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Resiliency, Stability and

the Domain of Attraction

J. Casti

I. Introduction

A common thread running through the analysis of most

large systems is the problem of how "elastic" is the system

under study, i.e. if the system is perturbed from some equi-

librium state (or set), how large a perturbationcan it with-

stand before either breaking down or entering a new operating

regime? Obviously, when the problem is stated in such a

vague, intuitive fashion no quantitatively useful answers

may be obtained. To make analytic progress,some mathemati-

cal "flesh and blood" must be added to the imprecise skeletal

verbal systemdescription. However, even the above crude

problem statementis qualitatively useful since it makes per-

fectly clear the sound system-analyticprinciple of "stability

before optimality." It is a happy mathematicalcoincidence

that, for some special classesof systems (fortunately useful),

it can be shown that an optimal control law also generatesa

stable system. However, in general these two ｮ ｯ ｴ ｩ ｯ ｮ ｾ have

to be treatedas separatequestionswith stahility being- the

first order of business.

The idea of determining the ll el asticity", or "resiliency",

of a mathematicalsystem is not a new one, essentiallyhaving
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its origins in the stability theory of differential equations,

where an item of prime concern is the so-called "domain of

attraction" of a critical point. Here, of course, the ques-

tion is to determine those regions in phase spacewhich belonf

to given attractors (or repellors). In general, this is a

very difficult problem with no complete sOlution. Unfortu-

nately, the resiliency notion has not, as yet, been systema-

tically pursuedby analysts of physical systems. A few isola-

ted first steps have been taken, notably in ecology [1-2J,

but for the most part effort has been concentratedon deter-

mining either the domain of attraction under the free

(uncontrolled) motion of the system, or controls which opti-

mize some integral criteria of the system'scontrolled motion.

In this note, we intend to investigatesome of the relation-

ships between feedback controls and system resiliency.

In the classical theory of differential equations,it is

a well known fact that the linear system of n equations

x= Ax , x(o) = c ,

will have x ｾ 0 as t ｾ 00 for all c if, and only if, A is

a stability matrix, i.e. the characteristicvalues of A lie

in the left half-plane. Thus, the domain of attraction of

the origin is, in this case, the whole space Rn . The Poincare-

Lyapunov theorempartially extends this result to certain

types of nonlinear systems. Namely if

x = Ax + g(x) x(o) = c ( * )
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where i)

such that

ficiently

as t __ 00

A is a stability matrix, ii) g is a vector function

ｾ ｾ ｏ ｡ ｳ "xii -- 0, and iii) II c II is suf-
II xiI

small, then all solutions of ( * ) also approach zero

In other words, in a sufficiently small neighbor-

hood of the origin, the linear part of (*) determinesits sta-

bility characteristics. Note that this is a much weaker result

than that for linear equationssince now the domain of attrac-

tion of the origin has been reduced from all of Rn to a "suffi-

ciently small" neighborhoodof 0 and what "sufficiently small"

means is determinedby the precise structure of g.

As already noted, it is often of interest to determine the

boundary of the domain of attraction in order to gain insight

into the resiliency question. From a passive, purely observer-

oriented point of view, the determinationof this boundary is

an important question and the classical theory of ordinary dif-

ferential equationscontains many results in this direction.

But from a more fundamental, "activist" viewpoint, the question

while still interesting (academically), is rather sterile.

The reason is that even if one had magical techniquesfor precise

ly determining the domain of attraction, if there are no means

available for influencing the behavior of the system from the

outside, then one is forced to accept the free motion of the

system and its associateddomain of attraction. In other words,

if the initial perturbationsand the system dynamics are beyond

control, then it is small consolationto know the domain of at-

traction. Admittedly, this situation chRnges if the initial dis-

turbancesare "influenceable". On the other hand, if there
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exists a capability to interact with the system, then the

following problem arises: within the constraintsof allowable

interaction, determine a control input such that the domain of

attraction has certain properties,e.g. is as large as possible,

includes a certain region, etc. If it were known, for example,

(as it is for linear systems),that by suitable feedback it

was possible to arrange to have the domain of attraction be

any prescribedset, then it would not be necessaryto ､ ･ ｳ ｩ ｾ ｮ

resiliency into a system, since it could always be achieved

afterwards by suitable feedback control. Naturally, such a

result would allow the system designer (or controller) ereat

flexibility in dealing with other aspectsof the system, safe

in the knowledge that he can always recapturean arbitrary de-

gree of resiliency.

Our objective in this note is to establisha result alonE

the foregoing lines for the class of nonlinear systems (*)"

under specific conditions as to how one is allowed to interact

with the system. Applications to some ecological models will

then be given, alone with some possible connectionsto related

work on minimal control fields [3-4].

2. Linear Feedbackand Resiliency

As a point of departure, let us assume that the allowable

external inputs to the system under study appearadditively

and are linear. Thus, we consider the controlled system

x = Fx + Gu + hex) , x(O) = c (L)

where x is the u-dimensionalstate vector, u is an m-dimensional
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control vector, F and G are constant matrices of the appro-

priate sizes, and h is a continuous n-dimensiqnalvector func-

tion satisfying the conditions lJ..TtH+l--+-o as Ilxl I--+-o in

some vector norm I 1·1 I. Note that the matrix G specifies the

allowable interactionsbetween the control input u and the

state x. Further, assume that the allowable control laws u are

"linear feedback", i.e. u(t) = -Kx(t), where K is an mxn con-

stant matrix to be chosen in an appropriatemanner.

The basic question we ask is the following: given F, G, h,

is it possible to choose K so that the domain of attraction of

the origin contains some prespecifiedneighhorhoodof the ori-
.

gin? In particular, can K he chosen so that the set

n = {c: I Icl I < M} is contained in the domain of attraction of

0, where M is given in advance? The theorem given below as-

serts that, under very weak conditions on F and G, the answer

to this question is yes. Thus, by suitable linear feedback,

I may be made to have any prespecifieddegree of resiliency!

The precise statementof the theorem is

Theorem 1. Let the pair (F,G) be completely controllable

and let M > 0 be specified. Assume that the system L is as

specified above. Then there exists a matrix K such that the

domain of attraction of the controlled system

x = (F - GK)x + h(x)

contains n.

, x(o) = c ,

Proof: The proof hinges upon the "pole-shifting" theorem of

linear systems theory which assertsthat, given any symmetric set

A of complex numbers, there exists a matrix K such that the
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characteristicroots of F - GK are the set A if, and only if,

(F,G) is completely controllable. Thus, in particular, we

can arrange for the root with largest real part to be as far

into the left half-plane as desired.

Now let A be a symmetric set of n complex numbers whose

elereentwith ｬ ｡ ｲ ｾ ･ ｳ ｴ real part lies to the left of the real

number 0 < 0, where 0 will be specified in a moment. Further,

assumethat the elements of A are distinct. Applying the pole-

shifting theorem, we determine K so that F - GK has A as its

set of characteristicvalues.

Next, make the transformationz = Tx to ､ ｩ ｡ ｾ ｯ ｮ ｡ ｬ ｩ ｺ ･ (I ).c

This gives the equivalent system

z= Dz + h(z) , -= c ,

where D = diag(Al, ... ,A
n

) = T(F - GK)T- l , ｾ = Tc, ｾ Ｈ ｺ Ｉ = Th(T-1z).

It is easy to see that h satisfies the same conditions as h.

Define the scalar function

v (z) = 1/2(z,z)

Then

n

.I
1=1

zi (t )hi (z (t»)

zi 2 (t) + 'I z(t ) II II h (z (t) ) II

n 2 2L ILl z. +
i=l 1 1

n
< 0 I

i=l

v (z (t ｾ =

For t = 0,
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.::..lli.LLJJfl
n 2
L c .

. 1 ll=

V(z) < 0 in some neigh-

Hence V will be decreasingin a ｮ･ｩｾｨ｢ｯｲｨｯｯ､ of t = 0

and we may then repeat the argument for all t > O.

ｒ ･ ｾ ｡ ｲ ｫ ｳ Ｚ (i) the condition on cr ｾ｡ｹ be rephrasedas a

condition involving M by usinl! the inequality llell 211Tllr'1,
(ii) the complete controllability condition on the pair (F,G)

means that the nxnm matrix

,

has rank n. This is a generic property of constantsystems,

1.e. the pairs (F,G) which fail to satisfy it form ;l null

set in the space of all pairs (F,G), (ii i) to insure that the

real parts of all characteristicroots of F - GK lie In the

half-plane Re A < 0, for some fixed 0, it may or may not be

necessaryto utilize all nm degreesof freedom available in

K. If not, then other optimality factors ｾ ｡ ｹ be considered,

e.g. rapid approach to equilibrium, integral criteria, and so

forth. (iv) the norm used in the above proof is the £00 norm,

1. e. I Ix II = max {I xi I }.
i

3. An Example from Ecology

Consider the simple predator-preyproblem

•x = x(l - 1/2x - y) + ul (t)

•y = y(-l + x) + u2 (t)
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where x and yare the levels of prey and predator, respectively,

with u
1

and u2 the two control inputs. In the absenceof con-

trol, it's easy to see that this systemhas the two equilibrium

levels (0,0) and (1,1/2), with the secondbeinr the critical

point of interest. It is a stable focus.

As usual, we first shift the critical point (1,1/2) to

the origin, obtaining the new system

,

y = (y + 1/2)x + u
2 , ,

The objective is now to choose a control vector ｶ ･ ｣ ｴ ｯ ｲ Ｈ ｾ ｾ Ｉ = 1((;),
such that the set of points {max llall ,!a2IJ < I} lie within

the domain of attraction of the origin. (Note that r·1 = 1

was chosen so that the domain of attraction of the origin

would not include the trivial critical point corresponding

to extinction of both species.

In the notation of Theorem 1,

F = [-1/2

1/2 G = ｛ｾ ｾｬ c =G:)

[

X(_1/2X - y)]
h =

x(y + 1/2)

Choosing K of the form

K =
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gives

-1/2 - kll 0

F - GK =

and insures that T = I. To determine the values kll , k22 so

that the controlled systemhas the set max{lall, la21} < 1

within the domain of attraction of the origin, let

Then

= 3/2

Thus, if cr < -3/2 the conditions of the theoremwill be fulfilled.

This implies that any choice of k l1 , k 22 such that

k 22 > 3/2

will insure that the interior of ｾ lies within the domain of

attraction of the origin.
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4. Discussion

We have demonstratedthat by suitable application of

linear control theory, it is possible to modify the domain

of attraction of a critical point for certain nonlinear sys-

tems. This result raises several questions for future inves-

tigation:

a) how may the results be extendedto a broader

class of problems, in particular, to systemswhose dynamics

may be more complex than just ordinary differential equations,

e.g. differential-delayequations,stochasticdifferential-

integral equations,or even functional equationsof a more

exotic type incorporatinF-all of these features;

b) since there may be degreesof freedom ｲ ･ ｭ ｡ ｩ ｮ ｩ ｮ ｾ

in the control law after assuringthe domain of attraction,

what is the best way to utilize these "extra" variables. For

example, they may be used in an attempt to find a stabilizinf,

law which requires measurementof the fewest number of state

variables. Some ideas along these lines have appearedin [3-4];

c) how may the foregoing ideas be made to intersect

with other conceptsof systemstability, in particular, questions

involving the stability at a set rather than a single critical

point.

These and other questionswill be investigatedin future

studies.
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