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Abstract 

Three rather aggregate approaches to model- 
ling interregional migration processes within a 
national urban settlement systems context are 
described. General, modified penalty function 
methods of non-linear programming are developed 
and then adapted for application to the simplest 
of the three migration models. The numerical 
convergence properties of the procedure are dis- 
cussed. Some of the numerical results for a 
Canadian urban system case study-are interpreted. 
Finally, some extensions to the procedures used 
in this study as well as alternative approaches 
to the same or similar problems are suggested. 





Non-Linear Programming Approaches to 

National Settlement System Planning 

Yuri Evtushenko* 
Ross D. MacKinnon** 

This paper has three primary objectives. The first is 
to outline some models which attempt to id-entify, in an 
aggregate way, strategies for achieving certain desirable 
population trajectories by manipulating the migration 
parameters of a simple linear mod-el. The second is to 
present a family of numerical optimization methods suitable 
for solving these types of pr~blems. The third is to 
describe some preliminary numerical results using these 
methods in a national settlement system context. 

The particular numerical results, while of some interest, 
should not be taken too seriously as the goal and cost func- 
tions are to a large extent fictitious. The results are 
illustrative of the type of indications one might obtain 
from a more thorough empirical study rather than actual' 
prescriptions for an urban policy making agency. One more 
general purpose of such a study is to determine whether such 
results would be meaningful to policy makers and, if not, how 
the methodology could be adjusted to provide more useful 
insights. 

It is explicitly recognized. at the outset that these 
models are rather unrealistic in at least three respects: 
(1) the goal specification and weighting problem (social 
preference function) is assumed to be solved--moreover the 
system goals are defined in terms of desirable population 
trajectories for each of the regions, or perhaps some subset 
of the regions; (2) the cost function of influencing migra- 
tion patterns is given; (3) the precise instru.ments whereby 
migration patterns can be changed are not considered; in a 
formal sense, migration rates themselves are instrument 
variables, whereas in most, if not all, societies the control- 
lable variables are less directly related to population 
distributions. 

In summary, then, we assume a rather simple closure 
between target, state and instrument variables, not because 
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we have confidence that such a structure is realistic, but 
rather to determine whether a characterization of the 
national urban settlement planning in this way is likely to 
provide insights into the more complex process which it 
obviously is. 

The paper is divided into four sections. First, the 
mathematical models and the empirical data are d-escribed. 
Second, new penalty function methods of non-linear program- 
ming are summarized and the characteristics of their computa- 
tional performance in the national settlement system's 
application are discussed. Third, the numerical results-- 
the population and control trajectories and their sensitivity 
to parameter changes--are presented and evaluated. Finally, 
the methodology and the results are summarized and. evaluated 
and some promising areas of future research are indicated. 

1. Model Specification 

In situations where the goals, costs, and causal struc- 
ture are poorly understood, it is perhaps naive to attempt to 
specify a dynamic normative model. One could argue with some 
justification that much analysis is needed before the plan 
synthesis step is taken. Although such a position is argu- 
able, it is not the one adopted here because a simple linear 
sequential approach to problem formulation and resolution is 
deemed to be inappropriate. We argue that with poorly under- 
stood systems, in particular, a dialectic between analysis 
and synthesis is potentially more reward.ing. Thus, an attempt 
to develop formal planning strategies with albeit preliminary 
statements of system behaviour may aid in the development of 
both descriptive and normative aspects of modelling. In 
summary then, it is recognized that the problem statement is 
overly simple. In an immediate practical planning context, 
it is postulated that even such simple frameworks may give 
a government agency some insights into the orders of magnitude 
and the spatial and temporal distribution of effort necessary 
to move the system towards specified. goals: the trade-offs 
between different parameters in the system (goals, costs and. 
migration rates), the sensitivity of system performance to 
changes in any or all of these parameters, and the range of 
alternative population distributions which are plausible. 
Perhaps even more important than these considerations is the 
hope that these initial experiments with optimization methods 
in national settlement system management will stimulate more 
comprehensive and ultimately more realistic attempts. 

A number of models are formulated, although numerical 
results are presented only for the simplest form. All of 
the models are essentially more explicit statements of those 



described in MacKinnon (1975a). Three classes of models are 
formulated: 

(1) Forward Linkage Ilodels. Controls are in the form 
of in-migrants to the system who, together with the 
previously existing population, subsequently migrate 
between the regions of the system. In their purest 
form, these models do not attempt to change the 
nature of the interregional migration propensities. 

(2) Backward Linkage Models. Controls are in the form 
of stimuli for people to move to specific locations 
within the system. New job and housing vacancies 
are perhaps the most obvious examples of such 
stimuli. Again the proportional distribution of 
origins for a given 3estination is assumed to be 
constant. 

1 3 )  Variable Structure Models. The elements of the 
interregional migration matrix are themselves 
control variables. 

It is, of course, quite probable that effective policies 
would represent combinations of these three classes of systems. 
Examples of each of the three types are now presented, fol- 
lowed by a discussion of the problem of defining a suitable 
objective function. 

1.1 Forward Linkage Models 

For all of the models presented, the state of the system 
at time i is the population distribution vector xi. Changes 
in population distribution from one time period to the next, 
for the first category of models, are related. to the d-istri- 
bution and magnitude of births, deaths, intra-system migra- 
tion flows, and migration from outside the system. More 
formally 

where N is a diagonal matrix of rates of natural increase; 
M is a K x K matrix of interregional migration propen- 

sities (i.e., ~j~ is the probability that a person 
currently residing in region k will migrate to region 
j during one time interval); 



ui is the number of people migrating to each region 
from outside the system. (These in-migrants may be 
people coming from foreign areas or from non-urban 
locations in the nation.) 

In the simplest formulation, ui is assumed to be 

controllable. That is, it is possible for the federal govern- 
ment to direct in-migrants to any of the locations either by 
regulation or by providing subsidies or imposing tax penalties. 
While it is clear that few national governments have the will or 
the ability to control the system so directly, it is of some 
interest to determine how effective such direct controls 
would be were they feasible*. 

Imposing controls usually implies the incurrence of costs. 
Avoidance of costs is characteristic of the management of 
many systems. Costs may be included either in the objective 
function or as a part of the constraint set. In this formula- 
tion, the latter alternative is adopted: 

where r2 is the cost, perhaps discounted, of directing a person 

to region k in the ith time period; and B is the total allow- 
able budget over the entire hlanning period. 

k 
In part, ri represents directly measurable costs, but it 

should probably be interpreted more generally as including 
not only monetary costs but the bureaucratic, even psycholog- 
ical, effort necessary to induce an in-migrant to locate in a 
specific region. Of interest is the shape of the trade-off 
between effectiveness as measured by the objective function 
and different values of B. 

* 
It would be possible to generalize the results somewhat by 

assuming that the effectiveness of the intended control could 
be described according to a probability distribution. While 
certainly a more realistic representation, this approach has 
not been adopted at this stage because it adds a level of 
complexity that could make the results less readily inter- 
pretable. Moreover, it would require the estimation of another 
set of parameters in a model which is already overextended in 
this regard. 



Another constraint on control is the total in-migrant 
pool available in each year. Although it is conceivable 
that this pool itself is partially controllable, it is 
assumed here that the stream of in-migrants is, at best, 
only predictable, perhaps by another model; at worst, it is 
an unpredictable, exogenous variable so that extensive analysis 
would have to be undertaken to d.etemine the range of responses 
and outcomes which woul6. be implied under different conditions. 
These constraints, one for each time period, are expressed. 
in the following way: 

where Gi is the total in-migration pool available in the 

ith time period. The final constraint set in this formulation 
consists of the conventional non-negativity conditions: 

In other words, control is exercised with respect only to 
in-migrants, and not out-migrants. Out-migration may be 
incorporated by allowing columns of the matrix M not summing 
to one or equivalently by including out-migration rates in 
death rates. 

1.2 Backward Linkage Systems 

The growth and distribution of the population of many 
urban systems can be controlled only very marginally by 
directing in-migrants, either because in-migrants represent 
a very small proportion of total population or because there 
are severe economic, social and political restrictions in 
controlling their destinations. In such cases, the federal 
government may wish to introduce stimuli in specific temporal 
and spatial sequences in order to steer the system as closely 
as possible towards population distribution goals. Consider 
the case where job vacancies are the stimulus to which 
migrants tend to respond. One appropriate model may replace 
[ll with: 



where Vi is the d.istribution of job vacancies in the i 
th 

time period; 

VU is the distribution of government stimulated job 
i vacancies; 

V is the distribution of spontaneously occurring 
'i vacancies (arising from retirement, economic growth, 

etc. ); 
PI is a migration matrix with elements i j k ,  the proba- 

bility that a job vacancy in region k will be filled 
by someone living in j. 

The budget constraints corresponding to [ 2 ]  and [ 3 ]  would, 
of course, have VU terms instead of ui, as would the non- 

i 
negativity conditions [ 4 ] .  This model is discussed in more 
detail in MacKinnon (1975a). 

It may, in fact, be more appropriate to use this model 
to control the distribution of a particularly important 
subgroup. That is, what stimuli must be imposed. on the 
system in order for the distribution of teachers or doctors 
to come as close as possible to some "equitable" distribution, 
taking into account the likely origins of those teachers and 
doctors*? Because of time and data restrictions, this model 
has not been implemented. However, no computational diffi- 
culties are anticipated-. 

1.3 Variable Structure Plodels 

Perhaps the most interesting class of models consists 
of those in which the rules of change can themselves be 
controlled within certain limitations. That is, the propensi- 
ties with which people tend to migrate between regions can 
be changed. Thus the system dynamics could be represented 
by : 

This suggestion was made by Nathan Keyfitz, Harvard 
University. 



where Mi i s  t h e  t i m e  v a r y i n g ,  c o n t r o l l a b l e  m i g r a t i o n  m a t r i x ;  

zi i s  a n  exogenously  g iven  n e t  i n - m i g r a t i o n  v e c t o r .  

I d e a l l y ,  t h e s e  changes shou ld  be  r e l a t e d  t o  some s p e c i f i c  
c o n t r o l  v a r i a b l e s  a t t a c h e d  t o  which a r e  c e r t a i n  c o s t  f u n c t i o n s .  
Thus changes  shou ld  b e  made which a r e  f e a s i b l e  w i t h i n  t h e  
c o n t e x t  o f  budge ta ry  l i m i t a t i o n s .  However, i n  t h e  absence  o f  
s u c h  i n f o r m a t i o n ,  it i s  assumed t h a t  t h e  d i f f i c u l t i e s  of  
changes  i n  m i g r a t i o n  r a t e s  a r e  d i r e c t l y  p r o p o r t i o n a l  t o  t h e  
r e l a t i v e  magnitude of such changes .  For  each  e lement  

P4jk, t h e r e  c o u l d  be  t h e  f o l l o w i n g  c o n s t r a i n t :  i 

That  i s ,  M / ~  must l i e  w i t h i n  s p e c i f i e d  d e v i a t i o n s  o f  p r e v i o u s  

v a l u e s  o f  t h e  pa ramete r .  Only g r a d u a l  changes  i n  sys tem 
s t r u c t u r e  a r e  p o s s i b l e .  

A somewhat more compl ica ted  c o n s t r a i n t  w i t h  a  s i m i l a r  
i n t e n t  i s  : 

T h i s  would b e  s u i t a b l e  i n  t h e  c a s e  where t h e  m i g r a t i o n  r a t e s  

M~~ w e r e  known t o  b e  s t a t i s t i c a l l y  r e l a t e d  t o  t h e  p o p u l a t i o n  i 
d i s t r i b u t i o n  of  t h e  sys tem i n  a d d i t i o n  t o  some o t h e r  uncon- 
t r o l l a b l e  v a r i a b l e s  ( i n c o r p o r a t e d  i n  d i ) .  A g r a v i t y  o r  

s p a t i a l  i n t e r a c t a n c e  model would be o f  t h i s  t y p e .  The 
c o n s t r a i n t  s imply  i n s u r e s  t h a t  t h e  c o n t r o l s  a r e  p l a u s i b l e  
w i t h i n  t h e  c o n t e x t  o f  t h i s  known s t a t i s t i c a l  r e l a t i o n s h i p .  
Although f o r  s h o r t  p e r i o d s  and s m a l l  v a l u e s  o f  A ,  c o n s t r a i n t  
[81 would e f f e c t i v e l y  impose t h i s  c o n d i t i o n ;  b u t  f o r  l o n g e r  
p l a n n i n g  p e r i o d s  [8 ]  may n o t  be  s u f f i c i e n t .  

Other  c o n s t r a i n t s  must be  p l a c e d  on i f  t h e y  a r e  
t o  be  i n t e r p r e t e d  a s  t r a n s i t i o n  probabilities: 



for all k = 1, ..., K 

i = o , . . . ,  1-1 1101 

Although this problem appears to be feasible, if some- 
what cumbersome with respect to data requirements and 
computational demands, no numerical results have been com- 
puted at this date. 

1.4 Specification of a Criterion Function 

To complete all of the models formulated above, the 
inclusion of an objective function is necessary. We have 
chosen to express this in terms of deviations from prescribed 
population trajectories. A quad-ratic loss function has some 
appeal (see Nykamp and Somermeyer, 1974), although its 
symmetry, weighting positive and negative deviations equally, 
is unlikely to be fully satisfactory. In our numerical 
analyses, two alternative forms are used., the symmetric, 
quadratic and the asymmetric, exponential: 

I k k , k2  
MIN a (xi - x i )  

i=l k=l 

I c c (k exp (.k(̂'2i2'))- 9 , 
i=l k=l 

^k where x, is the population target for region k at time i, 
I 

^k ^k the set xl, x2, ... ^k defining the desired popula- 

tion trajectory for region k; 
ak is the importance associated with attaining the 

population trajectory of region k; 
gk is defined in such a way as to take goal asymmetry 

into account. For example, if region k is growing 

too rapidly, exceeding the population target 22 
should be penalized more severely than falling short 
of the target; thus, if 



and if x! 5 2; , k =k B = B  

where zk < 0 and 1gk( > 1Ekl . An analogous 

definition of B~ is made when k is a region 
which is deemed to be lagging in terms of 
growth. Some regions may have symmetric 

loss functions, i.e. 1 B~ 1 = lBk 1 . 
Both formulations can be criticized on practical as well 

as theoretical grounds. The problems of objective estima- 
tion of these goals and parameters are formidable. The 
additive nature of both functions is highly questionable. 
Might not the failure to meet a goal in one region have 
implications for the importance attached to meeting goals 
in other regions? More formally, if [11.] is expressed in 
matrix terms, 

we have been assuming that A is a diagonal matrix, whereas 
goal interdependencies would imply the existence of cross- 
product terms. We ignore this and other problems, not 
because we believe them to be unimportant, but rather to 
gain some experience with the properties of such systems in 
their simplest forms and to make some judgment as to the 
most promising areas of extension. 

1.5 The Data 

The "objective" data for the following experiments are 
taken from the 1966 and 1971 Censuses of Canad-a. The 1971 
populations of the 22 Census Metropolitan Areas (C.M.A.'s) 
is the vector X(O), the "initial" state of the system. 
Estimates for the inter-C.M.A. migration rates are obtained 
from the 1966 population distribution vector and a matrix Q. 

The elements ajk represent the number of people in city j in 
1971 who had moved from city k some time in the five-year 
time interval 1966-1971. Our estimates of the off-diaqonal 

transition probabilities are Q jk , k # j and 

xk (1966) 



. . 
M l l = l -  Mjk . Although clearly there are problems 

j #k 
with these estimates (as there are with most parameters which 
are defined in terms of both flow and stock variables), they 
are used here as reasonable first approximations for migra- 
tion propensities. 

The problems associated with some of the other param- 
eters are even more severe. Population goals for each city 

k (9: )  , their relative importance (a ) , and the costs inf luencing 
I 

k the direction of the stream of in-migrants (ri) were gener- 

ated quite subjectively by one of the authors who has some 
familiarity with the Canadian urban scene. They are intended 
to illustrate the method, rather than to ind-icate real goal and 
cost parameters. In an actual planning context, some of these 
could be generated more objectively whereas others would con- 
tinue to be quite subjective. One of the purposes of such 
models is to demonstrate the implications of quite hypothet- 
ical goals and costs. 

2. A Descri~tion of Numerical Methods 

There are a number of methods which could be used to 
solve optimization problems such as those described in the 
previous section. In the research reported here, methods 
similar to those presented in Evtushenko (1975a and b) 
are used. However, since more general versions have since been 
derived, they are presented here without proof. Moreover, 
we show how these methods have been adapted to solve multi- 
stage programming problems. 

This section can be summarized as follows. First, we 
present a general formulation of a non-linear programming 
problem. Next, we describe three variants of simplified 
penalty function methods, including the formulation of an 
important convergence theorem. Then, one of these is 
adapted to a general multistage programming problem and 
applied to one of the problems presented in the previous 
section. Finally, the nature of the numerical results from 
a computational point of view is discussed. 



2 . 1  Modif ied  P e n a l t v  Func t ion  Methods f o r  Solvincr 
Non-Linear Programming Problems 

W e  c o n s i d e r  t h e  f o l l o w i n g  p r e l i m i n a r y  n o n - l i n e a r  pro-  
gramming problem: 

minimize F  ( x )  

s u b j e c t  t o  c o n s t r a i n t  

where F ,  g ,  h  a r e  g i v e n  f u n c t i o n s  d e f i n e d  on E n ,  E u c l i d e a n  
n  n-space;  x  = (x1,x2, .  . . , x  ) i s  a  p o i n t  i n  En;  f u n c t i o n s  

F ,  g ,  h  d e f i n e  t h e  mappings F  : En+E1, g  : En+Ee, h  : En+Ec. 

T h i s  i s  c a l l e d  a  convex programming problem i f  F ( x ) ,  
h ( x )  a r e  convex f u n c t i o n s  and g  ( x )  i s  a f f i n e .  

The a u x i l i a r y  e x t e r i o r  p e n a l t y  f u n c t i o n  f o r  [ I 4 1  i s  
d e f i n e d  a s  

Here S ( x )  = 0  i f  x  € X and S ( x )  > 0  i f  x $Z X ;  ~ ( t ) ,  ~ ( t )  a r e  
s t r i c t l y  p o s i t i v e ,  c o n t i n u o u s  s c a l a r  f u n c t i o n s  o f  s c a l a r  
v a r i a b l e  t which a r e  d e f i n e d  f o r  a l l  to < t < and s a t i s f y  

t h e  f o l l o w i n g  c o n d i t i o n s :  

~ ( t )  d t  = , l i m  ~ ( t )  > 0  . 
t + w  

I n t r o d u c e  t h e  f o l l o w i n g  f o u r  sets:  



Z = {x f En : MIN P(s,T) = P(x,T)/ . 
zfEn 

Here T is some given positive number. For a numerical solu- 
tion of 1141, it is proposed. to find the limit points as 
t+m of the solution of the Cauchy problem for the system 

where Px, Fx, Sx are gradients of the respective functions. 

Theorem 1. Let F (x) and S (x) be convex, continuously 
differentiable functions on En; the set G is compact, 

continuous functions p (t) , T (t) satisfy [16], T ( t ) / ~  (t)+m 
as t+m. Then as t+m, the solutions [3] x (xo,t) converge to 

the solution set X, for any xo f En; at least one limit point 

of the sequence ~ ( t )  S(x(xo,t))/~(t) exists and is equal to 

zero. 

If Xo is non-empty, then for any x,E X,, vectors 

p, € Ee and w, f Ec exist such that 

We say that S(x) is separable in g and h if it has a form 



Here hi (x) = PZAX [0 , d  (x) ] and $ (y) is a scalar-valued 
function of the single variable y, defined for all positive 
y. Suppose that this function is twice differentiable and 
satisfies the following conditions: 

d2$(y)/dy2 > > 0 for all y 2 o . 

It is easy to verify that if F(x), h(x) are convex 
differentiable functions, and g(x) is affine, then P(x,t) is 
also convex and differentiable in x. 

The family of simplified penalty function methods 
described and used in this study should be contrasted with 
routine penalty function methods. (See for example, Fiacco 
and McCormick (1968).) The conventional methods prescribe 
some sequence of t = tl,t2, ..., ts such that ti- for all i. 

It is necessary to solve an unconstrained minimization 
problem using, for example, a gradient method of a similar 
form as [17] for fixed. ti. That is, the limit point must 

be found for each fixed. ti. Then ti is changed and the new 

limit point is found. The limit of all such limit points 
solves the problem described in 1141. Theorem 1 permits us 
to avoid much calculation and find the limit point of 1171 
only one time, changing LI and T as functions of t according 
to condition 1161 . 

Lemma 1. If [I41 is a convex programming problem, the 
set X, is compact, and X, and Xo are non-empty sets, then for 

any x,€ X,, x € En, 0 < T < T the following inequalities 

hold: 



This lemma was proved in Skarin (1973) and Eremin (1967). 

Consider the following maximin problem associated with 
problem [14] : 

where T > 0 is some fixed number. 

A pair (T,;), where x E: Z, solves the maximin problem 
1191. If 2 € Z ,  x, € X, then F(x,) - y/T 5 P(%,T) 5 F(x,). 
If function F(x) is bounded from below (F(x) 5 6 for all 
x € En) then 

By making T sufficiently large we can thereby find an appro- 
priate solution to [14] with any required accuracy. For 
solving the maximin problem [19], it is sufficient to solve 
the following problem: minimize P (x,T) over all x En. 
Regrettably this unconstrained problem is extremely 
difficult to solve, since for large T the function P(x,T) 
is ill-conditioned. It is more convenient (see Evtushenko, 
1975a and b) to let the parameter r vary continuously from 
zero to T and solve differential equations of the form 

Here O(y) = 1 if y > 0, and otherwise, 8(y) = 0; ~ ( t )  = 1; 
y(r) is a continuous positive function defined for all 
0 5 r < r < T and satisfies inequality 

0 - 



We can take, for example, y i ~ )  = T - T or y ( ~ )  = 1. In the 
computations described later, we set y ( ~ )  = T. 

The simplest discrete version of this method is 

Step length, as, is a monotonically decreasing sequence which 

satisfies the following conditions: 

O < a s  , a - 0  , lim 1 as . 
S k-03 s=O 

In the following computations, we set 

Theorem 2. Let F and h be convex, continuously 
differentiable functions, g(x) be an affine function, 
Z be a non-empty compact set, and the inequalities 1211 hold. 
Then method [201 converges globally to solution set Z for 
any x o  € En. Discrete method [22] globally converges to Z 

if as is a monotonically decreasing sequence satisfying [231 

and if a0 is sufficiently small. 

In Evtushenko (1975b), other methods are presented 
which are based. on a transformation of [14] into an uncon- 
strained maximin problem, by using generalized Lagrange 
multiplier techniques. We define the modified Lagrangian 
function H (x,p,w) associated with problem [14] as 



where p € Ee , w € Ec. The simplest gradient yields the 

following method 

In Evtushenko (1975b), it is proved, that the solu- 
tion x(t) , p(t), w(t) of system 1241 locally converges to 
that of [14] as t+a under some conditions. 

2.2 Numerical Methods for Solving Multistage Optimal 
Control Problems 

We now consider a dynamical system described by the 
difference equation 

1 2  K where xi = (xi,xi, ..., x . )  which is a point in EK. The control 
1 r 

applied to the system at time i is ui = [u:,u:, . . . ,ui1 which 

is a point in E fi is a real-valued continuously differ- r ' 
- 1 2  K entiable vector function, fi - [fit f . , f i] , d-ef ined on the 

Cartesian product EK x Er; T is the duration of the control 

process. The problem is to find control sequence u ~ , ~ ~ , . . . , u ~ - ~  

and a corresponding trajectory X ~ , X ~ , . . . , X ~  determined by [251 , 
which minimizes the cost function 

subject to constraints 



where gi, hi are given functions, 

For solving the primal problem we shall use modified 
penalty function methods. For simplicity in formulas [18], 

setting $ (y) = y2, we obtain 

j 
.9, i 2 

where h!+(y) = M A X  [O,hi(y)1. llal12 = 1 (a ) ; here 
j.=l 

1 9  0 

If functions fir Fit  Sir hi are differentiable, then 

using a common procedure (Polak, 1971), the following 
formulas for derivatives can be written: 

where afi/aui is r x n matrix whose j ,sth element is 

af:/aui. The n-dimensional multiplier vectors pl ,p2.. . . ,p1 

satisfy the following difference equations: 

where afi/axi is n x n matrix whose jIsth element is 

s j  afi/axi. 



Now for solving the primal ( [25], [26], and [27] ) , we 
can use any method presented above. For example, using [20] 
yields 

dui (t) 
- _ - -  

dt ~(x(t),u(t),r(t)) , i = o,~,...,I-1 du, 

In performing numerical calculations, instead of this 
continuous system we shall solve the corresponding discrete 
version : 

In this system, initial control vector u(0) is given. By 
solving system [251, we find the corresponding trajectory 
xi(0) i = 2 . 1 After this, we solve the difference 

equation 1281 from i = I, 1-1,. . . ,1, simultaneously changing 
control variables in accordance with system [30]. After this 
first step, we find a new control vector u(1). 

Again solving [25], we find the corresponding state vector 
xi(l) i = 2 . 1 Next, we move backward again and so on. 

Theorem 2 can be easily reformulated for this particular 
case. The method in 1241 gives the following system: 



This method locally converges to the solution of a primal 
problem. Convergence theorems for the multistage case 
could be formulated as in theorems 1 and 2, but they would be 
considerably more cumbersome. 

2.3 A National Settlement System Problem in Modified 
Penalty Function Form 

We now consider, explicitly, an optimal migration 
problem. In this case, as represented by 111 , [2] , 141 , 
and [ll] , we have 

Therefore the penalty function has the following form: 



System [28] thus has the form: 

Method [30] has the form: 

T (t + 1) = T (t) 

2.4 Some Comments on the Numerical Performance of the 
Method 

Unlike many mathematical programming methods the penalty 
function methods presented here require that the programmer 
use some judgment to increase the effectiveness of the solu- 
tion methods. As has been shown, convergence is assured as 
t+m but the speed of convergence or the closeness to 
optimality for a given t critically depends on the initial 
solution and the choice of two parameters T~ and aO. 

Any intuition which the modeller can use concerning good 
initial values of ui(i = 0,1, ..., 1-1) may significantly speed up 

convergence. For simplicity, the u2 terms may be set equal 



to zero except for a few--those, for example, which have 
k Ak large negative values of the difference xo - xl. It should, 

of course, be emphasized that the initial solution need not 
be feasible. 

The choices for the parameters r o  and uo are more subtle 

and some experimentation is usually necessary before good 
values can be selected. If rO is "too small," the algorithm 

will be insensitive to violations of the constraints. If, on 
the other hand, r O  is "too large," a violation of the constraint 

set at step t will result in an over-reaction in the next time 
period; i.e., in the attempt to obtain feasibility, the objec- 
tive function will be increased to unnecessarily large values. 
Figure 1 gives an example of two alternative values of r O  

5 for the case where B = 15 x 10 . Clearly, Jt, the value of 

the objective function at step t, appears to be converging 
more rapidly for rO = .002 than for r O  = .l. The latter value 

results in greater instability of subsequent solutions. 

Similarly, "too large" values of a. will result in 

large changes in the control variables from one solution to 
the next. Large changes may result in "overshooting" the 
optimal solution, whereas small adjustments may result in 
slow convergence. 

The fact that with both choices experiments are useful, 
and in most cases necessary, certainly implies that good 
solutions could be much more readily obtained with an inter- 
active computer system. 

In our limited experience with this method applied to a 
problem with twenty-two state variables and four time periods 
(i.e., effectively eighty-eight state variables), near-optimal 
solutions were obtained in eighty steps using about twenty 
seconds of C.P.U. time on a C.D.C. 6600 computer. 

3. Interpretation of the Numerical Results 

As a numerical example of the proced-ures outlined. above, 
only one constraint, other than the non-negativity constraints, 
has been imposed. This, the budget constraint [21, limits 
the total effort which the planning agency can apply in order 
to control the system. Moreover, a single time-invariant 
population target has been postulated for each of the 
cities rather than more conventional trend. lines. Arising 
directly from these specifications is a pattern of temporal 



FIGURE 1. CONVERGENCE PROPERTIES FOR TWO 
DIFFERENT VALUES OF r,. 



allocation of effort which is highly peaked in the initial 
time periods, falling off at an exponential rate in most 
cases. Inputs are made to the system in order to move the 
system close to its taraets as soon as possible. The only 
important factor which encourages the temporal spread 
of controls is that some cities, having come close to their 
targets, immediately begin losing population. Thus, new 
inputs must be channelled into these cities to help make up 
for losses due to out-migration. Some metropolitan areas 
(e.g., Toronto, Calgary and Ottawa) which are either growing 
or only slowly declining due to net in-migration have highly 
peaked controls, while others (e.g., St. John's, Saint 
John and Winnipeg) have a more even distribution of controls. 

Figure 2 displays the trajectories for the state 
5 variables for B = 20 x 10 . Any thorough interpretation of 

the model would have to include a discussion of the interaction 
between "natural" system dynamics, controls imposed on the 
system, the postulated goals of the system and their relative 
importance, and the budgetary constraint. Each of these 
factors can directly influence the shape of the trajectory for 
any of the cities. For example, some of the cities are gain- 
ing population through inter-city migration; if they are close 
to their goals (e-g., Hamilton and Vancouver), no controls 
will be applied as this would involve overshooting targets 
in later periods. Other cities are initially far short of 
their targets: of these, some (e.g., Montreal, Halifax, 
Saint John, St. John's, Regina) are losers through migration; 
others such as Toronto and Ottawa are stable or net gainers. 
Both categories of cities have similar trajectories for suffi- 
ciently large values of B, even though the pattern of controls 
is markedly different. Other cities are losing, but for 
purposes of this study have relatively small weights attached 
to goal attainment (e. g. , Saskatoon, Winnipeg) . The trajec- 
tories of these cities are either constantly declining or 
concave upwards depending on their initial deviation from 
targets. Finally, there are some urban areas which are 
initially very close to their targets and are approximately in 
equilibrium with the rest of the system (e.g., Windsor, 
Edmonton, Thunder Bay, Sudbury). These cities, of course, 
have approximately flat trajectories with little or no 
controls. 

The best use of the model in its present form is to 
demonstrate the ways in which different goals and goal 
weights trade off against each other and interact with cost 
functions, budgetary constraints and the inherent dynamics 
of the system. 



FIGURE 2.SAMPLE TRAJECTORIES FOR SIMPLE 
POPULATION CONTROL MODEL 
- CONTROLLED TRAJECTORIES 
--- TARGET TRAJECTORIES 

TI  M E  T IME T I M E  T l M E  



From these initial empirical results, it appears that 
there is a rather simple relationship between system goals 
and controls. That is, the regional interactions, as incor- 
porated in the migration propensity matrix M I  while taken 
into account, are rather unimportant compared. with the direct 
control vectors ui. Indirect consequences of these controls 

are rather minimal. This is directly related to the strong 
diagonal dominance of IT. While, in principle, this makes 
planning rather simple (assuming ui are controllable), in a 

sense it makes the interpretation of the model much less 
interesting. 

Of considerable interest is the shape of the cost- 
effectiveness curve associated with the system; that is, 
the manner in which the objective function decreases with 
increasingly large applications of effort. Figure 3 shows 
very strikingly the diminishing marginal productivity of 
controls. The curve is extremely concave, reaching a satura- 

tion point at B = 3 4 . 3 4  X lo5 where additional budgetary 
allocations will not be used.; that is, the constraint [ 21  
will not be binding. 

4 .  Closure 

In a very real sense, this study is at a rather prelim- 
inary stage with only the simplest of all the models having 
been implemented. The other formulations all appear to be 
feasible although their data requirements and/or their 
computational complexities are greater. Of considerably 
greater policy interest are the "backward linkage" and 
"variable structure" cases. It is hoped that this computa- 
tional approach will be adapted and extended to solve these 
more interesting problems. 

Regarding the computational procedures, two comments 
should be made. First, it would be possible to increase the 
effectiveness of the method by adjoining it to another proce- 
dure (e.g., Newton's method) when the decrease in subsequent 
values of the objective function becomes small. That is, the 
penalty function methods used here give only approximately 
optimal solutions; if greater accuracy is required, the 
methods of this paper should be used to generate good 
starting solutions for other, more accurate (but more time- 
consuming) procedures. It is, however, unlikely that the 
reliability of the data in these applications is sufficient 
to warrant the use of more accurate methods. The second 
comment regarding computational matters is that there are 



FIGURE 3. COST-EFFECTIVENESS RELATION- 
SHIP BETWEEN J AND B. 



other methods of mathematical programming, control theory 
and even the classical calculus of variations which can be 
applied to this class of problems described. The problem 
for which numerical results have been obtained in this study 
appears to be particularly amenable to Lagrangian type of 
analysis*. Variable-structure, or bi-linear, systems methods 
could be applied to this problem formulation (see Mohler, 
1974). 

There are a number of ways in which the models presented 
here could be enriched; some of these are enumerated in 
MacKinnon (1975a). Most of the straightforward extensions 
imply a considerable increase in the dimensionality of the 
system; thus some control theory and dynamic programming 
approaches would appear to Se inappropriate candid.ates for 
obtaining numerical results for such problems. 

The uncertainty associated with the system parameters 
and even the general structure of system relationships should 
be explicitly considered. One method is, of course, extensive 
experimentation to determine the sensitivity of controls and 
goal attainment to -- ad hoc changes in the parameters. Alter- 
natively, the parameters themselves can be assumed to be 
random variates with known probability distributions. Although 
this approach may be feasible only for a limited number of 
parameters, it is apparent that some incorporation of uncer- 
tainty in the model would be useful. 

Clearly then there are many ways in which the models 
could be elaborated and there are several alternative solution 
methods. In addition, there are some other urban and regional 
problems which could be formulated within a similar methodolog- 
ical framework. The diffusion of information throughout an 
urban system can be modelled by means of a matrix operator. 
Controls can be either locationally specific information 
inputs to the system or alterations in the matrix operator 
itself. The goal may be to obtain a reasonably equitable 
distribution of information throughout the system by a spec- 
ified time. (See MacKinnon 1975b for a more formal repre- 
sentation of this problem.) A second possible application 
could be in urban land use structure. Land use changes within 
a city can be represented by a matrix operator where the states 

* 
Professor Raman Mehra of IIASA is currently working 

out the details of this approach. 



are mutually exclusive land use categories (e.g., Bourne, 
1969). Controls may be in the form of changes in the matrix 
elements (via land use conversion regulations) or inputs to 
the system (via construction regulations on vacant land). 
The goals may be stated in terms of desirable mixes of land 
use for different parts of the city. 

In conclusion then, it would appear that non-linear 
programming has become a computationally feasible and quite 
flexible approach for undertaking experiments which generate 
alternative national settlement system planning strategies. 
These experiments yield not precise prescriptions but rather 
general indications of the magnitude and direction of 
controls which are necessary to achieve specified goals. 
Clearly additional research is necessary on goal and cost 
function specification, and on a more detailed elaboration 
of the dynamics of the system, including an indication of the 
precise instrumental variables which can be used to effect 
changes in system inputs or system structure. Although much 
research remains to be done, it is argued that the approach 
presented here provides a promising, computationally feasible 
methodological framework within which these future research 
results can be placed. 

Acknowledgements 

The completion of this paper was made possible by 
the release of one week of Evtushenko's time by the Computing 
Centre in Moscow. MacKinnon's financial support by the 
Canada Council in the form of a leave fellowship is gratefully 
acknowledged. The rather difficult task of transforming the 
untidy manuscript into final copy was accomplished success- 
fully and patiently by Linda Samide. 



References 

[ I - ]  Bourne, L.S. 1969. A spatial allocation - land use 
conversion model of urban growth. Journal of 
Resional Science. 9:2:261-272. 

Eremin, 1.1. 1967. Penalty function techniques for 
convex programming. Kibernetika. 4:63-67 (in 
Russian). 

Evtushenko, Y. 1975a. Alqorithms for solving non- 
linear programming problems. Optimization Techniques 
IFIP Technical Conference at Novosibirsk, July 1974. 
Berlin, Springer-Verlag, pp. 308-313. 

Evtushenko, Y. 1975h. Generalized Lagrange multipliers 
technique for non-linear programming. IIASA 
Research Report 75-13, Laxenburg, Austria. 

Fiacco, A.V. and G.P. McCormick. 1968. Non-Linear 
Programming: Sequential Unconstrained Minimization 
Techniques. New York, Wiley. 

IlacKinnon, R.D. 1975a. Controllinq migration processes 
of a Markovian type. ~nvironment and planning 
(in press). 

MacKinnon, R.D. 1975b. Geoqraphical diffusion processes: - - 

Alternative methodological approaches of an opera- 
tional type. Revista Geoyrafica (in Portuguese). 

Mohler. R.R. 1973. Bilinear Control Processes with - ~ - - - - - 

Application to Engineering, Ecology and Medicine. 
New York, Academic Press. 

Nykamp, P. and W.H. Somermeyer. 1974. Explicating 
implicit social preference functions. Economics 
of Planning. 11:3:101-119. 

Polak, E. 1971. Computation Methods in Optimization. 
New York, Academic Press. 

Skarin, V.D. 1973. Penalty function techniques for 
convex programming. Zhurnal- vych. matematiki - i 
matematicheskoy fizicki. 13:5:1186-1199 (in . . 

Russian). 


