
Structure of a File Oriented
Programming Language, GPLAN-BL-
1

Bonczek, R. and Whinston, A.B.

IIASA Working Paper

WP-75-164

1975

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33891736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bonczek, R. and Whinston, A.B. (1975) Structure of a File Oriented Programming Language, GPLAN-BL-1. IIASA Working

Paper. WP-75-164 Copyright © 1975 by the author(s). http://pure.iiasa.ac.at/264/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

STRUCTURE OF A FILE ORIENTED

PROGRAHHING LANGUAGE-GPLAN/BL/I

Robert H. Bonczek and Andrew B. Whinston

December 1975 WP-75-164

Working Papersare not intended for distri-
bution outside of IIASA, and are solely for
discussionand information purposes. The
views expressedare those of the authors,
and do not necessarilyreflect those of IIASA.

2361 ILaxenburg International Institute for Applied Systems Analysis
Austria

structureof a File Oriented

Programming ｌ ｡ ｮ ｧ ｵ ｡ ｧ ･ ｾ ｇ ｐ ｌ ａ ｎ Ｏ ｂ ｌ Ｏ ｉ

Robert H. Bonczek

1. Introduction

Andrew B. Whinston

r

Modern computer sciencehas developedlanguagesalong many

distinct paths; three are: Operating System Languages (e.g.,

OS/JCL), High Level ProceduralLanguages (e.g., FORTRAN), and

High Level Non-ProceduralData Base Languages (e.g., ALPHA,

SQUARE, GPLAN). The purposeof each of these is to solve a

particular problem, namely, to simplify the work of the pro-

grammer, so that a majority of his time could be spent on his

own application. The developmentof data manipulationpro-

cedureshas also proceededindependently; of programming

languagesonly in the programming languageLISP are data and

program expressedin a common manner.

We feel that the time has come for a new approachto computer

languageevolution, especially for businessoriented users. The

combination of data, programs, and operating system into a single

languagewould make a great simplification of the current state

of affairs. The BL/I languageis presentedas a prototype for a

data base oriented computer system, combining features from oper-

ating systems,programming languages,and data base languages.

1.1 Operating System

Most operatingsystems include a job control language: a

procedural languagefor specifying job steps. This includes

device manipulation, large file manipulation, compilation and

execution. The transparL,ntpart of the operating system is the

software for schedUling, queueing, and device operation. In the

proposedsystem, the file manipulation capability of a job control

languageis extendedto handle arbitrary sectionsof a data base.

Other featureswould remain the same.

•

-2-

.1.2 ProgrammingLanguages

Languagessuch as FORTRAN and COBOL suffer from the defect

of being record oriented languages,i.e., processingonly a

single record at a time. BL/I will also handle the record

oriented programs, but it contains a set of D.B. oriented

manipulation routines, where entire sectionsof the D.B. can be

addressedfrom within a procedural languageprogram. Since

FORTRAN and COBOL are subsetsof BL/I, it is clear that an

increasein computing power is obtained.

1.3 Data Base Languages

Two kinds of data base languageshave been developed.

Record oriented and ProceduralData Manipulation Languages (e.g.,

GPLAN/DMS) were proposedby the CODASYL D.B.T.G. These usually

consist of a set of COBOL or FORTRAN callable subroutines,which

maintain and manipulate record occurrancesin the D.B. File ori-

ented nonprocedurallanguages(e.g., ALPHA, GPLAN/QUERY LANGUAGE)

use data descriptionsto generateoutput files from the data base.

However, the nonproceduralapproachis limited by the difficulty

of comprehendingcomplex statementand commands. Natural language

processingis (as of now) too time consuming for use in this

application.

2. Featuresof BL/I

As statedabove, BL/I will attempt to combine many of the

featuresof operating systems, programming languages,and data

base retrieval into a single language. In this section are

listed some of the user oriented features that BL/I should contain.

2.1 Data Base

The fundamental underlying concept of BL/I is that it is

built upon a CODASYL type network data base. The entire BL/I

system is describedby a network structure, in that all parts of

BL/I relate to others in both explicit and implicit ways. The

implementationof the data portion of the D.B. is describedin the

GPLAN DMS Users Manual [1]. A useful feature of the GPLAN system

is the ability to maintain data ocanrances in LIFO and FIFO lists

•

-3-

(or stacks and queues),as well as sorted by key. This device

is useful for the implementationin the operating systemof a

schedulingprocess.

2.2 Data Base Manipulation

The foundation for all of BL/I's DB Manipulation capabil-

ities is the GPLAN Query Language [2]. This is a nonprocedural

high level query languagethat can be used to compute simple

and complex expressionson data, as well as to perform condi-

tional retrieval on the data stored in the D.B. The prototype

of a GPLAN is

<COMMAND> <ARGUMENTS> <CONDITIONS>

such as in: LIST STUDENTS FOR TEACHER = 'SMITH'.

However, by using a transformationalgrammar to parse the query,

the parts of the query can be convoluted, as in

FOR TEACHER = 'SMITH' LIST THE STUDENTS

For a fuller description, see [2].

The QL has the ability to modify the data base, as well as

perform retrieval. New and/or temporary record types can be

created/deletedby using the proper statements. The value of

having the QL as an integral part of the BL/I languageis two-

fold: (1) it provides quick data retrieval capabilitiesfor non-

technical users of the D.B. By presentingas english-like QL,

the system can be utilized by anyone requiring it. (2) it frees

the technical user from the chores of data manipulation, so that

more of his time can be spent on solving the problems of his

own application.

2.3 Record Manipulation

Some users of data information systemshave need to actually

examine and retrieve data internally on a record by record basis.

To satisfy these users, BL/I includes the GPLAN Data Manipulation

Language. This set of routines perform all of the necessarydata

base accessingfunctions for a program. Callable from any source

language, they provide anothermethod for modifying and retrieving

-4-

information, so that the user only need be concernedwith his

own computations.

What we actually have is a hierarchy of methodsof access-

ing the data base. At the most primitive level, a user can be

concernedwith paging, pointers, etc. This chore is performed

for the user by the DML. The user of DML is then only concerned

with logical relationshipsamong data elements,explicitly defi-

ning and computing these. This task is performed by the query

system, leaving to the user the job of naming the sets of data

he desires. Finally, BL/I provides a means of working with these

sets of data, so that the user only need specify what processes

he wants performed, and not how to perform them.

2.4 Input/Output

The input/output functions of BL/I are performed by the

GPLAN/GENERALIZED LOAD PROGRAM (GLOP). GLOP has the capability

of transferringdata from any kind of network structure into any

other kind of network structure. Note that this includes the

special case of transferringa sequentialfile (single record

type) into a network DB structure.

For example, supposethat the structure shown in Fig. 1a

(assumedto be input) is to be mapped into that of Fig. 1b. The

necessarystructural information would be to :

TeacherName # of Students

Student Name Grade STUDENT TEACHER

GIVE

TeacherName # of Students

StudentName Grade

FIG. 1a FIG. 1b

CREATE RECORD TYPES STUDENT, GRADE, TEACHER, with relation

RECEIVE holding between STUDENT and GRADE and relation GIVE

holding between TEACHER and GRADE. The necessaryGLOP file

description is:

-5-

FORMAT 1

TEACHER,NN1E: OvillER OF GIVE

DETAIL: 2

FORMAT 2

STUDENT,NAME: OWNER OF RECEIVE

GRADE: MEMBER OF GIVE AND RECEIVE

The term DETAIL refers to the number of records of Format Type 2

that occur. Note that only specific structural information need

be given to GLOP; it is a high level language, in that only what

to do is specified, and not how to do it.

The GLOP structurecontains formatting capabilities. Thus

GLOP can be used as a report generatorfor output (the GPLAN QL

has a similar capability). The same holds true for ｩ ｮ ｰ ｵ ｾ Ｎ The

important idea here, though, is that conceptuall¥input and

output are just two pre-definedrecord types of the system. In

fact, all external devices on the computer can be (logically)

consideredrecord types of the D.B. Thus GLOP can be used to

manipulateall input and output. Moreover, it is possible to

structurethe record types for the mass storagedevices,andso

logically obtain storagehierarchies.

2.5 Application Program

BL/I allows both FORTRAN and COBOL programs to be compiled

and executedas part of the BL/I system. In order to do this,

both compilers and a loader must be BL/I resident. Logically

this can be accomplishedby defining COMPILER and LOADER record

types, and storing the appropriateprograms by name as record

occurrances.In this way, many different compilers can be acc-

omodatedby the system, as well as several different versions

of loaders. All of the program compiled by BL/I would have

accessto both the DML routines and the GLOP for processing

purposes.

Along these same lines, it is possible to store user appli-

cation programs in a record type, either in sourceor binary

version. Having the program source code is useful, since

-6-

modifications can be made to it from the GPLAN QL. These stored

programs can be executedfrom BL/I by name.

2.6 Planning

BL/I is designedprimarily for a managerwho is interested

in getting results from the computer rather than programming it.

Thus it is useful to include in BL/I a planning mechanism, like

STRIPS [3], so that the managercan be aided in making whatever

decisionsmust be made. But an economic planning module must be

able to do more than a robotic planning module, becausethe former·

must often choose betweenalternativesaccording to some criteria,

e.g., maximizing profits by investment.

The only way such a mechanismcan be realized is to have it

operate interactively with the manager. In this way, the system

can query the managerconcerningthe decisionsthat must be made,

in order to use his judgementon reducing the possiblechoices.

Only with a guided interactive searchcan this form of planning

mechanismoperate.

2.7 Security

A security system has already been designedfor the GPLAN

Query System [4]. In this system, both operatorsand data

values can be locked out for a particular user. This system

could be extendedto BL/I application programs and system routines

in a simple and straightforwardmanner. Thus, no operationnot

allowed for a user could be performed by that user, nor could data

values be retrieved to which that user was not entitled.

3. BL/I Control

The BL/I languageuses a general recursive control structure

that is quite flexible for meeting the needs of users. Since all

of BL/I is defined with respectto the universal data base, the

control structure is also so defined.

3.1 Storageof Semantic Information

Consider the context free grammar G = (N,E,P,S), where

N = {S,T,O}, E = {(,) ,-,+,x,7,a1,a2,a3, •.. ,ak }, and P contains

•

..

-7-

productions 8 -+ 808, 8 -+ 8, 8 -+ (8) , 8 -+ T, o -+ +, o -+ x,

0 -+ *, o -+ .. , T -+ a1, T -+ a2,···,T -+ ak . This granunar is called

a picture grammar if we let the terminals ai' i = 1 , ... , k be

arrows (-+) , and define the operatorsby

a b
a+b means -+ -+ hd(a+b) = hd(b), tl(a+b) = tl (a) , hd (a) = tl(b)

axb means a,l\,b hd(axb) = hd(b), tl(a+b) = tl (a) = tl (b)

a*b means aob hd(a*b) = hd(a) = hd (b) , tl(a*b) = tl(a) = tl(b)

a.;-b means a\lJ hd(a';-b) = hd(a) = hd (b) , tl(a';-b) = tl(a)

where hd(x) = head of arrow x, tl(x) = tail of arrow x. (over-

score) is a special operator; if x appearsin a string, it means

that this occuranceof x is the same as the previous occurance

of x, if one exists.

Using this picture grammar, a network data base structure

can be describedas a string in the languageof the picture

grammar. For example, the network pictured in Fig. 2 can be

describedby

FIGURE 2

as x [(a4+a9) x (a3.;-[(a1+[a6.;-(a2+[aaxa7])])xa2])]

Another description is

A problem, t.hen, is that for each data base structurethere

exist more than one picture languagestring describing that

structure. Any algorithm describedfor translatingnetworks

-8-

into picture languagestrings then will be dependentupon the

order the links of the networks are processedin. For a given

network, the problem of finding a best representationof the

network by a string is yet to be solved.

However, each well defined string in the picture language

describesone and only one network structure. Thus, given a

string, it is possible to completely determine the network data

base the string describes. Moreover, the semantic information

about the links (relations), which define the data base, can

easily be stored with the string in a network structure.(Fig. 3).

FIGURE 3

Each terminal symbol of the string representsan occuranceof

the record type string. Each link in the string is owned by

a relation, as well as two record types (head and tail). The

semantic information stores correspondsto information now

stored in the record table and set table of the GPLAN Data

Manipulation Language [1].

The structureallows full flexibility to be achieved in

the storageof the data base schema information. One can access

this information by relation name, record type name, partial

semanticdata, or by part of the defining string itself. This

latter capability is most useful when a restructuringof the

D.B.structureis requiredi by specifying changesin the structure

of the string, the structureof the D.B. is modified.

3.2 General Description of Routines

Consider the universal data base, with record types for

all progrmus and devices as well as data. Supposea program

-9-

stored as an occurranceof record type A is to be run, and

this program may need results from two other programs of type

Band C (see Fig. 4).

FIGURE 4

The executionof Band C is dependentupon the argumentssupplied

to A. The control routine for program A might look like this

(in a loose LISP framework)

(EXECUTE X (COND ((C1) (AND (REQUEST B) (REQUEST C»)

((C2) ((REQUEST B»)

(T T»)

where if C1 is satisfied, both Band C must be run; if C2 is

satisfied, then only B must be run; otherwise neither need be

run, so the value of EXECUTE would be T. The request function

might look like:

(REQUEST X (COND ((C1) (EXECUTE X»

(T NIL)))

where if C1 is true then X should be run; if C2 is true then X

need not be run, i.e., X halts with no output; otherwise X can-

not be run, and hence the requesthas failed. Clearly, when

EXECUTE X is issued, it may need to recursively requestother

routines, etc.

In general, for each node (record type) in the control

structurenetwork, there is an associatedlist of "EXECUTEri

-10-

conditions, which form the COND clause of the REQUEST function.

Similarly, for each line (relation) there is a corresponding

list of "REQUEST" conditions, which form the COND clauseof

the REQUEST function. Then to perform any step in the control

process,all required stepsmust be executed (with a value of T).

3.3 Examples of the Use of the Control Process

The interface of application programswith the data portions

of the DB can be facilitated by means of the Control Structure

(Fig. 5).

FIGURE 5

The executionof program B from program A can be effected by the

processdescribedabove. Supposeprogram A needs some data from

the D. B. in order to run. Record C would then only need contain

(1) a call to GLOP and (2) the descriptionof the desireddata

and the form of the retrieveddata. If the data is unavailable,

the requestwould fail.

It is occasionallyuseful to store a program as part of a

data record occurancej this is feasible when the program is small-

er than the output generated. The program itself must then have

an associated"EXECUTE" list. In performing retrieval on this

data occurance, the execute list could have in it a referenceto

EXECUTE the stored program. In conjunction with the previous

example of program interfacing, this technique can become quite

powerful.

Complex BL/I programs can be constructedusing this technique.

By providing a user defined control structurecapability, a pro-

grammer can build an EXECUTE-REQUESTnetwork of BL/I subprograms.

Moreover, if BL/I is operating in a multi-processorenvironment,

then the control structurecan be used to specify routines which

can be processedin parallel.

,

'-"--..'!III!

-11-

3.4 BL/I Control Monitor

The actual BL/I Control Program is designedaccording to

ｴ ｨ ｾ BL/I Control Structure. For each kind of BL/I instruction,

there is a record occurrance,with its associated"EXECUTE"

list of conditions. Each record occurranceis then linked to

appropriateother occurrances. In this way, security is a

fairly reasonablething to implement: if the user does not have

the proper security clearance,then his requestwill fail (have

value NIL).

Of course, the BL/I Monitor is also an operating system,

so that it must also contain routines for resourcemanagement

and scheduling. The Control Structure is a logical description

of the method of program execution. The interface of the applica-

tion side of BL/I with the operating system side must be made

consistent.

The actual form of the Monitor has yet to be established.

To proceed in this direction, the external routines of BL/I must

be completely specified. Once this is done, we can proceed to

implement the internal structureof the language, using the

criteria specified by the requirementsof the routines. This is

the next step in the developmentof the BL/I language.

However, it is clear at this time that, besidesbeing a

languageoriented toward managementapplications, it also has

many of the propertiesof LISP that are desirable. The D.B. cap-

ability is at least as powerful as data structuresdefinable in

LISP; by using the QUERY LANGUAGE to do retrieval, the burden

of using CAR and CDR is removed. The control languageis

recursive. Further, a LISP compiler or interpretercould be

included as part of the compiler record type, so that existing

LISP routines could be incorporatedinto the system. with the

Planning System, BL/I becomesa useful tool for researchersin

artificial intelligence.

-12-

4. Conclusion

This paper is an outline for a new, high level procedural

computer languagethat would encompassideas from operating

systems, programming languages,and data base technology. The

languagewould incorporatemany featuresof these three areas,

with more interrelationsamong them than is commonly found today.

However, much work still needs to be done on this subject. In

particular, the control structure for BL/I needs to be worked

out in greaterdetail. Furthermore, the economic planning

mechanismmust be designatedto easily interface with the data

base. We believe that the realizationof BL/I will be a great

step in the evolution of managementoriented computer languages.

References

[1] Bonczek, R.H., Cash, J.I., Haseman, W.D., Holsapple, C.W.,

Whinston, A.B., GeneralizedPlanning System/Data

ManagementSystem(GPLAN/DMS) ,Users Manual, Krannert

GraduateSchool of Industrial Administration, Aug. 1975.

[2] Bonczek, R.H., Haseman, W.D., Whinston, A.B. "Structure

of a Query Language for a Network Data Base,"

Working Paper.

[3] Fikes, R.E., Nilsson, N.J. "STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving,"

Artificial Intelligence 2 (1971), 189-208.

[4] Cash, H.1., Haseman, W. D., and Whinston, A.B. " Security

For the GPLAN System," submitted to Information

Systems, Feb. 1975.

