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The Equivalenceof Three Social Decision Functions

Ron Adelsman* and Andrew Whinston

Abstract

This paper demonstratesthat three of the basic ap-
proachesto the solution of the social choice problem are in
fact equivalent to one another. All will yield the same
social decision functions--a winning set of permutationsof
the actions. The Combinatorial Optimization criterion of
Blin and Whinston is shown to be monotonically related to
the Kemeny function criterion proposedby Levenglick. The
set covering formulation for the ｾ Ｑ norm case devised by

Merchant and Rao is also shown to be equivalent to the other
two. The geometricalaspectof the problem is also discussed
and an example is provided.

Introduction

Recently several authors have proposedmethods for deter-
mining a social ordering of a set of alternativesbasedon
individual pairwise ordering of the set. In each case the
author had a different motivation for developing the particular
function, but in all casesit was shown that a relationship
existedbetweenmajority voting and the resulting social order.
In this paper we show that all these formulations of the problem
lead to exactly the same social ordering of alternativeswhen
the data on pairwise preferenceis identical.

Combinatorial Optimization Criterion

The Combinatorial Optimization criterion function of Blin

and Whinston [1] seeks to determinea best ranking of actions

such that the sum of vote proportionsof each action over those

lower ranking actions is maximized. This optimal assignmentof

actions to ranks is determinedby a permutationon the original

order of the actions [a1,a2 , •.. ,am] to get [ap (1),ap (2) , ••• ,ap(m)]'

such that p(i} = k implies that ai has k-1 actions considered

superior to it.

*Purdue University



a .. -
J1.

a .. -1.1.

Let A = [a .. ] be the matrix of vote proportions such that:
1.J

a .. - proportion of individuals who have a. > a.
1.J 1. J

proportion of individuals who have a. < a.
J 1.

o (rather than the alternativevalue 1/2)

The case of individuals who have a. '" a. (non-resoluteness)is
1. J

discussedin [5] and can be resolved by either method described

there.

Define Q = [qij] as the appropriatesummationmatrix with:

q .. = {O
1.J 1

Then,

if

if

i > j

i < j

¢ <p) ;::: lo1ax Ap ｾ Q
p

is the desiredcriterion function where

Ap = [ap (i) p ( j ) ]

(1)

Here ap(i)p(j)qij > 0 implies that the permutationp has ranked

action i over action j, and the dot product of two matrices of

the same dimension is defined as

Since p is a permutation, we can define the corresponding

permutationmatrix Pp = [Pkj] as

={01Pkj
if aj has rank k

otherwise
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Now A = P Api, and (1) can be rewritten to emphasizeitsp p p

QuadraticAssignmentnature

¢(p) = Max PAP' • Qp p p
(2)

This criterion function seeks to determine the optimal assign-

ment of actions to ranks, p, over all feasible m! permutations

of the ai •

Kemeny Function

The Kemeny function seeksto find those permutationpoints,

pP, that maximize a dot product with the translatedelection

matrix Ed' Here a permutationpoint is defined as pP = PpXPp
where Pp is the same as before and

x = [x .. ] ={ +0

1

1.)
-1

if i < j

if i j

if i > j

The translatedelection matrix is defined to be in skew-

symmetric form and is related to the previous election matrix

A by;

Ed = A - A' (3)

As Levenglick has demonstrated1 , the Kemeny function

equivalently seeks to determine the permutationpoint of

minimum Euclideandistancefrom Ed' thus maximizing the total

amount of agreementbetweenpP and Ed" Equivalently, one can

view the problem from the position of choosing the optimal

permutationmatrix in the following criterion function

H(p*) = ｾｬ｡ｸ Ed' P I XP
P P P

(4)

1 [4], Theorem 4, p. 41.
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As Levenglick has shown
2

, (4) is extremely attractive in

that it "is symmetric, faithful, equitable; Condorcet, con-

sistentand continuous for all m ｾ 2," and its consistent

extensionto the set of rationals on Ｈ ｾ Ｉ space is the only

function that satisfiesall the above properties.

Theorem 1. The criterion function (4) is an equivalentre-

presentationof (2), and ｨ ･ ｮ ｾ ･ the Combinatorial Optimization

criterion also has the above fairness properties.

Proof. By equivalenceis meant that if ｾ Ｈ ｐ Ｑ Ｉ > ｾＨｐＲＩ then

H(P1) > H(P2) and vice versa. Thus equivalenceimplies

{p} = {p*}; the same ranking of actions optimizes both

criteria. To establishthe equivalencewe shall introduce

the column vector of m ones labelled e. Furthermore,define

Now, A was defined so that

A + A' = Z

Conditions (3) and (5) together imply

if i = j

otherwise

(5)

Ed = 2A - Z (6)

Similarly, X = Q - Q' and Z = Q + Q' imply

X = 2Q - Z (7)

It is easily seen that

P'ZP = P ZP' = Z
P P P P

2[4], Theorems 5 and 7, pp. 41-44.

(8)
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The dot product operation in (4) is invariant to any

translationT ( ) of Ed and Pｾ X PP that preservesthe matchup

of their respectivematrix entries. That is

for all such valid T.

T( ) can be consideredto be the set of all possible permuta-

tions of the elementsof matrix ( ).

T( ) = P ( )P'
P P

is a valid form-preserving translation.

Now, (4), (6), (7), (8), and (9) combine to yield:

E ·p'XP =PEP'·PP'XPp'
d P P pdp P P P P

(9 )

( 10)

= 4P A P' • Q - 2P A P' • Z - 2Z • Q + Z • Z
P P P P

Since

2P A P' • Z = 2Z • Q = Z • Z = m (m-1)
p p

then

E • P' X P = 4P A P' • Q - m (m-1)
d p P P P

hence (4) and (2) are equivalent. I I

( 11)

( 12)

Geometrical Interpretation

As Blin and Whinston showed3 , whenevermajority voting

yields a transitive social ordering of the ai' the associated

permutationmatrix will be optimal for (2). Correspondingly,



ｾＶＭ

the permutationpoint pP* would be a matrix of +1'8, -1's, and

D's with:

= ｻＫｾ
if i = j

p•. if a. > a. in the optimal social order
1J 1 J

-1 if a. > a. L1 the optimal social order
J 1

p* would be optimal for

R(p*) = Hax E • p P
d

P

(4) ,

Let us define F as the set of all permutationpoints and

sgn(Ed ) as a matrix of +1's, -1 IS, and D's, whose entries

correspondto the sign of the entries of Ed. Then it is clear

that if sgn(Ed ) £F, then sgn(Ed ) = pP* and majority voting has

yielded a transitive social ordering.

Thus, we can rewrite (4)' as the following equivalent

problem:

rHn Ed' [sgn(Ed ) -Pp]
p

Since Z • pP = 0, (13) is equivalent to (14):

J(p*) = min A· [sgn(Ed ) -Pp]
p

(13)

(14)

Thus, if sgn(Ed) f F, we seek a permutationpoint that will

entail a least cost for moving from an intransitive majority

solution sgn(Ed ) to a transitive social ordering given by pp*.

In a geometric sense, sgn(Ed ) and pP are vertices of a hypercube

in Ｈ ｾ Ｉ space, centeredabout the origin, with edge length of

two. The problem is to choosethe closestvertex to sgn(Ed )

that belongs to F, where the measurementof distanceis

conditional upon A.
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The following lemma gives necessaryand sufficient con-

ditions for determining whether or not sgn(Ed) £ F.

Lemma: Let sgn(Ed) = [o .. J. If there exist distinct i,j,k1.)

such that sgn(oij) = sgn(ojk) F sgn(oik) then sgn(Ed) ｾ F.

If no such i, j,k exist then sgn(Ed) £ F.

Proof. If sgn(Oij) = sgn(Ojk) F sgn(oik)' then either

0 .. = o)'k = +1 or -1. In the former case, 0 •• = +1 implies1.) 1.)

a .. - a .. > 0, which in turn means that a1.' > a). by majority1.) )1.

voting. Thus, 0ij = 0jk = +1 implies

a. > a.1. ) and

a. > a. , ..• , a. > a.t' but a.t > a. •1.2 1.3 1.t - 1 1. 1. 1.1

by majority voting, which is an intransitive ordering.

Thus, sgn(Ed) ｾｆＮ In the latter case, the proof follows

anal9gously.

The above establishessufficiency: necessityis now

shown. Assume that no such i,j,k exist that provide in-

transitivity. Since all higher order intransitivities4

require an intransitivity of triplets [2], there must exist

a transitive ordering of the ai provided by sgn(Ed): hence

majority voting is transitive and optimal, and sgn(Ed) e: F. II

In graph-theoreticterms, if one places a directed arc

from node i to j to indicate ai > aj , then sgn(Ed) £ F if and

only if there are no directed cycles within the graph. Further-

more, if there are directed cycles, an attempt to eliminate

them by determiningwhether vertices of the hypercubeadjacent

t9 sgn(Ed) belong,to C will incur a cost of ｾ ｩ ｪ = aij - aji'

where ｾ ｩ ｪ means that the adjacentvertex only differs in that

component (i,j) is now -1 insteadof +1.

Ii A tth d' . t . . t . h . dor er 1.ntrans1. 1.V1. y 1.S C aracter1.ze as a· > a. ,1.1 1.2
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Set Covering Criterion

The optimization problem formulated by Merchant and Rao

is as follows [5]:

s.t.

Min 2'
(i,j)E:C

(8 .. + 8 .. ) (a .. - a .. )y ..
1) )1 1) )1 1)

(15)

2 Y >1 k=1,2,••• ,r(i,j)E:Ck ij

y.. = 0 or 1 ( i , j) E: C
1)

r
C = U Ci and Ck is a directed cycle.

i=1

The 8's are just weighting coefficients and as long as they

are constant (say 1/2 for simplicity), the following theorem

holds. Call (15) with constant 8's (15) '.

Theorem 2. (15) is an equivalentrepresentationof (4)

for 8.. constantV (i,j) E: C.
1)

Proof. (4) is equivalent to (14); hence, it is sufficient to

ｾ ｲ ｧ ｵ ･ that (14) and (15)' are equivalent. As Merchant and
5

Rao demonstrated, the constraintsof (15)' ensurethat all

old cycles will be eliminated and no new ones created.

From the lemma of the previous section, this is equivalent

to moving from sgn(Ed } to pP• y .. = 1 is equivalent to
1)

moving from sgn(Ed } to an adjacentvertex as before, and

the criterion function is the same as 6 ..• Finally, since
1)

the costs of moving to a pP that is not adjacentto sgn(Ed }

are simply additive Ｈ ｾ Ｑ norm used), the criterion function

of (15)' follows. II

5[5], Theorem 1, p.8
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Discussion

Although the three criteria are all equivalent, each

formulation of the social choice problem has unique character-

istics. (2) and (4) are similar in that they are both "primal"

approachesto the problem; both searchover the feasible set

of m! permutationmatrices, and at each stageof the problem,

a feasible solution is known. In contrast, (15) is a "dual"

approach; ｾ ｮ ｴ ｩ ｬ the y .. are discovered, no feasible solution
1.)

to the problem is known.

In (2) an optimal assignmentof actions to ranks is de-

termined, while in (4) a searchfor the optimal ｭ ｡ ｴ ｾ ｨ ｩ ｮ ｧ of a

permutationpoint to a translatedelection matrix is undertaken.

Thus, while both proceduresare quadraticassignmentproblems

of a set of "objects" to "positions," the proceduresdiffer by

reversing the meaningsof objects and positions.

Example

In order to illustrate the three approacheswe consider

the following example:

Individual Ranking Number with Preference

(a1 a2 a3) 23

(a2 a3 a1) 17

(a2 a1 a3) 2

(a3 a2 a1) 8

(a3 a1 a2) 10

where a1 a2 a3 means that alternativea1 is preferred to a2

and a2 is preferred to a3• Majority voting leads to an in-

transitive solution. In order to analyze the problem we

construct the following:
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0
33 25 0

6 10

60 60 60 - 60

A
27 0

42
Ed

6 0
24

= 60 60 = - 60 60

35 18 0
10 24 0

60 60 60 - 60

=

o

1

1

o

-1

1

- 1 0

Noting that

x =

o

-1

-1

1

o

-1

1

1

o

we obtain the permutationpoint:

o

1

1

-1

o

-1

-1

1

o

which is optimal, implying the social order (a2 a3 a 1) .

The optimal permutationmatrix is:

0 1 0

Pp'" = P = 0 0 1
p

1 0 0



0
42 27
60 60

A- 18 0
35= 60 60P

33 25
0

60 60

Computing the solutions we have:

= 42 + 27 + 35
60

=
104
60

H (p*) = 2 (-6 + 10 + 24)
60 = 56

60 =

From the majority voting solution we obtain the following
a

graph with a cycle: 2

= 2.!:t.
6 a

a 1 631 = ｾ ｾ a3

We obtain the set covering problem:

s.t.

Min L
(i,j)e:C

(a .. -a .. )y ..
1J J 1 1J

C = {(23), (31), (12):}

y .. = 0 or 1
1J

V(i,j) e:C

The optimal solution is

A

1Y12 =
A A

Y23 = Y31 = 0

which is again equivalent.
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