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Catastrophe Theory and

the Problem of Stellar Collapse

J. Casti*

1. Introduction

Recently, a new mathematical tool called "catéstrophe theory"
has been developed by the topologists Thom, Zeeman, Mather, and
others in an attempt to mathematically explain the discontinuities
of observed behavior due to smooth changes in the basic parameters
of physical, social, and biological processes. It has been shown
that the number of mathematically distinet ways in
which such discontinuities may arise is small when compared with
the dimension of the process, and a complete classification of all
distinct types has been made for processes depending upon five or
less parameters.

The purpose of this note is two-fold: first, to serve as a very
brief introduction to the subject of catastrophe theory and secondly,
to illustrate the theory by applying it to the determination of equi-
librium configurations for stellar matter which has reached the endpoint
of thermonuclear evolution, the problem of "stellar collapse". It
will be seen that catastrophe theory enables us to give a very
satisfactory explanation for the observed phenomenon of unstable
equilibrium configurations and the appearance of the so-called

Chandrasekhar and Oppenheimer-Landau-Volkoff crushing points.

*
International Institute for Applied Systems Analysis, Laxenburg,
Austria. '




2. Catastrophe Theory

In this section, we present a very brief discussion of the
basic assumptions and results of catastrophe theory in a form
most useful for applications. For details and proofs, we refer
to the works [1-5].

Let £ = Rk x R" » R be a smooth function representing a

dynamical system £ in the sense that Rk is the space of input
variables (controls, parameters) while R™ represents the space

of internal variables (states, behavior). We assume that k < 5,

while n is unrestricted. The fundamental assumption is that
I attempts to locally minimize f. We hasten to point out that
in applications of catastrophe theory, it is not necessary |
to know the function f. In fact, in most cases f will be a
very complicated function whose structure could never be determined.
All we assume is that there exist such a function which I seeks
to locally minimize.
Given any such fund¢ion f, if we fix the point c ¢ Rk, we

n

obtain a local potential function fc: R - R and we may

postulate a differential equation

X = - gradX f,

n - _ ¢ of s...,03f
where xe R, grad f = grad f = (FII, ’3§;).

Thus, the phase trajectory of I will flow toward a minimum of
fc, call it X, - The stable equilibria are given by the minima
of fc and, since there are usually several minima, X, will be

a multivalued function of ¢, i.e. X, : Rk > R™ is not one-to-one.




The point of catastrophe theory is to analyze this multivaluedness
by means of the theory of singularities of smooth mappings.
For completeness, and to round out the mathematical theory,

we consider not only the minima, but also the maxima and other

stationary values of fc‘ Define the manifold MfCRk+n as

M, = {(x,c): grad f_ = o}

let xp: M, ~ R¥ k+n , gk,

Xp is called the catastrophe map of f. Further, let J

be the map induced by the projection of R

be the space of Cm—funtions on Rk+n

with the usual Whitney
Cw—topology: Then the basic theorem of catastrophe theory (due

to Thom) is

Theorem: There exists an open dense set J C J, called generic

functions, such that if f ¢ JO

i) Mf is a k-manifold;

ii) any singularity of Xp is equivalent to

one of a finite number of elementary catastrophes;

iii) Xp is stable under small perturbations of f.

Remarks: 1) Here equivalence is understood in the following

sense: maps X: M > N and %¥: M » N are equivalent if there exist

diffeomorphisms h,g such that the diagram

M =N

X

is commutative. If the maps X,x have singularities at x e M, X

€ M, respectively, then the singularities are equivalent if the

above definition holds locally with hx = x.




2) Stable means that X¢ is equivalent to Xg for all g
in a neighborhood of f in J (in the Whitney topology).
3) The number of elementary catastrophes depends only

upon k and is given in the following table:

K y 1 2 3 4 5 6
# elemeritary T
catastrophes 1 2, 5 7 11 ]

A finite classification for k > 6 may be obtained under
topological, rather than diffeomorphic, equivalence but the

smooth classification is more important for applications.

3. Discontinuity, Divergence, and the Cusp Catastrophe

Qur critical assumption is that &, the system under study,
seeks to minimize the function f, i.e. I is dissapative. Thus,
the system behaves in a manner quite different than the Hamiltonian
systems of classical physics. In this section we shall mention
two striking features displayed by catastrophe theory which
are not present in Hamiltonian systems but which are observed
in many physical phenomena.

The first basic feature is discontinuity. If 8 is the image

in R¥ of the set of singularities of Xps then f is called the
bifurcation set and consists of surfaces bounding regions of
qualitatively different behavior similar to surfaces of phase
transition. Slowly crossing such a boundary may result in

a sudden change of behavior of Z, giving rise to the term
"catastrophe". Since the dimension of I does not enter into the
classification theorem, all information about when and where
such catastrophic changes in output will occur is carried

in the bifurcation set 8 which, by conclusion i) of the Theorem,
is a k-manifold. Hence, even though I may have a state space

of inconceivably high dimension, the "action" is on a manifold




of low dimension which may be analyzed by geometrical and analytical
tools.

The second basic feature exhibited by catastrophe theory is
the phenomenon of divergence. In systems of classical physics
a small change in the initial conditions results in only a small
change in the future trajectory of the process, one of the
classical concepts of stability. However, in catastrophe theory
the notion of stability is with respect to perturbations of the
system itself (the function f), rather than just the initial
conditions and so the Hamiltonian result may not apply. For
example, in an homogeneous embryo adjacent tissues will
differentiate.

Let us now illustrate the above ideas by consideration of
the cusp catastrophe. It will turn out that a minor modification
of this catastrophe is also the appropriate catastrophe for the main
example of this paper, the problem of stellar collapse.

Let Xk = 2, n = 1, and let the control and behavior space have
cordinates a, b, x, respectively.

Let f: R2 X Rl + R be given by

4 2
f(a,b,x) :i& + a% + bx

The manifold Mf is given by the set of points (a,b,x) C R> where

gradx f(a,b,x) = 0 ,

= X" 4+ ax+b=0 . (1)



The map Xp? Mf + R2 has singularities when two stationary

values of f coalesce, 1.e.

n—g = 3x2 +a=0 . 2
Thus, Egs. (1) and (2) describe the singularity set g of y. It
is not hard to see that S consists of two fold-curves given

parametrically by
(a,b,x) = (=322,22°,0) , A #0 |,

and one cusp singularity at the origin. The bifurcation set

B is given by

(a,b) = (-322,2)7)

3 + 27b2 = 0. Since Mf and S are smooth

which is the cusp la
at the origin, the cusp occurs in B and not in S. Figure 1

graphically depicts the situation.




FIGURE1. THE CUSP CATASTROPHE




It is clear from the figure that if the control point (a,b) is
fixed outside the cusp, the function f has a unique minimum, while
if (a,b) is inside the cusp, f has two minima separated by one
maximum. Thus, over the inside of the cusp, Mf is triple-sheeted.

The phenomenon of smooth changes in (a,b) resulting in discon-
tinuous behavior in x is easily seen from Figure 1 by fixing
the control parameter a at some negative value, then varying b.

At entrance to the inside of the cusp nothing unusual is observed
in x, but upon further change in b, resulting in an exit from the
cusp, the system will make a catastrophic jump from the lower
sheet of Mf to the upper, or vice-versa, depending upon whether
b is increasing or decreasing. The cause of the jump is the !
bifurcation of the differential equation x = -gradx f, since the
basic assumption is that I always moves so as to minimize f.
As a result, no position on the middle sheet of maxima can be
maintained and I must move from one sheet of minima to the other.
An hysteresis effect is observed when moving b in the opposite
direction from that which caused the original jump, i.e. ‘the jump
phenomenon will occur only when exiting the interior of the cusp
from the side opposite to that where the cusp region was entered.

To see the previously mentioned divergence effect, consider
two control points (a,b) with a > 0, b % 0. Maintaining the
b values fixed, with decreasing a the point with positive b follows
a trajectory on the lower sheet of Mf, while the other point
moves on the upper sheet. Thus, two points which may have been
arbitrarily close to begin with, end up at radically different

positions depending upon which side of the cusp point they pass.




While the cusp is only one of several elementary catastrophes,
it is perhaps the most important for applications. In Table 2,
we list several other types for k < 4, but refer the reader to

(6] for geometrical details and applications.

control space behavior space

Name potential function f dimension dimension
fold X2 + ux 1 1
cusp xLl + ux2 + VX 2 1
swallowtail X2 4 ux® + vx2 + WX 3 1
butterfly x6 + uxLl + vx3 + wx2 + tx 4 1
hyperbolic x> 4 y3 + UxXy + vx + wy 3 2
umbilie

elliptic X - xy2 + u(X2+y2) + VX + wy 3 2
umbilic

parabolic X2y + yLl +oux® + vy2 + wx + ty 4 2
umbilic

Table 2: The Elementary Catastrophes for k < 4.

4, Stellar Collapse

We turn now to the main application of this paper, the
determination of equilibria configurations for stars which
have exhausted their nuclear fuel and have entered the collapsing
stage of their existence. It is a well observed phenomenon
that there exist several possible final configuations for such
stars, depending upon their initial mass and internal pressures.
According to present theory, the possible stable final states
are white dwarfs, neutron stars, and black holes.

Before showing the relevance of catastrophe theory, let us

briefly summarize the steps in the analysis of equilibrium




configurations as outlined in [7]. We consider the equation of
hydrostatic equilibrium
'%% = p(r)GM(r) ,
r

where M(r) is the mass effective in producing gravitational
pull at the distance r, i.e. the mass included within the sphere
of radius r, p(r) is the density of matter at radius r, G is
the gravitational constant, and p(r) is the pressure at radius r.

One catalogs equilibrium configuations by the wvalue of
the central density in the following way: the central density
g is fixed and Eq. (3) is integrated from r‘: 0 to r = r*,
where r* is that value such that p(r*) = 0. The value M(r*)
is the total mass. Another value of the central denéity is
then chosen and the process repeated. In Fig. 2, the curve

of mass as a function of central density is displayed:
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FIGURE 2.EQUILIBRIUM CONFIGURATIONS OF STELLAR
MATTER [7)




From the standpoint of physics, as well as catastrophe
theory, the most interesting features of Fig. 2 are the two
crushing points separating the stable and unstable equilibrium
configurations. In all cases, the situation in which there is
a decrease in total mass with increasing central density
signifies an unstable system.

Upon comparing Figs. 1 and 2, we observe that for a = constant < O
in Figure 1, the "slice" of Mf for constant b gives
a representation for the curve of Fig. 2, omitting the unstable
region of densities beyond the Landau - Oppenheimer - Volkoff (L-0-V)
point. Thus, taking the control space to be the mass-pressure plane and
the behavior space as the central density, we postulate that all
of the structural information in Fig. 2 (and more) may be
accounted for by a minor modification of the cusp catastrophe.
The modification is necessary to describe the unstable positions
beyond the L-0-V point, as well as the stable configuations
of even greater densities which are not depicted.

In order to account for all positions, in effect we use
two copies of Fig. 1, suitably glued together,tc form a single
manifold having two cusps and four folds. The geometrical picture
is shown in Fig.'B. From the standpocint of current theory,
the most striking feature of Fig. 3 is the unstable region between
neutron stars and black holes. It's not entirely clear what
the proper physical interpretation of this region should be, but
it's most likely a transition phase corresponding to a star on the
borderline of becoming a black hole,a situation highly dependent,
of course, on the pressure/mass relationship as is clearly

indicated by the diagram. In additior, the
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cusp catastrophe shows that the Chandrasekhar and L-0-V crit-
iecal points are actually bifurcation sets in the mass/pressure
plane corresponding to the branches of the cusps.

What interpretation to attach to the cusp points themselves
is also unclear. In Fig. 3, the pressure/mass/density
coordinate axis is drawn to indicate that a catastrophe will
occur for all positive pressures and massesin accordance

with current theory;

black holes({stable

LANDAU -OPPENHEIMER-
VOLKOFF CRUSHING

CHANDRASEKHAR
CRUSHING POINT

LANDAU-OPPENHEIMER;
VOLKOFF BIFURCA-
TION SET

FIGURE 3.CATASTROPHE MANIFOLD FOR STELLAR COLLAPSE




however, the mathematics would admit of a smooth transition
from the white dwarf region to the black holes should future
observation "translate" the coordinate frame in the direction
of negative p. It would be an interesting and worthwhile
exercise to precisely locate the coordinate frame and to
determine the precise equations for the Chandrasekhar and
L-0-V bifurcation sets by means of the currently available data.
5. Discussion

In this note, we have shown that catastrophe theory may
be useful in synthesizing the global picture of various
physical phenomena. Obviously, there are many similar situations
in which such a picture may prove to be useful in explaining
observations and (hopefully) in predicting new ones. For some
examples along these lines see [3,4]. In future reports, we
shall investigate the applicability of some of the other
catastrophes listed in Table 2 to physical phenomena,
especially those areas where "phase transition" - type

behavior plays an important role.
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