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For s e v e r a l  y e a r s  t h e r e  has  been growing concern  among 
s c i e n t i s t s  t h a t  t h e  i n c r e a s i n g  r a t e  of burn ing  f o s s i l  f u e l s  
( c o a l ,  o i l  and g a s )  and t h e  a s s o c i a t e d  r e l e a s e  of  carbon d i o x i d e  
i n t o  t h e  a tmosphere  might  i n c r e a s e  t h e  t e m p e r a t u r e  of  t h e  e a r t h  
( t h e  s o - c a l l e d  "greenhouse  e f f e c t " )  and t h e r e b y  a f f e c t  t h e  c l i -  

mate.  E f f o r t s  have ,  t h e r e f o r e ,  been made by s e v e r a l  groups  t o  
a n a l y z e  t h e  b e h a v i o r  of  ca rbon  d i o x i d e  i n  t h e  a tmosphere ,  oceans  
and b i o s p h e r e  ( t h e  "carbon c y c l e "  of  t h e  e a r t h )  i n  t h e  p r e i n d u s -  
t r i a l  u n d i s t u r b e d  a s  w e l l  a s  i n  t h e  p r e s e n t  d i s t u r b e d  s t a t e ;  
and t o  f i n d  a  way i n  which t h e  i n c r e a s i n g  r e l e a s e  of  ca rbon  
d i o x i d e  i n t o  t h e  atmosphere can be avoided.  With r e s p e c t  t o  t h e  
l a t t e r  q u e s t i o n ,  members of t h e  IIASA s t u d y  p r o j e c t  on energy 
sys tems have made a  s p e c i f i c  p r o p o s a l ,  namely t o  bury  t h e  C 0 2  
from b u r n t  f o s s i l  f u e l s  d i r e c t l y  i n  t h e  deep  s e a ,  which rep-  
r e s e n t s  t h e  u l t i m a t e  s i n k  of a l l  carbon d i o x i d e .  

I n  t h i s  p a p e r ,  t h e  ca rbon  d i o x i d e  c y c l e  of  t h e  e a r t h  h a s  
been ana lyzed  from a  m a t e r i a l - a c c o u n t a b i l i t y  p o i n t  of view. 
For t h i s  purpose  a  four-box model f o r  t h e  c y c l e  i s  c o n s i d e r e d ,  
and e q u i l i b r i u m  a s  w e l l  a s  d i s t u r b e d  s t a t e s  a r e  e v a l u a t e d ;  i n  
p a r t i c u l a r ,  t h e  t i m e  c o n s t a n t s  of  t h e  d i s t u r b e d  s t a t e  a r e  
d i s c u s s e d .  The t h e o r e t i c a l  r e s u l t s  a r e  i l l u s t r a t e d  w i t h  t h e  
h e l p  o f  numer ica l  d a t a ,  and t h e  i d e a  of  deep-sea  b u r i a l  of 
ca rbon  d i o x i d e  i s  d i s c u s s e d  i n  t h e  l i g h t  o f  t h e s e  r e s u l t s .  





ABSTRACT 

In this paper an idealized model of the carbon cycle of the 
earth has been analyzed. The model consists of four boxes 
(atmosphere, biosphere, surface layer of the oceans, and deep 
sea) and the carbon cycle is described as a flow of the carbon 
through the four boxes. The mathematical analysis, using a 
discrete time formalism, is easily generalized to models with 
more boxes. 

The results of the analysis are applied to several practical 
problems. Consistency checks of data on inventories and tran- 
sition coefficients reported in the literature are made, and the 
influence of disturbances of the cycle (especially the addition 
of carbon dioxide to the atmosphere by burning fossil fuels) 
with respect to their sizes and time scales is discussed. 





1.  INTRODUCTION 

i. The carbon cycle of the earth has been a subject of major 

interest in recent years. There is considerable concern that 

the continuously increasing burning of fossil fuels and the 

related release of carbon dioxide into the atmosphere might have 

a major impact on the climate as well as on the ecological sys- 

tem of the oceans. It is argued that the increased carbon 

dioxide in the atmosphere might lead to an increase in the tem- 

perature on the earth (the so-called greenhouse effect; see, 

e.g., [21); and that, because of the carbon dioxide exchange 

between the atmosphere and the oceans, a critical situation might 

arise for calcareous organisms living in the sea and for the 

food chains of which they are a part ([3], [ 4 ] ) .  In any case, 

according to Sawyer [5] "there is little doubt that in assessing 

the future level of carbon dioxide in the atmosphere, it is 

important to understand fully the balance between the carbon 

dioxide in the atmosphere and the ocean". 

In this paper, the carbon cycle of the earth has been con- 

sidered from a material balance point of view. The work was 

stimulated by earlier work by Machta [6] and Zimen and Altenheim 

[3], [4], as well as by related methodological work in various 

fields [7]. The idea was to establish a careful material balance 

for the carbon flowing through the different media of interest, 

which in the following will be called "boxes". The mathematical 

formalism developed in this paper is based on a four-box model 

including the atmosphere, biosphere, upper layer of the sea above 

the thermocline ("mixed sea") and deep sea. However, it lends 

itself easily to the treatment of different models, such as the 

seven-box model as used by Machta [6]. 

The main results of the theory are relations of transition 

coefficients between boxes and inventories of boxes which have to 

be satisfied in the equilibrium state, as well as, relations 

.L 
I 

For a complete description see, e.g., [ I ] .  



describing the influence of external inputs (such as carbon 

dioxide released into the atmosphere as a result of the burning 

of.fossi1 fuels) and the way in which the system "digests" these 

inputs. 

The results are used for the analysis of carbon cycle data 

reported in the literature, for checking some measurement data, 

and finally, for giving an indication of the long term carbon 

dioxide content of the atmosphere. 

2. THEORETICAL CONSIDERATIONS 

The four-box model for the carbon cycle of the earth as 

presented by Sawyer [ 5 ]  and Zimen and Altenheim [ 4 ]  may be 

described as follows (see Figure 1 ) .  Given are the four boxes 

atmosphere (a), biosphere (b), upper mixed layer of the sea (m) 

and deep sea (dl. At time ti these boxes contain the C02 inven- 
a b m  d tories Ii, Ii, Ii and Ii (measured in mol). In the time interval 

(tit ti+l ) 
parts of the inventories are exchanged; the transition 

from box x to box y is determined by the exchange coefficient 

kxy (measured in reciprocal years) . In addition, during time 

(ti, ti+l) we have the C02 input ni,i+l into the atmosphere that 

results from the burning of fossil fuels. Therefore, according 

to Figure 1 ,  we have the following relations for the C02 inventories 

in the different boxes at time ti+l: 

In the following we will consider one-year time intervals. This 

assumption will be discussed in Section 2.3. 
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Figure 1.  Natural reservoirs of carbon dioxide (based 

on [ 8 1 ) .  is the content of reservoir x, 

kXY describes the transition from reservoir 

x to reservoir y. 

This model may be characterized by an endomorphism (linear 
4 selfmapping) of the four-dimensional real space IR . The vectors 

4 in IR are the states of the system, i.e., the C 0 2  inventories 

of the different boxes. Let 

be the mapping describing the system, and Ii be the state of the 

system at time i. Then v(Ii) is the state of the system at time 

ti+l. The mapping v can be described by a matrix A with respect 

to the canonical basis. Therefore, the transition from the 

state Ii to the state Ii+, reduces to a matrix multiplication 



where Nil i+l - - (ni,i+~ 0, 0, O), and where the matrix A is 

according to eqs. (1) given by 

2.1 The Equilibrium State 

In this section we analyze the pre-industrial state of the 

CO inventories of the four boxes i.e. the state with ni,i+l 2 
= 0 

for all i = 1,2, ... when the carbon cycle was still in equilibrium. 

An equilibrium state f lR4 is defined by 

This means that the equilibrium state is given by the set of 

eigenvectors of matrix A with eigenvalue 1. We will show that 

matrix A has eigenvalue 1 .  First we will discuss the material 

conservation property of our model: 

Theorem 1 (material conservation). Let 8 :  lR4 + I R  be the 

linear mapping that maps each element from lR4 into the sum of 
-I- f. 4 

of its coefficients- If I f IR is a state of the system (1 , 

-?- 
The vector X is defined as a row vector. Therefore'the 

transposed vector xt is a column vector. 

.t. .t 
This linear mapping is described by.a multiplication of 

I f lRn with the row matrix (1,1,. . . ,I ) , i.e., 



t and if I' = A 0 I , then E(I) = C(I1) holds. 

Proof. Let A(*,i) be the i-th column vector of A, and let 

e 4 
,,...,e4 be the unit vectors of IR . Then I = (I1, ..., 14) may 

be represented as a linear combination of the unit vectors: 

Then we have 

and furthermore 

because we have 

It can now be shown [9] that any non-negative square matrix, 

whose column vector sums are 1, has the eigenvalue 1 with an 

associated positive eigenvector. In other words, any system of 

form ( 1 )  that has the property of material conservation has eigen- 

states with eigenvalue 1. However, we will prove the following 

theorem. 

Theorem 2. The matrix A has the eigenvector 

with the eigenvalue 1.  



Proof. One sees immediately that ? satisfies ( 5 ) ,  which is 

equivalent to the following system of equations: 

Corollary 1. The eigenvectors of A with eigenvalue 1 

determine a subspace of I R ~  with the dimension 1 .  

Proof. The proof follows immediately by solving the system (7) . 

To summarize the results obtained so far, the stable states 

of the system (1) are the eigenvectors of A with eigenvalue 1 ;  

because of Corollary 1, we obtain all stable states by multiplying 

(6) with a scalar factor. 

So far we have considered only the transition from state Ii 

to the state Ii+l. We now consider the transition from state Ii 

to state Ii+,, n > 1. One sees immediately that the state Ii+, 

is obtained from the state Ii by an n-fold multiplication with 

the matrix A, i.e. 

Ii+n = A" o I~ = A 0 A.... 0 A 0 I ~ ;  AO = E . (8) 

We can omit brackets because matrix multiplication is asso- 

ciative. The properties of are described by the following 

theorem. 

Theorem 3. 

n 
1. The matrix A fulfills the material conservation condi- 

tion, i.e., from 



it follows that 

where Z is defined as in Theorem 1. 

- 
2. If is an eigenvector of A with eigenvalue 1, then I 

is also an eigenvector of An with eigenvalue 1 .  

Proof (by complete induction). 

1.  We have A' = E, and E fulfills the material conservation 

condition. Assume 

Then we have 

and therefore 

' (In+l ) = C (In) = C (I) . 

2. Let I be an eigenvector of A with eigenvalue 1. We have 
N - - 

E 0 I = I; therefore 1 is an eigenvector of A@ with eigenvalue 1. 

Let ? be the eigenvector of An with eigenvalue 1. Then we have 

for A n+ 1 

- 
Therefore, I is an eigenvector of A with eigenvalue 1. 



Theorem 1 implies that the system which is in an equilib- 

rium state remains in this equilibrium state. We now ask how 
4 

a state I C IR that is not an equilibrium state will develop. 

We expect that it will evolve into an equilibrium state. In 

other words we ask how A" behaves if n goes to infinity. 

Definition 1.  A sequence of n x n matrices A = (a;:)), 
P 

p = 1.2 ,  ..., converges towards a limiting matrix A = (aik): 

lim A = A 
C ) - t w p  

if we have for each element a ik' i = l,...,n, k = 1, ..., n 

(PI = , lim aik 
P - t m  

ik 

in the usual sense. 

With this definition we now establish the following theorem. 

n Theorem 4. The sequence (A ) E N  converges. Let 

and let X be the eigenvector of A with eigenvalue 1 and C(X) = 1. 

Then we have 

* t t t t  
A = (X ,X ,X ,X ) 

Proof. The proof needs the following definition. 

Definition. A matrix A is called irreducible if there exists 

no matrix of the form 



where B is a square sub-matrix obtained from A by permuting 

rows and columns. 

Moreover, it needs the following theorem (see [ 101 , p. 122) . 
Theorem. Let A be a non-negative irreducible square 

matrix with exactly t eigenvalues with amount h l ;  let 

X be an eigenvector of A with eigenvalue hl;  let Y be an 

eigenvector of A~ with eigenvalue h l ,  and let 

Then we have 

It can be seen immediately that A is irreducible. In addition, 

because of the material conservation property, we have 

Y = (lll,...ll) 

which means that Y = 1 , .  . . 1 ) is an eigenvector of A~ with 

eigenvalue 1. Therefore, we have Y xt = 1, and with the help 

of the theorem we get 

* t t t t  
A = xt Y = (X ,X ,X ,X ) . 

It should be noted that converges uniformly and geomet- 

rically. Some properties of A* are given by the following theorem. 

* 
Theorem - 5. Let A, A , X be defined as above, and I C I R ~  be 

an arbitrary state of the system. Then we have 



* 
1.  A 0 I = (C(1))-X , 

* 
2. A has the material conservation property, 

* 
3. A o I is an eigenvector of A with eigenvalue 1, 

N 

5. If I is an eigenvector of A with eigenvalue 1, then * 
is also an eigenvector of A with eigenvalue 1 .  

Proof. 

* 
2. AS C (X) = 1, we have C (A 01) = C (C (I) *XI = C (I) -1 (XI = 1 (XI, 

3. X is an eigenvector of A with eigenvalue 1, and there- 

fore also the vector (C(I)).X, 

* t t t t t t t  * 
4. A D A  = ( A O X ~ ~ A O X  #AOX .AoX ) = (X ,X ,X ,X ) = A . * 

Let A OA = (b ) ,  i = row index, j = column index. Then, i j 
because C(A(*,i)) * 1, we have 

* * 
therefore A A = A , 

'Y 
5. Let I be an eigenvector of A with eigenvalue 1. It 

* 
follows from (3) that 7 = A o ? is also an eigenvector of A 

with eigenvalue 1.  The space of eigenvectors of A has the - 
dimension 1; therefore we have 7 = c I with c 4 0.  Let - 
c + 1 ; then C (i)  = c-C (I) would be contradiction to the material * 
conservation property of A . 

The theorem implies that, if the system is in a stable state - 
I and no changes are imposed from outside, it remains in the 

stable state also in the asymptotic state. If a change is 

imposed (e.g., by external inputs, or by changes of the elements 

kxy of matrix A), then the system will return asymptotically to 

the stable state. The speed of convergence to the stable state 

can be checked only numerically. 



2.2 Unstable States 

So far we have considered only material conserving states. 

In the following we consider situations where in the time interval 

(ti' ti+l) the amount ni+l (k) of material is put into the k-th box; 

i.e., we consider the input vector 

Let us assume that at time to the state of the system is given by 
4 

I I . Then the development of the system under the influence 

of inputs from outside is described by the following theorem. 

Theorem 6. Let I, be a stable state of the system at time 

to, and let (N i+ l ) i ~ IN  be a sequence of input vectors. Then state 

I a  of the system at time 2 is given by the following relation: 

Proof (by complete induction). 

We conjecture that if (Ni+l ) ic is a sequence of input 

vectors with 

the final state of the system is also an eigenvector of A with 

2.3 Uncertainty Considerations 

We have so far assumed that all quantities under considera- 

tion are known precisely. In this section we will analyze 

several problems in connection with uncertainties about the sys- 

tem. Here we assume that the transition coefficients kXY are 



known exactly (at least relative to the inventories of the 

several boxes). 

First, we draw some general conclusions from the results of 

the foregoing sections. If we know that the system is in the 

equilibrium state, according to Theorem 5 we know the relative 

inventories precisely. In other words, if we have certain knowl- 

edge about the relative inventories in the equilibrium state, 

then our knowledge does not deteriorate. The same holds if the 

equilibrium state is disturbed by an input from outside of known 

total size; again we know, some time after the end of the dis- 

turbance, the relative inventories (which in fact are the same 

as before the disturbance occurred). 

As a second source of uncertainties we will discuss the 

fact that the model is in reality better described by a system 

of linear differential equations. We used an approximation that 

is the better the smaller the time steps are. In our case, 

the transition coefficients kXY measured in reciprocal years are 

very small, so the chosen time steps of one year seem to be 

justified. Nevertheless it might be preferable to solve the 

differential equation that corresponds to (3) as follows: 

d 
- I(t) = A '  o I(t) + N(t) ; A' = A-E . dt (11) 

The solution of the homogeneous system (11), 1.e. for N(t) = 0, 

is given ([Ill, p. 163 ff.) by: 

where EXP is defined by 



If we compare (12) with ( 3 ) ,  we see that for t = 1 a 

development of (12) up to the first order gives exactly the 

expression (3) for N(t) = 0. Moreover, it can easily be seen 

that the equilibrium states of (3) are equilibrium states of (12), 

and that (13) has the material conservation property. There is 

still the question of the asymptotic state of (12) for any initial 

state 101 given by 

A solution of this problem for discrete points of time is given 

by the following theorem. 

* 
Theorem 7. Let A, A and A' be as defined by ( 4 )  , (9a) and 

(11) respectively. Let Ae: = EXP(A1). Then Ae has the material 

conservation property and 

Proof. The proof follows immediately from the fact that any 

positive material conserving matrix has a positive eigenvector 

with the eigenvalue 1 and converges uniformly to a matrix with 

equal columns, every column being the positive eigenvector nor- 

malized to 1. I 

We have shown that both the discrete and the differential 

equation system converge to the same equilibrium state. There 

remains the question how far the solutions of the two systems 

deviate. A simple numerical model (Table 1) indicates that the 

deviations become smaller the smaller the time intervals are. 



Table 1.  Comparison of exact and approximate 
solutions in a simple case. 

Differential equation: 

d 
- I (t) = - A-I (t) dt I(t) = Io0exp (-At) 

Difference equation: 

Example: A = 2, I. = 1 

The solution of the inhomogeneous system of differential 

equations (1 1 ) is given by 

t 

exp (-At) 

(I-AAt) 

for At=0.5 

(I-at) 

for At=1 

I (t) = EXP (A' (t-t ) ) I + / I EXP (A' (t-S) ) 0 N(S) ds . (15) 
0 0 

This solution, being too awkward for computation, can be replaced 

by solving the system of simultaneous ordinary differential 

equations (11) with the Runge Kutta method. In ~ i g u r e  2 we have 

plotted the solution, which is closer to the measured curve than 

the solution obtained with the help of equation (10). 

0 

1 

1 

1 

I 
1 

.819 

.810 

.800 

30 

.002 

.002 

.001 

4 0 

.OOO 

.OOO 

.OOO 

3 

.549 

.531 

.512 

5 

.368 

.349 

.328 

10 

.I35 

.I22 

.I07 

15 

.050 

.042 

.035 

20 

.018 

.015 

.012 



Figure 2. Comparison of measured and theoretical 
data for the C02 content of the atmosphere. 

(1 ) Experimental data after Keeling [ 121 

(2) Theoretical data using formula (1 0) 

(3) Theoretical data using the Runge-Kutta 
procedure for solving the system of 
differential equations (11 ) 

( 4 )  C02 from burnt fossil fuels kept in the 

atmosphere. 

To summarize the discussion on the validity of the time 

discrete model we may state the following. The equilibrium state 

of the undisturbed system is the same for the discrete and for 

the continuous model. The speed with which the systems approach 

the equilibrium state, as well as the deviations, in general 

depend on the length of the time intervals relative to the mag- 

nitude of the exchange coefficients; in our special case, one- 

year time intervals seem to be justified. Our analysis was based 

primarily on the discrete model, because the analysis of this 

model appeared more illuminating, and because the problem of 

measurement errors could be handled much more easily in the 

discrete than in the continuous case. 



3. NUMERICAL CALCULATIONS AND APPLICATIONS 

As a first application of the theoretical results obtained, 

we will consider some carbon dioxide data reported in the lit- 

erature and check their consistency in the sense that they ful- 

fill condition (6). 

Table 2a lists the transition coefficients and the inven- 

tories as given by Sawyer [5]. As can easily be seen these data 

are only partly consistent in the sense of formula (6); there- 

fore, a consistent set of transition coefficients is also given 

in Table 2a. However, it should be noted that this set cannot 

be determined uniquely. We have changed the coefficients such 

that as few data as possible had to be changed, and that the 

inventory of the deep sea, the value of which is consistent with 

data reported in [ 41 and [6] , remained unchanged. 

Figure 3 shows the seven-box model developed by Machta. [6] 

which takes into account the following reservoirs: 

Stratosphere ( 1 ) Mixed Layer Oceans (5) 

Troposphere ( 2) Marine (6) 

Long Term Biosphere (3) Deep Layer Oceans (7) 

Short Term Biosphere (4) 

Without writing down the system of equations that corresponds to 

system (1) and that can be derived immediately from Figure 3, we 

give here only the equivalent to formula (6), i.e., the relative 

sizes of the inventories in the equilibrium state: 

In Table 2b, the data of [6] are represented together with 
those data which would be consistent with formula (6'). One 

realizes the large differences with respect to the transition 

coefficient kdm, or k75 , between Sawyer's and Machta' s data 

respectively, which will be important for later considerations. 



u-l 
I- 

X 

I- 
u-l 

X 

u-l 
U) 

X 

U) 
Ln 

.Y 

N 
Ln 

X 

V) 
(Y 

x 

ri 
d 
X 

w 
ri 

X 

N 
m 

X 

m 
N 
x 

4 
Y 
. Y 

N 
4 

X 

I- 
u 

U) 
U 

m 
U 

I 

_u 1 
C1 

U 

N 



STRATOSPHERE I 
TROPOSPHERE 77 

MIXED LAVER MARINE SHORT TERM LONG T E W  
OCEANS 

I' 
BIO!jPtiERE BIOSRERE 

1' I' I' 

k5' 1 f kn 

OEEP LAVER 
OCEANS 

Figure 3. Natural reservoirs of carbon dioxide (based on [ 6 ] ) .  

is the content of reservoir x, kXY describes the 
transition from reservoir x to reservoir y. 

As a second application, we analyze how fast the system will 

return to the equilibrium state after a disturbance in the sense 

of an input from outside has occurred. According to Theorem 5 * 
the application of A to any state I gives an eigenstate, i.e., 

an equilibrium state. As in addition, according to Theorem 4, * 
matrix A is the limiting matrix of A", we have to analyze * 
how fast matrix approaches matrix A . 

In Table 3a, the consistent data for the four-box model after 

Sawyer, as represented in Table 2a, are used in order to tabulate 

the matrix An for increasing values of n. In Table 3b, the con- 

sistent data for the four-box model after Machta are used--the 
dm main difference compared to Sawyer's data being the value of k . * 

One concludes that An approaches A roughly after l/kxY steps 

(in our model, years) , where kXY is the smallest transition 

coefficient of the system. Generally in our model the speed of 



* 
Table 3a. Convergence of the matrix A" towards A (defined by 

eq. (gal) for the four-box model, based on Sawyer's 
data [ 5 1 .  

* 
Table 3b. Convergence of the matrix An towards A for the four- 

box model, based on Machta's data [ 6 ] .  



convergence to the equilibrium state is determined by the tran- 

sition from the deep sea to the mixed layer of the sea. For 

Sawyer's data this means less than 300 years, for Machta's data 

less than 1600 years. As the consistency relations (6) or (6') 
dn are not sufficient to determine k uniquely unless all other 

inventories and transition coefficients are known precisely, it 

would be extremely interesting, in view of the problems mentioned 

in the introduction, to have more and better data. 

As a third application, we compare the data of the C02 

content o£ the atmosphere in the years 1958 to 1970, measured by 

Keeling at Mauna Loa [12], with the theoretical values obtained 

from formula (10) on the basis of Sawyer's and Machta's data. 

To be able to do this we take for the C02 content of the atno- 

sphere after Fairhall [13] 

4 
'7958 = 312 ppm (vol) , 

and for the annual input na of C02 into the atmosphere as a 

result of the burning of fossil fuels (after Baxter [14]) 

The results of these calculations are represented in Fig. 2. 

This figure also represents the C02 content of the atmosphere 

that would result if all C02 from the burnt fossil fuels remained 

in the atmosphere (curve (3)). One sees that the material 

balance model (curve (2)) describes the measured data (curve (1)) 

much more accurately. It should be noted that curve (2) is 

obtained (within drawing accuracy) for both Sawyer's and ~achta's 

data. 

? a  n [ppm (vol)] = 5.64 * 10 * na[mol] . 



As a last application, we ask what--according to our model 

--the asymptotic value of the carbon dioxide content of the 

atmosphere would be if all known fossil fuels were burnt. 

According to Zimen [I51 this would correspond to a final cumulated 

input of N = 600 * l o J 5  nol. If we start with 1: = 51.4 * 10 15 

[moll at pre-industrial time, i.e., before 1860 (see, e.g., [12], 

then we obtain with Sawyer's data 

This gives a total inventory I. of 

To answer our question, we have to add to this inventory the CO 
2 

from the burnt fossil fuels and to distribute the total inventory 

according to eq. (6) . The result is 

This means that in the asymptotic state, 567 * 1 015 [moll of 

the 600 * 1015 [moll go into the deep sea, and furthermore that 

the atmospheric content rises from 312 ppm (vol) as given today 

to 345 ppm (vol) in the asymptotic state. 

These results, together with those for the speed of conver- 

gence, are especially interesting in view of recent proposals, 

namely the direct burial of the C02 from burnt fossil fuels in 

the deep sea (see, e.g., [ 1 6 1 ) .  If such a scheme were feasible, 

then the figures given above indicate what fraction of the 

buried C02 will again go into the atmosphere and at what speed. 

Inversely, if all the C02 from burnt fossil fuels is released 



to the atmosphere, one gets an idea how long the C02 will stay 

in the atmosphere before it goes into the deep sea. 

The latter argument indicates how important it is to have 

a precise knowledge about the exchange coefficients kXY, 

especially about the coefficient kdm. According to Sawyer we 

must live for about 2 0 0  years with an atmospheric C02 content 

that is higher than under equilibrium conditions, whereas Machta 

puts it at 1 5 0 0  years. 

The question whether or not a final equilibrium concentration 

of 345  ppm (vol) of the atmosphere would be tolerable goes beyond 

the scope of this paper. 

4. CONCLUDING REMARKS 

We have presented a mathematical analysis of an idealized 

model of the carbon cycle of the earth. The analysis suggests 

certain conclusions about the carbon cycle data in the literature 

and permits certain statements about the way in which disturbances 

may influence this cycle. 

Approximations and uncertainties have also been considered; 

however, the area of handling the errors involved in the mea- 

surements and estimates of transition coefficients and inventories 

has been neglected. In fact, the authors are developing a 

statistical treatment of these problems along the lines of [ 7 1 ;  

the main reason for not including it here is the lack of realistic 

information about measurement and estimation uncertainties. Any 

relevant information would be highly welcomed by the authors of 

this report. 

It is clear that an analysis of more subtle effects, e.g., 

the seasonal variations of the carbon dioxide content of the atmo- 

sphere, as well as the difference between the northern and the 

southern hemispheres, calls for more detailed models (with respect 

to both the number of boxes and the time steps). This refine- 

ment is mandatory if on the basis of such nodels one tries to 



analyze questions such as that of imposing limits for carbon 

dioxide releases into the atmosphere, where geographical and 

seasonal differences clearly must be taken into account. 

Work in this direction has been started, and it is the 

purpose of this report to give an idea of the power and flexi- 

bility of the material balance approach. 
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