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Necessary and Sufficient Conditions in

the Minimal Control Field Problem for Linear Systems

J. Casti*

I. Introduction

In the article [1], the following problem was posed:

given the dynamical system
x(t) = f(x,u,t) , x(o) = ¢ , (*)

where x is an n-dimensicenal state vector, u is an m-dimen-
sional control vector, and f is an n-dimensional vector func-
tion smooth enough to insure a unique solution to (*) for all
piecewise continuous u, t > 0 determine a feedback control u,
i.e. u = u(x,t) such that 1) using the feedback law u(x,t),
(*) is asymptotically stable and 1ii) the argument u contains
the minimal number of components of x consistent with 1i).
Obviously, this is a very complex problem and a clear-out
solution for general f seems out of reach at present. Even
for linear f and constant coefficients, i.e. f(x,u,t) = Px + Gu,
the problem is complicated by the fact that the solution is .
not invariant under coordinate transformations. Nonetheless,
for the linear case some headway has been made. In [2] upper
bounds for the necessary number of components of x that need
appear (the "dimension" of the control field) are derived

making use of special control laws. These bounds are easily
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computable in terms of the characteristic vectors of F. If
the condition i) were replaced by 1i') given a symmetric set
of complex numbers A (i.e. if XeA, then XeA), determine a
linear feedback control law K of "minimal dimension," such
that F + GK has A as its characteristic values, then a com-
plete solution is given in [3]. This version of the problem
substitutes a rigid placement of the controlled system's char-
acteristic roots for the much weaker requirement of asymptotic
stability.

In the current note, we return to the original problem
(linear version) and give necessary and sufficient conditions
for the eliminations of measurements of certain state vari-
ables in a stabilizing linear feedback law. Unfortunately,
it does not seem possible to give any single set of operation-
ally useful conditions which are both necessary and sufficient.
However, we do present one set of necessary conditions and
another set of sufficient conditions which are readily checked
using the original problem data (the matrices F and G).
Examples are also presented showing that, in some cases, these
conditions do enable us to precisely determine the "minimal
control field."

The standard method for coping with the foregoing
"incomplete" measurement problem is to construct a so-called
"observer" [H]. As is well known, the observer compensates
for inabilities to measure certain parts of the state and
gives the same asymptotic results as for the case of complete

state information. However, from a practical engineering




point of view, the intreoduction of an observer may be objec-
tionable on economic as well as technical grounds. The added
hardware and circuitry needed for the observer increases the
cost, weight, size, and complexity of the sys‘ems under de-
sign. Consequertly, it seems preferable to first analyze

the system from the viewpoint presented above, and afterwards
introduce an observer for those components of x which cannot
be completely eliminated by the results of this paper and

which are not physically measurable.

1T. Necegsary Conditions

a) Single-Input Systems

To begin with, consider the single-input linear system
x = Fx + gu x(0) = ¢ (1)

where x 1is an n-dimensional vector, g is an n-dimensional
constant vector, u is a scalar control function, and F is an
nxn constant matrix. We seek conditions such that a linear
feedback control law k, i.e. u = k'x, may stabilize (I) and
have some zero components (to avoid trivialities, we assume
thdt F has at least one root with non-negative real pa''t).
To express the basic necessary condition, the following
notation will prove useful. Let A be an nxn matrix and b an
(1)

nxl vector. Then the quantity [A|b] will denote the matrix

A with its ith column replaced by b, i.e.
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Furthermore, let Sj(A) denote the sum of the principal minors
of order j of the matrix A and let aj([Alb](l)) denote the

sum of the principal minors of order j, which contain compo-

(1),

nents of b, of the matrix [A|b] j =1,2,...,n. For exam-

(1)) = b,. It is well

ple, S,(A) = trace A, but 01([A|b] 5

known that the characteristic polynomial of F may be expressed

as

n . n-

xp(z) = 2"+ 1 (-1)0 s.(F) 277
121 J
J

n n n_.
=z + I a, z J .

j=1

Our necessary condition for minimality of the control
law stabilizing £ will be based upon the well known necessary
condition for x to be a stability polynomial--that all coef-
ficients be positive., Since we are interested in the smallest
number of components of X which can generate a stabilizing
law, let us first consider the necessary condition for the
dimensions of the minimal field to be one. This condition

is given by




Theorem 1. Let a. , 2, ,...,a: be the non-positive
11 TR Ty
coefficients of x.(z). Then a necessary condition for I to

be stabilizable by a linear law k' = (0 0++0 kj 0++0) is
o.([Flg]Y)) # 0 i= 4,1 i
i g Fy 12 etk
Proof. Using a control law of the above form, the :'LE-13
coefficient in XF+gk'(Z) is
a, = a, + Dk, o (TRl (1)
i i j 1 - -

Hence, if ay

A

o, ci([Flg](J)) must be non-zero in order for

t
any choice of kj to influence the magnitude of a; -

Remarks. (i) The condition of Theorem 1 only enables us
to eliminate certain components of x as potential "single-
measurement"” stabilizers. However, in view of (1), the string
of inequalities implied by Theorem 1 is actually somewhat

stronger since we must have
. (s
(-0t [Si(F) + kjoi([F\F]‘J)) > U, (2)
i-= il’i2""’ik

As the example below illustrates, these stronger inequalities
impose additional restrictions on kj that may result in the
further elimination of candidate components of x that satisfy
the necessary condition of Theorem 1. Por example, if no
number kj satisfies (2), then component j cannot stabilize

I even if oi([F|g](J)) #0 for i = i),i,,...,1,.




ii) To test whether a "two-measurement" control field
is possible, that is, a law of the form k' = (0 0++0 kj 0++0
ko 0-+0), it is easy to see that the iEﬁ coefficient of
XF+gk'(Z) is

a; = a; + (-1} ks oi([Flg](j)>

+ (-t k, o5 ([Flg] (4,

Thus, the appropriate necessary condition is |0i([F|g](J))|
+ |ci([F|g](1))| >0, 1=1,,i,,...,i . Now instead of the

single constraining inequality (2), we have

-1t s, () + kjo; ([P1e]D)) + ko, ([Flg] ] > 0

i-= il,i2,...,ik . (3

Again, (3) may impose enough additional constraints that some
possibly feasible components of x are eliminated.

iii) Unfortunately, the foregoing conditions become
rather unwieldly for high-dimensional systems when we want to
test feasibility of a control field of dimension greater than
one or two, since the number of combinations of components
grows at an alarming rate, i.e. factorially. However, since
all the operations and inequalities are linear, it should be
possible to computationally check all possibilities for sys-
tems of moderate size--e.g. if n = 20 and we want to check the
possibility of stabilizing by 10 components of X, we have
5)
taes 10-3 seconds to check one combination, then the total

= 184,756 combinations to check (the worst case) and if it




time required is about 3 minutes.
Example. To illustrate application of Theorem 1 and its

consequences, consider the system I described by the matrices

-10 1 0 1
F = 1 -2 0] > g = 1
L 0 0 2 1 J
i L

By inspection, it is clear. that this system can be stabilized
by measurements of X3 alone but it is instructive to use

Theorem 1 to obtain this result. We have

XF(Z) = 27 + 10z° - 5z - 28

Since a, < o, ay < 0, we have (in the notation of Theorem 1),
k=2, il =2, i, = 3. Our conjecture is that a control of
the form k' = (0 O k3) will stabilize. Calculating the rele-

vant quantities, we have

S2<F) = _5 3 ‘
SB(F) = 38 3 -
(3) (—10 1 -2 1
02([F|g] ) = det + det = -12 #0
0 1 0o 1
-10 1 1
( (3), _ _ -
9y [F|g] ) = det 1 2 1 = 13 # O
0 0o 1

Thus, the necessary conditions of Theorem 1 are satisfied.




The strengthened condition (2) yields

-38 -19 k;, > 0

3
-5 -12 k5 > 0
10 - ky >0,

which together imply k3 < =5/12.

It is easily calculated that the necessary conditions of

Theorem 1 are also satisfied for measurements of x, alone or

1
X, alone. However, the inequalities (2) yield

X, alone: 10 -k, > 0, -5 -k

l————— 1

inconsistent;

1 0, 6k1 -38 > O which are

x, alone: 10 -k, > 0, =9k, -5 > 0, 22k, -38 > 0, which

2 2
are also inconsistent. Thus, the only possibility to stabi-
lize I by measuring a single coordinate is to measure x3.
To check that indeed I can be stabilized by measurements

of X5, We use the necessary and sufficient conditions

We need only check the first of these inequalities as the

others have already been seen to be fulfilled when k, < -5/12.

3
The relevant inequality is

(10 - k3) (~5 - l2k}) > 2 - 191(.5

or




This inequality is satisfied for

1
J2oul/3 < k3 < 4 + 5 /24473

Since /244/3 = 9.018, we see that any value of k3 in the range

=
i
PO~

-1/2 - & < k, < -5/12 ,

3

will stabilize I, where e = V244/3 -~ 9 = 0.018.

b) Multiple-Input Systems

Now we assume that L has 1 < m < n inputs, i.e. G is an
nxm matrix and K is an mxn matrix. Again let a, see+585 Dbe
1 k
the non-positive coefficients of XF(Z). Then the counterpart

of Theorem 1 is

Theorem 1'. A necessary condition for I to be stabiliz-

able by a linear law

O e« (O kl‘ O e+ 0O
0 -..O k?J () ...O
K = '
O eee O kmj 0 eee OJ
is
m .
(r)q(3) . .. .
L |oy([Fla ](J )| »o LI PP SN N
r=1
where G(r) denotes the rth colum of G.

th

Proof. It is easily verified that the i coefficient in

Xpogk(2) 18




-10-

I .
- (2)4(3)
a;, = a; + 151 Kej oi([FlG ] )

1
Conseguently, no measurements on Xj can influence a; if all
the terms ci([F|G(l)](J)) vanish, £ = 1,2,...,m.
In a completely analagous manner, we can obtain similar

results for the case of more than one state measurement.

II1I1. Sufficient Conditions

To derive sufficient conditions for the elimina-
tion of state variables from a stabilizing feedback law, we
utilize the integral equation representation for the solution

of L:

eF(t—s)

x(t) = efbte 4 J GK x(s) ds

We now assume that F is a normal matrix, i.e. F is diagonaliz~-

able as

cexd ) VY

F o= T diag(iy,\ 0

27"

where Rexl > ReA2>---> Rexp > 0 > ReAp+1

Standard results in the theory of integral equations

>Seee> Re)
n

allow us to express x(t) in the form

t
x(t) = eFtc + J R(t,s) erC ds , ()
0

where the resolvent kernel R(t,s) satisfies the integral

equation

t _at
R(t,s) = eFlE-8)gy +[ eFE-8 gy R(s',s) ds'
0




-11=-

The representation (4) plus the normality assumption on P

th

enable us to write the 1 component of x as

u'HD

At
- J
x;(e) = . e (c,v(j)) i3

J (5)

A,S
. Jt 1
o J

n
El e (C’v(l))tlj] ds

n~e

rij(t,s) [

1 2

1= 1,2,000yn

th roWw of V, and (,) denotes the

where T = [tij]’ V(j) is the
usual vector inner product. We are now in a position to
assert

Theorem 2. Assume that tij =0, j=1,2,...,p and

that £ is controllavle. Then component X5 may pe omitted {rom

a stabilizing linear feedback law.

Proof. 1If tij =0, j=1,...,p, no increasing exponen-

tials appear in the first term of (5). Also, the condition

implies that no increasing exponentials will appear in any of

th column of R. Thus, in

selecting a stabilizing K, we may choose it so that the iEE

the "integrals which involve the i

column of R is zero. However, the integral equation for R

shows that this implies that the i—fiE column of K may be chosen

equal to zero, i.e. component X3 does not appear in the law K.
Example. To illustrate Theorem 2, let I be formed from

the matrices




-]2=

Then XF(z) = (z - 1)(z 4+ 1)(z + 2) and

o 1 1 1 0 © -1 0 1
F = 1 0 1 0-1 0 0-1 1
1 1 1 o 0 -2 1 1-1

= TAY

For this example, p = 1 and the form of T indicates that it
is possible to stabilize F by a control law of the form
k = (0 k2 k3), i.e. with the component Xy not appearing. To
check this, we compute the characteristic polynomial of

(F + gk') obtaining

Xp +gk'(Z) : 23 + (2 - k3)z2 + (-4 - 3k2 - 1)z

+ (Sk3 - 3k2 - 2)

Application of the Hurwitz conditions shows that for

stability it is necessary and sufficient that k2 and k3 satisfy

ky <2, kg + 3k, < -1, Sky - 3k, > 2

2

NKB

- 3kyky = 12ky + 3k, > 0 .

3

It is not hard to see that there are many solutions to this
system, e.g. k, = -2, k3 = (6 -V132)/6 is one. It is also
interesting to observe that the above inequalities have no
solution if either k2 = 0 or k3 = 0, i.e. both X, and x3
must appear in the control law to stabilize I.




~13-

IV. Discussion

The preceding results offer the possibility to precisely
determine the "dimensions" of the minimal control field for
many linear systems. As has been emphasized, the conditions
presented are not simultaneously necessary and sufficient.

It should be noted, however, that the necessary conditions
of Theorem 1 may be combined with the usual Hurwitz conditions
to form a single set of necessary and sufficient conditions.
But, checking the sufficiency nequirés ehecking the consis-
tency of a set of polynomial inequalities which, for large
systeméz is an operationally intractable‘situation. The most
practical way to combine Theorems 1 and 2 is to use Theorem 2
to determine those components of x which may certainly be elimi-
natea from the control law, then ernploy Theorem 1 to check the
remaining components for possible elimination. This procedure
also has the desirable side benefit of reducing the number of
n

combinations needed for applications of Theorem 1 from (3;
k=1
n-m

to I (n;m), where m is the number of components of X which
k=1 '

are eliminated hy Theorem 2.




[1]

[2]
[3]

(4]

-14-

References

Letov, A. "Some Unsolved Problems in the Theory of
Automatic Control," Diff. Egs., 4 (1970), 592-615
(Russian).

Casti, J. and Letov, A. '"Minimal Control Fields,"
J. Math. Anal. Applic., 43 (1973), 15-25.

Casti, J. "Minimal Control Fields and Pole-Shifting
by Linear Feedback," International Institute for
Applied Systems Analysis, Research Memorar.dum
No. RM-74-9, Laxenburg, Austria, April 1974.

Luenberger, D. "Observing the State of a Linear
System," IEEE Tran. Military Electronics, 8 (1964),
74-80.




