾ ｸ Ｈ ｴ ｬ ｴ Ｉ

PredictedError pet + lIt) = cI>P(tlt)¢T + R
1CovarianceMatrix

Predictor Gain K(t + 1) = pet + llt)HT[HP(t + llt)H T + RZJ-l
Algorithm

State Estimation Using x(t + lit + 1) = x(t + lit) + K(t + l)[z(t + 1) - Hx(t + lit)]
the New Measurement

Error Covariance pet + lit + 1) = (I - K(t + l)H)P(t + llt)(I - K(t + l)H)T + K(t + l)RZKT(t + 1)
Matrix Algorithm

N
o,
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used for economical forecastingas well. In this respect the reader should

consult Chow [6]. It might also be mentioned that the above algorithms can

also be derived in the framework of Bayesianstatistics. Schweppe[Z5] gives

an excellent treatmentof the BDT applied to dynamic state estimationproblems.

OPTIMAL STOCHASTIC WATER QUALITY CONTROL

The water quality control is one of the fundamental categoriesof the

general runoff control. In the following we will discussa stochasticwater

quality control model which utilizes the previously discussedoptimal sto-

chastic state estimationof the statevariables involved and the dynamic

programming technique.

It is well-known that the Biochemical Oxygen Demand+)(BOD) and the

Dissolved Oxygen (DO) concentrationgive a fairly good measurefor character-

izing the quality of a polluted river. If it is assumedthat

-The width and depth of the river are small compared to the

length on the section [ro,rf ] consideredand

-The effects of longitudinal dispersionalong the length

of the river are small

ｴ ｨ ･ ｮ ｾ ｹ the mass-balance,the following partial differential equationsare

obtained:

aB(r,t) + a(r) aB(r,t) = -K B(r,t)
at ar r

aD(r,t) + a(r) aD(r,t) _- -K D(r t) ()
at ar a' - KdB r, t + KaDs

These are the famous Streeter-Phelpsequations [9] [27] where

r is the distancedownstreamfrom the referencepoint
r , re:[r ,rfJ;o 0_

t denotestime;

(23.a)

(23.b)

B(r,t)

D(r,t)

K
r

is the BOD concentrationin [mg/£],

ｾ ｳ the DO concentrationin [mg/£],

ｾ ｳ the BOD removal (decay) coefficient [day-I],

(say BOD removal by sedimentation),

+) The BOD is usually defined as the amount of oxygen required by
bacteriawhile stabilizing decomposableorganic matter with the
help of dissolved oxygen in the water [9].
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K
d

is the deoxygenationcoetficie11t [jay-1],

K ｾｳ the ｲ ･ ｡ ･ ｲ ｡ ｴ ｩ ｯ ｮ ｣ ｮ ｾ ｦ ｦ ｩ ｣ ｩ ･ ｮ ｴ [day-l]
a

D
s

a(r)

ｾ ｳ the saturation level of D,

streamvelocity at r.

In fact, the above model describesthe self-purification processof the pol-

luted river. (Anyway, the author is aware of the fact that the Streeter-

Phelps model has some drawbacks, e.g. in case of industrial wastes. However,

the methodologydevelopedbelow is general enough to handle more sophisticated

pollution situations as well and the only thing to do is to add some more

balance equations,e.g. for Dissolved ｏ ｲ ｧ ｡ ｾ ｩ ｣ Carbon, for the suspended

biomass etc.) The above nodel is of distributed type and can be pretty well

applied for space dependentproblems, such as e.8. estuarypollution studies.

For small rlvers, however, a simplified lumped parameterBOD-DO interaction

model can be set up by adding a third assumptionto those of the distributed

-The river ':an be decourled into k non-ove'rlappingreaches
k .

;ji(., U ::!I? , = [r ,r
f

], in such a way that BOD and DO con-
ｾ i=l ｾ 0

centratlonsdo not changewith respect to r ｅＮＧｾＮ within
ｾ

that particular reach ｾ Ｎ Ｌ ｾ Ｎ ･ Ｎ
ｾ

aD(r,t) __ 0
ar ' Vr e: gt'i

In other words, a reach is defined as a stretch of the river of some con-

venient length or of which there is only one treatment facility of any kind.

Hence, with this assumptionthe lumped BOD-DO dynamics is describedby

the well-knOlm [9] relations

dB (t)
cit ==

dD(t) =dt

- K B(t)
r

- K D(t) - K B(t) + K D
a d a s

(24.a)

(24.b)

which characterizethe pollution situation at some averagepoint rE.fi.
ｾ

in the reach. Until now the effect/additionof effluentshave not been taken

into account. This can be done by defining the control vector
T

u(t) = [u
l
(t),u2(t)] , where u

l
(t) is for the dumping control of effluents from

the sewage treatmentplant and u
2
(t) is for artificial aerationcarried
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out along the reach, if there is any. The first control might mean, say,

the operationrule for a retention (depletion) reservoir located right

after the treatmentplant and the second control is the timing schedule

for the aerationbrushes. For sure, the controls belong to the set of ad-

missible controls u(t) € U. As far as the stochasticeffects, such as

random disturbancescausedby turbulence,model uncertainties,etc., are

concernedthey were also ignored. Obviously, they can also be easily
Ttaken into account by defining the random vector w(t) = [wI (t),w2 (t)]

which is assumedagain to be a zero mean Gaussianwhite noise sequencewith

(IO.a). And now, to complete the formulation of the water quality control

problem we define the statevariables and the performancemeasure. As we

alreadymentioned in connectionwith the tracking problems, there are

certain water quality standardsto be satisfied during the control period.

Let those be denoted by d = [d l ,d2]T with respect to the BOD and Do con-

centrations. (They might be time varying but for notational simplicity we

assume them to be constant.) Now, we define the statex(t) = [xl(t), x
2
(t)]T

as being composedfrom the deviation from the desired BOD level dl,xl(t) =

= B(t) - dl , and from x2(t) = Ds - D(t), which is called oxygen deficit.

Clearly, the standardvalue d2 correspondingto x2(t) might be set to zero,

since one of the objectivesof the water quality control is to maintain

high DO values whenever it is possible, e.g. d
2

= O. So, using (24) the

complete processmodel becomes

where

dx(t)
dt

ｾ ｸ Ｈ ｴ Ｉ + ru(t) + w(t) (25)

since the more the artificial aeration the less the oxygen deficit, and

reversely.

Due to the fact, that in practice we have discretemeasurement,we

hearafterdeal with the discrete time model
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x(t + 1) = ｾｸＨｴＩ + fu(t) + wet) (26)

where ｾ and f are the same matrices as in (25). Eq.(25) is really a

linear stochasticdifference equation,c.f.(8). The systemdynamics IS de-

piced in Fig.2. We mention here, that ｾ may be time dependent,but it

does not change the picture too much at least from a technical point of

view. It can also easily be proved that the system is state controllable.

As far as the statemeasurementsare concerned.the situation is that the

evaluationof BOD concentrationusually needs several days in a laboratory

and to determine the optimal real-time control policy instantaneousDO

measurementsare available only. Again, the noisy measurmentat one par-

ticular point are assumedto be in the form of (c.f.(9»)

z(t) Hx(t) + vet) (27)

where H = [O.l]T and vet) = [0.v2(t)]T is as (IO.b). Surely. the un-

certaintieshave the property of (IO.c).

A suitable performancemeasureby which various control strategiescan

be compared in order to find the optimal one is in the form of (7.e) or,

becauseof the tricky choice of the statevariables,even simpler as

｣ ｻ ｬ ｬ ｸ Ｈ ｎ Ｉ ｾ ｾ +
o

N-l
I

t=t
o

(28)

i.e. the operational time horizon N is fixed and we assumethat it progresses

with the same 'speed' as the data collection. In other words, we are always

optimizing our decisionsN step ahead. The elementsof the matrices Qo' Q
l

and Q2 are the costs related to the treatmentefficiency and efforts, and

have the same propertiesas those of (7.e).

And now comes the solution. Up to time t the measurements
T T T T

Zt-l = [z (to)'z (to + l), ... ,z (t - 1] have been observedand the problem

is to determine the control strategyu such that the criterion (28) is mini-

mal. The criterion can be split up into two parts as
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I ]
X1 (t)

ｊ Ｍ ｾ Ｉ DEL A Y -- ....-.;.

x1(t + 1) _
"-------

v(t)

ｾ Ｍ Ｍ __ｾ Ｍ Ｍ ｾ MEASURE-

MENT
DEL A Y

FIGURE 2. THE DYNAMICS OF THE DISCRETE TIME
LUMPED STOCHASTIC WATER QUALITY

CONTROL SYSTEM
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ｃｬ･｡ｲｬｹｾ the second term dependson u(t) only. Assuming that a unique mini-

mum ･ｸｩｳｴｳｾ it follows from the Optimization Lemma A.l.(see Appendix) that

{ 2 N-l [2 2J}min ｾ ｾ ｘ Ｈ ｎ Ｉ ｾ ｑ + L IX(T)II Q + 11u(T)"Q =
u(t) 0 T=t 12

t { 2 N-l ｾ 2 2 ] }}］ € ｾ ｩ ｮ e Ilx(N)ll o + L Ilx(T)II Q + Ilu(T)II Q ｉｾｴＭｬ '
u(t) '0 T=t 1 2

(29.a)

given ｾ l' the first ｾt-

respect to the distribution

where ･ ｻ ﾷ ｉ ｾ ｴ Ｍ ｬ ｽ denotesconditional expectation

of the right hand side denotesexpectationwith

of ｾ l' and the minimum is taken with respect to all admissiblestra-
t-

tegies which expressu(t) as a function of ｾ l' Repeatingthe
t-

given above for (29.a) for t = t + l,t + 2, ... ,N - 1 under the assumption

that all the unique minima with respect to u(t),u(t + l), ..• ,u(N - 1) exist,

we obtain

where

i.e. 1n a detailed form

(29.b)

= min ｾ ｻ ｉ ｉ ｘ Ｈ ｴ Ｉ ｬ ｬ ｾ + ＱＱＱｬＨｴＩｬｬｾ + min ｾ ｻ ｉ ｉ ｘ Ｈ ｴ +
u(t) 1 2 u(t+l)

+ I!u(t + 1)11
2

+ min e{···.I2' ｾ ...}
Q2 u(t+2) t-l

j

1)11 ｾ +
1
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Using the (29.b) definition of <yto ) for t + 1 we have

Ｗ Ｈ ｾ Ｌ ｴ + 1) = min e{llx(t + ｬＩＱＱｾ + I\u(t + ｬＩＱＱｾ
t u(t+l) 1 2

+ min
u(t+2)

m i ｮ･ｾｬｸＨｎＩＱＱ ｾ +
uEU 1 1

(29.c)

c3mbining Eqs. (29.b) and (29.c) we obtain the following functional equation

for cy;

which is called Bellman equation and in fact is the result of the Principle

of Optimality+). The recurrencefunctional equation(30)0createsthe

basis for the dynamic programming optimization in order to find the optimal

control strategy. The equation itself is fairly complicateddue to the fact

that the dimension of Zt increaseswith t. However, (30) can be simplified

by taking into account the system structure. To evaluate (30) the con-

ditional distributions of x(t) and Zt given Zt-l should be determined. It

follows from (4) that the ｦ ｩ ｲ ｳ ｾ componentsof ｾ ｴ are identical to those of

ｾ ｴ Ｍ ｬ Ｇ i.e. to determine the conditional distribution of '<'t.giv.en':l't-l it ｾ ｳ

sufficient to know the distribution of z(t) given ':l't-l' Due to (27), how-

ever, it is determinedby the conditional distribution of x(t) given ':l't-l' which

is uniquely given by the conditional mean x(tlt - 1) = ･ｻｸＨｴＩｬｾｴｾｬｽＧ since this

is a sufficient statistic (c.f. the argumentsgiven below (22». In other

words, it means that the conditional mean x(tlt - 1) can be introduced in-

stead of ':l' 1 in (30), i.e.
t-

+) An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisionsmust consitutean optimal
policy with regard to the state resulting from the first decision [4].
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ｃＩｙＨｾＨｴｬｴ - l),t) ］ ｲ ｹ ｃ ｬ ｾ Ｇ ｴ ｟ ｬ Ｌ ｴ Ｉ

min €{II x (N) 11 2
+

u(t),... ,u(N-l) Qo

N-l
+ I ｛ｬｬｸＨﾷｲＩｉｾ + ｾｵＨｔＩｉｾＲｊｬｸＨｴｬｴ - I)}

T=:::t -I

and the Bellman equationbecomes

(31)

＼ Ｉ Ｇ ｉ Ｇ Ｂ Ｈ ｾ Ｈ ｴ ｬ ｴ - l),t) = min ･ ｻ ｬ ｉ ｸ Ｈ ｴ Ｉ ｬ ｬ ｾ
uEU 1

+ ｬｉｵＨｴＩｬｉｾ +C)f'(x(t + llt),t + l)lx(tlt - I)}
-2

(32)

Despite its form, this is a considerablesimplification becausethe dimen-

sion of ｾ is constantand usually much lower than that of ｾ ｴ Ｎ Clearly, the

initial condition for (32) is

･ ｹ ｦ Ｇ Ｈ ｾ Ｌ ｎ Ｉ (33)

As you may recall, we came to the conclusion in the prevIous chapter

dealing with the prediction algorithms, that the conditional distribution of

x(N) given ｾ ｎ ｟ ｬ ｩ ｳ normal with mean ｾ and covarianceP(N). Applying a

sjmple relation given in the Appendix (see there as Lemma A.2) we have for

(33) that

<)'I'"(St,N) = II ｾＬＬｾ + II QoP(N)1I
o

(34)

which is clearly a solution for the Bellman equationat time t = N. As

far as the other time instantsare concerned,we assumethe solution In a similar

quadratic form

<)'1'"( ｾＬ t) = II ｾ ｾ 2 + S ( t)
S(t)

(35)

where S(t) and s(t) are as yet unspecified. Eq.(35) is apparently true for

t = N and gives (34). By induction, it is assumedthat (35) holds for t + 1

and then it will be shown that it holds for t. To evaluate (32) the con-

ditional distributions of x(t) and ｾ Ｈ ｴ + lit) given ｾ ｴ Ｍ ｬ should be known.

It is known from the prediction study that the conditional distribution of
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x(t) given ｾ 1 is normal with meanx(t! t - 1) and covariancematrix
t-

p(tlt - 1). Therefore. the first term of (32). by the use of Lemma A.2.

becomes

(36)

Consideringeqs.(21) and (17) and the presenceof the control func-

tion at the same time. we have

ｾ Ｈ ｴ + lit) = ｾｾＨｴｬｴ - 1) + fu(t) + ｾｋＨｴＩ｛ｺＨｴＩ - ｈｾＨｴｬｴ - 1)] (37.a)

Since the sequencez(t) - ｈｾＨｴｬ t - 1). called'innovations' [13]. is again a

Gaussianwhite noise and its conditional distribution given Z 1 is normal
t-

with zero mean and covariancematrix HP(tlt - I)HT + R2 we have for the

statisticsof (37)

S-{x(t + 11 t) '7't-l} = ｾｸＨｴｬ t - 1) + fu(t)

cov[x(t + Ilt)IZt_l] = cflK(t)[HP(tlt - 1)H
T

+ ｒＲ｝ｋｔＨｴＩｾｔ

(37.b)

(37.c)

Using the above results the Bellman equation (32) becomes

C)'/'tx(tlt - 1).t)= min {llx(t/t - ＱＩＢｾ + I/QIP(tlt - 1)11 + ＢｵＨｴＩｬｉｾ +
uEU -1 2

+ ｬｉｾｸＨｴｬ t - 1) + fu(t)1I ｾ Ｈ ｴ Ｋ Ｑ Ｉ

+ ｉｉｓＨｴＫｉＩｾＨｴＩ｛ｈｐＨｴｬｴ - I)HT + ｒＲ｝ｋｔＨｴＩｾｔｾ + set + 1)}

(38)

And now. if we are looking for an optimal feeback control in the form like

(5). or more specifically using the form u + Lx, where L is of course un-

known by completing squaresin (38) and then elaboratingsome elementary

but tedious algebra. we find that the minimum is obtained for

(39)u*(t) - - L(t)x(tlt - 1)
--------------
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where the optimal control matrix IS

L(t) (40)

and the solution is In the form of (35) with the recurrencerelation

Set) (41)

with the initial condition seN) = Q . (A similar expreSSioncan be ob-
0

tained for set + 1) but it is not used directly to calculate the optimal policy. )

It can be proved [2] that (39) gives really an optimum policy. The complete

control algorithms are summarizedin Table 3. It can be shown [15] that the

solution is unique and stable since

the controlled water quality processspecified by

¢ and r of (26) is state controllable,

the matrices Qo' Ql and Q2 of the performancemeasure (28)

are positive definite.

And now, some remarkablepropertiesof the optimal control are briefly sum-

marized. Notice that the optimal control strategy (39) can be separatedinto

two parts, namely into an algorithm computing ｾ ｨ ･ conditional mean of the states

at time t given the observationsup to t - 1 (this is apparentlydone by the

Kalman filter) and into the computationof the control matrix (40). The

later dependsonly on the systemdynamics <!> and r and the parametersQo' Q
l

and Q2 of the performancemeasureand is independentof the uncertainties.

In other words L(t) can be precalculatedand has the same form as the de-

terministic optimal control solved by dynamic programming. Clearly, the

stochasticeffects are taken into account by using the stochasticstate

estimationalgorithms. This IS a very important and deep result known as

SeparationTheorem (in control [12] ) or Certainty EquivalencePrinciple (in

econometrics [26]). Summarizing, the separationtheorem statesthat, for

linear systemswith quadratic cost functions and subject to additive

Gaussianwhite noises, the optimum stochasticcontroller is realized by

cascadingan optimal estimator (predictor) with a deterministicoptimum

controller. This is depicted in Figure 3, where the fat arrows mean vector

and the systemdynamics is shown in detail in Figure 2. It has been mentioned



TABLE 3. OPTIMAL STOCHASTIC CONTROL ALGORITHM

StochasticControl SystemModel

Incomplete State Information

Control Constraints
{

X(t + 1) = 4'x(t) + ru(t)

ｾ z(t) = Hx(t) + v(t)

u(t) e: U

+ w(t) w( t)---:'Ho, R
l

)

v ( t )---N (0 , R
Z

)

Initial Conditions: the same as at the prediction algorithms and

S(N) = Q
o

PerformanceMeasure S'{J} = ｾｻＢ x(N)II;
'0

N-l
+ l. ｛ｉｉｸＨｴＩＢｾ + ｉｉｵＨｴＩｉｉｾＩｽ

t=t -'1'2
o

The Problem: Minimize §{J} subject to the control and system ､ ｹ ｮ ｡ ｭ ｩ ｣ ｳ ｾ constraints. I
I

\..oJ.....

Optimal Control Policy

Minimal ExpectedLoss

where

u*(t) = - L(t)x(t t - 1)

x(t!t - 1) is obtained from the prediction algorithms,

L(t) = ｛ｾＲ + rTS(t + l)r]-lrTS(t + ｬＩｾ

S(t) = ｾｔｓＨｴ + 1)w + (\ - LT(t) [Q2 + rTS(t + 1)r] L(t)

N-l
minctJ} = !IS{(t o)II S(t ) + IIS(to)p(to)I! + L I!S(t + 1)R111

o t=t
N-l 0

+ I I!p(tlt - l)LT(t)rTs(t + 1)¢!1
t=t

o

+

I
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as Akashi and Nose [1] have shown quite recently, that the separation

theorem holds even if all the random variablesare non-gaussianand

correlated. Well, this was the solution of the lumped stochasticwater quality

control problem using which the on-line real-time control of polluted rivers

becomesfeasible. The distributed parametercase, however, is much more

difficult both from methodologicaland practical computational standpoints.

An effort to the optimal stochasticdistributed water quality control is

found in [30], but at this stage that is far from being readily applicable.

As far as other water resourcesystemsare concerned, the above

methodologymight presumablybe used as an extension to the long-rangedynamic

water resourcesdevelopmentmodels, reported in [7], by consideringstochastic

effects. The same statementholds for stochasticlinear runoff control

problems ( linear reservoirsetc.) as well.

SUMMARY AND CONCLUSIONS

In this paper the role of predictions in water resourcespolicy making

was analyzed. A general state spacebased formulation of WR systemshas been

introduced. It was shown that this general model of runoff contrcl systems 1S

able to handle different kinds of uncertainties. The objective of the WR

systemscontrol were briefly touched and then the different measuresof

systemperformancewere discussed.

Optimal sequentialprediction algorithms for linear discrete time

stochasticvIR systemshave beendiscussedin detail and the advantagesof

the Kalman filtering techniquehave been taken. In the framework of runoff

control the case of optimal stochasticwater quality control has been con-

sidered. Using the discretized lumped parameterStreeter-Phelpsequation the

optimal treatmentcontrol has been determinedby means of stochasticdynamic

optimization. It was shown that the stochasticoptimization processcan be

separatedinto two parts, namely stochasticstate prediction and deterministic

dynamic programming. In this way the optimal feedback control strategies

have been obtained. The proceduresdiscussedoffer that

using time domain formulation, the usual ｦ ｲ ･ ｱ ｵ ･ ｮ ｣ ｹ ｾ ､ ｯ ｭ ｡ ｩ ｮ

based computationscan be avoided on the one hand and the

problem becomesmathematicallytractableon the other;

due to the recursivenessof the algorithms the schemecan
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easily be implementedeven for small computersand are

applicable for real-time on-line forecastingcontrol,

always taking into considerationthe newest information

gathered;

due to the state space formulation, it is generally ap-

plicable for the most general hydrologic time series

(water quantity and/or quality), the joint prediction/con-

trol of multidimensioanl time series (which might include

some economic data) becomesfeasible even in the presence

of different kinds of uncertainties;

the algorithms give optimal prediction control 1n Bayes

sense (Bayesianminimum variance estimators);

the algorithms fulfill the requirementof adaptivity

to changing environmental conditions as through a moving

data window it allows slight modifications in the model

parameters;

the algorithms are convergentand stable under very

general conditions.

Finally, we mention that due to the sometime uncertain future goals

of the water resourcesplanning the theory a fuzzy systems (Zadeh [37]) and

that of the random cost functions (Rozanov [22]) offer powerful techniques.

Clearly, quite a lot of methodologicalwork should be done in the

future to clarify the different sophisticatedissuesof the runoff control.

This paper did not wAnt to be anything other than a humble contribution to

those efforts.
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APPENDIX

Lerrnna A. 1.

Let x E X and z E Z be two scalar stochasticvariables defined on a

probability space and let the control variable u E U be admissible. Let the

loss function J be a function which maps X X Z X U into the real numbers,

J : X x Z x U -7' R. The expectedloss is then e{J(x,z,u)} where edenotes

mathematicalexpectationwith respect to x and z. In case of incomplete state

information the admissiblecontrol strategiesare the functions

u : Z --7 U. The control action thus has to be basedon information

of one of the variables only. Let Nt£)e{J(x,z,u)} denote the minimum of

e{J(x,z,u)} with respect to all admissible control strategiesand let

ｾ ｻ ﾷ ｉ ｺ ｽ a conditional mean g1ven z. Assume that the function f(z,u)

e{J(x,z,u)lz} has a unique m1n1mum with respect to uE U,V z E Z. Let

u*(z) denote the value of u for which the minimum is achieved. Then the

optimization Lemma statesthat

min e{J(x,z,u)} = e{J(x,z,u*(z))}
u(z)

= e. {min e{J(x,z,u)Iz}}z
u

(1)

where e denotesexpectationwith respect to the distribution of z[32].
z

Proof

For all admissiblestrategieswe have

f(z,u) > f(z,u*(z)) = m1n f(z,u)
u

Hence

e{.f(x,z,u)} = e{f(z,u)} > e{f(z,u*(z))}
z - z

= e{min e{J(x,z,u)Iz}}z
u

e{J(x,z,u*(z))}

Minimizing the left hand side with respect to all admissible strategieswe have

mine{J(x,z,u)} > ｾｻｊＨｸＬｺＬｵＪＨｺＩＩｽ
u(z) -

e {min {j(x,z,u) Iz}}z
u

(II)
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Since u*(z) e U is also an admissible strategywe have on the other hand

ｾ ｻ ｊ Ｈ ｸ Ｌ ｺ Ｌ ｵ Ｊ Ｈ ｺ Ｉ Ｉ ｽ > min e{J(x,z,u)}
u(z)

(III)

Combining the inequalities (II) and (III) we find (I) and the Lemma is proven.

Lemma A.2

Let x be a Gaussianrandom vector with mean x and covarianceP and

let S be a nonnegativedefinite matrix. Then

ｾ ｻ ｬ ｬ ｸ Ｂ ｾ ｽ

(Note that the trace norm 1·11 should not be confusedwith the squaredvector

norm with respect to S, ｉ ｉ ﾷ ｉ ｉ ｾ Ｎ Ｉ

The proof is straightforward. Consult [3].
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