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Abstract

This paper considersan algorithm suggestedby

A. Butrimenko for a network communicationsproblem. It is

shown here that the algorithm converges,and to the optimal

solution, when started from a particular initial sOlution.
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On a Network Algorithm of Butrimenko

1. Description of the Problem

Given a directed network with n nodes, a distinguishednode

called the destination,a set of probabilities {Pij} where arc

(i,j) is "open" with probability p .. and "closed" otherwise, the
lJ

object is to find the probability at any given node of reaching

the destination. Travel in the network is sequential,after

transferring from one node to another the arc probabilities are

independent. When at a node, it is known which arcs directed

out of the node are open and which are closed.

For example, consider the following network:

node 2

node 1

destination

node 3

Starting at node 1, supposefirst that the policy is to

move to node 2 if possible, node 3 otherwise. Then the probability

of reaching the destinationis

2
"5

3 3
'Ii" + "5

1• "3 • 4 = 23
"5 50



2.

The reversepolicy (node 3 first) would be slightly better

1
3"

4 2
'5 + '3

2
"5

3:: 7
11 15

The questionsare, what is the best policy and how may

the associatedprobabilities be calculated.

2. An Algorithm

Dr. Butrimenko suggeststhe following iterative algorithm.

000Start with an initial guess P :: (Pl, ... ,Pn ) of the node proba-

bilities, with ｐ ｾ ･ ｳ ｴ ｩ ｮ ｡ ｴ ｩ ｯ ｮ :: 1. Supposethe nodes are indexed

so that

Then

where the term in pX- l
is omitted. ｐ ｾ ･ ｳ ｴ ｩ ｮ ｡ ｴ ｩ ｯ ｮ Ｚ Ｚ 1 for all

values of t. Butrimenko asks whether this iterative schemewill

converge, and if it does, whether the solution is meaningful. It

will be shown here that for the starting solutions

(i)

(ii)

PC:> :: 1
1

PC:> :: 0
1

for all nodes i

for all nodes except the destination



the algorithm convergesand in case (i) to the optimal solution

for the given problem.

3. SOlutions to the Recursion

It will be useful to have a compact notation for the

recursionof section 2. Let

where p.. = 0 and
11

where ｰ ｾ is the estimateat iteration t of the probability of
1

reaching the destinationfrom node i. Define a function f by

the relation

where 0 is a permutationchosen so that

3 .

...

Note that we can always take 0(1) = destination.
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This notation reducesthe recursion of section 2 to

t t-l
Pi = f(Pi' P )

which, if it converges, leads to the relation

( * )

It will be shown later that this has at least one solution,

but at present it is not clear that it need have exactly one

sOlution. If it has more than one solution, then even if the

algorithm converges,it may not be known whether it has converged

to the optimal solution.

4. The Optimal Policy

Supposethat, situatedat node i, it is known for each

j ｾ i the maximum probability P. of reaching the destinationfrom
J

j. Since, at node i, we know which arcs are open and which not,

how should we proceed? It is clear that we should choose the

open arc which leads to the node having maximum probability. If

that is not clear, the following proof should help.

Lemma. The optimal policy at a node is to move to the node which,

amongst those available, affords the best chance of reaching the

destination.



5 .

Proof. Consider the case where only two arcs lead out of a

node. The first, open with probability p

P

Q

leads to a node from which the probability of reaching the

destinationis P and the secondwith probabilities q, Q

respectively. SupposeP > Q. If the policy of the lemma is

adopted, there is a probability of

pP + (1 - p) qQ (1)

of gaining the destination. Otherwise the probability is

qQ + (1 - q) pP (2)

But (1) is larger than (2) if and only if P > Q. Now consider

a situation with three arcs with parametersP, Q, R and assume

P > Q > R.

The ordering (P,Q,R) gives a probability

pP + (1 - p)[qQ + (1 - q) rRJ
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which is greater than

pP + (l - p) erR + (1 - r) qQJ

since Q > R.

Hence (P,Q,R) > (P,R,Q) and by repetition of such pairwise

interchanges

(P,Q,R) > (P,R,Q) > (R,P,Q) > (R,Q,P)

and

(P,Q,R) > (Q,P,R) > (Q,R,P) > (R,Q,P)

showing that (P,Q,R) is the best policy. This processmay be

repeatedfor any number of arcs. II

The lemma was somewhat labored but it is important to

establishthe optimality of that policy. Note then that this

policy gives the maximum probability of reaching the destination

from i, P., as
1

which is the limiting situation for the recurrencerelation given

in section 2, that is, equation (*).



Since this relation holds for all nodes i, exceptingonly

the destinationnode, it is demonstratedthat the optimal

solution to the given problem satisfies recursion (3).

5. Proof of Convergenceto the Optimal Solution

The approachhere will be to show that a particular

sequence{p t } has the properties

(i) each pt is an upper bound for all solutions to (*),

(ii) it convergesto a solution of (*).

Thus the algorithm will have convergedto the optimal solution

of the problem.

7.

Theorem 1. If P satisfies

P. = f(p., P)
1 1

for all i

and P < pt then,

P. < ｰｾＫｬ = f(P
1
., pt)

1 1

Proof. If

f(Pi' P) = r a..P .
j lJ J

and f (p. , pt ) r t= b .. P.
1 j lJ J



then r a ..P.
1J J

t< r a ..P.
1J J

by assumption

8.

and tr a ..P. <
1J J

tr b ..P.
1J J

by the lemma

so that P. < ｰｾＫｬ
1 1

as required. II

Hence if an initial value p? = 1 for all i is chosen, this is
1

evidently an upper bound for the optimal solution; hence, the

algorithm producesa sequenceof upper bounds.

Theorem 2.

Proof. ｰ ｾ Ｋ ｬ = r a.. ｐ ｾ say,
1 1J J

and tr a ..P.
1J J

t-l< r a ..P.
1J J

by assumption,

but t-l t-lr a ..P. < f(p., P )
1J J 1 by the lemma

and so ｰ ｾ Ｋ ｬ < ｐｾ
1 1 II

Main Theorem. From the starting solution Pi = 1 for all i,

the algorithm convergesand does so to the optimal solution.

Proof. By Theorem 2, the sequence{pt} is monotonically
co. •decreasingand thus convergesto some solution P Slnce 1t is

bounded below by zero.
co •

By Theorem 1, P 1S an upper bound for

all solutions to the recursion (*). By the lemma, the optimal

solution satisfies the recursion.

solution. II

co
Hence, P is the optimal



6. Conjecture

,Starting from an initial solution ｰ ｾ = 0 for all i, it_

may be shown that the resulting sequence{pt} is a sequence

of lower bounds for all solutions to (*) and convergesto one

such solution. Hence, amongst the set of such solutions one

is an upper bound and one is a lower bound. This state of

affairs suggeststhat the two bounding solutions may indeed

be the same solution and that there is exactly one solution to

(*). This would show that if the algorithm converged, it would

do so to the optimal solution. It remains to show whether the

algorithm convergesfor any starting solution.

7. Finite Convergencefor Acyclic Networks

For a certain class of networks, the conjecture is true

and, in addition, the algorithm convergesfinitely.

9.

Theorem 3. For an acyclic network, the algorithm converges in

at most n-l steps and to the optimal solution, from any initial
ovalues of P..
J

Proof. The idea is that after the kth iteration, ｰ ｾ =
J

00

P. for
J

at least k+l values of j.

Let So = {destination node}

Sl = {set of nodes whose only outgoing arcs

go to the destinationnode}



1

and in general,

Sk = {set of nodes whose outgoing arcs are

k-l
only incident with nodes in US,}.

i=O l

,. k 00, •
The clalm lS that P. = P. for all JESk . The case k = 0 lS

J J

automatic since ｐ ｾ ･ ｳ ｴ ｩ ｮ ｡ ｴ ｩ ｯ ｮ is constantly 1.

Assume, using induction, that it is true for k = 0,1,... ,to

But for iESt +l , the recurrencerelation

is only in terms of those Pj with

the sets Sk; hence, pl+l = pl+2 =

iESt +l ·

fixed values by definition of

pool" and thus ｰ ｾ Ｋ ｬ = ｰｾ for all
l l

It now only remains to show that

for all

Supposethat for some k, Sk+l = Sk and ISkl < n. Let Sk

be those nodes not in Sk' Since ｓ ｫ ｾ Sk+l is empty, each node

of Sk has an outgoing arc to another node in Sk' Starting at

any node iESk construct a sequence(i,i l ,i 2 , ... ) where

p.. > 0 and iSESk for all j. Since Sk is finite, some
lsls+l

i = i for s ｾ t and Sk contains a cycle, which is contradictor.s t



Hence the algorithm convergesfinitely to a solution which

is independentof the initial values. I I

Note that the algorithm for the acyclic case is a one
00 • •stage processsince each P. may be obtalned sequentlally
J

immediately.

11.


