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Some System Approaches to Water Resources Problems

III. Optimal Control of Dam Storage

Yu. A. Rozanov

Abstract
Some stochastic aspects of dam storage theory are
considered in this paper. 1In particular optimal control
based on some reliable lower estimates of unknown (un-
certain) system parameters with the corresponding opera-
tional prcgram is developed. Also, statistical equilib-

rium in dam storage (random) processes are analyzed and
general conditions for such a phenomenon are established.

I. A water reservoir operation depends on a proper time
period (to,to + T) and is usually based on a so-called opera-
tional graph. This can be represented by a monotone function
z = z(x) which shows the amount of water to be released during
the considered period (to,tO + T), if the total volume of
available water will be x (see Figure 1).

Of course, one does not release the corresponding amount
of water z all at once; its distribution over time depends, in
particular, on water demands per time unit and channel capacity.
If these river basin characteristics are constant during the
considered time period (to,tO + T), then a local operation
policy may be of the following type: The amount of water Azt

per time unit At released with constant discharge at the current

time interval (t,t + At) is

by

Az, = min {c,z(xt) -z

t t
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where
X, = water available during the period (to,t);
z, = water already released from the reservoir during
the period (to,t);
c = operational constant limited by channel capacity.

Generally, a reservoir is designed to meet water demands
as well as to prevent floods. Thus the operational graph must
be chosen according to proper multiobjective decision making.
Water demands and flood possibility obviously depend on time,
so one has to determine the operational graph Z, = zk(xk), for
each time period (tk,tk + T), te = to + kT; k =0,1,....

Let us set T = 1 and let Yy be the reservoir volume at

the beginning of k-period and gk be the total inflow

where ét is the inflow per time usually identified with the
so-called hydrograph.

We have

= X - z ., k=0,1,.... (1)

Xe =YV v & 0 Vi K k

Suppose for each period (tk,t + T) we are given a total

k

water demand Wy s and the loss function fk(zk) reflects loss

in the case of water deficit w,_ - 2y (see Figure 2). The prob-

k
lem is to determine optimal reservoir operation taking into
account not only the current water demands, but also possible

future water deficits and floods.
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FIGURE 2.

Because of a water channel's limited capacity, a flood is
usually connected with a high peak hydrograph on a comparatively
small base-time A ( see Figure 3). Flood damage seems to be a
function of the corresponding high peak hydrograph; but by using
approximations shown in Figure 3, one may estimate the damage
by a proper function f(n,8) of two parameters n and §.

Flood damage, as we understand it, is usually incomparably
high with respect to the water deficit loss. Thus it seems
reasonable to assume that a proper reservoir capacity for a
flood catchment can be established disregarding water demands.

Let r, be the corresponding reservoir operational volume

k

during the operational time period (t + T). So if R is

k' tx
the absolute reservoir volume, then the remaining

R - r, represents the "flood catchment" capacity which helps

to reduce the damage cost from fk(n,A) to fk(n,G), where
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n=H-c¢c, &6 =4~ R-r
H-c
(see Figure 3). The proper operational volume r = r, may be

k

determined, for example, from the condition that the damage
cost may exceed some upper crucial level C only with a small

probability e:
P{f, (n,8) >C} <e .

With regard to water demands, one can be careful about a
water deficit only up to the first "wet" period 1 when excess
water (not necessarily a flood) enters the reservoir. So the
problem is to determine operation functions 2, = zk(xk) in
such a way so as to minimize the total water deficit loss

7-1 _
kzo £ (z) > min . (2)

One may immediately notice the main difficulty that arises
here: the water deficit loss defined above depends on the
reservoir inflow EO,El,.,,,which is uncertain and must be
treated as a random process.

One of the possible approaches to such minimization prob-

lems traditionally offered by optimal control theory is minimi-

zation of expected loss:
E )] f.(x) > min ,

over all possible control functions



Zy = zk(xk,w)

which in our case depend not only on available water x = Xy 1
up to the current time period.

but also on river basin data "w

The corresponding optimization technique involves (condi-
tional) probabilities distribution of the random variables
go,gl,...; this can hardly be used in practice, as there are
usually no reliable data available to ensure that this or that
sophisticated probabilistic model fits the reality.

We will next consider a rather simple probabilistic model
of the inflow process EO,El,..., and a proper reservoir control

which is optimal in the sense of some kind of minimax principle;

this seems to be reliable from a practical point of view.

II. The reservoir inflow process

E,.olg,-ll"'l

arises as a result of basic river flow, rainfall in different

river basin areas, etc.; a mechanism of the random variables
go,gl,..., formation is rather complicated to discuss here in
detail.

Let us call a series of the considered periods
(tk,tk + T); k = O,l,...,T—l

up to the first "wet" period 1, T > O, regular season, and a

series of the inflow variables

E,-k ; k =o]1,oao,T—l ’



regular process. It seems reasonable to assume that the inflow
variables EO""’gn associated with the regular season are in-
dependent (under condition T > n) on the beginning of the
future "wet" period t1; furthermore, probabilities distributions

of ¢ with respect to the condition T > n + k are the

O""’En
same for all future periods n + k; k = 0,1,....

During the regular season there are comparitively minor
random fluctuations in the regular inflow process Eo'gl""’
mainly due to such random events as rainfall in different river
basin areas. Water requires some transient time to flow from
the reservoir to an area. We believe that if such a transient
time for any area is comparatively small with respect to the
chosen reservoir period T, then, for purposes of possible future
water deficit estimation and sensible water supply during the
regular season, one may treat the reqular inflows go,gl,...,
as independent (random) variables.

Actually, our minimization problem (see (2)) concerns an
optimal water supply during the regular time interval

(to,t + T); the main difficulty is estimating possible future

0]
water deficits up to the wet t-period.

Let us set

P = P{T>n/o<T§N} ; n=0,1,..., .

For example, one may assume (not unreasonably) that the "waiting
time" for the wet period has a probabilities distribution of

the exponential type:



P{t > O}

el
I
U

'_l

P_ = P{t > n} qn/l - qN, n=1,...,N ,

where a parameter q may be interpreted as the probability of
being regular for each of the considered (independent) time-

periods (tk’t + T); a parameter N arises in a case when

k

the wet period certainly occurs during the annual cycle (i.e.,

the melting of snow certainly occurs before the summer season, etc.).
Let us fix all inflow variables gk in the regular part

of the inflow process and consider the expected water deficit

loss

-1
o (z,E) = E{ T (2 )/ } (3)
k=0 k™k go""'gT-l

o<T<N
as a function of the random process
g = {go,...,gN_l} ’
and the control parameters

bo.

z = {zl,...,zN__l

The optimal control parameters

zi = zi(x;g) ; k=0,1,...,N-1

which minimize the loss function ¢ (x,£):

6(z°,£) = min ®(z,£)
z
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can be easily determined by standard dynamic programming, i.e.

min

Z2n-1F En-1(2) 7 ocaex Tn-1(2) = Oy (¥
P
0. k+1
Zt filz) + . Sprr (X 2+ By ) (4)
Pk+1k
min {fk(z) + ; d(x z + gk+l)} =0 <2 <x = ®k(x)
k

At each step of the program (4) one can use the following

preposition concerning the minimization procedure

m
Y F.(z,) » min
i=1 * subject to v 'z b X(Zi > 0)

. * .
for convex functions Fi' Here parameter x may be interpreted
as a resource distributed amongst consumers; let us suppose it

is distributed in some units AXx.

Lemma. If zi(x); i=1...,m is the optimal distribution with

respect to the parameter x, then

o]
(

o _ . Co_
zi(x + Ax) = z; X) + 8§..Ax ; 1 1,..., (5)

i]

where 5ij is a Kronecker symbol and the corresponding preferable

j" is determined by the condition
F.(z9 + Ax) - F.(29) = min F. (2° + ax) - F.(2%) .
3 B l<i<m 1 11
* th _
At each k step of the program (4) we have m = 2, z, = z,
P
_ _ _ _ Tk+1 _

Z, = X z, Fl(zl) = fk(z), F2(zz) = 5 ®k+l(x z + Ek+l)'

k
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The function

m
F(x) = min ) F, (x)
. i
i=1
is convex and
F(x + Ax) - F(x) = F, (29 + ax) - F,(2D) ;
J 3] J 3
the recurrent equation (5), lets us determine zi(x);
X = 0,AX,2AX,...,. Note that this very simple minimization

procedure is not valid in a case of non-convex functions.
Suppose that we consider the water distribution problem with
loss functions Fl(zl) and F2(22), which has arisen because of
current and future water deficits. Further suppose that the
future loss can be reduced only by a significant water supply
> Ax, but that the current loss F. becomes less even with

2 1

a minor water supply Ax (see Figure 4). Then, according to

z
Equation (5), one must meet current water demands using all
available water:

o _ o _

zl(x) =x , zz(x) = 0

for any x. Obviously, this procedure is wrong in a case rep-

resented in Figure 4, where
o _ o _
zl(x) =0 , zz(x) = X

for x = 2Ax.
It is worth noting that program (4) gives us the optimal

control functions zi = zi(x;&) which minimize all expected values
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1 N-1
= '15‘—' Z Pkfk(zk) .
n k=n

Thus if we set
_ o

in the water balance Equation (1), then the corresponding

reservoir process
(.Xklyklzk) 7 k = O,l,...,

will be optimal (i.e. water deficit loss will be minimal).
But one can not implement this optimal process because
at each current n-period, the future inflow variables En+l""’
remain unknown.
Our suggestion is to substitute uncertain variables

go,gl,..., with some reliable lower estimates, such

golél’...,
that

PLE, > &) " 1-a , (11)

where 1 - o is the proper confidence level, (0 < o < 1)
The corresvonding control functions zy - zi(x,g); k =0,1,...

appear to be optimal with respect to some kind of minimax cri-

terion when we consider that only 100 - (1 - a) per cent of

possible inflows Ek satisfy the condition (11).
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Let us consider an arbitrary reservoir control based on

operation graphs:

Zp = Zk(x) ;i k=0,1,....

We believe there is no sense in a control for which the
water deficit loss ¢(z,£) can increase when the reser-
voir inflows are increasing. So let us consider the regular
control in which the water deficit loss ¢(z,£) is a monotone
decreasing function of each inflow variable Ek’ k =0,1,....

The control suggested above, i.e.

7o = zi(x,g) ;i k=0,1,..., (12)

o
k
is regular for any £ = {Ex}.

Indeed, according to the general Equation (5), all param-

eters
o o _ _ .0
zk(x,E) ¢ Ypa T X zk(x,E)

are monotone increasing functions of x = Xy and, in a case
where the inflow Ek is increasing, we deal with the increased

variables

_ o o o
xk = yk + Ek ’ zk and yk+l ’
—_ 0 o o
el = Yia1 T Gxa1 0 Zpqy 3nd v,
hYd = O O
-1 = Yy-1 t byl v Zy-l
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Hence the water deficit loss

2 (2°,8) = Nfl p_£f_ (z°)
! n=0 nn n

will be reduced because each local loss fn(zg) is a monotone
decreasing function of the water supply z°.

n

For any regular control z = {zk(x)} we have

2(z) = max &(z,£) = &(z,E) ,
E>E

(o]

and the reservoir control z~ = {zi(x,g)} is optimal, in the

*
sense that it gives the minimum of the maximum loss ¢ (z) over

all reservoir control policies z = {zk(x)},
% *
min @ (z) = ¢ (z°) .
2

. O . . . .
Moreover, the pair (z7,f) is a saddle point in our reservoir

game against nature with its strategy § = {Ek}:
min max ¢(z,£) = max min ¢(z,£) = ®(zo,§) . (13)
z £2% £28 2
Indeed,

min ®(z,£) > 0[2°(+,£),£]

and

max min ¢(z,£) > max 01z°(+,8),E] = @[zo(-,g)g] = o(z ,§)

E2E 2 £2€
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III. Most practical applications of stochastic reservoir models

are based on the assumption that the random process
(Xk:yxrzk) ; k=0,1,...,

in the reservoir system (see (1)) eventually reaches a so-called
statistical equilibrium; this actually means that the probabil-
ities distribution P of

(Xk+n’yk+n’zk+n) i k=0,1,...,

tends to some limit:

lim P_ =P (14)
n
N=—oo
and this limit probability distribution P is invariant with respect

to the annual time shift transformation

) »

(x

k' Yk’ %k Xirn Yo+’ Zxen) 0

where A means the entire year period; moreover, the frequency
of any annual event A during a series of years N also tends
toward the corresponding probability P(A):

V., (A)
N

lim
N->o0

= P(a) , (15)

where vN(A) is the number of years in which the event A occurs.

Let us consider the arbitrary water release policy; the only

assumption is that the current release z, = zk(x) does not

k

exceed the water demands Wy s if there is no water excess:
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(remember that Iy is the upper operational reservoir volume--
see Figure 1).

We believe that the current water demands w as well as

"
the river basin inflows gk' do not physically depend on the reser-
voir existence; further, the random process (Ek,wk); k =0,1,...,
can be considered as a part of the process (gk,wk), - ©® < k < o,
which is stationary with respect to the annual time shift
transformation. One may treat (Ek,wk) as a component of general

climatological process w = w - o < t < o, (in the considered

tl
river basin) assuming that the annual time shift transformation

does not change the probabilities distribution.

One can treat the operational upper level r, in the same

k

way, because it depends only on the actual reservoir capacity

R and w t <t

t’ k-
Naturally, we can expect statistical equilibrium (see (15))

only under some ergodicity conditions for the process

w =W - ® < t < o, and under such conditions, the following

ny
result holds true: suppose that during a long range operation,
the total reservoir inflow % gk sometimes becomes comparatively
high with respect to the totgg water demands ? W, i suppose
more precisely that the sequence k=0

n
n_ .= ) (¢, -w) ; n=0,1,...,
n k=0 k k

with non-zero probability may exceed the reservoir level R (or at

least the operational capacity r = rins= 0,1,...,) at some
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random time period n = T. Then the statistical equilibrium

phenomenon holds true; furthermore, we find the ergodic process

* * *
(xk’yk’zk); - ©» < k < », stationary concerning the annual cycle
such that

* * *
(R r¥przy) = (Xp,ypezy) 0 k2T (16)

The limit in (15) coincides with thée probabilities distri-

bution P of the process
X ok ok
(Xklyklzk) 7 k = O,l,...,
and

Var (Pn - P) < 2P{t > n} . (17)

Note that in most interesting cases the 1 distribution is of
an exponential type so the convergence rate (accounting to (17))
is very high.

All of the results presented above can be obtained by ob-
vious modification of the "imbedded stationary processes” methods
developed in (4), where the specific z-shape reservoir policy
was analyzed. The main idea is based on the phenomenon whereby
all possible trajectories of the reservoir process will be at
the same point (the reservoir will be full) at the considered

T-period, no matter what the initial reservoir conditions.
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