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PREFACE

For several years there has been growing concern among
scientists that the increasing rate of burning fossil fuels
(coal, o0il and gas) and the associated release of carbon dioxide
into the atmosphere might increase the temperature of the earth
(the so-called "greenhouse effect"”) and thereby affect the cli-
mate. Efforts have, therefore, been made by several groups to
analyze the behavior of carbon dioxide in the atmosphere, oceans
and biosphere (the "carbon cycle" of the earth) in the preindus-
trial undisturbed as well as in the present disturbed state;
and to find a way in which the increasing release of carbon
dioxide into the atmosphere can be avoided. With respect to the
latter question, members of the IIASA study project on energy
systems have made a specific proposal, namely to bury the CO
from burnt fossil fuels directly in the deep sea, which rep-
resents the ultimate sink of all carbon dioxide.

In this paper, the carbon dioxide cycle of the earth has
been analyzed from a material-accountability point of view.
For this purpose a four-box model for the cycle is considered,
and equilibrium as well as disturbed states are evaluated; in
particular, the time constants of the disturbed state are
discussed. The theoretical results are illustrated with the
help of numerical data, and the idea of deep-sea burial of
carbon dioxide is discussed in the light of these results.
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ABSTRACT

In this paper an idealized model of the carbon cycle of the
earth has been analyzed. The model consists of four boxes
(atmosphere, biosphere, surface layer of the oceans, and deep
sea) and the carbon cycle is described as a flow of the carbon
through the four boxes. The mathematical analysis, using a
discrete time formalism, is easily generalized to models with

more boxes.

The results of the analysis are applied to several practical
problems. Consistency checks of data on inventories and tran-
sition coefficients reported in the literature are made, and the
influence of disturbances of the cycle (especially the addition
of carbon dioxide to the atmosphere by burning fossil fuels)
with respect to their sizes and time scales is discussed.
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1. INTRODUCTION

The carbon cycle of the earthi-has been a subject of major
interest in recent years. There is considerable concern that
the continuously increasing burning of fossil fuels and the
related release of carbon dioxide into the atmosphere might have
a major impact on the climate as well as on the ecological sys-
tem of the oceans. It is argued that the increased carbon
dioxide in the atmosphere might lead to an increase in the tem-
perature on the earth (the so-called greenhouse effect; see,
e.g., [2]); and that, because of the carbon dioxide exchange
between the atmosphere and the oceans, a critical situation might
arise for calcareous organisms living in the sea and for the
food chains of which they are a part ([3], [4]). In any case,
according to Sawyer [5] "there is little doubt that in assessing
the future level of carbon dioxide in the atmosphere, it is
important to understand fully the balance between the carbon

dioxide in the atmosphere and the ocean".

In this paper, the carbon cycle of the earth has been con-
sidered from a material balance point of view. The work was
stimulated by earlier work by Machta [6] and Zimen and Altenheim
[3], [4])], as well as by related methodological work in wvarious
fields [7]. The idea was to establish a careful material balance
for the carbon flowing through the different media of interest,
which in the following will be called "boxes". The mathematical
formalism developed in this paper is based on a four-box model
including the atmosphere, biosphere, upper layer of the sea above
the thermocline ("mixed sea") and deep sea. However, it lends
itself easily to the treatment of different models, such as the

seven-box model as used by Machta [6].

The main results of the theory are relations of transition
coefficients between boxes and inventories of boxes which have to

be satisfied in the equilibrium state, as well as, relations

£
§
For a complete description see, e.g., [1].




describing the influence of external inputs (such as carbon
dioxide released into the atmosphere as a result of the burning
of fossil fuels) and the way in which the system "digests" these

inputs.

The results are used for the analysis of carbon cycle data
reported in the literature, for checking some measurement data,
and finally, for giving an indication of the long term carbon

dioxide content of the atmosphere.

2. THEORETICAL CONSIDERATIONS

The four-box model for the carbon cycle of the earth as
presented by Sawyer [5] and Zimen and Altenheim [4] may be
described as follows {(see Figure 1). Given are the four boxes
atmosphere (a), biosphere (b), upper mixed layer of the sea (m)
and deep sea (d). At time ti these boxes contain the CO2 inven-

b m

tories I?, 17, Ii and I? (measured in mol). 1In the time interval

i
(ti, ti+1) parts of the inventories are exchanged; the transition
from box x to box y is determined by the exchange coefficient
k*Y (measured in reciprocal years). In addition, during time
(ti’ ti+1) we have the CO2 L i41

results from the burning of fossil fuels. Therefore, according

input n, into the atmosphere that

to Figure 1, we have the following relations for the CO2 inventories

in the different boxes at time ti+1:

12 = 12 - k3.3 _ yam ga  yba b yma m .
i+1 i i i i i i i, i+1

P = 1P 4 x3b.;a _ yba ;b

i+1 i 1 i

M = ™y a2, dm 4 yma m_ymd o 1)
i+1 i i i i

19 =19 4 k™ o pdmd
i+1 i i i

In the following we will consider one~year time intervals. This

assumption will be discussed in Section 2.3.



ATMOSPHERE
I u
OCEAN LAND
kam kmo kbO kﬂb
UPPER MIXED VEGETATION
LAYER OF THE AND %UMUS
SEA IM 1
DEEP SEA
1d
Figure 1. Natural reservoirs of carbon dioxide (based

on [8]). 1¥ is the content of reservoir X,

X . ey .
k y describes the transition from reservoir

X to reservoir vy.

This model may be characterized by an endomorphism (linear

selfmapping) of the four-dimensional real space IRu. The vectors

in IRu
of the

be the

system

tiv1e
to the

are the states of the system, i.e., the CO2 inventories

different boxes. Let
@ IR" > IR (2)

mapping describing the system, and Ii be the state of the
at time i. Then ¢(Ii) is the state of the system at time
The mapping ¢ can be described by a matrix A with respect

canonical basis. Therefore, the transition from the

state Ii to the state Ii+1 reduces to a matrix multiplication



t _ t .t T
Tigp = A 0I5 Ji,i+1 (3)
where Ni,i+1 = (ni,i+1’ 0, 0, 0), and where the matrix A is
according to egs. (1) given by
1_kab_kam kba cna 0
k2P 1-xP2 0 0
A = .
| am 0 1_kma_kmd kdm (4)
0 0 P P

2.1 The Equilibrium State

In this section we analyze the pre-industrial state of the

CO2 inventories of the four boxes i.e. the state with n;, 549 = 0
14
for all i = 1,2,... when the carbon cycle was still in equilibrium.
An equilibrium state TE:IRu is defined by
Tt =a o ¥t . (5)

This means that the equilibrium state is given by the set of
eigenvectors of matrix A with eigenvalue 1. We will show that
matrix A has eigenvalue 1. First we will discuss the material

conservation property of our model:

Theorem 1 (material conservation). Let Z:IRu - |R be the
linear mapping that maps each element fromIRu into the sum of
B

. . Pt 4
of its coefficients-. If T€ IR is a state of the system (1),

I3
The vector X is defined as a row vector. Therefore the

t .
transposed vector X~  1s a column vector.

This linear mapping is described by.a multiplication of

I C!Rn with the row matrix (1,1,...,1), i.e.,

n
2(1) = (1,1,...,1) « 1% = 7 1. .
2y 73

J



and if I' = A o It, then £(I) = I(I') holds.
Proof. Let A(*,i) be the i-th column vector of A, and let
€rree-r€y be the unit vectors of lRu. Then I = (I1,...,Iu) may

be represented as a linear combination of the unit vectors:

4 4 , 4
't =ao1t=ao EI.'eF= J I.¢A 0 et = J I.:A(*,5) ,
j=1 J 3 3=1 J J 3=1 J
and furthermore
4 N b ¢ 4
T(I') = ) I.-A(*,3) = ) I.z(A(*,3)") = ) I. = x(I) ,
j=1 J j=1 J 3=1 J
because we have
s(A(*,3)) =1 . ]

It can now be shown [9] that any non-negative square matrix,
whose column vector sums are 1, has the eigenvalue 1 with an
associated positive eigenvector. In other words, any system of
form (1) that has the property of material conservation has eigen-
states with eigenvalue 1. However, we will prove the following
theoren.

Theorem 2. The matrix A has the eigenvector

f = (1, kab/kba, kam/kma' kam/kma . kmd/kdm) (6)

with the eigenvalue 1.




Proof. One sees immediately that T satisfies (5), which is

equivalent to the following system of equations:

-k - k3™ - oxy o+ KPRex) 4 K x =0
k3P . X, - KP%.x =0
Kam X, + (-kma—kmd)~x3 N kdm'Xu _, (7)
Kex, - x3™xt =0 .
Corollary 1. The eigenvectors of A with eigenvalue 1

determine a subspace oflRu with the dimension 1.

Proof. The proof follows immediately by solving the system (7).%

To summarize the results obtained so far, the stable states
of the system (1) are the eigenvectors of A with eigenvalue 1;
because of Corollary 1, we obtain all stable states by multiplying
(6) with a scalar factor.

So far we have considered only the transition from state Ii
to the state Ii+1’

to state Ii+n’ n > 1, One sees immediately that the state Ii+n

is obtained from the state Ii by an n-fold multiplication with

We now consider the transition from state Ii

the matrix A, i.e.

=A" 0o I, =AO0A.... 0AO0T.; A°- =E . (8)

We can omit brackets because matrix multiplication is asso-
ciative. The properties of A" are described by the following

theorem.

Theorem 3.

1. The matrix An fulfills the material conservation condi-

tion, i.e., from



where Z is defined as in Theorem 1.

2. If T is an eigenvector of A with eigenvalue 1, then 1

is also an eigenvector of A" with eigenvalue 1.

Proof (by complete induction) .

1. We have AO = E, and E fulfills the material conservation

condition. Assume

4 n
ICIR, 1§1= Ao T, Z(In) = I (I) .
Then we have
I =A™l 1A 01
n+‘I n ’

and therefore

Z(In+1 - n

2. Let I be an eigenvector of A with eigenvalue 1. We have

~

E o I = I; therefore I is an eigenvector of A® with eigenvalue 1.
Let T be the eigenvector of A" with eigenvalue 1. Then we have
for An+‘I

A o T=ao0a" 0 T=20T=T .

1

~

Therefore, I is an eigenvector of An+ with eigenvalue 1. L




Theorem 1 implies that the system which is in an equilib-
rium state remains in this equilibrium state. We now ask how
a state I ClRu that is not an equilibrium state will develop.
We‘expect that it will evolve into an equilibrium state. 1In

other words we ask how A" behaves if n goes to infinity.

Definition 1. A sequence of n X n matrices Ap = (aii)),
p=1,2,..., converges towards a limiting matrix A = (aik):
lim A = A
P » o
if we have for each element aik' i=1,...,n, k=1,...,n
. (p) _
Lim a;’ = %4y
P>
in the usual sense. »

With this definition we now establish the following theorem.

Theorem 4. The sequence (An)n€N converges. Let

A = lim A" (9a)
n > <
and let X be the eigenvector of A with eigenvalue 1 and Z(X) = 1.

Then we have

) |
A = (xt,xt xt,xhH . (9b)

Proof. The proof needs the following definition.

Definition. A matrix A is called irreducible if there exists

no matrix of the form

o)



where B is a square sub-matrix obtained from A by permuting
rows and columns.

Moreover, it needs the following theorem (see [10], p. 122).
Theorem. Let A be a non-negative irreducible square

17 let

let Y be an

matrix with exactly t eigenvalues with amount X

X be an eigenvector of A with eigenvalue A1;

eigenvector of At with eigenvalue X1, and let
n
y-xt = Y OX.eY., =1 .
. i
i=1
Then we have
lim (L oAy Ly Al
t A D xn+t—1
n-> « 1 1
It can be seen immediately that A is irreducible. In addition,

because of the material conservation property, we have
Y = (1,1,...,1)

At o vt = (yea)t = vt
which means that Y = (1,...,1) is an eigenvector of At with
eigenvalue 1. Therefore, we have Y - Xt = 1, and with the help
of the theorem we get
*
At = xt ooy = (x5, xE,xt, x5 .

It should be noted that A" converges uniformly and geomet-

rically. Some properties of A* are given by the following theorem.

*
Theorem 5. Let A, A, X be defined as above, and I CIRLl be

an arbitrary state of the system. Then we have
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1. A oI = ((I))xXx ,
*
2. A has the material conservation property,
*
3. A o I is an eigenvector of A with eigenvalue 1,
*

* * *
4, A o A = A , A o A=A R

5. If I is an eigenvector of A with eigenvalue 1, then T

* .
is also an eigenvector of A with eigenvalue 1.

Proof.
* 4 4 * 4
1. A ¢ I =A-+ ) I.ce.= ) I.Aoe, = ) I.*X= (Z(I))*X ,
3=1 J ] 3=1 J J 3=1 J
* .
2. As Z(X) =1, we have (A 0I) = Z(Z(I)+*X) = Z(I)-Z(X) = Z(X),
3. X is an eigenvector of A with eigenvalue 1, and there-
fore also the vector (I (I))-X,
* *
4. AoA = (ont,AoXt,ont,ont) = (xt,xt,xt,xt) = A .
Let A*OA = (bij), i = row index, j = column index. Then,
because r(A(*,7)) = 1, we have
= e o * j = . * 1 = . .
bij (xi, ,xi)OA( ;3) X L(A(*,3) X, i
* *
therefore A » A = A ’

5. Let I be an eigenvector of A with eigenvalue 1. It

— % —~
follows from (3) that I = A o I is also an eigenvector of A

with eigenvalue 1. The space of eigenvectors of A has the
dimension 1; therefore we have I = ¢ - T with ¢ £ 0. Let

c # 1; then I(I) = c-Z(f) would be contradiction to the material
conservation property of A*. ]

The theorem implies that, if the system is in a stable state
T and no changes are imposed from outside, it remains in the
stable state also in the asymptotic state. If a change is
imposed (e.g., by external inputs, or by changes of the elements
k*Y of matrix A), then the system will return asymptotically to
the stable state. The speed of convergence to the stable state

can be checked only numerically.
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2.2 Unstable States

So far we have considered only material conserving states.

In the following we consider situations where in the time interval

(k)
i+1
i.e., we consider the input vector

(ti, ti+1) the amount n of material is put into the k-th box;

(1) (2)y . (3) (4)

(nygqe Dyiqr DyL7r Dy

Nj4q
Let us assume that at time t, the state of the system is given by

I, €ZIR4. Then the development of the system under the influence

of inputs from outside is described by the following theorem.

Theorem 6. Let I, be a stable state of the system at time
ty, and let (Ni+1)i€]N be a sequence of input vectors. Then state

I2 of the system at time & is given by the following relation:
) .
-1
Ip=15 % .Z A o Nijg1 o (10)
i=1
Proof (by complete induction) . 2
We conjecture that if (Ni_H)iC|N 1s a sequence of input

vectors with

the final state I° of the system is also an eigenvector of A with
= - 0
I =x+* X, x=N+ (1) .

2.3 Uncertainty Considerations

We have so far assumed that all quantities under considera-
tion are known precisely. In this section we will analyze

several problems in connection with uncertainties about the sys-
tem. Here we assume that the transition coefficients k*Y are
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known exactly (at least relative to the inventories of the

several boxes).

First, we draw some general conclusions from the results of
the foregoing sections. If we know that the system is in the
equilibrium state, according to Theorem 5 we know the relative
inventories precisely. In other words, if we have certain knowl-
edge about the relative inventories in the equilibrium state,
then our knowledge does not deteriorate. The same holds if the
equilibrium state is disturbed by an input from outside of known
total size; again we know, some time after the end of the dis-
turbance, the relative inventories (which in fact are the same

as before the disturbance occurred).

As a second source of uncertainties we will discuss the
fact that the model is in reality better described by a system
of linear differential equations. We used an approximation that
is the better the smaller the time steps are. In our case,
the transition coefficients k*Y measured in reciprocal years are
very small, so the chosen time steps of one year seem to be
justified. Nevertheless it might be preferable to solve the

differential equation that corresponds to (3) as follows:
I(t) = A' o, I(t) + N(t) ; A' =A-E . (11)

The solution of the homogeneous system (11), i.e. for N(t) = 0,
is given ([11], p. 163 ff.) by:

I(t) = EXP(A't) o I(t)) (12)
where EXP is defined by

© . n
EXP(A't): = | 28 (13)
n=0 * )
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If we compare (12) with (3), we see that for t = 1 a
development of (12) up to the first order gives exactly the
expression (3) for N(t) = 0. Moreover, it can easily be seen
that the equilibrium states of (3) are equilibrium states of (12),
and that (13) has the material conservation property. There is
still the question of the asymptotic state of (12) for any initia.

state I given by

OI

I(e): = lim EXP(A't) o I . (14)
o}
t > «

A solution of this problem for discrete points of time is given

by the following theorem.

*
Theorem 7. Let A, A and A' be as defined by (4), (9a) and
(11) respectively. Let Ae: = EXP(A'). Then Ae has the material

conservation property and

*
lim An = A
e

n - ¢

Proof. The proof follows immediately from the fact that any

positive material conserving matrix has a positive eigenvector
with the eigenvalue 1 and converges uniformly to a matrix with
equal columns, every column being the positive eigenvector nor-

malized to 1. =

We have shown that both the discrete and the differential
equation system converge to the same equilibrium state. There
remains the question how far the solutions of the two systems
deviate. A simple numerical model (Table 1) indicates that the

deviations become smaller the smaller the time intervals are.
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Table 1. Comparison of exact and approximate
solutions in a simple case.

Differential equation:

d
T I(t) = = A-I(t) I(t) = I, exp (=At)

Difference equation:

I(nAt) 'Ai((n'1)At) = A+I(t) I(nAt) = I_-(t-rpt)D
(@]
Example: A = 2, I, = 1
t 0 1 3 5 10 15 20 30 4o
exp (-At) 1] .819 | .549 | .368 | .135 | .050 | .018 | .002 | .000
_ n
(I-24t) 1] .810 | .531| .389 | .122 | .os2 | .015 | .002 | .000
for At=0.5
m
(I-4t) 1] .800 | .512 ] .328 ] .107 | .035 | .012 | .001 | .000
for At=1

The solution of the inhomogeneous system of differential

equations (11) is given by

t
1
I(t) = EXP(A'~(t-t)) = I+ “[' EXP(A' (t-s)) o N(s) ds . (15)

%

This solution, being too awkward for computation, can be replaced
by solving the system of simultaneous ordinary differential

equations (11) with the Runge Kutta method. In Figure 2 we have
plotted the solution, which is closer to the measured curve than

the solution obtained with the help of equation (10).



-15-

60
(4)
\u//

) S

58

(2)

{1 |

AN

(3)

CO; - content of the atmosphere [ 10'3mol 1

55
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Figure 2. Comparison of measured and theoretical
data for the CO2 content of the atmosphere.
(1) Experimental data after Keeling [12]
(2) Theoretical data using formula (10)

(3) Theoretical data using the Runge-Kutta
procedure for solving the system of
differential equations (11)

() COo, from burnt fossil fuels kept in the
atmosphere.

To summarize the discussion on the validity of the time
discrete model we may state the following. The equilibrium state
of the undisturbed system is the same for the discrete and for
the continuous model. The speed with which the systems approach
the equilibrium state, as well as the deviations, in general
depend on the length of the time intervals relative to the mag-
nitude of the exchange coefficients; in our special case, one-
year time intervals seem to be justified. Our analysis was based
primarily on the discrete model, because the analysis of this
model appeared more illuminating, and because the problem of
measurement errors could be handled much more easily in the

discrete than in the continuous case.
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3. NUMERICAL CALCULATIONS AND APPLICATIONS

As a first application of the theoretical results obtained,
we will consider some carbon dioxide data reported in the lit-
erature and check their consistency in the sense that they ful-

fill condition (6).

Table 2a lists the transition coefficients and the inven-
tories as given by Sawyer [5]. As can easily be seen these data
are only partly consistent in the sense of formula (6); there-
fore, a consistent set of transition coefficients is also given
in Table 2a. However, it should be noted that this set cannot
be determined uniquely. We have changed the coefficients such
that as few data as possible had to be changed, and that the
inventory of the deep sea, the value of which is consistent with

data reported in [4] and [6], remained unchanged.

Figure 3 shows the seven-box model developed by Machta [6]

which takes into account the following reservoirs:

Stratosphere (1) Mixed Layer Oceans (5)
Troposphere (2) Marine (6)
Long Term Biosphere (3) Deep Layer Oceans (7)

Short Term Biosphere (4)

Without writing down the system of equations that corresponds to
system (1) and that can be derived immediately from Figure 3, we
give here only the equivalent to formula (6), i.e., the relative

sizes of the inventories in the equilibrium state:

12,21 .25, 52

12, 21 12,21 k21?2 02,

T = (1, k227, k122123 32, (122020 B2y

12,21 .25, 52 .56 52

k1212122 /22056 165 12 021,025 052,57 4 75y (61)
In Table 2b, the data of [6] are represented together with
those data which would be consistent with formula (6'). One

realizes the large differences with respect to the transition

coefficient kdm, or k75, between Sawyer's and Machta's data

respectively, which will be important for later considerations.
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STRATOSPHERE
1

12 2!

TROPOSPHERE
IZ
K25 ®o2 k27 Ab? K2 KB K K42
MIXED LAYER MARINE SHORT TERM LONG TERM
OCEANS . BIOSPHERE BIOSPHERE
x! I I’ IL
ks’ k75
OEEP LAYER
OCEANS
l"

Figure 3. Natural reservoirs of carbon dioxide (based on [6]).

1¥ is the content of reservoir X, x*Y gescribes the

transition from reservoir x to reservoir vy.

As a second application, we analyze how fast the system will
return to the equilibrium state after a disturbance in the sense
of an input from outside has occurred. According to Theorem 5
the application of A* to any state I gives an eigenstate, i.e.,
an equilibrium state. As in addition, according to Theorem 4,
matrix A* is the limiting matrix of An, we have to analyze

how fast matrix A" approaches matrix A

In Table 3a, the consistent data for the four-box model after
Sawyer, as represented in Table 2a, are used in order to tabulate
the matrix A" for increasing values of n.  In Table 3b, the con-
sistent data for the four-box model after Machta are used--the
main difference compared to Sawyer's data being the value of kdm.
One concludes that A" approaches A* roughly after 1/kxy steps
(in our model, years), where k*Y is the smallest transition

coefficient of the system. Generally in our model the speed of
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*
Table 3a. Convergence of the matrix A" towards A (defined by

eqg. (9a)) for the four-box model, based on Sawyer's
data [5].
A A100
.7697 .0250 .1667 .0000 .0241 .0466 .0200 .0153
.0303 .0975 .0000 .000O0 .0564 .1598 .0374 .0156
.2000 .0000 .6720 .0033 .0240 .0370 .0216 .0188
.0000 .0000 .1613 .9967 .8954 .7567 .9210 .9502
*

A200 A
.0174  .0209 .0167 .0160 .0163 .0163 .0163 ,0163
.0253 .0414 .0223 .0189 .0197 .0197 .0197 .0197
.0201 .0221 .0197 .0193 .0196 .0196 .0196 .0196
.9373 .9157 .9413 .9458 .ouay .o444 ,9444 9444

*
Table 3b. Convergence of the matrix A" towards A for the four-
box model, based on Machta's data [6].

A A100
.7697 .0169 .0455 .0000 .0881 .0991 .0844 .0065
.0303 .98317 .0000 .0000 1777 .3226  .1540 .0065
.2000 .0000 .9469 .0006 .3709 .3776 .3606 .0317
.0000 .0000 .0076 .9994 .3634 ,2007 .4010 .9554
A1000 A*
.0169 .0173 .0168 .0158 .0159 .0159 .0159 .0159
.03170 .0320 .0308 .0282 .0285 .0285 .0285 .0285
.0740 .0755 .0736 .0694 .0699 .0699 .0699 .0699
.8781 .8752 .8787 .8867 .8857 .8857 .8857 .8857
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convergence to the equilibrium state is determined by the tran-
sition from the deep sea to the mixed layer of the sea. For
Sawyer's data this means less than 300 years, for Machta's data
less than 1600 years. As the consistency relations (6) or (6')
are not sufficient to determine kdm uniquely unless all other
inventories and transition coefficients are known precisely, it
would be extremely interesting, in view of the problems mentioned

in the introduction, to have more and better data.

As a third application, we compare the data of the CO2
content of the atmosphere in the years 1958 to 1970, measured by
Keeling at Mauna Loa [12], with the theoretical values obtained
from formula (10) on the basis of Sawyer's and Machta's data.

To be able to do this we take for the CO2 content of the atmo-
sphere after Fairhall [13]

a
11958 = 312 ppm (vol) ,

and for the annual input n? of CO2 into the atmosphere as a

result of the burning of fossil fuels (after Baxter [14])

n?958 = 0.248 * 101J[mol/a]
na = Q.425 * 1015[mol/a]
1970 * )

The results of these calculations are represented in Fig. 2.
This figure also represents the CO2 content of the atmosphere
that would result if all CO2

in the atmosphere (curve (3)). One sees that the material

from the burnt fossil fuels remained

balance model (curve (2)) describes the measured data (curve (1))
much more accurately. It should be noted that curve (2) is
obtained (within drawing accuracy) for both Sawyer's and Machta's

data.

t -
n? [ppm (vol)] = 5.64 * 10 15 & n?[mol].
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As a last application, we ask what--according to our model
-~the asymptotic value of the carbon dioxide content of the
atmosphere would be if all known fossil fuels were burnt.
According to Zimen [15] this would correspond to a final cumulated
input of N = 600 * 10'> mol. If we start with I2 = 51.4 * 10'°
[mol] at pre-industrial time, i.e., before 1860 (see, e.g., [12],

then we obtain with Sawyer's data

Ig = 62.2 * 1012, 1 = 61.7 * 1012, Ig = 2985.4 * 102 [mol]

This gives a total inventory Io of

5

Io = 3160 * 101 [mol]

To answer our question, we have to add to this inventory the CO2

from the burnt fossil fuels and to distribute the total inventory

according to eq. (6). The result is

a 5 b

12 = 61.2 % 10'°, 1P >, " >

74 * 101°, 0 = 73.4 * 1013,

3552 % 101°

—
Il

[mol] .

8

This means that in the asymptotic state, 567 * 1015 [mol] of
the 600 * 1015 [mol] go into the deep sea, and furthermore that
the atmospheric content rises from 312 ppm (vol) as given today

to 345 ppm (vol) in the asymptotic state.

These results, together with those for the speed of conver-
gence, are especially interesting in view of recent proposals,

namely the direct burial of the CO, from burnt fossil fuels in

2
the deep sea (see, e.g., [16]). 1If such a scheme were feasible,
then the figures given above indicate what fraction of the

buried CO2 will again go into the atmosphere and at what speed.

Inversely, if all the CO2 from burnt fossil fuels is released
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to the atmosphere, one gets an idea how long the CO, will stay

2
in the atmosphere before it goes into the deep sea.

The latter argument indicates how important it is to have
a precise knowledge about the exchange coefficients kxy,
especially about the coefficient kdm. According to Sawyer we
must live for about 200 years with an atmospheric CO2 content
that is higher than under equilibrium conditions, whereas Machta

puts it at 1500 years.

The guestion whether or not a final equilibrium concentration
of 345 ppm (vol) of the atmosphere would be tolerable goes beyond
the scope of this paper.

4. CONCLUDING REMARKS

We have presented a mathematical analysis of an idealized
model of the carbon cycle of the earth. The analysis suggests
certain conclusions about the carbon cycle data in the literature
and permits certain statements about the way in which disturbances

may influence this cycle.

Approximations and uncertainties have also been considered;
however, the area of handling the errors involved in the mea-
surements and estimates of transition coefficients and inventories
has been neglected. 1In fact, the authors are developing a
statistical treatment of these problems along the lines of [7];
the main reason for not including it here is the lack of realistic
information about measurement and estimation uncertainties. Any
relevant information would be highly welcomed by the authors of

this report.

It is clear that an analysis of more subtle effects, e.g.,
the seasonal variations of the carbon dioxide content of the atmo-
sphere, as well as the difference between the northern and the
southern hemispheres, calls for more detailed models (with respect
to both the number of boxes and the time steps). This refine-

ment is mandatory if on the basis of such models one tries to
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analyze gquestions such as that of imposing limits for carbon
dioxide releases into the atmosphere, where geographical and

seasonal differences clearly must be taken into account.

Work in this direction has been started, and it is the
purpose of this report to give an idea of the power and flexi-

bility of the material balance approach.
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