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Biology of the Budworm Model

Dixon D. Jones

This paper describes the natural history of a simulation
model. The model was constructed to illuminate the determi-
nants of the dynamic behavior for a pest/forest system with
particular reference to the New Brunswick Budworm experience.
It cannot reproduce the real system in all its richness.
Rather, it is meant to be an analog of the important links
between the budworm and its principal host, balsam fir.

Parental foundations of the present work are credited to
a modelling workshop conducted by members of the Institute
of Resource Ecology, Vancouver, and the Canadian Forest
Service. The original model is described in a manuscript by
Stander [4]. The basic superstructure of the present model
remains much the same as the original. The flowchart in
Figure 1 shows the basic features.

The original model has been reworked to eliminate some
minor errors and incorporate recent interpretations of data.
The principal aim of this revision is to elucidate the inter-
play between the primary state variables--budworm and fir.
Within-year feedbacks between foliage and feeding larvae
are emphasized.

The enormity of the budworm system required a long-term




heroic effort just to observe and understand the natural course
of events. Much -f this experience is contained in a mono-
graph by R.F. Morris [3]--hereafter referred to as "the
monograph'" or MG. A consequence of being limited to observa-
tions of a relatively unperturbed system is that we are re-
stricted to a limited subset of phase space. We can expect
that perturbations to the real system as well as to our model
will move the state variables into combinations that have not
yet been experienced. Such distortions of the system into
"uncomfortable" configurations yield important and necessary
information about the nature of the internal machinery. It
is not always practical, reasonable or prudent to carry out a
full scale perturbation experiment on the real world. The
spraying studies fall into this class of experiment but it
was impossible to control all the variables that we would
have 1liked.

Since the primary variables (budworm and fir) were ob-
served as they rode together through their natural progres-
sions, the complete nature of the relationships that 1link
these variables cannot always be extracted. We want to use
our model to suggest or test pest manageheﬁt policies--or at
least our ideas about such policies. If the policies affect
the state variables in "unnatural" ways (which, almost by
definition, they will) then we must explicitly include all of
the important links between the variables.

The relationships used in the original model were not

necessarily "wrong." Theoretically they should reproduce the



natural sequence of the events as well as the model proposed
here. We have expressed the interactions as explicit causal
links rather than as implicit final effects. This more ex-
plicit model should be applicable to a wider range of events,
perturbations and manipulations of the system than the origi-
nal version would allow. Implicit relations are all right as
long as we stay within the range of experience that lead to
the formulation of these relationships, but we wish to go
beyond this range with the model.

A simple example will hopefully illustrate the goal and
advantages of this explicit formulation., Suppose the follow-
ing equations are an exact representation of some real world

system.

dT _ _ .
=t ° T T B
(1)
dB_ _ _ .
a3t ° B+ T B

Further, suppose that an extensive field investigation indica-
ted that this system could be represented by the following

"model"

ar_ _ .
ac - T -7 B
(2)
d2B . .
—> = (B) + (1L - B) (B + B) .
dt

Now, under "normal" conditions this model will exactly simu-

late the real system. (This is so because equations (1) and




(2) are mathematically equivalent.) However, if we perturb

T on our model, (2), it will have no effect on B because we
have failed to explicitly incorporate the causal relationship
between T and B.

The advantages of explicitness are, of course, counter-
balanced by our lack of supporting data. In many cases,
however, we can draw on ecological experience to suggest the
functional form of the components of interaction. Given the
form of a relationship, the appropriate parameters can usually
be estimated with acceptable accuracy.

The next section summarizes the general form of the model.
As mentioned above the superstructural is very like the origi-
nal described by Stander [4]. The control model remains
as the original and is not described again here. The budworm,
forest response and dispersal models received the most refine-
ment. The forest response and budworm models are computed in
parallel rather than in sequence but we describe the forest
response model first to introduce some definitions that are
needed in other models.

The model has not been programmed at this time so the
obvious section on its performance is missing--to be addeds

when available.

Overall Model Structure

A basic flow diagram of the model is shown in Figure 1.
Spatial heterogeneity is accomodated with a system of 6 x 9

mile grids. These grids correspond to map survey areas and




provide a common base for comparison with the real world.

In the original model 265 grids out of a total 456 in New

Brunswick were used. We are, of course, not restricted to
this number.

Within each grid--or "site"--conditions are assumed
homogeneous. Trees of different age and species are assumed
uniformily distributed. Even though it is known the budworm
is differentially associated with different types of host
trees we will assume that they are distributed according to
their average.

The sequence of operations within the budworm, foliage
response and dispersal models is presented schematically in
Figure 2. The start of a year's iteration begins with the
budworm in the egg stage. The trees at this point are in the
state of defoliation caused by the previous generation. The
yearly tree mortality, although not yet fully realized in
nature, is anticipated and those trees removed from each site.
The individual elements and operations of Figure 2 are described

in the following sections.

Foliage Response Model

We consider two components of foliage: first, foliage
area as a piece of real estate upon which the budworm live,
measured in units of 10 square feet; second, foliage as a
quantity of needles (and staminate flowers) that is a source
of food and oviposition sites. This component could be ex-

pressed in units of mass, but for our purposes we define a




a relative measure--the foliage unit (f.u.). A foliage unit
is that amount of new-growth needles on ten square feet of
branch in the absence of budworm exposure.

Foliage area (FA) is assumed a function of a stand's
mean age of trees on a site and their defoliation history.
The normal (without defoliation) relation between mean age
(A) and foliage area was originally given as (Stander,

Figure 9)

_ FMAX * A
PA:KF+ R (3)

This area is reduced below its potential due to accumulated
defoliation. We assume this to be a linear function of a

defoliation index, ID, (defined below). Thus,

pa - FMAX - A o |

ID
KF + K ) ()

IDMAX

Henceforth, we shall call the second component--foliage
as a quantity of needles--simply "foliage." This is further
distinguished as "new" and "old" foliage. As stated above,
one foliage unit is equivalent to the amount of new foliage
on ten square feet of unmolested fir branch. Under these
conditions new foliage averages 25% of the total; thus total
foliage equals 4 f.u,  New foliage joins the old foliage at
the end of each season. And at equilibrium the old foliage
looses 1 f.u. each year. When all new foliage is removed the
tree résponds by losing less than one foliage unit. Let Fl
and F, be the quantity of new and old foliage respectively,

on each 10 square feet. Then the




0ld foliage lost = %.(1 + 20F)) . (5)

The rationale for this relationship is that nine years of
total new foliage removal are .required to eliminate all old
foliage.

Additionally the amount of new foliage produced each
spring depends upon the extent of past defoliation. The new
foliage input function, Fo’ is a function of total foliage,
Fl + F, and is shown in Figure 3. This function implies a
25% compensatory response to one unit of defoliation
(F1 + F, = 3). After four years of complete removal of new
foliage F2 is reduced to 5/3; no new shoots are produced and

the tree puts all of its efforts into maintenance.

Foliage is represented schematically in Figure 4. The

standing stocks are Fl and F2. Large larvae defoliation is
removed from these stocks as DEFl and DEF2. The new foliage
that remains (Fi = F) - DEFl) joins the old and a quantity

of old foliage, equation (5), is lost. The net amount of old

foliage remaining is

F2 = F2 - DEF2

1 1 _1
+3F - 3DEF -3 . (6)

Total defoliation (DEF) depends on large larval density
and the total foliage available. This function is described
below when we discuss large larval survival. Since the bud-
worm prefers new foliage we apportion it as follows:

DEFl = DEF

if DEF < Fl s
DEF, = 0




DEF., = F
if DEF > F, 11 X
DEF, = DEF - F,

If we remove all the new foliage but none of the old F

will have the following sequence: i
Year: 1 2 3 4 5 6 7 8 9
F, 22 23 2 1% 1% 1 % % o .
This suggests an accumulated defoliation index defined as
ID = 3+(3 - F,) = 9 - 3F, . (7

In the above scenario ID would take the sequence (1, 2, 3,....9).
After an extended period of severe defoliation the older, more
susceptible trees begin to experience increased mortality.
The defoliation mortality is taken from Miller [2] and is
shown in Pigure 5.

This concludes the major restructuring of the foliage
response model. Points not covered here remain as they were

described in Stander [4].

Budworm Model

A multitude of factors affect the survival of the budworm.
If we are to maintain a manageable level of complexity, we
must restrict ourselves to those factors that illuminate parti-
cular questions. To highlight the dynamic interactions between
the budworm and its host, balsam fir, processes that directly

link these two state variables have been emphasized as explicitly




as possible. Supporting field data are not always available,
leaving the weak criteria of no contradictions with established
relationships. In some cases the functional form of a

process is well established by independent ecological experi-
ence and only the parameters need be estimated; in other cases
we can only hypothesize the general form of the relationship.
Weather, as it affects large larval survival, is the only
external factor that is explicitly included in the budworm
survival functions. All other functions (e.g. parasitism

and predation) are only impliecitly included.

In order to model the generation survival of the budworm,
it is most convenient to examine each life stage separately.
We can later aggregate some of these stages for computational
convenience. By examining the stages individually we can
compare our results with field data and we can more accurately
identify the assumptions that we must make.

In many respects the natural point to begin a budworm
generation is with the third instar larvae. The emergence of
this stage closely coincides with the emergence of new foliage.
Timing makes this a logical point with which to begin a model
iteration. However, much of the field work has been oriented
toward the egg stage as the initial reference of each genera-
tion. We will continue with that lead and describe the bud-

worm processes beginning with the eggs.

Egg to Small Larvae

The egg stage begins after the eggs have been deposited.
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Any factor affecting egg disposition is attributed to the
previous generation. Eggs are laid in late July or early
August and the first instar larvae emerge 8 to 12 days later.
At this time defoliation by the previous generation has occured
but no new foliage has been generated.

Although tree quality, e.g. age, aspect, defoliation
history, etc., could affect egg success, there is not suffi-
cient evidence to suggest what form this would take. Likewise,
egeg survival very likely depends on egg density through such
processes as predation, parasitism, and disease. Here again
there is not sufficient evidence to suggest the form of this
density relation. Its effect would be most pronounced at low
egg density where data are most lacking.

The egg survival, S used in this model is taken as a

E,
constant fraction independent of forest condition and egg

density. The average survival in unsprayed study plots, was
Sg = 0.81 ; (8)

(MG, Section 8). We shall adopt this value.

Small Larvae to Large Larvae

This period is from emergence as first instars in mid-
August through the moult to third instars the following May.
Sampling difficulties prevent precise differentiation of the
first two instar stages.

Dominant events for small larvae are the autumn and spring

dispersals. These dispersals though passive, occur over large
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distances (MG, pg. 187) and are affected by forest conditions
throughout a site. During each dispersal larval survival de-
pends upon the probability of successful dispersal to a sus-~
ceptible host--i.e. fir older than nine years. The fraction

of a site containing susceptible hosts is
SUSCEP = PFIR * (1 - T(l) - T(2) - T(3)) , (9)

where PFIR is the proportion of fir and T(i) is the fraction
of fir in age group i.

A critical, but unknown, factor is the fraction of larvae
actually dispersed from their native tree. It is known that
weather affects the probability of dispersal and it is likely
that larval density does also. Lacking a better estimate we
shall assume that 50% of the small larvae are subject to
dispersal. That is, survival of first instars is proportional

to

Sl «0,5 + 0.5 + SUSCEP = 0.5+(1 + SUSCEP) .

If the same assumptions apply to the second instar then

S, = 0.5 - 8, + 0.5« S, « SUSCEP
(10)

0.5 » Sl'(l + SUSCEP) = 0.25-(1 + SUSCEP)2

The second instar larvae mine the one- and two-year-old
needles, and their survival depends on their success in locat-
ing these needles. The host trees at this time are in the

defoliation condition left by the previous generation of large
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larvae, therefore survival should decrease as F2 decreases.
The small larval search success (SLSS) (Figure 6) attempts to
portray this factor.

When there is a full complement of old foliage, F, = 3,
SLSS = 1. Even when half of the old foliage is removed the
larvae can search over the short distances necessary to find
needles. However, when defoliation goes beyond this point
SLSS drops off. It does not reach zero because of alternate
mining sites (e.g. black-spruce needles or balsam staminate
flowers).

The SLSS function bears qualitative agreement with field
experience (MG, Sections 9 and 21). Precise comparison is
not possible without establishing the value of SUSCEP for the
test plots.

Thus far we have only considered small larval losses
due to dispersal. Escape from other sources of mortality
must be considered. The unsprayed check plots (MG, Section
21) indicate that the maximum survival experienced was about
0.75. In the unsprayed area the maximum observed survival was
about 0.67 (MG, Figure 9.4). The only available evidence for
density dependence is displayed in Figure 9.2 of the monograph.
The curve fitted to these points is justified by certain
assumptions about dispersal, but since we have already extract-
ed the dispersal process we would be amiss to use this func-
tion for our present requirements. A very rough eyeball pro-
jection would place SS = 0.2 when NS is about 1000. The

appropriateness of this can be checked with other data and its
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sensitivity in the model.
Short of more complete knowledge we take the non-disper-

sal losses to be

0.5 . N = 0.7 - 2.5 X 10'“ . NS .

Sg = 0.7 - 5580 * Ng

s
Finally, small larval survival is

s = %-(1 + SUSCEP)2 + SLSS (0.7 - 2.5 x 10"

s « N.) . (Q11)

S

Large Larvae to Pupae

Large larvae include the third through the sixth instar
stages. The normal period is from early June to early July.
Large larval survival is the most important in explaining
variations in overall generational survival. It is also
during this stage that weather has its most pronounced effect~-
warm dry weather promoting survival and cool wet weather re-
ducing it.

Weather effects are important to all the large instars
stages. The primary feeding occurs, however, only in the
fifth and mainly the sixth stages. Since it is very difficult
to separate the effects of each stage, large larvae are treat-
ed as one group and factors affecting survival are assumed to
act concurrently.

A model for net large larval survival is shown in Figure
7 (Miller, Personal Communication). The weather classes
correspond to the number of warm-dry days during this phase

of budworm development. The precise criterion for this index

is described elsewhere.
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The common wisdom behind the shape of these curves is as
follows. At low densities the survival is controclled by the
action of predators, parasites, etec. At very low densities
(below about 0.05 larvae per 10 sq. ft. of foliage--too low
to be seen on the above graph) the larvae escape
efficient predation and the population avoids extinction.

As the population increases above 0.05/tsf survival is again
enhanced because of the limited response of the predators.

The explanation for the drop in survival at high densities is
starvation due to limited foliage. The final leveling of the
survival curves represents the effect of alternate food sources.

The effect of available foliage on starvation and survi-
val is only implicitly included in Figure 7. In order to make
this explicit we must know how much foliage the larvae con-
sume and how this consumption affects larvae survival.

The amount of foliage consumed as a function larval
density we call a feeding curve. A direct evaluation of this
curve has not been found so we must rely on indirect evalua-
tions. Recent survey data from a wide range of locations were
converted and plotted in Figure B. Here D is the total de-
foliation (called DEF in the previous section) expressed as a
per cent of current foliage--100% correspondes to removal of
one foliage unit. These points are so scattered that the only
safe conclusion we can draw is that total defoliation increases
with larval numbers. The corresponding foliage consumed per

larvae (d = D/NL) is plotted in Figure 9. Despite the scatter
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of these points there is a downward trend. Although these
plots do not provide much guidance they do not preclude the
adoption of a standard feeding relationship. We therefore
assume that the large larval defoliation follows a Michaelis-

Menten relation of the form

Ve N
D=z ——~ (12)
K+ N,
or
v
d = o/ (13)
K+ N, °

where V and K are parameters to be determined. Miller [2]

gives the following values as typical.

Budworms per tree Defoliation of
Current Shoots(%)

1,400 20
5,600 65
16,800 100 + old foliage

The first two population levels together with the condition
that the curve for d passes through the centroid of the points

in Figure 9 gives

v

260 (%)

K 275 (Larvae/tsf) .

These parameter values imply that larvae respond to the

foliage as if there were only 2.6 f.u. present rather than
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the 4.0 f.u. of unstressed trees. If this is caused by a

lower propensity to consume old foliage we can express V as
(14)

where a is a weighting factor for old foliage.
Unstressed conditions give
2.60 =1 +a + 3
or
a = .533
When V changes due to changes in Fl and F2 then we must

change K to preserve do = d(NL= 0), a physiological "constant."

Thus

<$

K-:E—' .
o

The equations we use are

a = .533 (15)
d, = 260/275 = .945 (16)
Vo= F, o+ a°F, (17)
K = Vv/d (18)
VeN
_ L
D = ﬁ_:_ﬁz (19)
d = D/N. = _v__ (20)
L™ K+N

D and d are plotted as dashed lines through the empirical
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points of Figures 8 and 9, with F, =1 and F, = 3.
Now that a defoliation relation has been established we
return to consideration of the survival of large larvae. For

each weather situation let

S, = £(N;) -gld) . (21)

The second function, g(d), accounts for starvation. In real-
ity there would be a distribution of foliage consumption--some
larvae would get a larger amount than others and these would
have a higher survival potential. In practice, however, we
shall assume that the average consumption, d, determines the
average survival,

There is some level of feeding, dm.

in? that would cause

complete starvation. Further, we normalize g(do) = 1., That
is, g(d) measures the reduction in survival as NL increases.
There is no compelling reason to use anything other than a

linear relationship, i.e.

g(d) = (4 - dm)/(do -d) . (22)

m

If the descending branch of Figure 7 (wl case) is extended it

crosses SL = 0 at NL = 400. Thus we define
260
dm = d(400) = ———— = 0.385 . (23)
275 + 400

The increasing function, f(NL), is also assumed linear:

f(N) =a+bN (24)

L
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The parameters a and b (there are 3 sets for the three
weather classes) are selected so that SL passes through the
inflection points of Figure 7 (i.e. where NL = 0, 150 and
300). A plot of f(NL) is at Figure 10a. Note that all
weather variation occurs in this function and does not inter-
act with the feeding level d. A plot of SL = £(N) g(d), when
V = 260, is shown in Figure 10b; it should be compared with

Figure 7.

Pupae to Adults

The eitensive study of unsprayed plots revealed an aver-

age survival of pupae of

Sp = 0.66 . (25)

This survival was not found to be strongly affected by either
pupal density or forest condition (MG, section 11). There
was an effect due to weather (expressed as mean temperature)
but this is not included in the present model.
Unsprayed check plots in Area 2 (MG, section 23) showed
a strong dependence on larval survival (Sp = 0.3495 + O.8281-SL).
However no mechanism for this connection was suggested. We
shall use Sp = 0.66 in this model with the understanding that
we should test our results for sensitivity to a dependence on

SL'

Fecundity

Fecundity is strongly determined by the physiological
state of the adult female. The chief factor affecting this

within our model is the amount of food consumed during the
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larval stages. Turnbull found that fecundity is a linear
function of food consumption for spiders. The equivalent
measurements for the budworm were not made but it has been
shown (Miller [l]) that fecundity varies linearly with

pupal size. The relationship for normal populations is (MG,

Eq 13.4)

F = 165.64 x -328.52 (26)

where x is pupal length (mm.). The average maximum fecundity
under field conditions is 200 eggs per female. According to
the above equation this corresponds to X, = 3.2mm,

The missing ingredient is the relationship between food
consumption, d, and pupal size, x. We assume that mass

(as x3) and d are related as

3

x? =a+b-d . (27)
If x = X, when d = do’ r = d/d, and x = O when r = r,, then
- 1
f17F 13
X = X R . (28)

To establish the extrapolated point where x = 0 we solve
the N, vs. x equation (MG, eq 13.5) for zero size. This

equation is
x = 3,07 - 0.0018-NL (29)

or N; = 1706, which is equivalent to d = d, = 0.131 and

ry = 0.139.
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Note that we can write equation (29) in terms of d

rather than NL as

»
1l

3.07 - 0.0018-(% - K)

0.468 1
3.57 = ——— = 3.57 - 0.492+= | (30)
d

This equation and equation 28 are plotted in Figure 11. The
close agreement supports the use of equation 28.

The relationship we use in this model for fecundity is

F = 82.82 x - 164.26 (31)
When
1
rp-r 3 %
x = x| ——| = 3.36 « (r - 0.139) s
rp -1 N (32)
F = 278.58 « (r - 0.139)3 - 164.26

We have divided by 2 so that fecundity becomes eggs as per
adult.

The field surveys in heavily defoliated areas showed
decreased pupal size and fecundity with extent of defoliation.
This aspect should manifest itself through the foliage response

and reduced food consumption.

Egg Laying and Dispersal

The evaluation of interactions between egg laying and
dispersal are elusive in field populations. A female's physi-
ological state and prevailing weather affect her mobility and

thus her propensity for being dispersed. These same factors
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also affect male mobility and consequently mating success.
Further, a female's mobility increases after she begins to
lay eggs. She will usually not leave the neighborhood of her
native tree until she has deposited at least one egg mass of
15-20 eggs. Females caught in traps, and therefore mobile,
had already laid an average of 25% (or about 50) of their
eggs.

Field studies found the net effective survival of adults
to be 51% during the initial stages of an outbreak. It was
not possible to separate dispersal losses {(failure to locate
oviposition sites, etc.) from other losses (predation, weather
related mortality, etc.). However, to model this system, we
must attempt this .eparation. First, we would like to know
the survival rate for adults from the time of pupal emergence
to completion of egg laying. Second, we would like to know
how stand condition over space affects egg laying success. We
lack this information and therefore must resort to some reason-
able hypotheses.

We shall assume dispersal occurs on three spatial scales.
The reader should refer to the diagram in Figure 14 while
working through the following sections on dispersal. First,
we assume the first eggs laid are on or near the tree from
which the female emerged. The consequence of this assump-
tion is that the female has a very high probability of
locating a susceptible host. However, heavy defoliation re-
duces her chances of locating an oviposition site. We portray
this by an oviposition search success (0SS) function (Figure

12). We assume that 20% of the potential eggs on any site are
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in this initial category. Eggs from this initial group which
are not laid because of heavy defoliation are lost rather
than dispersed further. The contribution to the egg stock

from short-range dispersal is
0.2 + 0SS . (33)

Following the deposition of these first eggs, the female
increases her activity. The degree of activity is related to
the weight of her remaining eggs. If she was a well fed larva
and has many eggs she will be less prone to fly until she has
deposited some of the weight. One effort of this mechanism
is to encourage dispersal away from poor feeding areas and to
promote residence on good ones. Eggs laid to reduce weight
are subject to mid-range dispersal--away from the native tree
but within the native site,.

Mid-range dispersal applies to the eggs following the
first 20%. The fraction of eggs desired (FED) to be laid by
the female is a function of the level of feeding experienced
by the large larva. The linear relation used is shown in
Figure 13, At the maximum feeding rate (d = do), the female
will be very heavy and attempt to lay all of her eggs in the
native site. At or below a level of starvation which pro-
duces zero fecundity FED = 0. We determine this point from
equation (32); r' = .344 and 4' = .325.

A proportion 0.8 * FED of the eggs are subject to this
mid-scale, within site dispersal. The oviposition success of
this group is additionally proportional to the amount of sus-

ceptible fir (SUSCEP) and the oviposition search success (0SS).
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The total proportion of available eggs laid on site is
P.E. = (0.2) - 0SS + (0.8) FED « 0SS +« SUSCEP . (34)

Eggs subject to mid-range dispersal which were not laid
locally are "cast to the winds" and carried to other sites.
From a potential fraction of 0.8, FED 0SS +« SUSCEP have
been laid in mid-range dispersal. The remainder,

(0.8) - (1.0-FED + 0SS « SUSCEP) are subject to long-range
dispersal to other sites. The essence of the dispersal
algorithm for allocating these eggs to specific (sink) sites
is a matrix of transfer probabilities from any particular
source site to all possible sink sites. The fraction of eggs
landing on a new site which are successfully laid is again

proportional to
0SS - SUSCEP , (35)

where these factors apply to conditions on the sink sites.

We assume that adults make only one long-range dispersal
and those that are unsuccessful in finding suitable oviposi-
tion sites after this flight are lost. It is possible that
more than one flight is made, but supporting data do not
warrant modelling this possibility.

We note in passing that if all the stands are in the
same foliage condition, the proportion of eggs laid for all
sites would be

P.E. = (0.2) » 0S8 + (0.8) - 0SS « SUSCEP

(36)
*[1.0 +FED - (1.0 - 0SS - SUSCEP)] .
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As a numerical example, a moderate infestation could have

0SS = 1, FED = 0.6, SUSCEP = 0.5 and
P.E. = 0.72

This development is meant to portray the effect of spa-
tial variation in forest condition on dispersal and egg lay-
ing. As mentioned above, field data do not allow separate
evaluation of non-dispersal related losses. We shall set the
adult survival from all other factors equal to unity (i.e.

SA = 1.0). Later, we may wish to adjust this value by simu-
lating the conditions of the field test plots and adjusting
SA so that the net effect of mortality and dispersal produces
a survival of 0.51. That is

Sy ¢ (P.E.) = 0.51 . (37)

Conclusion

Any model is hypothesis. At this stage we have a
hypothesis for a model. We conclude now with some general
comments concerning the steps we should take to establish a
level of confidence for what we have done. Traditional pro-~
cedures are available to us--qualitative assessment of the
model's behavior and various tests against real world

historical data.
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The initial stage of most ecological modelling "validation"
is usually an aesthetic appraisal of the model im vacuo. Do
the dynamics look and feel right? The standard for judgment is
usually a very qualitative picture of the real world. A harder
test is a one-to-one comparison against historical records.
Necessary data exist from 1949 to 1972--a period covering an
outbreak and decline. It is an open question at this point what
techniques and criteria we should use to establish goodness-of-
-fit.

Quantitative measures which capture the qualitative aspects
of an outbreak may have to be invented. We will want to in-
vestigate various indices which portray the essential development
in space and time of a budworm episode-~-thresholds, rates of
growth, spread and decline, etc.

Other opportunities arise for diagnosis of the budworm model.
None is definitive in itself but in toto they can be considered
with all other evidence. First, we can relate the components
of this version to the forms used in the original (Stander [4]).
The original was the synthesis of considerable field experience
and if our present version is not congruent with it, we must
look further to find the reasons. Specifically, we should
compare the two versions of foliage response. Additionally, the
life stage survivals can be related directly to their correspond-
ing densities, and fecundity related to adult density.

The next step is to aggregate the survival and fecundity
relations into a generational survival and a reproduction curve.

These aggregations must at least appear reasonable. Various
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other analytical probes of sections of the model can be made

to see if the important controlling factors appear reasonable.
Finally, there is considerable field experience available

for comparison. Particularly, the studies of the sprayed plots

should correspond to the essential features of our model.

There are many other relationships in the monograph and

associated literature which should be brought into the

picture. With the model as our real world, we can perform

some of the same "experiments” and derive comparable

statistics.
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