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Chemical Kinetics and Catastrophe ÿ he or^* 

E. H. Blum and R. K. Mehra 

Abstract 

In this paper a continuous stirred tank reactor (CSTR) 
model of a first-order, exothermic reaction is examined and 
the existence of a cusp catastrophe is shown. Analytical 
solutions are developed for the ignition and quenching 
boundaries. The significance of the results and further 
extensions are discussed. 

I. Introduction 

This paper applies a recently developed mathematical theory-- 

called "catastrophe theoryu--to a classic engineering problem, 

analyzing the stability of a chemical reactor. In particular 

it treats in detail the case of a continuous flow, perfectly 

stirred tank reactor (CSTR) with a first-order, irreversible, 

exothermic chemical reaction. Building on the approach de- 

veloped in Mehra and Blum [6] , we 

- demonstrate the application of catastrophe theory to 

an example typical of a large class of important 

problems ; 

- show that catastrophe theory can yield insight even in 

problems well studied by traditional techniques; and 

- lay a foundation for treating more complex problems 

of interest in fire protection, energy policy, and 

industrial operation. 

* 
The research report in this document was supported partially 

by IIASA and partially by the US Joint Services Electronics Pro- 
gram under contract N00014-67-A10298-0006 extended to Harvard 
University. The second author is also affiliated with Harvard 
University. 



In [6], basic results from catastrophe theory yielded a 

new criterion for determining the ignition point of flammable 

paper exposed to thermal radiation, one that improved the agree- 

ment of experimental results with previous data. More important 

conceptually, catastrophe theory showed that 

( 1 )  Ignition can be analyzed and explained in terms of 

equilibrium properties, even though it is usually 

regarded only as a transient or dynam.ic phenomenon, 

and 

(2) In analyzing stability behavior such as ignition, 

primary attention should be paid to the control 

variables, although one customarily focusses on the 

state variables (such as composition or temperature) 

that manifest the instability. 

This paper extends this investigation to physical situa- 

tions described by two or more control variables. A well 

studied example has been chosen as a base case to simplify 

the conventional aspects of the analysis and illuminate key 

points in the method and to provide a basis for comparison 

and calibration against well tested analyses and computations. 

At least since 1953, it has been well known that exothermic 

chemical reactions, influenced by heat transfer, mass transfer, 

or both, can exhibit multiple equilibria and bifurcation points 

(see [1,2,3,4,8]). Indeed, these phenomena have been the subject 

of so many theoretical and experimental studies that we could not 

even begin to review the published literature here. What is 

important to note is that, despite the volume of work, much 

involving quite sophisticated mathematical techniques, an 

aspect important for policy--the effects on global stability 

of simultaneously varying two or more control parameters-- 

appears to remain essentially untouched. And it is to this 

subject, the stability impacts of multiple control variables, 

that catastrophe theory is inherently addressed. 



An i n t r o d u c t i o n  t o  c a t a s t r o p h e  t h e o r y  i s  deve loped  i n  [ 6 1 .  

S u f f i c e  it t o  n o t e  h e r e  t h a t ,  based  upon t h e  t o p o l o g i c a l  prop- 

er t ies  o f  f l o w  m a n i f o l d s ,  t h e  t h e o r y  p r o v i d e s  a  comp le te  

c l a s s i f i c a t i o n  o f  a l l  p o s s i b l e  " c a t a s t r o p h e s "  ( jump d i scon -  

t i n u i t i e s  between m u l t i p l e  v a l u e s )  f o r  up t o  f i v e  c o n t r o l  

p a r a m e t e r s  and a  less comp le te  b u t  p o t e n t i a l l y  u s e f u l  c l a s -  

s i f  i c a t i o n  i n  y e t  h i g h e r  d imens ions .  ' P.40reoverI it p r o v i d e s  

t h i s  c l a s s i f i c a t i o n ,  and  f u r t h e r  i n s i g h t  i n t o  sys tem b e h a v i o r  

w i t h o u t  h a v i n g  t o  i n t e g r a t e  t h e  d e s c r i b i n g  d i f f e r e n t i a l  e q u a t i o n s  

o r  t o  con tend  w i t h  ( p o s s i b l y )  l a r g e  numbers o f  s t a t e  v a r i a b l e s .  

Only t h e  e q u i l i b r i u m  e q u a t i o n s  a r e  needed,  and  t h e  number o f  

c o n t r o l  v a r i a b l e s  i s  t h e  d i m e n s i o n a l i t y  t h a t  p l a y s  a  major  

r o l e .  

The example c o n s i d e r e d  i s  o n e  o f  t h e  s i m p l e s t ,  r e a l i s t 4 c  

chemica l  r e a c t o r  models  t h a t  d i s p l a y s  i n t e r e s t i n g  i n s t a b i l i t y .  

I t  a f f o r d s  a n  a n a l y t i c a l  e x p r e s s i o n  f o r  t h e  c a t a s t r o p h e  

s u r f a c e ,  which e x h i b i t s  a  cusp  c a t a s t r o p h e  i n  t h e  c o n t r o l  s p a c e  

o f  r e s i d e n c e  t i m e  v e r s u s  f e e d  ( o r  c o o l a n t )  t e m p e r a t u r e .  

11. Chemical  Reac to r  Model 

The b a s i c  model a n a l y z e d  r e p r e s e n t s  a  c o n t i n u o u s  f l o w ,  

p e r f e c t l y  s t i r r e d  t a n k  r e a c t o r  (CSTR) i n  which o c c u r s  a  f i r s t -  

o r d e r ,  i r r e v e r s i b l e ,  e x o t h e r m i c  chemica l  r e a c t i o n  A + B. 

F i g u r e  1 d e p i c t s  t h e  p h y s i c a l  s i t u a t i o n  and e x p l a i n s  t h e  

nomenc la tu re .  

~p~ - - - -  - 

 or s i x  o r  more c o n t r o l  v a r i a b l e s ,  t h e  number o f  e l e m e n t a r y  
c a t a s t r o p h e s  i s  i n f i n i t e .  A f i n i t e  c l a s s i f i c a t i o n  f o r  more t h a n  
s i x  v a r i a b l e s  may b e  o b t a i n e d  under  t o p o l o g i c a l ,  r a t h e r  t h a n  d i f -  
feomorph ic ,  e q u i v a l e n c e .  



F E E D  

Concentration of A C 

Temperature G T o  O K  

Flow Rate ! q Z/sec 

Volume V liters(2) 

Density E p g/Z 

Heat Capacity C 

Reaction Rate - R moles/sec. 2 

Enthalpy (Heat) of Reaction 

G (-AH) callgmole 

I 
Heat Transfer out 5 U* cal/sec.Z 

T O K  
C 

O U T P U T  

Figure 1. CSTR with heat transfer. 



When the flow rate and volume are constant, the system 

equations become [1  I : 

Mass Balance: 

Energy Balance: 

Note that if all the reactant A. in the feed were to 

react adiabatically, the total heat released (HM) would be 

Thus, the maximum temperature rise attainable is 

and the fraction of the maximum temperature rise actually 

attained 

where 1) and q 0  are dimensionless temperatures. With this 

definition, the maximum dimensionless temperature attainable 

is simply 



Now multiply equation (2) through by pC / [ (-AH) C 
P 

divide equation (1) through by (qC ) Define the additional 
A. 

dimensionless variables 

Then the system equations become, respectively, 

and 

where 

If the reaction is first-order and irreversible, then 

The simplest realistic heat transfer (cooling) function 

is U (TI) = US (rl - nC) , simple convective cooling with water, say, 

at a constant flow rate and temperature VC.  If one wanted to 

impose control, to operate the system at a naturally unstable 

point, one could add proportional flow control with bounded 

magnitude, e.g., 

2 ) ~ n  this Arrhenius expression for the reaction rate, E, is 
the activation energy and r (usually R) is the gas constant, 
r = 1.9872 cal/g  mole'^. 



Here is an equilibrium temperature (achieved with K = 0) 

about which the system is to be controlled and 

In this model, there are two state variables--n and 5-- 
and four nominal control parameters: qC, no, K, and 0 .  Physic- 

ally, the first three control parameters have the same kind of 

effect, i.e., to vary the net influx of thermal energy; indeed 

the effects of nC and no are essentially identical, as we 

shall see below. The residence time 8, controlled by varying 

the flow rate q, has a different physical effect--to give the 

reaction time to take place. The next section examines the 

effects of varying energy flux--residence time pairs on the 

stability properties of equations (7) and (8). 

111. Application of Catastrophe Theory 

In catastrophe theory (see [7,9,10,11,12] ) it is assumed 

that the control parameters vary slowly compared to the motion of 

the state variables, so that one may consider the system as 

moving from one equilibrium point to another. At an equilibrium 

point (C*,n*) 

With ( 9 ) ,  equation (7) then yields 



which when s u b s t i t u t e d  i n t o  ( 8 )  g i v e s  t h e  e q u a t i o n  f o r  t h e  

e q u i l i b r i u m  s u r f a c e  

w i t h  a p p r o p r i a t e  m o d i f i c a t i o n s  i n  t h e  c o n t r o l  p o r t i o n  f o r  
+ 

Q Q a n d q  < Q - .  

E q u a t i o n  ( 1 4 )  i s  o f  fundamenta l  impor tance  i n  s t u d y i n g  

t h e  e q u i l i b r i u m  m a n i f o l d  i n  t h e  (n* , '16,0)  s p a c e  o r  ( ' I * , ' I ~ . ~ )  

s p a c e .  I n  p a r t i c u l a r ,  w e  a r e  i n t e r e s t e d  i n  t h e  l ~ c u s  o f  p o i n t s  

i n  ( ~ ~ ~ 9 )  s p a c e  a t  which t h e r e  a r e  c a t a s t r o p h i c  changes i n  n*. 

The main theorem o f  c a t a s t r o p h e  t h e o r y  [ 7 ]  t e l l s  u s  t h a t ,  i n  

g e n e r a l ,  t h i s  l o c u s  i s  a  c u s p ,  t h e  i n t e r i o r  o f  which c o r r e s p o n d s  

t o  u n s t a b l e  e q u i l i b r i a .  A t  c a t a s t r o p h e  p o i n t s ,  t h e  d i f f e r e n -  

t i a l  e q u a t i o n  d'I - - f  ( Q  , q O  ' 9 )  changes  f rom a l o c a l l y  s t a b l e  
a f  

e q u a t i o n  t o  a  l o c a l l y  u n s t a b l e  e q u a t i o n .  Thus - changes  s i g n  arl* 
and p a s s e s  t h r o u g h  z e r o  v a l u e  a t  t h e  c a t a s t r o p h e  p o i n t s .  The 

- 0 ,  e q u a t i o n s  o f  t h e  c a t a s t r o p h e  l o c u s  a r e  t h u s  f  = 0  and --- - an* 
i . e . ,  e q u a t i o n  (1  4 )  and e q u a t i o n  (15 )  below 

+ f o r  Q > Q > , (u(,-,) h a s  a s t e p  f u n c t i o n  i n  t h e  d e r i v a t i v e  

a t  TI* = Q - a n d q *  = 
+ 

Q . )  

W e  c a n  now v a r y  n* a s  a  p a r a m e t e r  i n  e q u a t i o n s  (14 )  and 

(15 )  and s o l v e  ( 1 5 )  f o r  0 and ( 1 4 )  f o r  " O r  " I  keep ing  a l l  



other quantities constant. This procedure yields explicit 

equations for the catastrophe locus--which, in this case, we 

know a priori must be a cusp. Alternatively, we can eliminate 

8 by merging (14) and (15), obtain an analytical solution for 

the values of n* at which catastrophes (jumps) occur, and use 

this solution to obtain an analytical expression for the cusp. 

To illustrate the procedure most clearly, let us focus for 

now on the case K = 0, i.e., the reactor with simple cooling. 

IV. Analytical Solution 

For K = 0, equations (14) and (15) become 

where for convenience we have defined 

Y - (Ae -a/n* 18 

Let us also define a combined thermal control variable 

n1 and 0 form the two dimensions of our control space. 

We can solve equations (14a) and (15a) analytically, thus 

obtaining 

- an explicit analytical form for the boundaries in 

control space of the region within which multiple 

equilibria occur, and 

- analytical criteria for i&ition and quenching -C-L 

21 

(extinction), important phenomena as yet incompletely 

understood. 



Let us now solve for q*. Since 1/(1+Y) = 1-Y/( l+Y), we 

have from (14a) 

which yields the quadratic equation 

The solution yields the two equilibrium temperatures along 

the catastrophe locus: 

Ignition Temperature = q* - 

Quenching Temperature = q:, 

where the subscripts indicate the sign before the square root 

in 

A necessary condition for multiple equilibria is thus 



Since Y/ (1 + Y) - < 1/4 , we also have from (15a) 

for equilibrium temperatures along the catastrophe locus. 

Together, (20) and (21) characterize the surface near the tip 

of the cusp's tail. 

Having solved for q* ,  we can readily obtain through (17b) 

the projection 8(q1) of the catastrophe locus on the 8,q 
1 

control plane. 

From (18a), the product of the roots 

so that 

a/'$ is the same except with a minus sign before the square 

root. 

The form of (23) invites the approximation 

where C'1 if X is small compared to 1 and C "  1.069 + 0.287X 

(derived from a four-tern Chebyshev polynomial fit to the 

usual power series expansion of the square root) approximates 

the function well for x c 0.8. Using thls approximation (23) 

-- 

3~lternatively, one can use the exact C for the middle of 
the range of interest. At X = 0.64, for example, C = 1.25; 
with this value (24) holds to within 3.2% at X = 0.40 and 6.2% 
at X = 0.75. 



simplifies to 

which yield the approximations 

More clearly than (19), these approximate forms reveal 

how the ignition and quenching temperatures vary with the 

major parameters on regions of the equilibrium surface. 

Finally, substituting (23) into (17b) gives, after re- 

arranging and collecting terms, 

where O+(q,)--the quenching locus --takes the plus sign before 

the square root and q:, and 0 - (ql)--the ignition locus--takes 

the minus sign and q*. - The exponential's argument is equation 

(23), with the appropriate sign before the square root. If 

we define the function 



then the cusp equations can be written more compactly as 

Ignition Boundary: 

Quenching Boundary: 

IV. Numerical Results 

Figure 2 displays the catastrophe surface--f(ql,8 ,q*)=O 

--computed from equation (14) with K = 0, A = exp ( 2 5 ) ,  Us = 1 

and a = 50. Catastophe theory shows that all potentially un- 

stable systems having two ~rincipal control dimensions and one 

free state dimension must manifest a surface of this general 

type. Moreover, it shows that the catastrophe locus for systems 

of this kind must be a cusp. 4 

v" Figure 2 emphasizes the stucture of'the catastrophe - 
A 

r . . v F - -  d,,-Uce f5r srall f3 {fio~:; residence tines). Specifically, 

the coordinates of the surface's "corners," written as they 

'Though for some systems, where no control variable 
j-mposes a limit on behavior (as low 8 ,  which does not permit 
enough reaction to occur to generate instability, does here), 
the cusp may degenerate into a simple fold catastrophe locus, 
of the type considered in [ 6 ] .  



Figure 2. Catastrophe surface for perfectly stirred, 
continuous flow tank reactor with first-order, 
irreversible exothermic chemical reaction. 



appear in Figure 2, are 

Here the surface is depicted using a perspective transformation, 

with viewing elevation 8" and rotation 75'. 

Figure 3A displays the same surface, showing below it the 

projection of the multiple eq~ilibrium~region, computed directly 

from the surface by numerical differen ion. The same surface f" - 
and cusp are shown from a different viewing angle (elevation 30°, 

rotation 290') in Figure 36. 

Figure 4A displays the cusp 8 (ql), computed from equations 

(27a) and (27b), for a(l+Us) = 100, A = exp(25). ~ i g u r e  4E3 plots 

the same curve in terms of log 0versus rll, which reduces the 

curvature and lets us examine the tip of the cusp's tail. 

Analytically, the equations show that the cusp terminates 
E 

at an end-point (r1~,0~,rlg) given by 



Figure 3A. Catastrophe surface with projection of multiple 
equilibrium region: view in the direction of 
decreasing residence time. 



F i g u r e  3 B .  C a t a s t r o p h e  s u r f a c e  w i t h  p r o j e c t i o n  o f  m u l t i p l e  
e q u i l i b r i u m  r e g i o n :  v iew  i n  t h e  d i r e c t i o n  o f  
i n c r e a s i n g  r e s i d e n c e  t i m e .  



Figure 4A. Cusp catastrophe locus. 





In Figures 2-5, this point is 

In the terminology of catastrophe theory (see [7,9,10,111), 

8 is thus a "splitting factor." In physical terms, high flow 

rates (low 8) "blow out" the reaction, much as one blows out a 

flame; the reactants are out and away before the reaction can be- 

come self-sustaining. That there must exist small values of 8 

for which there is only one steady-state solution (e.g., one 

value of q*) has been proved in general for CSTR's [3, p. 361. 

(Gavalas' corresponding result, that the steady state must also - become unique fcr sufficiently large $&&s of 8, does not apply 

to this model, since an irreversible reaction has no unique stable 

state except 3 0 as 8 3 m.) 

Let us briefly examine Figures 2-4. First, note that 

the interior of the cusp fully defines the region within which 

multiple steady states--and hence jumps between them--can occur. 

For any values of q l ,  multiple equilibria can occur if and only 

if 8+ 6 0 < 8 - . For 8 < 8+, only low temperature equilibria 

are possible, and for 8 > 8 - , only high temperature equilibria 

occur. This behavior is depicted in another fashion in Figure 

5, which shows slices through the catastrophe surface at selected * 
values of 0 ,  plotting q vs. q, . The middle part of the fold 



1 - 5  

Figure 5. System behavior with multiple equilibria. 
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curve consists of unstable equilibria. The catastrophic jumps 

occur at the points where a f  vanishes; these are also the points 
all* 

q*(ql) given by equation (19). which is superimposed. At the 

upper extreme, all the curves converge to the line rll =('\+Us) rl*-1 ; 

the lower asymptote is n l  = (1 +Us) n*. 

Figures 2-5 show how the system behaves as the control 

parameters are varied. As we know, the right arm ~f the cusp 

corresponds to "ignition" or accelerating of the reaction and 

the left arm corresponds to "quenching" or sudden slowing of 

the reaction. There is an increase in temperature n* and a 

decrease in the reactant concentration variable c*  on the 

ignition boundary. For example, if 8 is kept fixed at 1 and 

q l  is varied, the reaction will start at q, = 3.59 and the 

temperature will jump from 1.88 to 2.27. Similarly for 8 = .5, 

the temperature suddenly increases from 1.93 to 2.26 at q1=3.68 

and suddenly decreases from 2.15 to 7.8 at q =3.55. Notice that 
1 

for large values of q the cusp is very narrow so that a small 1 ' 
change in 8 can cause the reaction to accelerate or to quench. 

Further uses of Figures 2-5 will be discussed in the next section. 

V. Discussion of Results and Extensions 

In addition to revealing interesting qualitative properties 

of the reaction mechanism, Figures 2 to 5 also have potential 

operational value. One may, for example, consider strategies 

for a chemical reactor in which both 0 and q, are varied 

simultaneously. Figures 2-5 (and the equations they depict) 

may then be used to come up with effective policies. A number 

of design and control questions may also be studied in terms 

of cusps similar to Figures 3 and 4. 

In considering the control of fires, for example, optimal 

strategies for quenching may be studied using similar catastro- 

phe analysis--with the more complex catastrophe types met as the 

number of control variables increases--in the oxygen partial 

- pressure--cooling rate space. Extending the analysis begun here 



and in [6] should shed light on ignition phenomena and ways 

of minimizing unwanted ignitions. And, since catastrophe theory 

concerns global stability, it may help in examining effects of 

large disturbances and in counteracting the effect of these dis- 

turbances through automatic controls. 

Catastrophe theory [7,9,10,11,12] also gives generic or can- 

onical forms for each catastrophe. For example, the canonical 

form for the cusp catastrophe is 

where x is the state variable and C1 and C2 are control para- 

meters. 

The main theorem of Thorn [7] states that equation (29) 

can be obtained from equations (7) - (8) by a diffeomorphism-- 

i.e., a one-to-one difTerentiable and inverse differentiable 

mapping from (TI* ,nl , B )  space to (x,C1 ,C2) space. This indicates 

that model simplifications are possible, though there is no 

well-defined way for constructing such diff eomorphisms . This 

is one of the unsolved problems in the application of 

Catastrophe theory to practical problems. A solution to this 

problem might contribute to the identification problem for non- 

linear systems in the same way that canonical models contribute 

to linear system identification [51 . 
Several further extensions of the work reported here are 

possible. One can consider more realistic situations having 

more general chemical reactions with more than two control 

variables and more than three equilibrium points. One would 

then observe other catastrophes, such as the "butterfly" 

catastrophe in four control variables. The existence of an 

infinite number of catastrophes for more than five control 

variables may have important implications for certain com- 

plicated chemical reaction situations. And the construction 

of the diffeomorphisms discussed above even for simple cases 

would be of interest. 



V I .  Conc lus ions  

Chemical k i n e t i c s  and r e a c t o r  dynamics a r e  a  v e r y  f r u i t -  

f u l  a r e a  f o r  t h e  a p p l i c a t i o n  o f  c a t a s t r o p h e  t h e o r y .  I t  h a s  

been demons t ra ted  t h a t  a  c u s p  c a t a s t r o p h e  e x i s t s  f o r  a  s imp le  

f i r s t - o r d e r  i r r e v e r s i b l e  r e a c t i o n  i n  t h e  r e s i d e n c e  t i m e - -  

t he rma l  i n p u t  ( c o o l a n t  t empe ra tu re  o r  f e e d  t empe ra tu re )  space .  

A n a l y t i c a l  f o rmu las  have been o b t a i n e d  f o r  t h e  i g n i t i o n  and 

quench ing  bounda r i es ,  which may p r o v i d e  a  b a s i s  f o r  under- 

s t a n d i n g  more complex i g n i t i o n  and quench ing  phenomena. 
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