
Material Accountability and Its 
Verification: A Special Example 
of Multivariate Statistical 
Inference

Avenhaus, R. and Nakicenovic, N.

 

IIASA Research Report
July 1975

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33891707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Avenhaus, R. and Nakicenovic, N. (1975) Material Accountability and Its Verification: A Special Example of 

Multivariate Statistical Inference. IIASA Research Report. Copyright © July 1975 by the author(s). 

http://pure.iiasa.ac.at/235/ All rights reserved. Permission to make digital or hard copies of all or part of this 

work for personal or classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other 

purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting 

repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


MATERIAL ACCOUNTABILITY AND I T S  VERIFICATION:  

A SPECIAL  EXAMPLE OF MULTIVARIATE 

STATISTICAL INFERENCE 

R u d o l f  A v e n h a u s  

N e b o j s a  N a k i c e n o v i c  

Ju l y  1975 

R e s e a r c h  R e p o r t s  are publications repor t ing  
on the  w o r k  of t h e  authors.  A n y  v i e w s  o r  
conclusions are those of t h e  authors,  and 
do n o t  necessarily reflect those of I I A S A .  





Contents  

1. I n t r o d u c t i o n  

2 .  T h e o r e t i c a l  Cons ide ra t i ons  

2.1 The M a t e r i a l  Balance Concept 

2.2 Data V e r i f i c a t i o n  

2.3 T o t a l  P r o b a b i l i t y  o f  De tec t i on  

3. A p p l i c a t i o n  t o  a R e a l i s t i c  Case 

3 .1  Bas ic  D a t a  of  t h e  NFS p l a n t  

3.2 Measurement Accurac ies  

3.3 V e r i f i c a t i o n  Procedure  

3.4 C o r r e l a t i o n  between Data V e r i f i c a t i o n  and 
Material Balance Es tab l i shment  

4 .  Conc lus ion 

Tab les  
F igu res  
References 

Annex: D iscuss ion  of  t h e  F a l s e  A l a r m  Equat ion  



Abstract 

The IAEA nuclear material safeguards system consists 

basically of two different parts. One is the data veri- 

fication scheme: the operators of nuclear plants report 

all relevant data on nuclear material processed in the 

plant to the safeguards authority. These data are then 

verified by the safeguards authority with independent 

measurements. The other part is the material account- 

ability scheme: in case there are no significant differ- 

ences between the operator's and the safeguards author- 

ity's data, all of the operator's data are taken for the 

nuclear material balance establishment. 

The purpose of this paper is to evaluate the overall 

probability of detection of this system in case someone 

tries to divert material. This evaluation takes into 

account the different diversion strategies available. It 

is complicated because the two decision functions on 

which the evaluation is based--the difference between 

operator's and inspector's data and the difference be- 

tween book and physical inventory--are stochastically 

dependent. Exact formulas are derived and applied to a 

realistic case; it is shown that with a good approxima- 

tion, one may neglect the correlation and thus, use 

simplified formulas. 



Material Accountability and Its Verification: 

A Special Example of Multivariate Statistical Inference 

Rudolf Avenhaus and Nebojsa Nakicenovic 

1. Introduction 

On March 5, 1970, the Treaty on the Non-Proliferation of 

Nuclear Weapons [l] was enforced after having been verified by 

forty-three nations. This treaty is aimed at preventing the 

proliferation of nuclear weapons; it was conceived by Great 

Britain, the U.S.A. and the U.S.S,R., and was signed on July 

1, 1968. The exceptions are those nations which possessed 

nuclear weapons prior to the signing of the treaty. In order 

to achieve non-proliferation , the treaty has established 

international safeguards which guarantee that a diversion of 

significant amounts of nuclear material from the peaceful 

nuclear fuel cycle will be detected early. These safeguards 

are carried out by the International Atomic Energy Agency 

(IAEA) in Vienna, Austria. 

At the time of the Treaty's conception there existed, at 

least in the U.S.A., 25 years of experience of handling and 

controlling nuclear material; it quickly became clear, however, 

that an international control of national industries would 

cause completely new problems. For this reason, various nations 

began intense research and development activities with the 

purpose of establishing a practicable and acceptable inter- 

national safeguards system (see, e.g. [2,3,41). 

A significant step was made when the Safeguards Committee 

was able to establish a model agreement for an international 

Safeguards System [5]; this was conceived as a model for the 

Safeguards Treaties between the IAEA and those nations which 

signed the treaty. The Safeguards Committee was established 

by the Board of Governors at the IAEA, and represented more 

than forty nations. The agreement was negotiated from July 

1970 to February 1971. 



According to this model agreement, material accountability 

was established as the fundamental safeguards measure, with 

containment and surveillance as complementary measures. In 

this context, material accountability means the comparison 

between the book inventory, i.e. the added material inputs and 

outputs of a material balance area during the inventory period, 

and the physical inventory at the end of an inventory period. 

The reason for this structure of the Safeguards System was the 

fact that such a system can be formalized better and is more 

objective than any other possible system; this was a necessary 

condition for international acceptability. 

Furthermore, in the IAEA Model Agreement, the rules were 

established according to the way in which nuclear material 

safeguards must be carried out: the operator of a nuclear 

plant collects all source data which are necessary for the 

material balance establishment. The safeguards authority 

verifies these data with the help of independent measurements 

on a random sampling basis. If there exist no significant 

differences between the operator's and the inspector's data, 

then the safeguards authority assumes all of the operator's 

data to be correct and establishes the material balance with 

the help of these data. If significant differences exist 

either in the data comparison or in the material balance, then 

a "second action level" is induced to clarify whether or not 

they indicate a diversion of nuclear material. 

Due to the fact that only declared material is subject 

to international safeguards ("misuse" of nuclear plants is not 

the subject of IAEA safeguards), the nuclear plant operator 

who wants to divert nuclear material has two different pos- 

sibilities or strategies: 



1) Either he diverts nuclear material without 

falsifying any data which he reports to the 

safeguards authority and expects that the 

measurement uncertainties of the material 

balance to cover the diversion; or 

2) he falsifies the data to be reported and 

diverts the corresponding amount of material 

in such a way that the material balance is 

correct and expects that either the measurement 

uncertainties or the random sampling procedure 

to cover the diversion. 

Clearly, a combination of both strategies is also 

possible. 

The evaluation scheme of the safeguards authority is 

based on two "decision functions": (1) the difference between 

the book and physical inventory MUF ("Material Unaccounted For"), 

and (2) the difference D between the operator's and inspection 

team's data. These decision functions are subject to 

significance tests of the following form: If the realized 

values of MUF resp. D are smaller than given significance 

thresholds s l  resp. s2, then it is stated that the operator 

behaved legally. If, on the contrary, at least one of 

these quantities is larger than the significance threshold, 

then the second action level is induced. 

A measure for the efficiency of this procedure is 

the overall probability of detection for a given amount 

M of material to be diverted. The safeguards authority has 

to assume that the operator who intends to divert the amount 

M of material will do it in the most efficient way (from 

his point of view) and will choose that strategy which 

minimizes the probability of detection. On the contrary, 

the safeguards authority chooses that inspection strat- 

egy which maximizes the probability of detection, mini- 

mized by the operator. We call this the guaranteed 



probability of detection as it represents a lower limit 

of the probability of detection. These considerations have 

been discussed in an illuminating way by W. ~ a f e l e  [ 6 ] .  

The determination of the overall probability of 

detection is complicated because the two decision 

functions MUF and D are stochastically dependent: The 

operator's data are used in both cases. The purpose of 

this paper is to show that in practical cases, the overall 

guaranteed probability of detection can be easily deter- 

mined with simplified formulas as a good approximation. 

In order to achieve this we will first develop the theory 

of the material balance establishment as well as the theory of 

data verification. Thereafter, we will determine the overall 

probability of detection and study its properties: we can 

show that the probability of detection is practically 

independent of the correlation between the two decision 

functions MUF and D l  if the correlation is smaller than zero. 

Furthermore, it will be shown that under general assumptions 

the correlation is, in fact, smaller than zero. 

The theoretical results obtained are illustrated by 

a realistic example (an irradiated nuclear fuel reprocessing 

plant) which was a subject of contract research between the 

IAEA and among others the authors of this paper [ 7 ] .  

2. Theoretical Considerations 

2.1 The Material Balance Concept 

Let us consider a "material balance area" which contains 

at a given time to, some material into which material enters, 

and from which material goes out during a given interval of 

time (to, tl) . 
The material contained in the material balance area at 

time to is called the physical inventory I . The algebraic - 



sum of the amounts of material which enter and leave the mate- 

rial balance area in the interval of time (tortl) is called 

the throughput D. The physical inventory at to plus the 

throughput in (t ,tl) give the book inventory B at t i.e. 
0 1' 

the amount of material which should be contained in the mate- 

rial balance area at t 1 : 

The amount of material actually contained in the material bal- 

ance area at tl is the physical inventory I1. 

If all material contained in and passing through the 

material balance area is carefully accounted for, and if no 

material has been diverted, then the difference between the 

book inventory B at tl and the physical inventory I1 should 

be zero. This difference is called "Material Unaccounted For": 

MUF = B - I1 ' 

Thus, we have the problem of finding out whether the nonzero 

difference is caused by measurement errors, or by the diversion 

of material. 

In order to solve this problem, a significance test must 

be performed where the null hypothesis is given by the state- 

ment: the expectation value of MUF is zero, 

and where the alternative hypothesis is given by the statement: 

the expectation value of MUF is M > 0, 
1 



The significance test is determined by the significance 

threshold sl: if the realized value of MUF is smaller than 

or equal to sl, then the inspector will state "Ho is correct"; 

but if MUF is larger than sl, he will state "H1 is correct" 

(which does not immediately mean that a diversion of material 

is stated) : 

MUF - < sl: Ho is true , 

MUF > sl: H1 is true . 

This procedure may cause two kinds of false statements: 

i) the inspector states " H ~  is true", when in fact Ho 

is true; 

ii) the inspector states "Ho is true", when in fact H1 

is true. 

The probabilities of committing these errors are called a 1 
and B1: 

5: = prob IMUF > s ~ / H ~ }  , (2-5a) 

B1: = prob {MUF 5 s1/H1} . (2-5b) 

It is assumed that it will be clarified at a "second action 

level" whether or not the "alarm" was justified at MUF > s 1 ' 
Here, a1 is called false alarm probability, whereas 1 - Bl 
is called probability of detection. 

Because of the random measurement errors, the quantities 

I0 ' D, I1 and, therefore, MUF are random variables. Let 

a a2 and oI: be the variances of these random variables. 10' D' 

Then the variance of MUF is given by 

var (MUF) = a 2 2 2 + aD + aI1 =: a 2 I0 



independent of whether or not a diversion MUF would 

take place. If the random variables Io, OD and are 

normally distributed, then MUF is also normally distributed 

and one obtains from (2-5) 

where 6 is the Gaussian distribution function: 

$(XI = - I tL exp dt . 
4% 

If one eliminates the significance threshold sl in (2-7b), 

with the help of (2-7a), one obtains 

MUF 'l-al 

where U is the inverse of the Gaussian distribution function. 

Up to now we have considered one inventory period. The 

treatment of a sequence of inventory periods poses special 

problems because of the question of how to choose the starting 

inventory: If at the end of an inventory period there are 

no significant differences between book and ending physical 

inventories, one can take one of these inventories or a linear 

combination of both as the starting inventory for the next 

period (see, e. g. [ 8 I , [ 9  1 ) . However, since the vari- 

ance of the physical inventory is much smaller than the var- 

iance of the throughput, as in the example analyzed in the next 

chapters, we will take the ending physical inventory as 

the starting inventory for the next period. Thus, the 



correlation between different inventory periods may be ne- 

glected. If amounts M and M2 are diverted in two periods, 1 
the total probability of detection is simply given by 

L 1 - B = 1 - @ (U1-n - -  ) @ (ul-n - -  
0 L ,  

1 MUF 1 u l - l ~  F 

In the following, we will consider only one inventory period. 

2.2 Data Verification 

As described in the introduction, the safeguards 

system is constructed in such a way that the plant 

operator performs all measurements necessary for the estab- 

lishment of the material balance; he then reports the 

measurement data to the inspector, who in turn verifies these 

data with the help of independent measurements. Among the 

many possibilities for the comparison of the operator's and 

the inspector's data, the use of the so-called D-statistics 

(see [10,11]) has proven most successful. Therefore, we 

will also use it here. In the following, we will describe 

the D-statistics with the help of a simplified model; the ap- 

plication to a realistic case will be given in the next chap- 

ter. 

Let us assume that there are R classes of material, and 

that in the inventory period under consideration the ith 

class (i = 1, ..., R) consists of Ni batches. Let Xij, 
j = l . . .N i = 1, ..., R, be the measurement result for the i ' 
material content of the jth batch of the ith class reported 

by the operator. Let us furthermore assume that the inspec- 

tor verifies n measurements in the ith class with the help i 
of independent measurements, and that his results are Yij, 

j = l . . . n  i = 1, ..., R. The variances of the random (r) i ' 
and systematic (s) errors of the operator's (0) and inspec- 

- 

2 tor's (I) measurements are uor, u 2 2 
0s' '~r and oI: and are 

assumed to be known,where the errors themselves are assumed 

to be normally distributed. 



In order to check whether or not the data of the oper- 

ator are correct, the inspector forms the D-statisticwhich 

is defined by 

It should be noted that this definition specifies that the 

inspector verifies only data from those batches reported by 

the operator which he has measured himself. The reason for 

this is that by means of this procedure, the influence of the 

variation of the true material contents of the batches within 

a class is eliminated. 

Under the null hypothesis, i.e. under the assumption 

that no data reported by the operator are falsified, the ex- 

pectation value and the variance of D are given by the fol- 

lowing expressions: 

Under the alternative hypothesis H1, i.e. under the assump- 
- 

tion that ri of the Ni batches of the ith class are falsified 

by the amount pi,i = 1, . . .aI one obtains 

R 
2 

var (D/H ) = : o  2 = i IiJi2 (F + Osi + pi 2 1 i=l 



According to this scheme, the maximum amount of material 

which can be diverted is given by ri = Nit i = 1, ..., R: 

For the diversion without data falsification as described in 

the foregoing section such an upper limit does not exist. 

If the measurement of one batch does not consist of a 

single measurement, but of several (e.g. weight and con- 

centration determination), u * r is not the amount directly 

falsified. An example for this is given in the next section. 

Let s be the significance threshold of the inspector's 2 
test. Then we have as in (2-5) 

a2 : = prob {D > s2/Ho} (2-lla) 

B2: = prob {D - < s2/H11 . (2-llb) 

If we assume that D/Ho and D/H1 are approximately normally 

distributed (see [Ill) , then we obtain (corresponding to 

(2-8)) the following expression for the probability of de- 

tection: 

We will not go into the details of the question of how the 

inspector chooses the ui, and how the operator chooses the 

r as this has been analyzed elsewhere (see [ll] ) . i' 
Here, only the results of an approximation procedure will be 

given. Let the inspector's effort for the measurement of one 

batch in the ith class be Ei, and let the total effort avail- 

able be C. Then a game theoretical treatment gives the fol- 

lowing optimal values: 



j J J J  

2.3 Total Probability of Detection 

As a measure for the efficiency of the entire test pro- 

cedure described above--data verification and material-balance 

establishment with the help of the operator's data--we define 

the total probability of detection 1 - 8 :  

1 - 8: = 1 - prob{D 2 s2 A M U F  < sl/H1) , (2-14a) 

where H means 

In the same sense we define the total false alarm probability 

a by 

1 - a: = prob{D 5 s2 M U F  5 s ~ / H ~ }  , 

where Ho means 

As the operator's data are used both for the data verification 

procedure and for the material balance establishment, 

the random variables D and M U F  are stochastically dependent, 

and one obtains 



t; - 2 t 1 t 2 p  + t . ex, I- - 9 a 

where 

cov (DIMUF) 
P :  = - uD/H1 uMUF 

i s  t h e  c o r r e l a t i o n  c o e f f i c i e n t .  

For p = 0,  one o b t a i n s  from (2-16) 

Eq. (2-17a) i s  w e l l  known i n  t h e  a r e a  of m u l t i v a r i a t e  s t a t i s -  

t i c a l  i n f e r e n c e .  A d i s c u s s i o n  of t h i s  equa t i on  i s  g iven  i n  

t h e  Annex. I n  F igu res  1  and 2 ,  t h e  r e s u l t s  o f  numer ica l  ca lcu -  

l a t i o n s  a r e  p resen ted :  F i gu re  1  shows f o r  a  = a 2 ,  t h e  depen- 
1  

dence of a l  f rom P ,  wi th  a  a s  parameter ;  F i gu re  2 shows t h e  

dependence of a l  from a 2 ,  w i t h  p a s  paramete r ,  and f o r  f i x e d  

a  = 0.005. The main r e s u l t  i s  t h a t  f o r  p < 0  (which i s  t h e  

case  i n  t h e  example g iven  i n  t h e  n e x t  c h a p t e r )  Eq. (2-16a) 

can be  w e l l  approximated by Eq. (2-17a) .  

I n  o r d e r  t o  ach ieve  a s  h i gh  an e f f i c i e n c y  of  t h e  sa fegua rds  

p rocedures  a s  p o s s i b l e ,  i n  o t h e r  words, t o  ach ieve  a s  h i gh  a  

t o t a l  p r o b a b i l i t y  o f  d e t e c t i o n  a s  p o s s i b l e ,  t h e  i n s p e c t o r  w i l l  

use t hose  va lues  f o r  a l  and a 2  which maximize 1  - B .  For  ob- 

v i ous  reasons ,  however, he cannot  use  va lues  which a r e  t o o  

h igh.  There fo re ,  w e  assume t h a t  t h e r e  i s  an agreed  va lue  o f  

t h e  t o t a l  f a l s e  a l a rm  p r o b a b i l i t y  a ,  and t h a t  t h e  i n s p e c t o r  

can choose on l y  t hose  v a l u e s  of  a l  and a 2  which s a t i s f y  t h e  

boundary c o n d i t i o n  ( 2 -  1 6a )  . 



On the other hand, as the inspector does not know the 

values of M1 and M2 chosen by the opsrator, and as the in- 

spector wants to optimize his system for a given value of a 

total amount M = M + M2 assumed to be diverted, he must 1 
take into account the best strategy from the operator's 

point of view; i.e. that choice of M1 and M2 which minimizes 

1 - B. 
Therefore, the optimum strategy (al*,a2*;a) of the in- 

spector is defined as the result of the following optimiza- 

tion problem: 

max min (1 - 6) = :1 - B** . (2-18) 
a1 ,a2: M1 ,M2: 

subject to eq. M +M =M 
(2-16a) for 1 2  

given value of a 

1 - B** is called the total guaranteed probability of detec- 

tion. 

It is clear that the optimization problem defined above 

cannot be carried out analytically. In addition, it is too 

complicated for practical purposes. Therefore, one might 

want to replace it with p = 0. As can be seen from Figures 1 

and 2, at least the false alarm equation (2-16a) can be 

suitably replaced by the approximate equation (2-17a). It is 

the question of whether or not this approximation also holds 

for the probability of detection. In order to answer this 

question, a realistic example will be analyzed in the next 

chapter. It may be stated at this point that one can, in fact, 

approximate the probability of detection given by (2-16b) and 

by the simplified formula (2-17b). Furthermore, for practical 

purposes one might want to put 



Therefore, another purpose of the following numerical cal- 

culations is to see how far the guaranteed probability of 

detection (2-18) deviates from a probability of detection 

which has been determined on the basis of (2-19). 

One general question may be raised concerning our pro- 

cedure: As the variances of the measurement errors are as- 

sumed to be known, could one transform to the two independent 

random variables Y1 and Y2, and thus, avoid the complicated 

formulas (2-16)? In fact, such a scheme has been discussed 

recently by Bennet et al. [12]. The answer is that the safe- 

guards authority would like to perform the two tests con- 

cerning material balance and data verification separately and 

see whether or not one of these tests indicates a significant 

difference; this would provide an immediate idea as to the 

source of the errors, losses, or diversion Therefore, a 

transformation to quantities which have no 2r1ysical meaning 

is not of much help. 

3. Application to a Realistic Case 

3.1 Basic Data of the NFS Irradiated Fuel Processing 

Plant 

In the following we consider as an example The ~uclear 

Fuel Services (NFS) plant near Buffalo, N.Y. This plant repro- 

cesses irradiated fuel elements of reactors on the basis of 

the PUREX process. The numerical data are taken from Ref. 

[71. 
We shall consider the case of one inventory period. As it is 

assumed that there are two inventory periods per year, this 
means a time period of 6 months. The campaign data and 

the batch data are given in Table 1 for plutonium; this 

is the only important material in this context and will be 

considered exclusively in the following. 



3.2 Measurement Accuracies; Variance of the "Material 

Unaccounted For" 
- 

According to Section 2.1 the establishment of the mate- 

rial balance includes the establishment of the 

i) inital physical inventory Io; 

ii) book inventory B (Io + input - product - waste); 

iii) ending physical inventory I ~ .  

3,2,1 Physical Inventories 

We assume 

and assume further that the variation of these inventories 

is of the same order of magnitude: 

1 - 1 [kg] 5 I 1 + l[kg] . (3-lb) 
O f 1  

If we assume, in addition, that the physical inventories are 

equally distributed random variables with a range given by 

(3-lb) , we obtain 

2 var IO = var I, = 0.333 [kg ] . (3-lc) 

3.2.2 Input 

One measurement of the plutonium content G1 of the j th 
j 

input batch consists of a 

i) volume determination vij [l] ; 

ii) drawing of a sample [g Pu/R]; 

iii) concentration measurement C of the sample. 
1 j 

Therefore, in the case of no data falsification the operator 

reports the data 



where 

V'S  a r e  t h e  random and s y s t e m a t i c  e r r o r s  and where ev '  f and e l  
1 I 1  

of  t h e  volume d e t e r m i n a t i o n ;  e l I j  C ' r  and e l  are t h e  random and 

s y s t e m a t i c  e r r o r s  o f  t h e  c o n c e n t r a t i o n  d e t e r m i n a t i o n ;  and 

do' ? i s  t h e  sampl ing  e r r o r  i n  t h e  o p e r a t o r ' s  sample. 
1 # l  - 

The v a r i a n c e s  o f  t h e s e  e r r o r s  a r e  

v r r  = ,  v a r  e l  
2 
v I r f l  

V I S  = ,  v a r  e . 
1 I l  v I s I 1  

v a r  eCfr = o 2 
! I  c I r f  1  

C I S  = o 2  v a r  e l  . 
I 3  C I  s 

v a r  d7 'S = o 2 
1 3  sf 1 

I f  one assumes t h a t  one c a l i b r a t i o n  p e r  i n v e n t o r y  p e r i o d  i s  

performed b o t h  f o r  t h e  volume and f o r  t h e  c o n c e n t r a t i o n  

measurement, and i f  one n e g l e c t s  e r r o r  t e r m s  of t h e  second 

o r d e r ,  t h e n  t h e  t o t a l  i n p u t  r e p o r t e d  by t h e  o p e r a t o r  i s  

g iven  by 

N1 
~ n p u t  = N~ E V ~  E C ~  + 1 [Ev l  (e7:7 + ecf 1 + dy: f )  + 

j = l  

v , r  
+ ECI  (e l f  j + eyfs,] t j ( 3 - 4 )  

and t h e  v a r i a n c e  i s  



2 var [Input] = E v1 (N1 U 2 + N 1 * a  2 + N l e a  
c1r11 sf 1 + 

C I  sf 1 

3.2.3 Waste 

The situation in the case of waste is exactly the same 

as in the case of input except that all the characteristics 

quantities have different values. Thus, for waste--character- 

ized by the index 3-- we have 

2 var [Waste] = E v3 (N3 a 2 + N 3 * a  2 + N3 a 2 
cl r, 3 sf3 c,s13 1 + 

3.2.4 Product 

The situation in the case of the product is different, 

insofar as not the volume but the total weight of the batch 

is determined by taking the gross and the tare weight of the 

batch; thus, the systematic errors of these measurements are 

cancelled. Therefore, one has for the material content G 
21 

of the j th product batch. 

c = E C ~  + eCfr CI  s Pu 
21 2,j + e2 + dy:~I kz mat 

V'S and e2 where e2 V't are the random errors of the gross and 
I j 

tare weights of the weighing procedure; eqfr and e;lS are 
I 3 

the random and systematic errors of the concentration mea- 

surement; and d;lC is the sampling error of the concentration 
I 3  

measurement. 



The variances of these errors are 

Vlt = :a 2 
V t S  = var e2 var e2 

t j  I I v, 2 
ctr = var e2 

ctr12 .j 
var e;ts = a 

13 ~ 1 ~ 1 2  

var ditc = a 
2 

13 st2 

Therefore, the variance of the total product during the refer- 

ence time is 
- 

var [product] = var 
j=l 

3.2.5 Material Unaccounted For 

According to Eq. (2-2) the Material Unaccounted For is 

defined as 

MUF: = I0 + Input - Product - Waste - I 
1 

(3-10) 

If the operator does not divert any material (null hypothesis 

H0), the expectation value of MUF is zero; in case of di- 

version of the amount MI  the expectation value of MUF is M 

(see Eqs. (2-4)). The variance of MUF is, in both cases, 

given by 



v a r  (MUF) = : OMUF = 2var  I. + v a r  ( I n p u t )  + 
+ v a r  (Product )  + v a r  (Waste) 

(3-11) 

where t h e  s i n g l e  exp ress ions  a r e  g iven  by Eqs. (3 - l c ,  5,  6 ,  

9)  

Numerical v a l u e s  f o r  a l l  v a r i a n c e s  ( r e s p .  r e l a t i v e  

s tanda rd  d e v i a t i o n s )  a r e  l i s t e d  i n  Table 2. The r e s u l t s  of 

t h e  Ma te r i a l  Unaccounted For  a r e  g iven i n  Table 3. 

3.3 v e r i f i c a t i o n  Procedure 

I t  i s  assumed t h a t  t h e  i n s p e c t o r  observes  a l l  of t h e  

measurements necessary  f o r  t a k i n g  t h e  p h y s i c a l  i nven to ry ,  

and t h a t  he must n o t  v e r i f y  t h e  volume and we igh t  determi -  

n a t i o n s  o r  t h e  sampl ing procedures,  as t hey  a r e  automat ized 

and t h e r e f o r e ,  tamperproof.  I t  i s  f u r t h e r  assumed, t h a t  t h e  

i n s p e c t o r  v e r i f i e s  t h e  concen t ra t i on  de te rm ina t i ons  on t h e  

b a s i s  o f  a random sampling scheme, and t h a t  bo th  t h e  o p e r a t o r  

and t h e  i n s p e c t o r  use t h e  same measurement methods. 

I n  case t h e  o p e r a t o r  wants t o  d i v e r t  m a t e r i a l  by means 

of d a t a  f a l s i f i c a t i o n ,  he proceeds a s  fo l lows :  he d i l u t e s  r l  

of h i s  samples i n  o r d e r  t o  s imu la te  a smaller amount o f  i npu t .  

I n  t h i s  way he g a i n s  m a t e r i a l  which he can d i v e r t .  There fo re ,  

i n s t e a d  of (3-2c) w e  have 

c = Ec 
1 - p; f o r  j = I f . - . , r  

1 , j  1 
c C f r  + e ; r S  + d;:; 

1 . j  = + e l I j  
f o r  j = I r - . . , N 1  - r l  

The o p e r a t o r  r e p o r t s ,  however, c + p l ,  f o r  j = I , . . .  i j  , r l  i n  

o rde r  t o  keep t h e  m a t e r i a l  ba lance.  

H e  proceeds i n  t h e  same way f o r  t h e  product  and t h e  

waste ,  excep t  t h a t  i n  t h e s e  two c a s e s  he  c o n c e n t r a t e s  t h e  

samples. 



Remark: C l e a r l y ,  t h e  e f f e c t s  w i l l  be t h e  same i f  t h e  

o p e r a t o r  does n o t  d i l u t e  o r  c o n c e n t r a t e  samples ,  b u t  

s i m p l i f y  r e p o r t s  wrong d a t a .  

There fo re ,  i f  cot '  i = 1 ,  2,  3,  j = 1 ,. . . , n i t  a r e  t h e  re- i , j t  
s u l t s  of t h e  c o n c e n t r a t i o n  measurements r e p o r t e d  by t h e  

o p e r a t o r  and t h o s e  of t h e  i n s p e c t i o n  team, t hen  t h e  D- 

s t a t i s t i c s  accord ing  t o  eq. (2-8) a r e  g iven  by t h e  fo l l ow ing  

exp ress ion  : 

The reason  f o r  t h i s  s p e c i a l  cho ice  of  s i g n s  was exp la i ned  

above. 

The e x p e c t a t i o n  v a l u e s  of  D under t h e  n u l l  and a l t e r n a -  

t i v e  hypo thes i s  a r e  g i ven  by 

C 
where p i s  t h e  amount by which t h e  c o n c e n t r a t i o n  of a f a l -  i 
s i f i e d  ba t ch  of c l a s s  i i s  f a l s i f i e d .  The amount of  m a t e r i a l  

which can be d i v e r t e d  t h i s  way i s  given by 

where 



AS one can see from Eqs. (3-15) and (3-141, M2 and E(D/M,) 

a r e  n o t  i d e n t i c a l .  There fo re ,  t h e  o p t i m i z a t i o n  p rocedure  

ske tched  i n  Chapter  2 must be modi f ied ;  i n s t e a d  of Eq. (2-13) 

w e  now have 

J 

Under t h e s e  c o n d i t i o n s  w e  have 

Ni 1 -  E Pi 
i E v i  i 

E ( D / H 1 )  = Ni 
M2 . 

1 -  E i  ' Pi  
i E vi 

The b a s i c  d a t a  f o r  t h e  v e r i f i c a t i o n  scheme a r e  c o l l e c t e d  i n  

Tab le  4a. Because o f  t h e  l a r g e  d i f f e r e n c e  of t h e  amounts 11; 

by which t h e  d a t a  have t o  be f a l s i f i e d ,  p r a c t i c a l l y  a l l  o f  

t h e  e f f o r t  must go t o  t h e  p roduc t  s t ream.  I t  does n o t  mean, 

however, t h a t  t h e  i n p u t  and waste  s t ream d a t a  must n o t  be 

v e r i f i e d  a t  a l l .  The f o l l ow ing  procedure  i s  proposed: 

For  s m a l l  amounts of e f f o r t ,  on ly  one b a t c h  i s  v e r i f i e d  

i n  t h e  i n p u t  and one i n  t h e  waste  s t ream;  t h e  rest goes t o  

t h e  p roduc t  stream. i f  t h e r e  i s  more e f f o r t  a v a i l a b l e  than  

f o r  t h e  v e r i f i c a t i o n  o f  a l l  p roduc t  b a t c h e s ,  t hen  t h e  remain- 

i n g  e f f o r t  must be d i s t r i b u t e d  between i n p u t  and was te  ac- 

co rd ing  t o  formula (3-1 7)  . 
The op t ima l  sample s i z e s  n! a r e  g iven i n  Tab le  4c a s  a 

f u n c t i o n  o f  t h e  t o t a l  e f f o r t  C. The op t ima l  numbers o f  f a l -  



s i f i e d  ba t ches  r: a r e  g iven  i n  Table 4c a s  a  f u n c t i o n  of t h e  

t o t a l  amount M2 assumed t o  be d i v e r t e d .  The s t a n d a r d  dev ia -  

t i o n s  of t h e  D - s t a t i s t i c s  under t h e  n u l l  and t h e  a l t e r n a t i v e  

hypotheses a s  a  f u n c t i o n  o f  t h e  e f f o r t  C and t h e  amount M2 

assumed t o  be d i v e r t e d  a r e  g iven i n  Table 5.  

3.4 Determinat ion o f  t h e  C o r r e l a t i o n  Between Data 

V e r i f i c a t i o n  and M a t e r i a l  Balance Es tab l i shment  

I t  was p rev ious l y  mentioned, t h e  random v a r i a b l e s  MUF 

and D a r e  s t o c h a s t i c a l l y  dependent because t h e  d a t a  o f  t h e  

o p e r a t o r  a r e  used both  f o r  d a t a  v e r i f i c a t i o n  and f o r  m a t e r i a l  

ba lance  es tab l i shmen t .  I n  case  of t h e  n u l l  hypo thes is  H o ,  w e  

have : 



where f  and d1 a r e  t h e  e r r o r s  o f  t h e  i n s p e c t o r  cor responding 

t o  t h o s e  of t h e  ope ra to r .  

I f  w e  omi t  t h e  van ish ing  terms w e  o b t a i n  

cov (MUF, D/HO)  = 

Th is  means t h a t  MUF ana D a r e  n e g a t i v e l y  c o r r e l a t e d .  

From E q .  (3-20) w e  o b t a i n  t h e  c o r r e l a t i o n  c o e f f i c i e n t  

f o r  t h e  n u l l  hypo thes i s  Ho: 

cov ( M U F , D / H ~ )  . = 
P ~ < o  J v a r  (MUF) Jvar  (D /HO)  

I n  c a s e  of t h e  a l t e r n a t i v e  hypo thes is  H I  ( d i v e r s i o n  o f  t h e  

amounts M1 and M2 by means of t h e  two s t r a t e g i e s )  w e  have, 

i n s t e a d  of E q .  (3-17) ,  

where 



Here, E (MUF, D )  i s  g iven  by Eqs. (3-4) e t c . ,  (3-12) e t c . ,  

and (3-19) by t h e  f o l l ow ing  express ion :  

where h v r  v  = 1. 2. 3  a r e  t h e  numbers of ba t ch  d a t a  f a l s i f i e d  

by t h e  o p e r a t o r  and con ta ined  i n  t h e  samples o f  t h e  inspec-  

t i o n  team. 

With 



and because of t h e  independence of t h e  e,  d ,  f  on one hand 

and kv on t h e  o t h e r  hand, w e  o b t a i n  

cov (MUF, D/H1 ) = COV (MUF, D/HO)  (3-24) 

which a l s o  means t h a t  i n  t h i s  c a s e  w e  have p < 0. However, 

because of t h e  d i f f e r e n c e  of t h e  va r i ance  of t h e  D - s t a t i s t i c s  

i n  c a s e  of H o  and H1 w e  have, i n s t e a d  o f  (3 -21) )  

cov (MUF D/HO 

v a r  (D/H1) 

The c o r r e l a t i o n s  p and pH a s  a f u n c t i o n  of t h e  e f f o r t  C 
Ho 1 

and amount M of d i v e r t e d  m a t e r i a l  a r e  g iven i n  Tab le  6. 

3.5 O v e r a l l  P r o b a b i l i t v  of  De tec t ion  

I n  F igu re  3 ,  t h e  r e s u l t s  of  t h e  numer ical  c a l c u l a t i o n s  

f o r  t h e  o v e r a l l  p r o b a b i l i t y  of  d e t e c t i o n  1 - B accord ing  t o  

Eqs. (2-16b) and (2-16a) a r e  p resen ted  f o r  one i nven to ry  

p e r i o d  ( i .e.  6 months) f o r  t h e  parameters  M = M I  + M2 = 10kg Put 

a = 0.05, a = a 2 ,  and f o r  va ry ing  M1 ( r esp .  M 2 )  and e f f o r t  1 
C.  The cor responding p r o b a b i l i t i e s  of d e t e c t i o n  f o r  p = 0 

which have been c a l c u l a t e d  accord ing  t o  (2-17b and (2-17a) 

a r e  a lmost  t h e  same a s  t hose  f o r  p < 0; t h i s  i s  n o t  s u r p r i s -  

i n g  because f o r  P < 0, t h e  f a l s e  a la rm r e l a t i o n  Eq. (2-16a) 

i s  p r a c t i c a l l y  t h e  same a s  t h a t  f o r  p = 0, i .e .  Eq. (2-17a).  

A s  can be  checked numer ica l l y ,  t h e  minimum o f  t h e  prob- 

a b i l i t y  of d e t e c t i o n  i s  given approximately f o r  t hose  v a l u e s  

o f  M1 and M2 f o r  which t h e  fo l low ing  r e l a t i o n  ho lds .  

0 MUF 0 
D/H1 



The r e l a t i o n  i s  i n t u i t i v e  because of  t h e  symmetry of  t h e  f o r -  

mulas, a t  l e a s t  f o r  p = 0.  Accordingly ,  t h e  maximum of  t h e  

p r o b a b i l i t y  of d e t e c t i o n  w i t h  r e s p e c t  t o  t h e  i n s p e c t o r ' s  

s t r a t e g i e s  ( f o r  an op t ima l  o p e r a t o r ' s  s t r a t e g y )  i s  approxi -  

mate ly  g i ven  f o r  a l  = a 2 .  Th is  can be seen  i n  F i g u r e s  4 and 5  

where t h e  va lues  of  a l  and a  a r e  d i f f e r e n t .  2  
A t  f i r s t  s i g h t  it seems s t r a n g e  t h a t  f o r  a  c e r t a i n  

range of  t h e  M1 ( r e s p .  M 2 )  va lues ,  t h e  p r o b a b i l i t y  of  de tec -  

t i o n  dec reases  with,  i n c r e a s i n g  e f f o r t  C. However, t h e  exp la-  

n a t i o n  i s  given e a s i l y .  A s  shown i n  Table 5 ,  t h e  v a r i a n c e  

var(D/M1) dec reases  monotonously w i t h  i n c r e a s i n g  e f f o r t  C ,  

which i s  i n t u i t i v e .  Th i s  means t h a t  t h e  p r o b a b i l i t y  of  

d e t e c t i o n  

i n c r e a s e s  w i t h  i n c r e a s i n g  e f f o r t  i f  t h e  argument o f  t h e  $ 

f u n c t i o n  i s  p o s i t i v e ,  and dec reases  i f  t h e  argument i s  

nega t i ve .  A s  can be seen  from t h e  numer ica l  d a t a ,  t h e  change 

i n  d i r e c t i o n  of  e f f o r t  C ' s  i n f l u e n c e  i s  given a t  t h a t  p l a c e  

where t h e  argument of  t h e  $- funct ion  changes i t s  s i g n .  

The numer ica l  c a l c u l a t i o n s  may be summarized by s t a t i n g  

t h a t  t h e  o v e r a l l  guaran teed  p r o b a b i l i t y  o f  d e t e c t i o n  f o r  a  

g iven e f f o r t  C ,  and a  t o t a l  amount M of m a t e r i a l  t o  be  d i v e r t e d  

f o r  one i nven to ry  p e r i o d  i s  simply c a l c u l a t e d  accord ing  t o  

fo rmulas  (2-17b) and (2-17a) f o r  a l  = a 2 ;  M amd M2 a r e  
1  

chosen accord ing  t o  (3-26) . 

4.  Conclus ion 

The purpose of t h i s  paper  was t o  e v a l u a t e  t h e  e f f i c i e n c y  

of t h e  i n t e r n a t i o n a l  n u c l e a r  m a t e r i a l  sa fegua rds  sys tem which 

i s  based on m a t e r i a l  a c c o u n t a b i l i t y  and i t s  v e r i f i c a t i o n  a t  

t h e  hand of  a  r e a l i s t i c  numer ica l  example. The problem was 

compl ica ted because t h e  two s t a t i s t i c s  on which t h e  i n s p e c t o r ' s  



statements  a r e  based a r e  s t o c h a s t i c a l l y  dependent. I t  was 

shown t h a t  t h i s  depencence may be neglected i n  t h e  p r a c t i c a l  

s i t u a t i o n .  Therefore,  r a t h e r  s imple formulas may be used f o r  

t h e  determinat ion of t h e  system e f f i c i e n c y ,  i . e .  t h e  t o t a l  

guaranteed p r o b a b i l i t y  of de tec t i on .  

A l l  cons ide ra t i ons  were based on t h e  case of one mate- 

r i a l  balance a r e a  which was one p l a n t .  I f  one cons iders  

more than one m a t e r i a l  balance a r e a ,  then new c o r r e l a t i o n s  

a r i s e ;  i n  some cases ,  t h e s e  may be important  f o r  t h e  reduc- 

t i o n  of i nspec t i on  e f f o r t  i s  kept  cons tan t .  An example i s  

t h e  sh ipper - rece iver -cor re la t ions  between two d i f f e r e n t  

nuc lear  p l a n t s ;  they may be used e i t h e r  t o  rep lace  t h e  

measurements a t  both s i t e s  by s imple s e a l i n g  measures, o r  a s  

an a d d i t i o n a l  check .if both  measurements a r e  kept .  Therefore,  

t he  cons idera t ion  of a nuc lear  f u e l  cyc le  a s  a whole which 

inc ludes  many m a t e r i a l  balance a r e a s ,  r a i s e s  ques t i ons  which 

go beyond t h e  scope of t h i s  work. 



Table 1. NFS campaign and batch data for the reference 
time T (6 months) for the plutonium throughput. 

Pu throughput/T [kg] 

Liquid waste [ %  of inputl 

Hull losses [ %  of inputl 

Number of campaigns/~ 

Number of working days/T 

Input 

Input/campaign [kg] 

Number of batches/campaign 

Batch volume [l] 

Pu content/batch [kg] 

Batch-to-batch variation [%I 

Product 

Number of batches/campaign 

Weight of batch [kg] 

Pu content/batch [kg] 

Batch-to-batch variation [ P I  

Liquid Waste 

Number of batches/campaign 

Batch volume [I] 

Pu content/batch [kg] 

Batch-to-batch variation [%I 



Table 2. Pu measurement system for the NFS plant 
(source: [7l). 

Class Measurement 

Standard 
deviation Effort per 
per single single 
measurement measurement 

Man- 
hours Cost 

% % [hl [US$] 

Input 

Volume determination 
.35 .1 .7 - (diptube system) 

Sampling 1 - 1.5 - 

Concentration deter- 
mination (isotopic .6  . 3  - 400 
dilution) 

Weighing 

Sampling .5 - 2.25 - 
Product 

Concentration deter- 
mination (amperomet- 

.4 . 3  ric titration and 
isotopic analysis) 

Liquid 
Waste 

Volume determination 
(level indicator) 5 

Sampling 50 - .5 - 
Concentration deter- 
mination (TTA extrac- 15 10 2 40 
tion and counting) 

Physical 
Inventory Washout 



Table 3. Variance of the material unaccounted for (MUF) 
for one inventory period. 

Variance [kg1 Standard deviation [kg] 

Input 8.564 1) 

Product 6.837 2) 

Waste 0.958 3) 

Inventory 0.333 4) 

MUF 17.026 5) 4.126 

1) E q .  (3-5) 

2) E q .  (3-9) 

3) E q .  (3-6) 

4) E q .  (3-lc) 

5) E q .  (3-11) 



Tab le  4a. I n p u t  d a t a  f o r  t h e  c o n c e n t r a t i o n  measurement 
v e r i f i c a t i o n .  

Pu con- E f f o r t  Ei Amount p i  
T o t a l  num- Batch t e n t  p e r  ( U S $ )  P e r  [kg1 P e r  

C l a s s  b e r  o f  s i z e  b a t c h  v e r i f i c a -  b a t c h  t o  b e  
i b a t c h e s  

Ni Evi [kg ]  t i o n  d i v e r t e d  

I n p u t  1 

Prod- 
u c t  

2  

Waste 3  

Tab le  4b. Opt ima l  sample s i z e s  o f  t h e  i n s p e c t o r  ( 1 ) :  Here, t h e  
a p p l i c a t i o n  o f  (3-23a) gave n? > Ni; t h e r e f o r e  i n  t h i s  

1 

c l a s s  np = Ni was t a k e n  and t h e  rema in ing  e f f o r t  

C - E . n  was d i s t r i b u t e d  a c c o r d i n g  t o  (2 -23a) .  
1 i 

c [ %  o f  
max e f f o r t ]  100 80 60 50 30 20 10 5 1 

Tab le  4 c .  Opt imal  sample s i z e s  o f  t h e  o p e r a t o r .  

Amount M 
t o  be  
d i v e r t e d  
[kg 1 .1 .5  1 2  3  4 5 6  7 8  9 10 



Table 5. S tandard  d e v i a t i o n s  under t h e  a l t e r n a t i v e  hypo thes is  (M > 0)  and hr 
D/H, D / H ~  

under t h e  n u l l  hypo thes is  ( M  = 0)  a s  a  f u n c t i o n  o f  amount M [kg]  t o  be d i v e r t e d  
and i n s p e c t i o n  e f f o r t  C [ X  o f  maximun e f f o r t ] .  



Tab le  6.  C o r r e l a t i o n  g under  t h e  a l t e r n a t i v e  h y p o t h e s i s  (M > 0 )  and under  
t h e  n u l l  h y p o t h e s i s  (M = 0 )  a s  a  f u n c t i o n  of  amount ~ [ k g ]  t o  
be  d i v e r t e d ,  and i n s p e c t i o n  e f f o r t  c [X of  maximum e f f o r t ] .  





F I G . 2 :  MUTUAL DEPENDENCE OF THE  SINGLE TEST FALSE 
ALARM PROBABILITIES C f l  AND d2 WITH CORRELATION p 
AS PARAMETER FOR TOTAL FALSE ALARM PROBABILITY 
Cr = 0.05 



FIG. 3 : TOTAL PROBABILITY OF DETECTION AS FUNCTION OF AMOUNT MI OF 
MATERIAL DIVERTED, WITH EFFORT C [ ' lo  OF MAXIMUM EFFORT ] AS PARAMETER , 
AND MI + M2 = 10 [ kg 1, dl = d 2 ,  d = 0.05.  DASHED LINES: 9 = 0 .  FOR 
C =lo, 5,1 DASHED AND CONTINUOUS LINES COINCIDE. 





z t- m- 
o m s  Fgo: 
OLL 
p w  11 
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Annex 
Discussion of the False Alarm Eauation 

A.l  orm mu la ti on of the Problem 

According to (2-15a), the false alarm equation is given by 

the following expression: 

I J I 

dtl J I 
1 - a  = dt2 exp 

2.rrJG-7 -w -w 

where U is the inverse of the normal distribution function @ 

-1 
u(x) = 4 (x) ; $(x) = - jx exp ($1 dt . (A-2) rn -w 

As one can see immediately, Eq. (A-1) reduces to the following 

form for p = 0: 

which is well known in the field of multivariate statistical 

inference (see, e.g. [A-11 ) . Therefore, (A-1) may be consid- 

ered as a generalization of (A-3) for the case of stochas- 

tically dependent random variables. 

In the following, we will discuss the analytic properties 

of the false alarm equation, as well as graphical and numerical 

methods for the tabulation of the relation between al and a2 

for given values of the parameters a and p .  

A.2 Bonferroni's Inequality 

Let X and Y be Gaussian distributed random variables with 

expectation values 0 and variances 1. Then (A-1) is equiva- 

lent to the following form: 



Now, Bonferroni's inequality [A-11 generally states 

pr {AUB) = pr {A) + pr {B) - pr {A n B)< pr {A) + pr {B) - 
(A-4) 

or, with the duality theorem 

pr {AUB) = pr {An El = 1 - pr { A  n B) - < pr {A) + pr {B) . 
- 

Therefore, with A + C, B + 6 ,  we obtain 

pr {C n D) > pr {c) + pr {D) - 1 . 
Application to Eq. (A-4) gives with Eqs. (A-2) 

for any value of p. (The complementary inequality which can 

be derived from (A-4 ) , 

is without practical application in this text.) 

A.3 The Bivariate Normal Distribution Function 

The random variables X and Y are said to be distributed 

as a bivariate normal distribution with means and variances 

(0,O) and (1,l) and correlation p ,  if the joint probability 

that X is less than or equal to h and Y is less than or equal 

to k is given by 

k 
pr {X - < h,Y < k) = ih 6s j dt exp [- p2 - 2pst + t 

2 7 4 7  -03 -33 2 (1 - p2) ' I 



The following properties are important for the discussion of 

(A-1) : 

1 - @ (h) , for k < h 
L(h,k,l) = - 

1 - $I (k) , for k > h - 

L(h,k,-1) = 
, f o r h + k > O  

1 - h - $ I  , for h + k - < 0 

With the help of (A-61, (A-1) can be expressed in the following 

way 

Or, if we use the relation 

we obtain 

A.4 Extreme Values for the False Alarm Equation 

For a2 = 0 we obtain, using lim - - 
'1-a2 

m, from Eq. (A-1) 
a,+O 

?-a, 

1 - a  = lim 1 'i +a 4% 
dt 1 $1 

ul-a,, -00 &m 



F o r  al = 0 ,  we o b t a i n  t h e  s a m e  r e s u l t  f o r  r e a s o n s  o f  s y m m e t r y ,  

i .e .  

("1 f o r  a2 = 0  

a = \ a 2  I f o r  al = o 

F o r  p = 1 w e  o b t a i n ,  f r o m  (A-8) a n d  ( A - l o ) ,  

1 -  @(Ua  - 
1 - a = L(Ua ,Ua , I )  = 1 fo r  Ua 2  ' U a l  . 

1 2  1 - @ ( U a  ) , fo r  Ua - > Ua 
2  2  1 

T h e r e f o r e ,  

a < a  2 -  1 f o r  p = 1, and .  
a 2  a > a  2 -  1 

F o r  p = -1 w e  o b t a i n ,  f r o m  (A-9 ( a n d  (A-10)  , 

> 0  , f o r  Ua + U a  - 
1-  a =  L (U  ,Ua - 1  = 1 2  

2  < 0  - @ ( U a  , f o r  Ua + U a  - 
2  1 2 

A s  t h e  case 



is not interesting here, we have 

a = a  + a  for p =-1 and al + a2 5 1 (A-13) 
1 2 ' 

which is the limiting case in Bonferroni's Equation (A-5). 

A.4 Monotony of the Function al(p) for a = a2 and a given 1- 

In this section we show that for al = a2 and a given,the 

function al(p) as defined implicitly by (A-l), is monotonously 

increasing for -1 - < p - < 1. 

We start by performing the second integration in (A-1) 

which immediately gives 

For al = a2, we obtain the implicit representation of the 

function a (p) we are interested in: 1 

We want to show that the derivative - does 2ot change its 
d~ 

sign. As Ul-a = -u 
a , and furthermore, 

1 1 

1 we may simply consider the derivative - because - does 

not change its sign. dp dal 



P a r t i a l  d e r i v a t i o n  of (A-15) g i ves  

I n  t h e  fo l lowing we simply w r i t e  a  i ns tead  of  a l .  We then  

o b t a i n  wi th t h e  fo l lowing r e l a t i o n  

from (A-17) 

o = - -  exp + 
"5 

With 



w e  o b t a i n  

Or ,  by u s e  o f  

la d z *  z  exp  (- $1- - exp  - $1 , 
-00 

A s  t h e  t e r m  on t h e  r i g h t  hand s i d e  o f  (A-18) ,  a s  w e l l  a s  t h e  

dUa 
dU 

a  
f a c t o r  o f  - 

dp 
a r e  g r e a t e r  t h a n  z e r o ,  w e  have  shown t h a t  - 

d~ 
d a  and t h e r e f o r e ,  t h a t  - i s  g r e a t e r  t h a n  z e r o  o f  -1 < p < 1. 
dp - - 

W e  w i l l  show, i n  a d d i t i o n ,  t h a t  t h e  f u n c t i o n  a ( p )  h a s  no  

i n f l e c t i o n  p o i n t s .  F o r  t h i s  purpose it i s  a g a i n  s u f f i c i e n t  

d2Un 
t o  c o n s i d e r  - a s ,  a c c o r d i n g  t o  (A-16) , w e  have  

dp2 

From (A-18) w e  g e t  



which gives 

The right hand side is greater than zero if and only if 

or equivalently, if and only if 

For 1 + 2U < 0, or a < 0.31, this is true for all P with a 

As can be seen easily, for Ua < -1 (or a < 0.16), the inequality 

(A-10) is fulfilled for any p with -1 - < p - < 1. 

A.5 Monotony of the Function a2k1) for given a and P 
da, 

L 
In order to determine the derivative - , for given a and 

dal 
p of the function a2(a1), which is given implicitly by (A-l), 

we start again from (A-14). 



P a r t i a l  d e r i v a t i o n  g i v e s  

uL ua ' ' - "".) ;:; 
0 = exp (- $)-$( .- 

A-,2 

dUa2 
There fo re  w e  o b t a i n  t h e  r e s u l t  - < 0 ,  and w i t h  

da 1 

t h a t  

The q u e s t i o n  a r i s e s  whether  o r  n o t  t h e  f u n c t i o n  ct2(al) has  

i n f l e c t i o n  p o i n t s .  I n  o r d e r  t o  ana lyze  t h i s  w e  w r i t e  (A-21) 

i n  t h e  fo l l ow ing  form 

P -  

O = exp 



Derivat ion a f t e r  a l  g ives  

u2 
0 = exp + ex. (- q) 

h-p 

' P  - u 2 

+ exp + exp (- >) 
da 

u* 
+ exp (- +) exp (- k a l * p - ~ a J ) .  2 

1 t a d u a l  - - -  d"a2)-  

2 ( 1 - P  ) A-p2 dal dal 

L 
A s  t h e  f a c t o r  of 7 i s  g r e a t e r  than zero ,  we ob ta in  

dal 

sgn (d2ai)= da 1 exp ( " t ~ [ 4 [ a 2 e p - u a $ . u a 2 .  - - ~7 
da2 2 . t ~ J  da 1 

dUa 
+ exp 

1 . u  . - 
al dal 

1 + = exp 
J2 .rr 

2 
a2  

f o r  t h e  s i g n  of - 
2 -  

da 1 



For a 1 ' a2 < 0.5, we obtain 

dUa dUa da2 da2 
- -  2 1 p . . -  2 

dUa 
> O  and - * -  - 0 ' -  1 (0 . 

dal da2 dal da2 dal da 1 

This is true for p > 0. It cannot be shown in this way that the 
2 

"2 sign of -- 
2 does not change for p 0. 

da!. 

A.6 Graphical Representation of the False Alarm Equation 

In the following, we want to represent Equation (A-1) 

graphically: we plot al as a function of a2 with p as a 

garameter for a given value of a. For p = -1, 0,l we already 

know the analytical form (Eqs. (A-13, 17 and 3)); we also 

know the form for al = 0 and a2 = 0 for arbitrary 

values of P. Bonferroni's inequality (A-5) and the conditions 

(which follow from (A-ll) and from symmetry considerations) 

limit the possible values in the (al - a2) plane. 

In the following, three different methods for the tabu- 

lation of the false alarm equation are discussed 

i) Graphical method; 

ii) Simulation method; 

iii) Use of approximate formulas for L (hfkf p) . 



A.6.1 Graphical Method 

In Ref. [A-21, the function 

(ph - k) sgn h 

h2 - 2hkp + k 
2 

is tabulated for -1 < - p < - 1 and 0 < - h < - 2.5. With the help 

of the relation 

function (A-24) can be tabulated also for negative values of 

h. In addition, we have 

(ph - h) sgn k 
L(hlk1p) = L 

- 2hkp + k 

- t i  I otherwise 

Therefore, the false alarm equation can be represented in the 

following form: 

if U1 - a 1 
> 1 > 0 and a + a2 - ul-ci - 

1 2 - 
otherwise 

This relation has been used to tabulate al as a function of 

with p and ci as parameters on the basis of the graphical 

representation of the function (A-24) in Ref. [A-21. 



AS t h e  accuracy of t h e  ( A - 2 4 )  rep resen ta t i on  i s  no t  

b e t t e r  than 0 . 0 1 ,  it has no t  been poss ib le  t o  ob ta in  a  s a t i s -  

f y i ng  accuracy f o r  va lues  of (a1,a2) approaching ( 0 , a )  and 

(a,O) t h e r e f o r e ,  d i f f e r e n t  methods had t o  be used i n  these  

c r i t i c a l  reg ions.  

A . 6 . 2  Simulat ion Method 

I n  o rde r  t o  t a b u l a t e  Eq. (A-1) with t h e  h e l p  of a  simu- 

l a t i o n  method, t h e  fo l lowing procedure i s  used: Let A ,  B ,  and 

C be normally d i s t r i b u t e d  random v a r i a b l e s ,  w i th  

E A = E B = E C = O  , v a r A = a  
2 2 

var  B = aB , var  C = u 2 
A C 

Then we can t a b u l a t e  ( A - 1 )  by means of t h e  fo l lowing form: 

prob A + B  < Ul-a , + A + C  < Ul-& - - 
1 2 

where t h e  var iances  a r e  determined i n  such a way t h a t  t h e  

var iances  of  A + B and ?A + C a r e  1: 

and where t h e  c o r r e l a t i o n  t a k e s  t h e  va lue f p :  

- L co r  ( A + B , + A + C )  = - + u A = p  . s2 A B A C  K-2 

The disadvantage of t h i s  method is  t h a t  it provides no d i r e c t  

method of c a l c u l a t i o n  of al  a s  a  func t ion  of a 2  f o r  g iven 

va lues of a  and p ;  one has t o  f i x  a  
1, O 2 '  

and p and determine 

a ,  which means t h a t  one must i t e r a t e  u n t i l  one has reached 

the  prev ious ly  chosen va lue of a  chosen below. 



A.6.3 U s e  o f  Approximate Formulas f o r  L ( h , k ,p )  

The method which has  proven m o s t  s u c c e s s f u l  f o r  t h e  

numer ica l  c a l c u l a t i o n s  u s e s  approximate formulas  f o r  t h e  

b i v a r i a t e  normal d i s t r i b u t i o n  f u n c t i o n  g iven  by Owen [A-31.  

Le t  u s  d e f i n e  

and fu r the rmore ,  

Then w e  have acco rd ing  t o  Owen 

i 
i f  h k > O  o r  i f  hk = 0 , h o r  k - > 0 

B ( h t k r p )  = . (A-28) 
1 

- - 
2 

\ 
i f  h k < O  o r  i f  hk = 0 , h o r  k < 0 

Furthermore,  w e  have 

where 



converge r a p i d l y  f o r  sma l l  v a l u e s  o f  a  and h .  

On t h e  b a s i s  o f  t h e s e  fo rmu las ,  t h e  f a l s e  a la rm r e l a t i o n  

( A - 1 )  has  been determined numer i ca l l y  f o r  f i x e d  v a l u e s  o f  M. 

I n  F i gu re  1 ( i n  t h e  main p a r t  o f  t h i s  paper )  , f o r  a  = a 2 ,  1 
t h e  v a l u e s  o f  a l  as a f u n c t i o n  o f  p have been r e p r e s e n t e d  f o r  

d i f f e r e n t  v a l u e s  of a .  A s  can be seen  d i r e c t l y ,  t h e  v a l u e  o f  

p i s  p r a c t i c a l l y  i ndependen t  o f  t h e  v a l u e  of a f o r  p < 0.  

There fo re ,  f o r  p < 0  (A-3) i s  f a v o r a b l e  i n s t e a d  o f  (A-1) , 

I n  F i gu re  2,  f o r  a f i x e d  va lue  o f  a  = 0 .05 ,  t h e  v a l u e s  

o f  a1 as a f u n c t i o n  of  a 2  w i t h  p as a  parameter  have been 

r e p r e s e n t e d .  Again,  f o r  p < 0 ,  (A-3) i s  f a v o r a b l e  i n s t e a d  

o f  ( A - 1 )  . 

A.7 F a l s e  A l a r m  Equat ion  f o r  Symmetric T e s t s  

A l l  t h e  c o n s i d e r a t i o n s  o f  t h i s  paper  have been based on 

one-s ided t e s t s .  For  completeness w e  g i v e  t h e  f a l s e  

alarm e q u a t i o n  f o r  symmetr ic tests,  i .e .  f o r  tests where t h e  

n u l l  hypo thes i s  i s  g iven  by 

< EMUF - < p 2  

A s  can be seen  e a s i l y ,  i n  t h i s  case ,  t h e  f a l s e  a la rm equa t i on  

is g iven  by t h e  f o l l ow ing  formula:  



Without going i n t o  a  thorough d i scuss ion  of t h i s  formula, it 

should be s t a t e d  on ly  t h a t  it i s  i n v a r i a n t  t o  t h e  

change of t h e  s i g n  of P .  So f o r  al  = a2  we o b t a i n  

a  = a * = a  1 f o r  p = + l  . - 

we l o s e  t h e  n i c e  proper ty  of t h e  one-sided t e s t  t h a t  f o r  

p < 0 ,  t h e  f a l s e  alarm r e l a t i o n  i s  p r a c t i c a l l y  .independent of 

t h e  value of a .  
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