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1. - Introduction and Motivation

The theory of productionrefers basically to the problem of optimal

allocation of resourcesor factors of production'such that the total cost

of producinga certain output is minimized. If y is an aggregatemeasure

of output that can be producedfrom a given set of inputs (xl' ••• , xn ) in

certainamounts specifiedby the technical characteristicsof the production

function y = F(Xl , ••. , xn ), and Pl' •.• , Pn are the prices of the inputs,

the problem is mathematicallyformulated by rl, p. 60]

I'
min

X

n
C =A+'" px} . i i

i=l
(1.1)

subject to F(Xl , ••• , xn) = y (constant)

If the productionpossibility set allows an output to be producedby

an infinity of combinationsof productive factors, it would be impossible,

without any other considerations,to determinethe total cost uniquely for

eachoutput. However, the minimization problem in (1.1) eliminates indeter-

minacy, so that by soll/ing (1.1), an optimum value for eachfactor can be

obtainedas a function of input prices and output.

(1.2)

This gives

C*(y, p) = A + f p.x.* = A + f p.g.*(y, Pl' ••• , Pn)
i=l 1 1 i=l 1 1

[1, p. 59J

The cost minimization problem gives a total cost function. At the same

time, it has pointed out the existenceof a dual problem which would allow

for determinationof productionstructuresfrom cost curves (2, p. 159].

Extensionsof the dual relationshipare given by Uzawa [3] and Diewert [4].



The solution of the cost minimization problem is conditionedby the

form of the productionfunction representingthe underlying technology.

The first form of the productionfunction was thAt of Cobb-Douglasr5]. In

1961, Arrow et. ale [61 introducedthe ConstantElasticity of SUbstitution

(CES) productionfunction. More recently, Christensenet'. ale [7J, [8] pro-

poseda form for the productionfunction basedon a secondorder Taylor's

expansion,evaluatedat xi = 1, of ｾ arbitrary explicit production:func-

tion. For example, the two inputs one output formulation would be

2
log Y = log So + 61 log xl + 62 log x2 + B

3
(log xl - log x2) (1.4)

The rationale for the TranscendentalLogarithmic Frontier, a.s it is ca.lled,

is basedon the argumentof generalityand absenceof assumptionsthat were

included in previous representationsof productionfUnctions. This absence

allows the assumptionsmade in previous forms to be subjectedto statistical

tests. The hypotheseswhich have beentestedare those derived from the

theory of production (hanogeneity,symmetry, and narmalization),and others

incl.uded implicitly in tbe Cobb-Douglasand CES farms (additivity and separa-

bility of inputs and outputs) [81.

Two main problemsarise from the use of the TranscendentalLogarithmic

form:

1. - For practicaland estimationPJ,r poses, the authors take the approxi-

mating :function as the true function and include any possiblesource of

error in the error term of the regressionequation. This implies that

there is no way of telling whether the resultsare affectedby stochasticor

approximationerror.

2. - The Cobb-Douglasand the CES production :function have the property

of "self duality", i.e., both the productionand the cost forms are members



of the same family of functional forms. This makes irrelevant the choice

of representationof the technologyby the productionor cost functions.

The TranscendentalLogarithmic Form when taken as the true form for the pri-,

mal (dual) problem and then taken again as the true form of the dual (priJna.l),

makes one of the selectionsarbitrary since the form is not self-dual. This

point is treatedby Burgess r9] who shows with empirical results the conse-

quencesof choosingthe cost or the productionTranscendentalLogarithmic

form as a representationof the underlying technology.

This paper is addressedto the possiblesolution of thesetwo problems

while still being able to work with more generalproductionfunctions. We

proposefor the considerationof the economistsinterestedin the Theory of

Production, the GeometricProgramming(GP) method of solving cost minimization

problemswhich is extensivelyused in engineering. The similarities observed

in both fields also indicate the possiblebenefitsof closer communication

among them. In the coming sections,we give an introductionto GP and illus-

trate with examplesusing the Cobb-Douglas,CES, and a more generalexplicit

productionfunction.

2. - Introduction to GeometricProgramming

The field of GeometricPrOGI'amniDt; ca:1 be consideredinitiated with the

work of Duffin, Peterson,and Zener, which is sUDlIIlBrized in their book, "Geo-

metric Programming"(13J. Another valuable referenceis Wilde and Beightler

r14, especiallyChapter 4J, and more recent discussionscan be fOWld in (15].

As is pointed out in [13, Chapter1): GP "has developedwith problems

of engineeringdesign ••• (as) an attempt to develop a rapid systematic

method of designingfor minimum costs••• The basis of the method is a relent-

less exploitationof the propertiesof inequalities."



•

The method of GP is particularly suitable for cost functions having

polynomial form, with eachterm of the polynomial being the joint product

of a set of variablesraisedto arbitrary powers. For example, in engi-

neeringdesign, the total cost c is a sum of componentcost ui ; i.e.,

c = f u. (2.1)
. 1 ｾ
ｾ］ -

where eachui is a positive function of the designvariablestl' ••• , tn'

ot the form

a..
u; = c. H t. ｾ ｊ

... ｾｪ］ｬ J

The c. and a.. are specifiedparameters. Generalizedpolynomial inequality
ｾ ｾ ｊ

constraintsof either sensecan also be handled[14, ChapterJr.].

The problem of minimizing a polynomial c subject to polynomial constraints

is termed a primal program. If a solution to the primal problem exists, there

exists a relatedmaximizationproblem which is called a dual program.

The relation betweenthe primal and dual programs is preciselythe resuJ.t

of the geometricinequality [13, pp. 4 and 51

m m 6ir: 5.u. ｾ n U.
i=l ｾ ｾ i=l ｾ

where U. are arbitrary non negative numbersand 6. are positive weights
ｾ ｾ

satisf'ying

If 6. =1
i=l ｾ

If we let ui = 5i U
i

, then (2.3) converts to

ｾ

Ｈ ｾ ｾ ｩ Ｎ Ｉ iｾ u. ｾ ¥t u
i=l ｾ i=l

(2.4)



(2.6)

and if u. is of the form given in (2.2), the right side of (2.5) can be
ｾ

written as
ｾm(c.) i Rn 2. t

i=l 5i j=l j

If the 5i are chosenso that f fl .a.. = 0, for all j. then the function
i=l ｾ ｾ ｊ

obta.inedis independentof t. and is called the dual function, V(6):
J

- c. 6i
ｶＨｾＩ = W (2.) (2.7)

i=l 5i

For any set of 6i satisfying the nornality (
.L

m _, ｏ ｾ ｾ Ｋ ｾ ｟ ｾ ｾ ｾ ｟r 1\ i - 1, ......"" "uc VJ.' IIUU-

i=l

gonality ( f 5.a.. == 0) conditions, the value of v(5) is a lower bound of
i=l ｾ ｾ ｊ . ' '

the total cost c, and for the 5i values resulting from maximizing (2.7) sub-

ject to normality and orthogonalityconditions, the values of the primal and

dual objectivesare the same (see [131, [14] for the proofs).

It is of interest for the subsequentdevelopmentto summarizethe dual

GP problem of a primal minimization problemwith constraints:

Supposea cost function gO(t) is to be minimized subject to a set of

1
constraintsｾ Ｈ ｴ Ｉ ｾ 1, k = 1, ••• , p, t j > 0 where the ｾ Ｈ ｴ Ｉ are of the form

ｾ (t) = r. c. R t. aij
-K iErkl ｾ j=l J • If ｾ (k = 0, ••• , p) is the number of terms

in :function k and if all c. are positive
ｾ

as [13, p. 78]

p
a.ndm= r ｾ

k=O

6., k = 1,
ｾ

••• , p

(2.8)



subject to ｾ ｾ ｩ =1
iEr 01

f a ..Fi
i

= 0, j = 1, ••• , n
i=l l.J

The relationshipbetweenprimal and dual variablesat their respectiveopti-

mum values is given by [13, p. 81'

D t &.:c. n . l.J
l. . 1 J =J= fJ •*l.

i e [OJ

i e [k'

mathematicalartifice but has engineeringinterpretations.

where 5* meansevaluatedat optimum.

Note that the logarithm of v(5) is a concave functicn. Hence, the GP

duality theory allows the use of a linearly constraint concavedual maximi-

zation problem to solve the nonlinear nonconvexprimal. Therein resides

the real power of the method. The effort requiredto solve the dual is

relatedto a parametercalled degreeof difficulty of such a program, which

is given by the number m - n - 1, where m is the total number of terms and n

the rank of the exponentmatrix. This degreeof difficulty is in fact the

difference between the number of variabJ.e.sand constraintsin the dual program.

When the degreeof difficulty is zero, the solution is directly obtainedby

solving the systemof constraintsof the dual program. For higher degrees

of difficulty, the optimal solution is not as straight-forward,but formalized

procedureshave been developedto either approximateupper and lower bounds

to the cost function [13, pp. 81, 101] or else to iteratively searchfor the

maximum.

As pointed out in [13, p. 13J, the dual problem is not just a

The weights 6.
l.

have a one to one correspondencewith the polynomial terms of the prima.1 prob-



lem, and the optimal F..* provides the relative size of theseterms. The dual
1

problem also has intrinsic featureswhich supply qualitative information about

the primalo

We hope to confirm this in the next sectionswhen we use GP to derive

some resultsof the Economic Theory of Production.

3. - Application of GP to the problems

of the Economic Theory of Production

3.1 Illustration with the CObb-DouglasProductionFunction

A Cobb-DouglasProductionFunction is of the form

n
y =F(X

l
, ••• , x ) = n x.ai

n . 1 11=

where y is consideredan aggregatemeasureof output, x. is the value of the
1

input i, and ai are Parameterssatisfying the condition f a. = 1, in order
i=l 1

for the f'unction to be homogeneousof degree one.

If it is assumedthat the behavior of a firm is directedto minimize the

input cost to producea certain level of output, y, the firm's cost minimiza-

t10n problem can be formulated as (primal problem)

n
min I: p.x.

. 1 1 11=

n
subject to: n x.ai:it y, x. :it 0

i=l 1 1

If we transformthe constraintto its equivalent form:

n
y IT x. -ai ｾ 1

i=l 1

then we can construct the GP dual:
61 6 +1

n (Pi) (y) n /)
max v(6) = n '6 0 /) +1 n+l

i=l i n+l n

subject to:



f 5. = 1
i=l ｾ

i = 1, ••• , n

5. :it 0
ｾ

Summing over constraints(3.1.5), we have:

f (, i - ｾ n+1 ( ｾ ex.) = 0
i=l _ i=l ｾ

which implies that 5 +1 = 1 and (,. * = ex.n ｾ ｾ

and by the property of equality betweenpri.ma1 and dual objectivesat opti-

mality,

E p.x.
i=l ｾ ｾ

where c(p) =

ex.
n ｾｐｩＩ ｾ= y n -

i=l i

n p. exi
.TI Ｈ［ｾＩ would be the unit cost.
ｾ ］ ｬ ｾ

From the correspondencebetweenprimal and dual variables,we see that

p.x.
ｾ ｾ

6i* = = ex., and also 5.* = ex. =n ｾ ｾ ｾ
l,; p.x.

i=l ｾ ｾ

(\ log Y
o log x.

ｾ

or the optimal cost share is equal to the output elasticity with respect

to the input 1.

3.2 Illustration with the CES ProductionFunction

The primal cost minimization problem for this casewill be

n
min I: P.x.
x i=l ｾ ｾ

) [ n -b -lIbsubject to F(x = L a.x
i

'] :it Y
i=l ｾ

n
where I: a =1.

i=l i



Formulatedas a GP primal, the problem becomes

n
min E p.x.
x i=l ｾ ｾ

subject to

b( n b)y r: a.x.
i=l ｾ ｾ

ｾ 1

And the correspondingGP dual is

6 i b 6n+i

"":' ｩ ｾ ｬ Ｈ Ｚ ｾ Ｉ ｾ ｃ ｾ Ｚ Ｉ Ｈ ｩ ｾ ｬ

one,

n
subject to r: 5. = 1

i=l ｾ

6i - b6n -ti = 0 i =1, ••• , n

summing over i in the secondconstraintand making use
n 1

we have ｾ (, +. = -b •
. 1 n ｾ
ｾ］

of the first

The problem simplifies to

6i 6 i / bn (Pi) n (ai )
maxy n - n -
6 i=l 6i i=l 6i

n
subject to r: (,. = 1 •

i=l ｾ

n
:; max Y TI

5 i=l

lib 61

(
p.ai )

6 ｾ (l+b )/b
ｾ

The solution to problem (3.2.4), obtainedvia the generalizedarithmetic/

geometricmean inequality as shown in Appendix 1, is,

6 * =i
ｾ b/l+b l/l+b

'L, p. a
ii=l ｾ

For this optimal value, as shown in Appendix 1, the minimum of the primal

problem is given by

c(y,p) = y ( ｾ (p.a.l/b)b/l+b)l+b/b
i=l ｾ ｾ



and hence

n 1 _ ( n lib b/l+b)l+b/b
ｾ p.X. - ｾ (p.a. )

. 1 1 1 . 1 1 11= 1=

n 1 1
where .1: Pixi is now the normalizedunit cost (Xi = Xi/Y).

1=1

Note that the resultsabove can be generalizedto any homogeneouspro-

duction function of the form

F( ) = [ n -b/V]-W/bx ｾ a,xi. 1 11=

where v and W are positive parameters.

3.3. More generalresults on primal dual relationships

In the previous sections,we have illustrated the use of GP in solving

cost minirn.1zati()n .l?roblcms under the differen.t production technologieslong

used in the study of the theory of production. The effectivenessof the

method is particularly clear in the Cobb-Douglasform. In that case, the

dual problem has zero degreesof difficulty which allows the dual cost func-

tion to be obtainedmerely :£'rom the solution of the constraintsof the inter-

mediate GP dual. The GP formulation also illustratesthat the optimal cost

sharesare independentof the input prices and pro-portional to the elasticity

of output to input, O'i. The price independenceis generalizableto all the

casesof zero degreesof difficulty as is also shown in (16).

For the CES form of the production function, the dual. problem does ｮ ｾ

have zero degreesof difficulty, but we can still solve for the optimal 6i *
by making use of one of the commonly used GP relationships. The optimal

5 .* may also be considereda form of writing the demandequationfor factor
1

i which in this case is dependenton the inputs prices.



The previous resultsalso suggestmore generalrelationshipsbetween

the primal and dual problems and fUrther extensionsof the role of the inter-

mediate GP dual in solving for the input demand ｾｱｵ｡ｴｩｯｮｳＮ

If we write the Kuhn-Tucker necessaryconditions far optimality for the

dual GP problem as statedin (2.8) but with v( 5) replacedby log v( a), we

obtain

o log ｶ Ｈ Ｎ ｾ )_ A ｮｱＨｾＩ ｾ 0
00 0&

(
0 log ｶ Ｈ ｾ Ｉ _ ｾ ｡ｱＨｾＩ｜Ｕ =0

00 00 ")

ｱＨｾＩ =0

o :t 0

where q(6) representsthe set of normality and orthogonality constraints;

and A is the associatedvector of multipliers. Now, since log ｶ Ｈ ｾ Ｉ is a

concavefunction, the problem of maximizing log v(o) subject to the linear

dual constraintsis a concaveprogram. Consequently,the Kuhn-Tucker condi-

tions are also sufficient for optimality, and the solution of equations

(303.1) will be a global maximizing point. In fact, providing that the dual

constraintsare linearly independent,it will be the unique global maximizing

point••• Next, since it is easily shown that v(a) and log v(a) have the

same set of maximizing points, [13, Theorem3.2J, it follows that the solu-

tion to equations (303.1) will be the global maximizing point of the dual GP

problem (2.8) 0 Finally, from the duality theory of GP, such a solution will

exist providing that the primal constraintspossessan interior point and

that a feasible minimiZing solution to the primal exists. Moreover, at

their respectiveoptimia, the primal cost dual objective function valueswill

be the same and the respectivevariableswill be relatedvia equations(2.9).



In the case of our cost minimization problem, the objective function is

always linear and positive, and the problem always involves only a single

posynomial constraint. Hence, an interior point .can always be found, and a

minimizing solution will exist providing the problem is bounded. Hence,

under reasonableconditions, a solution to ･ ｾ ｵ ｡ ｴ ｩ ｯ ｮ ｳ (3.3.1) can always be

found. In general, that solution, 5*, will be a function of p, although

only in special situationswill it be possibleto solve (3.3.1) to obtain
,

an e..'q>licit functional form b* = f(p). If such a functional farm can be

determined,then when 1)* is substitutedinto the GP dual objective function,

the dual cost function in the Shephardsense,C(y,p) will be obtained. From

the GP duality theory, we have assurancethat this dual objective function

value will lJe exactly ･ ｾ ｴ Ｑ Ｎ ｡ ｬ to the priLlal objective value evaluatedat its

rrdnim.lzint; point, ［ Ｎ ･ ｾ ［

n
ｾ p.x. =v(S*) = C(y,p) •

i=l ].].

Taking the derivativeswith respectto p in 3.3.2, we have

oV(5*) d6 = ｾｃＨｹＬｰＩ =x
06* • dP dP •

2
Dividing both sides by V(5*) and nmltiplying by p, we obtain,

(
0 log v(5*) M.) _ *

P 08* • op - °0

where Ｕ ｾ is the subvectorconsistingof the first n componentsof 6*. From

the ･ ｾ ｵ ｩ ｶ ｡ ｬ ･ ｮ ｣ ･ betweenthe primal and dual solutions, Ｖ ｾ will be the same

as the first n canponentsof the Ii* obtainedby so1.ving (3.3.1.).3

As an illustration, we can take the CES case. Equation (3.3.2) for

that case is written as

n Y( n 1./b b/1.Ｋ｢Ｉｾ
ｾ p:xi = E (p.a.) b

i=1.]. i=1.]. ]. •



','

Taking derivativeswith respectto p., we have
J.

n I / l+b / b 1_ ( ( 1 b)b l+b)-- 1 ( 1 b)- - 1 -x. - ! p.a. b p.a. l+b a. b
J. '1 J.J. J.J., J.J.=

or

=
1/b-E-(p.a. )l+b

J. J.

n lib ....E..-
I: (p.a. )l+b

i=l J. J.

which is the same as (3.2.5).

The resultsabove show how the intermediateGP dual can provide the

equivalentdemandequationsfor factor i without having to actual.1¥write

the explicit cost function and then take the derivative with respectto p.

They can easily be extendedto the casewhen (3.3.1) does not have a solu-

tion for {) in 1#erms of p only, becauseof non 1inearitiesin (3.3.1) which

do not permit the elirunation of A. In this case, A will appear in C(y,p,).),

and the compositefunction may even be difficult to write explicitly. But

since the results (3.3.2) to (3.3.1.1-) still apply, and if we are interested

in the form of the demandequation,as most empirical studiesare r8l, r91,

then C(y,p,).) does not have to be computedsince we show that the sameresult

is obtainableby simply using the intermediateGP dual. Note that the

resultsare independentof the condition of self-duality of Productionand

Cost :t'unctiona1forms which in fact, restrictsattentionto only a particu-

lar classof functions.

3.3.1 Illustration with a GeneralProductionFunction

Consider the concave ｰ ｲ ｯ ､ ｾ ｣ ｴ ｩ ｯ ｮ function

y =F(x) =[ ｾ ｾ c. ｸ Ｎ Ｍ ｾ Ｏ Ｒ ｸ Ｎ Ｍ ｾ Ｏ Ｒ ｊ Ｍ ｬ Ｏ ｾ
i=l j=i J.j J. J



where y representsagain aggregateoutput and x. are the input factors
ｾ

(i =1, ••• , n). The cij and 01 are parameters,and the function is homogene-

ous of degreeone.

The reasonsfor selectingthe above form are:

1 - It has input interactionterms that will allow for testing sane

assumptionsimplicit in other productionfunctions (like separability

on inputs of the Cobb-Douglasand CES).

2 - It has the propertyof approachingin the limit a Cobb-Douglasform

when 01 -. o.

From (3.3.1), the elasticity of output to input x. would be
ｾ

Ji f c -01/2 -01/2)a log y = Xi oY = 2\j=i ijx i x j

n ｾ -01/2 -01/2
ｾ log Xi Y OXi ｩｾｬ ｪｾ cijxi x j

The cost minimization problem under (3.3.1.1)would actual.l¥be

min
x

n
ｾ PiX.

i=l ｾ

subject to [ ｾ ｾ cijx. -01/2 x. -ot/2J-1/0I a y
i=l j=i ｾ J

x. a 0 i =1, ••• , n
ｾ

where Pi are the input prices (Pi> 0 for all i). The competitive equili-

brium conditionswould be, using (3.3.1.2)

f -01/2 -01/2p.x. j. c..x. x.
ｾ ｾ _ =1 ｾ ｊ ｾ J

---- - n -01/2 -01/2
ｐｫｾ !: ｣ Ｎ ｟ Ｎ Ｚ ｾ x.

j=k A.J J

Equation (3.3.1.4) couJ.dbe used in estimatingthe parametersc
ij

and tJI

and in testing certainassumptionson them. However, this would require the

use of non-linear estimat:l.onprocedures.



Ｎｾ

The GP dual of (3.3.1.3) woul.d be written as

6 ex 6 Ｈｾ f & )
n (PO) i n (n ( Co 0) i j ) (n n ) 0-1. j-1 ijmax IT.2:. IT 11 y 2:.J.. L r 6 J.- -.

5 i=l ｾ ｩ i=l j=i 6ij i=l ｪ ｾ ｬ ij

n
subject to r &i = 1

i=l

ｾ 0 a 0, 60 j :a 0
J. J.

i =1, 000, n

i,j =1, ••• , n and j a i

where J(i) is a subsetof the set of subscriptspairs (h,.t) with t a h,

such that either h = i or t = i but not both.

More explicitly, for the three input case of the form

(3.3.1.5) woul.d read

3 Pi 6i 3 3 I'cij 6i ;l, 3 3 Ｈｩｾｬ
ｾ ｩｾｬ (5) ｩｾｬ Ｈｪｾ ( ｾｩｪＩ ) ＨｩｾＱ ｪｾｩ 6ij )

3
subject to L 50 = 1

i=l J.

5i a 0, &ij a 0

(3.301.8)

summing over constraints(303.1.9) to (3.3.1.11) and using (3.3.1 .8), we

have the result



333
I: 0i - 0'( J. r ｾＮＮＩ =°

i=l i=l j=i J.J

3 3
and I: I: ｾ ｴ ｪ

i=l j=1 J.

1
= -

Consideringthe equivalencebetweenprimal and dual variables:

3
Pix. = Ｖｾ I: P.x.) i =1, 2, 3

J. {\i=l J. J.

-0'/2 -0'/2 _ ｾｴｪ
cijx i x j - ＭＳＢＬＮＭＭＭＭＺ［［［ｾＳＭＭ

L r.
i=l j=i

i =1, 2, 3

i, j = 1, 2, 3 ,

j :l i

(3.3.1.16)

we can show that constraints(3.3.1.9) to (3.3.1.11)are in fact the com-

petitive equilibrium conditions as expressedby (3.301.4).

Note fron the ･ ＼ ［ ｩ Ｎ ｵ ｩ ｶ ｾ ｬ ｴ Ｚ ［ ｮ ｣ ･ relations, (3.3.1.15 - .17), that xi > 0,

i = 1, 2, 3 if and only if 0i' 0ij > 0, i,j = 1, 2, 3, j :l i. ｃ ｯ ｮ ｳ ･ ｱ ｵ ･ ｮ ｴ ｾ Ｌ for

xi > 0, the Kuhn-Tucker conditions (3.3.1) collapseto the conventional

Lagrangiannecessaryconditions. For the caseof problem (3.3.1.7), these

ｾ ･ Ｌ

i
log c' i - log A.. - Q'A2 - 1 =0 i =1,2,3

J. J.J.

log C. - log ｾ .. - 9: (L ｬ ｾ Ｉ - 1 =0 i,j =1,.2, 3
J.j J.J 2 hEH(i,j i"

j :l i
togetherwith equations,

(303.1.21)



i
where Xl and A2 are the La.grangemultipliers and where H(1,j) is the set

of all h such that (i,j) is in J(h).

If we solve (3.3.1.18) to (3.3.1.21) in terms of 0., i = 1,2, 3 and. ｾ

ucc the results hi cq...l..1.tions (].3.1.:;) to (3.3.1.11), \ve obtain tt.e foUol'l-

ing systemof equatioasin ｾ ｩ Ｇ i = 1, 2, 3 and Pi' i = 1, 2, 3. (See Appen-

dix 3 for the derivation.)

(pO22) (&3)Bll + ｾＱＲｐｬ + 813 + 814 P
3

- 0

f3 21 + ＶＲｾＱ + 623 ｾＱＩ + 624 (:3) = 0
1 3

S31 + ｾＳＲｐＳ + 633 (;1) + ｾＳＴ (;2) = 0
1 2

with the restrictions

812 = f3 22 = a32

613 - f3 23 = 0

1=314 - 833 = 0

ｾＲＴ - f334 = 0

where

1 = ｾＬ 2, 3

/6i 4 = -OleA1

6 = c e-«(:I/2
ij ij

i = ｾＬ 2, 3

h
1)( ｾ A2 ) + Xl + ｾ i ｾ , 2 3 __A ｾ 1

hEH(1,j) Ｌ ｾ =., , ｾ ｾ >

The systenof € ｾ ｾ ｴ ｩ ｯ ｮ ｳ (3.3.1.22) allows us to solve tar 81, 1 =.1, 2, 3

in terms of Pi' i =1, 2, 3, Al and ａ ｾ Ｇ i = 1, 2, 3. The final systemis,

however, non-linear in Al and ａ ｾ Ｇ and these variables can not be elimina-

ted in such a ｷ｡ｾＭ that (). becomes a function of p. alone. If we a.ssume
ｾ ｾ

the economy is operatingat optimum, by takinr; data on 5., cost share,
ｾ



and Pi' factor prices, and treating Al and ａ ｾ as ｰ ｡ ｲ ｾ ｮ ･ ｴ ･ ｲ ｳ Ｌ we can use sys-

tem (3.3.1.22)with the restrictions (3.3.1.23) to estimateB.. by statisti-
J.J

cal proceduresusing other functional forms ｛ Ｘ ｊ ｾ [9]. Likewise, statistical

tests on assumptionsabout productiontechnologycould be performed. For

example, to test the assumptionon input separability,we would test for

4. - Conclusion

In this paper, we have studiedthe problems of finding the dual cost

function associatedwith a particular productiontechnologyand the deriva-

tion of the demandfunction of a factor i with the methodologyof GP.

We used some results from GP to illustrate the prima.l dual relationships

and to show how the intermediateGP dual can replacethe'so-called

Shephardf s dual cost function C(y,p) for empirical. studiesconcernedwith

the demandequationfor factor i. An explicit productionfunction with

interactionterms among the factors has beenused to illustrate same of the

resultsand to show how an explicit generalform can be usedto test same

of the assumptionsof' the theory that before had beentestedwith appraxi-

mated and, in some way, arbitrary forms.

It is also important to point out that if we start with the cost tunc-

tion explicitly and write the dual problem (2)

(4.1)

the GP method that in the paper has beenused to solve the primal problem

to (4.1), would still be applicableto the solution of the above problem.

As a corollary, the paper supportsan idea introducedalreadyin [171

of the utility of using some of ｴ ｾ ･ conceptsdevelopedin the engineering

field to model the Economic system, since a closer look revealsthat both

fields are looking at similar problems.



5. - Footnotes

1. i E [k] indicatesthe range of values for i in the kth constraint; that
k-l k

is, i going from 1: ｾ + 1 till 1: ｾＬ whE;re ｾ is the number of
k=O k=O

terms of the kth constraint.

2. The multiplication by p is in the form of Kroenekerproduct ® ; that

is, we multiply by p., i = 1, ••• , n, the respectiveith elementof the
1.

vectorsat both sides of equation (3.3.3).

3. The remaining componentsof 6 are the dual variablesassociatedwith the

constraintterms. In the C-D and CES cases,these could be eliminated

by meansof the dual constraints. In general, they are of coursesJ:ways

available as part of the optimal dual solution.
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7. - Appendix 1

Solution of the problem (3.2.4) in section3.2 using the Generalized

ArithmeticJgeametricmean inequal'ity

Given xi > 0 and ｾ ｩ :It 0, i = 1, ••• , n, ｾ O'i = 1, for any r > 0

(Al.l)

(Al.2)•

with equality if and only if all x. are equal. For a.rry s > 0, defin-
J.

ing Yi =XiU'i
S

' i = 1, ••• , n (Al.I) convert.s to

()i

｛ ｾ Q'il-rs yirj/r :l ｾ (Yi S)
J. J. ｾ ｩ

Since I: ct. = 1, (Alo2) is satisfiedas equality if and only if for
• J.
J.

i =1, ••• , n,

l/s
Yi

ｾｩ = ---=-l/""s--
'E y.
i J.

for any s. (Al.3)

SUbstitutingthis value of ex. into the left side of (Al.2),
J.

l-rs
- r(I: y. s Y.)

i J. J.

( l/s)l-rs
ｾ Yi
J.

l/r

=

(Al.4)

l+b l/b
In problem (3.2.4), s = b and Yi =Piai ,which when sub-

stituted into (AI. 3) and (Al.4), just!fies the resul.ts shown in the

main text, respectively, (3.2.5) and (3.2.6).



Appendix 2

Limit results for function (3.3.1)

We have the funct ion:

y = F(x) = ｛ｾ ｾ c..x. -ex/2 x -a/2J-l /0/
i=l j=i ｾ ｊ ｾ j

(A2.1)

c..x. -ex/2J
ｾｊ ｾ

n
l:

j=i
ex

Taking logaritmns,
n

log [ L
log Y = - i=l----........._----

°If a ｾ 0, lim (log y) = 0' if
a-+O

n n
l: l: cij = 1.

i=l j=i

For resolving the indeterminacy,we use 1 'Repital's rule

n n
lin (log y) 5 lin (_%a (log [.t .t

ｾ ］ ｬ J=i
ctJA) ｾ ＭＭＭＭＭＺＺｲｏ｣ｸｾＷｾＰ｣ｴＭＭＭＭＭＭＭ

Taking the derivatives:

ｾ
ｾ Ｈ ｾ ｾ ｾ ..x. -ex/2 x. -0//2 log (x .• x.»)

i=l '=i ｾ ｊ ｾ J ｾ Jlog Y = lim Ｍ Ｍ Ｍ Ｚ ［ Ｎ Ｎ Ｎ Ｎ ［ ［ ［ Ｎ Ｎ Ｎ Ｎ Ｚ ｊ ｾ Ｎ _

_.•n n n /2 /2
ｾ ｾ ｾ c .x.-O/ ｸＮｾ

i=l j=i iJ ｾ J

(A2.4)

which is equal to

n n
log y = ｾ t cij log (xi· x

J
.)

i=l j=i
(A2.5)

which can always be written as a Cobb-Douglasby choosing cij such that

n n
ｾ r c

iJ
' = 1.

i=l j=i



Appendix 3

Solving 0i in terms of A1, ａｾＧ and Pi in (3.3.1.9) to (3.3.1.11)

i =1, 2, 3

i =1, 2, 3

which implies that

i =1, 2, 3

Also, from (3.3.1.19) and (3.3.1.20),.

and

i,j = 1, 2, 3

j ;a i

(A3.4)

or, using (A3.2) above,

i,j = 1, 2, 3 •
j a i

With theseresults, the system (3.3.1.9) to (3.3.1.11)becomes,

(A3.6)



whichcarrespondsto (3.3.1.22) with (3.3.1.23) and (30301.24) in the

main text after dividing each equationin A306 by 5ii oteAlo


