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Abstract 

A very simple discrete-time predator (boats) - prey 
(fish) model for the description of the dynamic behavior 
of a fishery is presented. The stability properties 
of the system are analyzed in some detail and the sensi- 
tivity of the equilibrium with respect to the catch- 
ability coefficient, the length of the fishing season 
and the investment coefficient of the fleet is analyzed. 
Finally, a simple procedure is presented and used for 
estimating the characteristic parameters of the fleet 
of a few fisheries. The agreement between the data and 
the predicted results is quite satisfactory when consi- 
dering the crudeness of the model. 

1. Introduction 

In the literature on commercial fisheries, the dynamics 

of fish populations is often described by means of a set of 

differential (difference) equations in which variables such 

as effort and dimensions of the fleet enter as constant 

parameters or as driving variables. However, in the real 

world, economic variables are not fully controllable and 

are strongly influenced by the dynamics of the fish popula- 

tion itself. A fleet is normally sensitive (at least over 

long periods of time) to catches in recent years, or in 

other words, to investment (Smith [ll]; Fullenbaum, Carlson, 
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B e l l ,  and  S m i t h  [ 5 ] ;  Wang [ 1 2 1 ) .  Thus  it s h o u l d  b e ,  i n  

g e n e r a l ,  more a p p r o p r i a t e  t o  c o n s i d e r  t h e  d i m e n s i o n  o f  

t h e  f l e e t  ( e . g .  number o f  b o a t s )  a s  a  s t a t e  v a r i a b l e  

r a t h e r  t h a n  as a p a r a m e t e r  or  as a c o n t r o l  v a r i a b l e .  

Modern m o d e l l i n g  t e c h n i q u e s  a n d  s y s t e m  t h e o r y  make it 

p o s s i b l e  t o  a d d  s u c h  d i m e n s i o n s  w i t h o u t  l o s i n g  t h e  ana -  

l y t i c a l  t r a c t a b i l i t y  t h a t  i s  c o n s i d e r e d  a v i r t u r e  o f  

c lass ica l  f i s h e r y  dynam ics  mode l s .  

The s t r u c t u r e  o f  a g e n e r a l  model  wh i ch  i s  c o n s i s t e n t  

w i t h  t h i s  s u g g e s t i o n  i s  shown i n  F i g .  1. The d r i v i n g  f o r c e s  

a c t i n g  o n  e a c h  s u b s y s t e m  are c o n s t a n t  i n  t i m e  o n l y ' i f  t h e  

f i s h e r y  i s  n o t  c o n t r o l l e d  by a s u p e r v i s o r y  a g e n c y  and  i f  

t h e  s u r r o u n d i n g  e n v i r o n m e n t  o f  t h e  f i s h e r y  d o e s  n o t  v a r y  i n  

t i m e  ( n o  t r e n d s  i n  t h e  economy, no  improvements  i n  f i s h i n g  

t e c h n o l o g y ,  no d e t e r i o r a t i o n  o f  t h e  h a b i t a t , .  . . )  . T h i s  

l i m i t  case o f  b e h a v i o r  o f  t h e  s y s t e m  w i l l  b e  c a l l e d  " n a t u r a l  

e v o l u t i o n "  o f  t h e  f i s h e r y  i n  o r d e r  t o  d i s t i n g u i s h  i t f r o m  

cases o f  " c o n t r o l l e d  e v o l u t i o n "  o b t a i n e d  when d e c i s i o n  make rs  

f i x  o v e r  t i m e  t h e  v a l u e s  o f  some o f  t h e  d r i v i n g  f o r c e s  ( e . g .  

number o f  s p a w n e r s  t o  b e  r e l e a s e d  f r om h a t c h e r i e s ,  l e n g t h  o f  

f i s h i n g  s e a s o n ,  t a x e s ,  number o f  l i c e n s e s ,  s u b s i d i e s , . . . ) .  A 

c o n t r o l l e d  e v o l u t i o n  i s  u s u a l l y  o b t a i n e d  t h r o u g h  a  f e e d b a c k  

a s  shown i n  F i g .  2 ,  whe re  t h e  c o n t r o l l e r  r e c e i v e s  i n f o r m a t i o n  

a b o u t  t h e  s t a t e  o f  t h e  s y s t e m  a n d  c o n s e q u e n t l y  makes a d e c i s i o n .  

To a n a l y z e  a n d  compare  t h e  c o n t r o l l e d  e v o l u t i o n  o f  a  f i s h e r y  

c o r r e s p o n d i n g  t o  d i f f e r e n t  f e e d b a c k  p o l i c i e s ,  it i s  f i r s t  

n e c e s s a r y  t o  h a v e  a  model  f o r  t h e  d e s c r i p t i o n  o f  t h e  n a t u r a l  

e v o l u t i o n  o f  t h e  f i s h e r y  a n d  t o  know how b a s i c  p r o p e r t i e s  o f  

t h a t  model  ( e . g .  e q u i l i b r i u m  a n d  i t s  s t a b i l i t y )  are i n f l u e n c e d  

by  p a r a m e t e r  v a l u e s .  

The a i m  o f  t h i s  p a p e r  i s  t o  p r e s e n t  a v e r y  s i m p l e  d i s -  

crete-time mode l  o f  t h e  k i n d  d e s c r i b e d  i n  F i g .  1 (see S e ~ t . 2 ) ~  

a n d  t h e n  p r o v e  t h e  e x i s t e n c e  o f  a n  a s y m p t o t i c a l l y  s t a b l e  

e q u i l i b r i u m  f o r  i t s  n a t u r a l  e v o l u t i o n  (see S e c t .  3 )  a n d  d i s c u s s  



the sensitivity of this equilibrium with respect to those 

parameters which are potential driving variables of a con- 

trolled evolution (see Sect. 4). Finally, a very simple 

scheme for the estimation of tne parameters of the model is 

given in Sect. 5. 

The model presented in this paper is very crude because 

both the fish population dynamics and the evolution of the 

fleet are described by means of a first order difference 

equation. Thus, the fishery turns out to be considered as 

a classical predator (boats) - prey (fish) system. It must 

be noted that this paper does not represent the first attempt 

to describe a fishery as a predator-prey system. Commercial 

fisheries have already been described as continuous-time 

predator-prey systems (e.g. Smith [ill, Fullenbaum, Carlson, 

Bell, and Smith [51, Wang [121). The continuous time descrip- 

tion is, in general, more elegant but can give rise to serious 

disadvantages when the model is used for designing the best 

control policy: continuous-time models require that the de- 

cision maker is operating continuously in time, while in almost 

all commercial fisheries decision makers are operating in 

discrete time (e.g. once per year). Moreover, in some special 

fisheries (e.g. Pacific salmon) the discrete-time description 

is definitely necessary because of the short, pulsed character 

of fishery effort. Finally, the particular type of data avail- 

able for commercial fisheries makes it possible to estimate the 

parameters of discrete models only. 

2. The Model 

Let Bt, Nt and Ct be, respectively, the number of boats, 

the number of fish and the total catch in year t. Then, the 

model is specified by two difference equations for the dynamic 

behavior of boats and fish and by an equation giving the catch 

Ct as a function of Bt and Nt. The particular equations used 

in the remainder of this paper are as follows: 



(la 

(lb 

(lc 

In the first equation (fleet dynamics) s and i are 

"survivalll and "investment" coefficients of the fleet; 

therefore 0 < s < 1 and i > 0. 

The second equation is the well-known Ricker model 

where (Nt - Ct) is the number of spawners in year t ,  NE 
a 

is the natural equilibrium of the fishery and e is the 

growth factor (0 - < a - < 2). 

The last equation is the commonly used "catch equation" 

and simply states that the catch Ct is proportional to the 

recruitment Nt and is an increasing and bounded function 

of the fishing rate cBtT (c is the usual catchability 

coefficient and BtT is the effort = number of boats x length 

of the fishing season). The three pairs of parameters 

(s, i) , (a ,NE) , (c ,T) appearing in ~ q .  (1) are assumed for the 

foregoing discussion to be constant in time. 

By substituting the catch expression into the first two 

equations one obtains the description of the dynamics of the 

fishery in the form 



where the functions fB and fN are given by 

Nt fN(Bt,Nt) = Nt exp a - cBtT - a - exp (-cBtT) , 
N~ I 

so that the natural evolution of the fishery is nothing but 

a trajectory in the state space of the system described 

by Eqs. (2-3). 

Some comments on the assumptions underlying Eq. (1) 

are now needed in order>to bound the validity of the 

mode 1. 

The weakest point of the model is certainly the 

description of the dynamics of the fleet. There are in 

fact different reasons why Eq. (la) might not be considered 

satisfactory. First, there may be a considerable time lag 

between investment decisions and actual appearance of boats 

in the fleet. Second, Eq. (la) does not take into account 

the age structure of the fleet which could be of some 

importance, especially in the case of a sudden change in 

fishing technology (note that, by definition, this cannot 

occur during the natural evolution of the system). Third, 

the investment It = iCt/Bt is assumed to be linearly related 

to the catch per boat while a more realistic assumption 

should be that the investment is an increasing and strictly 

convex function of the catch per boat; however, this 

assumption would seriously increase the difficulty of the 

discussion below. Fourth, and probably most important, is 

that in real fisheries the investment It does not depend only 

upon the catch per boat of the previous year, but also upon 

all the prior history of the fishery. This could be taken 

into account by assuming that It is a weighted sum of the 



catches per boat in the past, i.e. 

so that 

Thus, under this assumption the fishery would be described 

by a third order model of the kind 

and the dynamic behavior of such a model would certainly be 

smoother than the one predicted by Eq. (2), because of the 

"filtering" effect introduced by Eq. (4). Finally, in many 

fisheries the number of boats present every year is subject 

to apparently random fluctuations due to the mobility of the 

boats and the competition among fisheries. Thus, the 

dynamics of the fishery can be described only very roughly 

by Eq. (la). As an alternative, one could use a stochastic 

description of the kind 

with a fairly high variance of the noise At (in Sect. 5, 

the stochastic process At will be assumed to be normally 

distributed). 



For the dynamics of the fish population, the situation 

is not as fuzzy because the limits o f  validity of the Ricker 

model (lb) have been well studied (e.g. Cushing and Harris 

[2]). The most important phenomena that are missing in this 

model are the effects of the age structure of the population, 

a time delay in the stock-recruitment relation and the 

stochasticity induced by random fluctuations of the quality 

of the habitat. The first two criticisms could in principle 

be overcome by using a higher order model, while the third 

requires a detailed description of the influence that some 

suitable environmental indicators have on the life cycle 

of the fish, a very difficult problem indeed. A synthetic 

way of solving this problem consists of multiplying the stock- 

recruitment function by a random factor at, i.e. 

Nt+l = at(Nt - Ct) exp 

where at can be interpreted as a measure of the probability 

of survival in year t. Since the number of causes of death 

in the life cycle of a fish is very high and since these 

causes can be considered essentially as independent of each 

other, it follows that the stochastic process at can be 

reasonably assumed to be lognormal. 

Finally, the catch equation is open to considerable 

criticism (Paloheimo and Dickie [lo]), since it does not 

take schooling and nonrandom boat searching into account. 

To add some realism, a stochastic term can be included to 

give 

where Bt is again a lognormal stochastic process because it 

arises as a product of several essentially independent 

efficiency factors such as weather. 



In the next two sections the deterministic behavior 

(At = 0, at = 1, Bt = 1) of the fishery is analyzed. In 

Sect. 5, Eqs. (5-7) and the assumptions of the stochastic 

processes At, at and Bt are used to devise a satisfactory 

scheme for the estimation of the parameters. 

3. Stabilitv Pro~erties 

The purpose of this section is to find the equilibrium 

states of the model, discuss their stability and, .in general, 

study the properties of the natural evolution of the fishery. 

By definition, the equilibrium states are the solutions 
- - 

of Eq. (2) with Bt = Bt+l = B and Nt = Nt+l = N, i.e. 

N B = sB + i = - exp (-cET)] , 

N N = N exp a - CBT - a - exp ~ c E T )  . 
N~ I 

A trivial solution of this system of equations is given by 
- - 

the origin of the state space, (B,N) = (0,O). Since B = 0 

if and only if N = 0, it is possible to assume E # 0 and 

N # 0 in ~ q s .  (8) and solve them with respect to N: 

The shapes of the two isoclines v(B) and h(5) given by Eqs. (9) 

appear in Fig. 3; these isoclines demonstrate that there always - - 
exists one and only one equilibrium state (B,N) with fj  # 0 

and N # 0, which is called the productive equilibrium state 

from now on. 



Let us now linearize the system around its two equilibrium 

states in order to study their stab'ility properties. The 

linearized system is 

where ABt and ANt are the variations with respect to a steady 

state and the matrix F is evaluated at the equilibrium. 

In the case of the origin the matrix F turns out to be 

given by 

so that the eigenvalues are s and exp (a). The former is 

smaller than one, while the latter is greater than one, and 

this implies the origin in an unstable equilibrium state. 

More precisely, the origin is a saddle point, the eigenvectors 

being the B axis and the vector 

and the trajectories in the neighborhood of the origin are 

shown in Fig. 4 where successive states are joined by a 

straight line. 



Working out the derivatives indicated in Eq. (10) and 

using Eq. (9) it is possible to prove that the matrix F - - 
evaluated at the productive equilibrium (B,N) is given by 

Since (B,N) is not available in closed form, explicit 

computation of the eigenvalues is impossible.  everth he less, 
the discussion of the stability of the equilibrium can be 

performed in an indirect way recalling that the eigenvalues 

of a 2 x 2 matrix lie within the unit circle when the 

following two inequalities are satisfied 

I C I  

where and 1 are, respectively, the product and the sum of 

the eigenvalues. Since If and 1 are the determinant and the 

trace of the matrix F, it is possible to show that under the 

assumption 

which is satisfied in most commercial fisheries, conditions 

(lla) and (llb) are verified, i.e. the productive equilibrium 

is always asymptotically stable. A proof of this statement 

can be found in Appendix 1. 

Though the analysis so far performed is a stability 

analysis in the small, there is no evidence for the productive 

equilibrium state not being stable in the large. This 



assertion is essentially validated by the existence of a 
- - 

region of attraction R containing (B,N), i.e. a region 

satisfying the following two properties: 

a) any trajectory starting from a point in R is 

contained in R ( R  is an invariant set), 

b) any trajectory starting from a point outside 

of R reaches R in a finite number of transitions. 

A proof of the existence of such a region can be found in 

Appendix 2. 

Finally, simulation of the model shows that, depending 

upon the values of the parameters, monotonic or oscillatory 

transients can be obtained. In Fig. 5 an example corre- 

sponding to the exploitation of a virgin fishery 

(Bo = O,No = NE) is shown. Two transients are plotted for 

two different values of parameter cT: trajectory A is 

obtained in the case of poor technology and/or short length 

of fishing season (cT = 1.5 x , while trajectory B is 

obtained in the opposite case (c = 3.5 x It is 

worthwhile noticing that in case A there is no oscillatory 

behavior, while in case B there are periods of temporary 

overinvestment followed by periods of overexploitation of 

the fish population, a fact which has been observed in 

commercial fisheries. 

Sensitivity of the Productive Equilibrium 

As pointed out in the previous section, the productive - - 
equilibrium (B,N) cannot be given a closed form expression. 

Nevertheless, the sensitivity of this steady state with 

respect to some parameters can be determined in a qualitative 

way. 



With this aim, it is convenient to study first how the 

isoclines v(B) and h(B) are influenced by the parameters. 

It is interesting to notice (see Fig. 6) that curve v(B) 
1 - s  does not depend separately on s and i, but on T, 

i.e. on the ratio between mortality and investment, and that 
2 it approaches, for large values of B , a limit parabola 

independent of c and T. On the other hand, curve h(B) does 

not depend (see Fig. 7) upon s and i, but only upon cT, a, 

and NE. By intersecting h (B) with v ( B )  , it is easy to 
1'- s understand how the equilibrium point varies with -?- 

and cT: these variations are shown in Fig. 8. 

The following general conclusions can be drawn: 

a) If a < 1, the population N is decreasing with cT 
1 - s  and increasing with -. If a > 1, then the 
1 

statement above is still valid for large values of 
1 - s  cT and low values of -. In simple terms, if 

1 

the fishery is characterized by a low reproduction 

rate then the size of the stock at the equilibrium is 

decreasing with the catchability coefficient, with 

the length of the fishing season, and with the sur- 

vival and investment coefficient of the fleet. If, 

on the contrary, the fishery is characterized by 

a high reproduction rate, then the stock size is a 

dome-shaped function of the same parameters. 

1 - s  b) The number of boats B is decreasing with T- 
while it is first increasing and then decreasing with 

cT. ,In other words, greater values of the survival 

and investment coefficients imply larger sizes of the 

fleet, while too large values of the catchability 

coefficient and of the length of the fishing season 

give rise to a small equilibrium fleet size. 



As for the equilibrium catch C, observe that Eq. (la) 

yields 

which is the limit parabola shown in Fig. 6. With this in 

mind, it is easy to realize that the catch C is a dome- 
1 - s shaped function of -7 and cT. An important index for the 

fishery is the equilibrium catch per boat 5 which (see Eq. 

(12) ) turns out to be given by 

The following two simple but important properties of 

this index can be proved to be valid: 

c) The catch per boat is increasing.with the ratio 
1 - s  . 

1 

d) The catch per boat is first increasing and then 

decreasing with cT. 

To study how 5 varies with ?--, - it is sufficient to plot 

the curves of constant catch per boat given by 

N - [l - exp (-BcT)] = const. 
B 

and intersect them with the curve of Fig. 8b, which is the 

locus of the equilibrium states obtained for different values 
1 - s  of - (see Fig. 9). It is easy to verify that, since 
1 

a < 2, the curves of constant catch per boat intersect the 

equilibria locus only once; therefore j is an increasing 
1 - s  function of -. 
1 



TO prove property d) it is sufficient to remark that 

in view of Eq. (13), 5 has the same dependence upon cT as 

the number of boats, i.e. it is first increasing and then 

decreasing with cT (see Fig. 10). Therefore, there exists 

a length of the fishing season which maximizes the catch 

per boat. 

Property d) is of particular interest because it points 

out the possibility for a fishery to be in the equilibrium 

state B of Fig. 10. A suitable change of the length of the 

fishing season will then generate a transient from state A 

to state B, the latter being characterized by the same 

number of boats and the same catch per boat but by a greater 

number of fish and by a shorter length of the fishing season, 

a definite advantage in the management of the fishery. The 

transient from state A to state B is characterized by a 

remarkable initial disinvestment which, nevertheless, could 

be compensated for by temporarily providing subsidies to 

the fishery. 

5. Parameter Estimation 

A procedure for the estimation of the parameters of the 

model is outlined below. The method consists in working 

out separately the least squares estimation of the parameters 

of the three components of the fishery. 

Suppose that the variables Bt, Ct, Nt and Tt (note that 

the length of the fishing season is now allowed to be varying 

in time) have been measured for a certain number of years 

(t = 1,2, ...; n) during which there has been no evidence of 

relatively important changes in the economy (s and i are 

constant), in technology (c is constant) and in the quality 

of the environment (a and NE are constant). Then, consider 



first the catch function in the form given by Eq. (7); 

from this expression one obtains 

(14 

1 n 
in which the term F; 1 log Bt goes to zero as n approaches 

t=l 
infinity because it is an estimate of the mean value of 

a normally distributed random variable which is kriown to 

have zero mean value (recall the assumptions on Bt). Thus 

A 

log c = log i j  &- log Nt 
t=l t t Nt - Ct 

is an unbiased estimate of log c and the variance of this 

estimate is proportional to the variance of the noise and 
I 

decreases with n as F;. Moreover, this estimate is the one 

which minimizes the expected value of the square of the 

difference between log c given by Eq. (14) and all its 

possible estimates. 

As far as the estimation of the parameters s and i 

is concerned, it is very simple to prove (e.g. Lee [71) that 

if the noise At in Eq. (5) is a normally distributed 

independent noise with zero mean value, then the least 

squares estimate is unbiased, consistent, and given by 



where the matrix P and the vector p are given by 

and P' denotes the transpose of P. 

Finally, the estimation of parameters a and NE can 

also be carried out by means of a linear expression of the 

kind (16) as pointed out in the literature (Dahlberg [ 3 ]  ) . 
In fact, from Eq. (6) one obtains 

N a - log 
a + (Ct - Nt) 5 - 

t+l - log at , 
Nt - 't 

and log at has the same properties as At  in Eq. ( 5 ) .  Thus, 

in this case 

where 



In conclusion, the estimation of the parameters of the 

fishery can be carried out separately for the three sub- 

systems shown in Fig. 1 by means of Eqs. 1 5 - 1 9 )  Thus, 

through this procedure one can separately evaluate the 

validity of Eqs. (la) , (lb) and (lc) and therefore deduce which 

parts of the model are satisfactory and, eventually, which 

are not. Moreover, this scheme requires only simple sub- 

problems to be solved, a definite advantage from a computa- 

tional point of view (for example, in this case two 2 x 2 

matrices must be inverted instead of a 4 x 4 matrix). In 

this respect, it is important to note that if the number of 

fish Nt is unknown (which is usually the case) the scheme 

outlined above cannot be used. However, the estimation of 

the parameters can still be carried out by introducing 

Eq. (lc) into Eq. (lb) in such a way that Nt and Nt+l are 

eliminated. Thus, a new difference equation is obtained 

that can be used to estimate the three parameters a, NE 

and c. The disadvantages introduced by the lack of infor- 

mation on N are that the estimation procedure is no longer t 
linear and that a problem of dimension three must be solved 

instead of two subproblems of dimension two and one. 

Since there is already a large body of literature on 

estimation of catchability coefficients and parameters of 

the Ricker model, further examples are unnecessary. Fig. 12 

demonstrates the effort model fit for five fisheries; two 

kinds of predictions are shown: 

1) one year forecasts (predicted values based on 

observed values from previous year), 

2) simulation forecasts (predicted values based on 

simulated values from previous year). 



The one year forecasts are reasonably good in most cases: 

at least the qualitative direction of change is usually 

predicted correctly. On the other hand, the simulation 

forecasts usually lead to large cumulative errors after a 

few years. These errors suggest some major weaknesses of 

the simple effort model: 

1) investment time lags may delay effort growth 

(example: fin whales, 1950-1960), 

2) effort changes may reflect mobility to other 

fishing areas (example: halibut and cod), 

3) sudden large effort pulses may occur without 

apparent simple explanation (examples: Peru 

anchovy, California sardine). 

Thus it appears inadvisable to use the simple effort model 

except for qualitative, short run forecasts. 

6. Conclusion 

The model outlined in this paper is obviously too crude 

for practical, quantitative application. Our intent has 

been to suggest an approach to development of wider 

perspectives on problems of fishery dynamics, in hope of 

identifying new management strategies which take the 

dynamics of fishing, as well as fish, into account. The 

qualitative conclusions in Sect. 4 may be reasonable guide- 

lines for the design of such strategies. Probably the 

greatest weakness of our simple analysis is failure to take 

alternative fishing locations and species into account; 

with modern, flexible fishing gear it may be economical to 

deplete some stocks (zero productive equilibrium) while 

subsisting on or profiting from others. 
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FIGURE 2.CONTROLLED EVOLUTION OF A F l  SHERY 
(CONTROL= LENGTH OF FISHING SEASON,TAXES , SUBSIDIES, .....; 
OUTPUT SAMPLES OF CATCH ,NUMBER OF BOATS, 

SAMPLES OF RECRUITMENT, ..... ; 
DISTURBANCES =TRENDS IN THE ECONOMY, DE-TERIORATION OF 

THE HABITAT, CHANGE IN TECHNOLOGY ,...... ) .  
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FIGLIRE 4.  THE ORIGIN IS A SADDLE POINT. 



FIGURE 5. NATURAL EVOLUTIONS OF A VIRGIN FISHERY, 



FIGURE 6. THE INFLUENCE OF THE PARAMETERS ON THE ISOCLINEv(B) 
<a> THE CURVE v ( B  ) ,  <b> THE INFLUENCE OF cT, <c> THE 

I - s  INFLUENCE -. 
I 



FIGURE 7 THE INFLUENCE OF THE PARAMETERS ON THE ISOCLINE h(B 1 

<a> THE CURVE h ( B )  , (b) THE INFLUENCE OF NE, 

<c> THE INFLUENCE OF cT. 



FIGURE 8. VAR IAT I 0  N S OF THE PRODUCTIVE EQUlLlBRl UM 

<a> WlTH RESPECT TO cT 
1 -s <b> WlTH RESPECT TO -. 

I 



I-s FIGURE 9. THE CATCH PER BOAT AS A FUNCTION OF - -  



FIGURE 10. EVOLUTION OF THE FISHERY FROM PRODUCT1 VE 

EQUILIBRIUM A TO PRODUCl'IVE E QUlLl BRl UM B. 



FIGURE 11. THE REGION OF ATTRACTION. 
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APPENDIX 1 

Let X1,X2 be the eigenvalues of the system obtained - - 
by linearization around the productive equilibrium (BIN). 

Moreover, let 

and suppose 

The aim of this appendix is to prove that 

Proof of a1 

First of all recall that II is the determinant of the 

matrix F, i.e. 

since BCT < a (easy to check), 

Therefore, it is sufficient to prove that 



or, replacing with v (B) given by Eq. (gal , 

-1 < (1 - s) BCT + 2 s - l < l  . (Al) 
1 - exp (-&TI 

Notice that - BcT is an increasing function of 
1 - exp (-ECT) 

- 
BcT; hence, since 0 - < BCT - < 1, its minimum value is 1 

(for BCT = 0) and its maximum value is 1 

1 - exp (-1) 

(for BCT = 1). Thus, the first inequality in (Al) is proved. 

As for the second one, note that 

- 
(1 - s) 

BcT + 2 s - 1 <  1 - s 

1 - exp (-&TI 1 - exp (-1) 

+ 2 s - s =  1 
1 - exp (-1) 

But since 0 < s < 1, it follows that 

(1 - 2 exp (-1))s + exp (-1) < 1 - exp (-1) , 

which implies the second inequality in (Al). 

Proof of b) 

Remember that 1 is the trace of F,  i.e. 

Let us first prove that 



In fact 

or substituting k with v(B), 

+ (2 - a) (1 - s) BCT 

1 - exp (BcT) 

+ (1 - s) ( B ~ T ) ~  

1 - exp (-BCT) 

If 3s - 1 > 0, of course 1 + n + 1 > 0; otherwise, notice 

that 

(1 - s ) ( ~ c ~ ) ~  , - 3s) acT , 
1 - exp (-BCT) 

so that 1 + TI + 1 > 0.  

Now, it must be proved that 1 < 1 + II. After some 

cumbersome computations, one obtains 

" l R C T  \ 
11  - exp (-iicT) +'Iza! 

and, since s < 1, the second term of the right-hand side of 

Eq. (A2) must be proved to be negative. Now, since 

1 - exp (-&TI BcT - (ECT)~ ' 
2 



it turns out that 

a - BCT 2a - (BcT) 2 BCT [ + I] - 2a < - 2a 
1 - exp (-Bct) 2 - BCT 

and the last expression, in view of the assumption BCT < 1, 

is negative. 



APPENDIX 2 

In this appendix the region R given by 

- 
*E 

0 < N < - exp (2a - 1) = N* - a 

O < B < s  - - N~ + icT - exp (2a - 1) = B* a 

is proved to be a region of attraction. 

To achieve this purpose it is necessary to prove that 

a) any trajectory starting from a point in R is con- 

tained in R, 

b) any trajectory starting from the outside of R reaches 

R in a finite number of transitions. 

Proof of a) 

> 0, then First of all, notice that if Nt 2 0, Bt - 
> 0 (this follows trivially from Eqs. (2H3)  ) . Nt+l F Bt+l - 

Therefore, a) is proved once it is proved that Nt < N* 

and Bt 5 B* imply N . ~ + ~  - < N* and Bt+l 5 B*. An inspection 

of Fig. 11 (where the arrows show the direction of the 

transitions) suggests that the last statement is proved 

if 

i) (NtIBt) belonging to regions I1 or I11 implies 

< B*, and Bt+l - 
ii) (NtIBt) belonging to regions I11 or IV implies 

< N*. Nt+l - 
In order to prove i) notice that (Nt,Bt) belonging to 

region I1 or I11 is equivalent to 

1 - s 
1 

1 1 - exp (-cBtT) < N t i N *  , B t > O  . 



From e q u a t i o n  

it f o l l o w s  t h a t  

But 

Then 

and,  s i n c e  N < N * ,  i t  f o l l o w s  t h a t  Bt+l  < B*. To p rove  ii) , 
t -  

r e c a l l  t h a t  

N Nt t + l  = N exp [a - C B ~ T  - a exp  (-CB T) . t 
E t 

S i n c e  N t  > 0 and Bt 2 0 it t u r n s  o u t  t h a t  

I 
i exp (a )N t  . Nt+l - 

On t h e  o t h e r  hand,  i f  ( N t , B t )  b e l o n g s  t o  r e g i o n s  I11 or  
NE I V ,  t h e n  Nt  < - exp  ( a  - 1) ( s e e . F i g .  11). T h e r e f o r e ,  i t  - a 

< N* .  f o l l o w s  t h a t  Nt+ l  - 



Proof  o f  b) 

C o n s i d e r  F i g .  11 and  n o t i c e  t h a t  i n  r e g i o n s  V and V I  

t h e r e  i s  no  e q u i l i b r i u m  s t a t e  and  no c y c l e ,  s i n c e  e v e r y  

t r a n s i t i o n  s t a r t i n g  f rom t h e r e  i s  c h a r a c t e r i z e d  by a  d e c r e a s e  

o f  N.  T h e r e f o r e ,  a  t r a j e c t o r y  s t a r t i n g  f rom o u t s i d e  o f  R 

w i l l  r e a c h ,  a f t e r  a  f i n i t e  number o f  t r a n s i t i o n s ,  a  p o i n t  

( B  , N t )  s u c h  t h a t  Nt  < N*. I f  ( B t , N t )  b e l o n g s  t o  R ,  p r o p e r t y  t 
( b )  i s  proved;  o t h e r w i s e  it must  b e l o n g  t o  r e g i o n  V I ,  and 

t h e r e f o r e l a f t e r  a  s u i t a b l e  number o f  t r a n s i t i o n s ,  w i l l  b e :  

Bt < B*, i . e .  ( B t , M t ) & R .  
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