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The Equivalence of Three Social Decision Functions

Ron Adelsman¥* and Andrew Whinston

Abstract

This paper demonstrates that three of the basic ap-
proaches to the solution of the social choice problem are in
fact equivalent to one another. All will yield the same
social decision functions--a winning set of permutations of
the actions. The Combinatorial Optimization criterion of
Blin and Whinston is shown to be monotonically related to
the Kemeny function criterion proposed by Levenglick. The
set covering formulation for the %1 norm case devised by

Merchant and Rao is also shown to be equivalent to the other
two. The geometrical aspect of the problem is also discussed
and an example is provided.

Introduction

Recently several authors have proposed methods for deter-
mining a social ordering of a set of alternatives based on
individual pairwise ordering of the set. In each case the
author had a different motivation for developing the particular
function, but in all cases it was shown that a relationship
existed between majority voting and the resulting social order.
In this paper we show that all these formulations of the problem
lead to exactly the same social ordering of alternatives when
the data on pairwise preference is identical.

Combinatorial Optimization Criterion

The Combinatorial Optimization criterion function of Blin
and Whinston [1] seeks to determine a best ranking of actions
such that the sum of vote proportions of each action over those
lower ranking actions is maximized. This optimal assignment of
actions to ranks is determined by a permutation on the original
order of the actions [a1,a2,...,am] to get [ap(1),ap(2),...,ap(m)],
such that p(i) = k implies that aj; has k-1 actions considered
superior to it.

*Purdue University




Let A = [aij] be the matrix of vote proportions such that:

ij proportion of individuals who have a; > aj

aji proportion of individuals who have aj < a;

O (rather than the alternative value 1/2)

a.

A. .
11

The case of individuals who have a; v aj (non-resoluteness) is

discussed in [5] and can be resolved by either method described

there.
Define Q = [qij] as the appropriate summation matrix with:
{O if 1> 3 |
9;4 =
13 1 if i< j i
Then,
d(p) = Max A_ « Q (1)
p p

is the desired criterion function where

Ao = g iyp(h!

Here a > 0 implies that the permutation p has ranked

p(i)p(3)Tij
action i over action j, and the dot product of two matrices of

the same dimension is defined as

A+ Q= N
0" 2% ko P %y

Since p is a permutation, we can define the corresponding
ermutation matrix P_ = .] as
P p = [Pyl
{1 if aj has rank k

P, .
k3 O otherwise .




Now Ap = P_AP', and (1) can be rewritten to emphasize its

Quadratic Assignment nature

¢ (p) = Max PpApé «Q . (2)
p

This criterion function seeks tc determine the optimal assign-
ment of actions to ranks, p, over all feasible m! permutations

of the a, -

Kemeny Function

The Kemeny function seeks to find those permutation points,
Pp, that maximize a dot product with the translated election
matrix Eq. Here a permutation point is defined as pP = prxp

P p
where Pp is the same as before and

+1 if i < ]
X=[x,.] ={ 0 4if i=93 .
-1 if i

\4
Ul

The translated election matrix is defined to be in skew-
symmetric form and is related to the previous election matrix

A by:

Eg=A-A' . (3

1, the Kemeny function

As Levenglick has demonstrated
equivalently seeks to determine the permutation point of
minimum Euclidean distance from Eqr thus maximizing the total
amount of agreement between PP and Eq- Equivalently, one can
view the problem from the position of choosing the optimal
permutation matrix in the following criterion function

H(p*) = Max E, + P'XP . 4
(p*) ax Eg4 pXPy (4)

p

1141, Theorem 4, p. u1.




As Levenglick has shownz, (4) is extremely attractive in
that it "is symmetric, faithful, equitable; Condorcet, con-
sistent and continuous for all m > 2," and its consistent
extension to the set of rationals on (g) space is the only
function that satisfies all the above properties.

Theorem 1. The criterion function (4) is an equivalent re-~

presentation of (2), and hence the Combinatorial Optimization

criterion also has the above fairness properties.

Proof. By eduivalence is meant that if ¢(p,) > ¢(p,) then
H(p1) > H(pz) and vice versa. Thus equivalence implies
{p} = {p*}; the same ranking of actions optimizes both
criteria. To establish the equivalence we shall introduce

the column vector of m ones labelled e. Furthermore, define

0O if i =3
Z = [z..] = ee'~-1I = .

1 otherwise

Now, A was defined so that
A+A' =32 . (5)
Conditions (3) and (5) together imply
Eq =2A-12 . (6)
Similarly, X = Q-Q' and 2 = Q+ Q' imply
X=20~-2 . (7)

It is easily seen that

P'ZP = P _ZP' = 2Z .
P P p P (8)

2[4], Theorems 5 and 7, pp. 41-44,




The dot product operation in (4) is invariant to any

translation T( ) of Ed and Pé)(Pp that preserves the matchup

of their respective matrix entries. That is

*P'XP = * T(P!XP
Eq " Pp¥FPp = T(Eg) ® T(Pp X Pp)

for all such valid T.

T( ) can be considered to be the set of all possible permuta-

tions of the elements of matrix ( ).
T =P P!
() p( ) p (9)

is a valid form-preserving translation.

Now, (4), (6), (7), (8), and (9) combine to yield: |

E,*P'XP_ =P E.P'+«P P'XP P’
d "'p~p pdp ppT PP
= (2P AP' -12Z) * (20~ 2 10
( Py ) * (29 ) (10)
= 4P_AP'*Q-2P_AP'*+2-2Z2°-Q+2°*2 .
p P Q p | Q
Since
2PpAP£‘)-Z=2Z-Q=Z-Z=m(m-1) ' (11)
then
E.*P'XP_ = 4P AP'+(Q - - ; 12
3 b p up Pp Q - m(m-1) (12)

hence (4) and (2) are equivalent. ||

Geometrical Interpretation

As Blin and Whinston showed3, whenever majority voting
yields a transitive social ordering of the ajs the associated
permutation matrix will be optimal for (2). Correspondingly,

3111
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*
the permutation point pP” would be a matrix of +1's, -1's, and

O's with:

0O if i =3
ij =441 1if a,; > a, in the optimal social order

-1 if aj > a; in the optimal social order

p* would be optimal for

H(p*) = Max Eg- PP . (4) "
p
Let us define F as the set of all permutation points and
sgn(Ed) as a matrix of +1's, -1's, and O's, whose entries
correspond to the sign of the entries of Ej. Then it is clear
that if sgn(Ed) € F, then sgn(Ed) = Pp* and majority voting has

yielded a transitive social ordering.

Thus, we can rewrite (4)' as the following equivalent

problem:

Min E
P

q° [sgn(Ey) -PP1 . (13)

Since z » PP = 0, (13) is equivalent to (14):

J(p*) = min A+ [sgn(Ey) -PP] . (14)
P

Thus, if sgn(Ed)¢:F, we seek a permutation point that will
entail a least cost for moving from an intransitive majority
solution sgn(Ed) to a transitive social ordering given by Pp*.
In a geometric sense, sgn(Ed) and PP are vertices of a hypercube
in (g) space, centered about the origin, with edge length of
two. The problem is to choose the closest vertex to sgn(Ed)
that belongs to F, where the measurement of distance is

conditional upon A.




The following lemma gives necessary and sufficient con-

ditions for determining whether or not sgn(Ed)s:F.

Lemma: Let sgn(Ed) = [oij]. If there exist distinct i,j,k

such that sgn(o,.) = sgn(ojk) # sgn(o,, ) then sgn(E,) ¢ F.

J
If no such i,j,k exist then sgn(Ed) eF.

Proof. 1If sgn(oij) = sgn(ojk) # sgn(oik), then either

oij = Ojk = +1 or -1. In the former case, Oij = +1 implies
_ N , . . . . .
aij aji O, which in turn means that a; > aJ by majority
voting. Thus, Oij = ojk = +1 implies
a; > aj ’ aj > ak and ay < ak

by majority voting, which is an intransitive ordering.
Thus, sgn(Ed) ¢ F. In the latter case, the proof follows

analogously.

The above establishes sufficiency; necessity is now
shown. Assume that no such i,j,k exist that provide in—
transitivity. Since all higher order intransitivitiesu
require an intransitivity of triplets ([2], there must exist
a transitive ordering of the a; provided by sgn(Ed); hence

majority voting is transitive and optimal, and sgn(E4) € F. ||

In graph-theoretic terms, if one places a directed arc
from node i to j to indicate a; > aj, then sgn(Ed)s:F if and
only if there are no directed cycles within the graph. Further-
more, if there are directed cycles, an attempt to eliminate

them by determining whether vertices of the hypercube adjacent

. = A@,., = Az,
J 1] J1
where Aij means that the adjacent vertex only differs in that

to sgn(Ed) belong‘to C will incur a cost of Ai

component (i,j) is now -1 instead of +1.

i : s . .

A tth order intransitivity is characterized as aj >ay o
1 2

a. > a. peee sy > a4 but ait>ai .

13 t-1 1



Set Covering Criterion

The optimization problem formulated by Merchant and Rao
is as follows [5]:

Min ) (B.. + B..) (a.

- L A 15
(i,3)ec 13 STURL SIS TARES (s

(ilj)ack yij —>“ 1 k= 1I2100.,r

yij = 0 or 1 (i,3) €C

r
cC= VU Ci and Cy is a directed cycle.
i=1

The B's are just weighting coefficients and as long as they
are constant (say 1/2 for simplicity), the following theorem
holds. Call (15) with constant B's (15)°'.

Theorem 2. (15) is an equivalent representation of (4)

for Bij constant ¥ (i,j) €C.

Proof. (4) is equivalent to (14); hence, it is sufficient to

argue that (14) gnd (15) ' are equivalent. As Merchant and
Rao demonstrated , the constraints of (15)' ensure that all
old cycles will be eliminated and no new ones created.

From the lemma of the previous section, this is equivalent
to moving from sgn(Ed) to PP, Yi§ = 1 is equivalent to
moving from sgn(Ed) to an adjacent vertex as before, and
the criterion function is the same as Aij' Finally, since
the costs of moving to a PP that is not adjacent to sgn(Ed)
are simply additive (21 norm used), the criterion function

of (15)' follows. ||

5[5], Theorem 1, p.8




Discussion

Although the three criteria are all equivalent, each
formulation of the social choice problem has unique character-
istics. (2) and (4) are similar in that they are both "primal"
approaches to the problem; both search over the feasible set
of m! permutation matrices, and at each stage of the problem,
a feasible solution is known. In contrast, (15) is a "dual"
approach; until the yij are discovered, no feasible solution

to the problem is known.

In (2) an optimal assignment of actions to ranks is de-
termined, while in (4) a search for the optimal mat:-hing of a
permutation point to a translated election matrix is undertaken.
Thus, while both procedures are quadratic assignment problems
of a set of "objects" to "positions," the procedures differ by

reversing the meanings of objects and positions.

Example
In order to illustrate the three approaches we consider

the following example:

Individual Ranking Number with Preference
(a1 a, a3) 23
(a, a; a,) 17
(a, a, a3) 2
(a3 a, a1) 8
(ag ay a2) : 10

where a,; a, aj means that alternative a, is preferred to a,
and a, is preferred to az. Majority voting leads to an in-
transitive solution. In order to analyze the problem we

construct the following:




~10-

33 25 6 10
© % %o °© % "%
_| 27 42 = -5 24
A =]l % ° % Eg = 60 O %
35 18 10 24
g6 so © o "6 ©
e - L. -
0 1 -1
sgn(Ed) = 1 0 1

Since 04, = 0,4 # 043, S9N(Ey) tF.

Noting that

which is optimal, implying the social order (a, aj a1).
The optimal permutation matrix is:
0 1 0

P = P = 0 0] 1

L‘l 0] 0]




e

42 27
O % %0
_ | 218 35
As = o) o 60 .
33 25
% ¢ ©

Computing the solutions we have:

—.  _ 42 + 27 + 35 _ 104
o(p) = 60 = 60
- + —
H(p*) = 2 ( 6 ;8 + 2'4) = écs_) = uq)(p) - n(n_1) .

From the majority voting solution we obtain the following

graph with a cycle:

Min ) (a..-aji)y Cc =1{(23),(31),(12)}

(i,])eC
Yo3 * ¥3q1 * ¥y 21

yij = 0 or 1 ¥(i,j) eC

The optimal solution is
Y92 =1
Y3 = ¥37 =0

which is again equivalent.
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