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A Formalism for Managementof Surprise

or

How I learned to Design Dams and to Hate SystemsAnalysis

M.B Fiering

After many centuriesof designing engineeringstructures

and systems within a deterministic framework, it has become

fashionable to deal explicitly with uncertainty as an

important component of planning and design strategies.

Advances in applied statistical decision theory, coupled

with the wide availability of computing machinery, are at

the root of this transformation,and the recent ｬ ｩ ｴ ･ ｾ ｡ ｴ ｵ ｲ ･

is ｲ ･ ｰ ｬ ｾ ｴ ･ with studies of systems, large and small, under

various conditions of uncertainty. This paper deals with

a few rules for decision-makingunder a special category of

uncertainty--namelythat associatedwith ｴ ｨ ｾ occurrenceof

events which could not be foretold, let alone assigneda

prior probability of realization within a given desigri

horizon.

The use of liberal factors of safety has a long history in

engineeringdesign; it is commonplaceto be derisive about

these factors, and to call them "factors of ignorance" or

other less endearingterms. But this is not entirely fair,

becauseit has been traditional to have the safety factor
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reflect the degree of uncertainty inherent in the design.

and the cost (or danger) associatedwith failure. We speak

here of the more obvious modes of failure; these include

structural failure or collapse (of a building, a dam, an

hydraulic control line) and operational failure (inadequate

flood storage, inadequateirrigation supply, etc.). Thus

we note that structural safety factors are of the order of

1.5 or 2.0, while the safety factor against failure of an

earth dam by sudden drawdown, based on extremely conserva-

tive assumptions,is around 1.1. It is impossible to assign

specific numerical factors of safety against hydrologic

extrema, but we try to identify flood frequency character-

istics and design against an event characterizedby a

ｳｰｾ｣ｩｦｩ｣ return interval.

To these elemental considerationsof uncertainty we must add

a few new classes. Supposewe have at our disposal two

decision variables, x and y, and that we seek those values

* *(or that decision), say x,y for which the system response

* *f(x ,y ) is optimal. Typically the function f is some

measureof net benefits or the benefit: cost ,ratio, appro-

priately discounted. The decision variables x,y are gener-

ally not free to range over all possible values but they,

or some functions of them, are constrainedby the conditions

of the problem. Thus the derivatives of f with respect to

the decision variables are not necessarilyzero at the

optimum.
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We consider Figure 1, the contour map defined by the loci

of equal response,or functional value f, on which it is

desired to locate the decision (or x,y couple) where the

responsef(x,y) is maximal. Under the first class of

uncertainty we decide on the values x,y(to be built) and

undertake ｾ ｯ ｮ ｳ ｴ ｲ ｵ ｣ ｴ ｩ ｯ ｮ Ｎ In this section, we use the terms

build and constructionas if all decisionswere structural

components. But this is merely to avoid the ungainly ter-

minology associatedwith repeatingeach time that a decision

can be an operatingrule or managementdecision, not merely

a structural measureor capacity. For a variety of reasons

relating to structural inhomogeneity, unreliable quality

control, communicationor human errors, etc., the finished

system is characterizedby a design different from the

scheduledcouple x,y; we call this Ｈ ｸ Ｋ ｾ ｸ Ｌ ｹ Ｋ ｾ ｹ Ｉ Ｌ as shown

on Figure 1. This is tantamount to a small movement in

decision space, but the contours of systemresponseremain

ｵ ｮ ｣ ｨ ｡ ｮ ｧ ｾ ､ Ｎ This class of uncertainty is traditionally

treatedby application of a factor of safety.

The second form of uncertainty is the target of much of the

massive effort in stochasticmodelling of systems,particu-

larly those which ,purport to representenvironmental,

ecological, meteorologicaland socio-economicinteractions.

It accommodatesthe fact that system components (typically

classified as inputs, controls, demands and outputs) are

rarely known deterministicallY. For example, streamflows,
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population projections, economic demand functions, the

discount rate(s) and ecological processescan be estimated

more or less well, and the importance of devoting explicit

attention to their variations or instabilities dictates the

extent to which stochasticconsiderationsmust be built into

decision models. In the notation of Figure 1, we specify

the decision x,y but realize a response

f' (x,Y) = f(x,y) + I:::.f(x,y)

where the increment I:::.f(x,y) measuresthe departure from the

surface f(x,y). The magnitude of this departuredependson

random influences effective ｡ ｾ the particular couple or

decision vector x,y. In other words, the surface f(x,y) is

replaced by a mantle of variable thickness,with those

responseshighly susceptibleto random fluctuation associ-

ated with thick mantles within which the actual system

responsemight reasonablyfall, while more predictable

responseslie within closely contained mantles. We concep-

tualize the addition of at least one additional dimension

to the ｾ ｹ ｳ ｴ ･ ｭ description; this dimension subtendssome

deterministic scalar response. But if responseincludes

random fluctuations, then at least one additional dimension

is required to describe the variation. However many

dimensions are utilized, it is clear that the response

surface itself remains fixed and that the realized outcomes

migrate among the cloud of points which define the uncer-
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tainties inherent in systemperformance. As in the first

class of uncertainty, we try to deal more precisely with

where a particular realization or outcome will reside,

contingent on a set of alternative responsesand on some

information concerningour ability to describe or even

define the relevant random processes.

We now move to the third, and most interesting, class of

uncertainty. It differs from the first two in that, the

responsesurface changesafter the decision x,y is imple-

mented. Many examples can be drawn from ecological experi-

ence; a classic case is that of the use of DDT. After

years 'Jf \oJidespreadapplication, the llrules of the game"

ｷ ｾ ｲ ･ 30ruptly modified and the responsesurface associated

with the decision to spray was drastically changed, reflec-

ting important damagesand losses. Another case is the

occurrenceof a major environmentalaccident...a chEmical

or oil spill, a nuclear accident, a pollution episode of

one sort ,)r another...which causes the ecological system

teo "f1i p ll (cf' Holling

and ｆ ｩ Ｌ ｾ ｲ ｩ ng and Holling: I"lanagement "md Persistence of

PerturbedEcosystems,IIASA Ecology ｐ ｲ ｯ ｪ ･ ｾ ｾ Ｌ 1974) from one

domain of stability to another. In other words, with

rp ｦ ･ ｲ ｾ ｲ ｊ ｣ ･ to Figure 1, a whole set of new contours is dealt

and the system is evaluatedunder a new regime, 0r under

new criteria.
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It might be argued that the consequencesof such "surprises"

could be reduced by the collection of more and better data

and better understandingof the natural order of things.

Indeed, a calculus has been advancedfor specificationof

optimal data bases in special problems. The point here is

that systemsapplications in important areas of human

endeavorinvariably deal with significant information gaps

and uncertainties;moreover, no foreseeablemodels, no

incipj (-'nt insights, will reduce these uncertaintiesand

gaps to levels which completely preclude surprise. The

consequenceof these gaps is that inconsistenciescan enter

the decision-makingprocess;we proposehere a strategy for

dealing systematicallywith them.

At some earlier time in the history of technology the issue

might not have been so serious, but our society is being

ir.exorably driven toward problems of a larger scale, toward

global considerations,toward scientific and technologic

in-cerventionsand commitments which for all practical

purposesare irreversible. We cannot hedge much longer,

for example, with respect to generationof primary energy

or its ultimate distribution through secondaryand tertiary

networks, even while legitimate environmental interests

press for more rigorous pollution standardsand better

enforcement. The argumentsare compelling, conjuring

images of generationsyet unborn, of denuded forests and
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of imbalances far more serious than the mere destruction

of a particular piece of wilderness. It is not appropriate

here to entertainthe meta-physicalarguments concerning

the extent of our responsibility toward these future

generations,or to interject jUdgments on whether or not

we are so powerfully committed along a trajectory of con-

sumption that preservationon our planet of life as we know

it representsa feasible target. The inescapablefacts

are that we are galloping toward decisions which refuse to

be delayed, that we will never have enough information to

be perfectly comfortable about having to make them, that

they have such long lead times for implementationas to be

essentiallyirreversible, and that they are too expensive

to initiate parallel tracks which allow for some maneuver-

ing room. Part of the information basis for jUdging these

decisions is the extent to which we, or our progeny, might

be surprisedby their consequences. We seek a calculus of

surprisewhich can be utilized, with some of the more

traditional mptrics, for evaluation of program options.

An example of surprise in a non-ecologicalsetting is the

recent history of U.S. oil policy and its consequences.

For generationsArab disunity dictated reliance on the

security of oil supplies to the fr.S., and it seemedthat

contingency plans need not be made. But a measureof

Arab unity was achieved, and however good the U.S. "system"
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for generatingand distributing energy from oil, it per-

formed badly under the changedrules. It was, and presume-

ably still is, inflexible, strongly sUbject to surprise;

the long gasoline lines bore testimony to this.

Tnese questionscan be paraphrasedin the ecological terms

introduced by Holling. How resilient is the proposed

system? How great is its capacity to absorb unanticipated

perturbationand to continue usefully to function? How

brittle is its optimum? Can it roll with the punches? Can

it persist under environmentalstresseswhose magnitudes

and frequenciescannot be foreseen? Can we trust our

system to withstand stresseswhose origins are now, and

surely will remain, unfathomable?

This paper addressesa design formalism for systemswhich

must operate under threat of extrema, inclUding those

events for which estimatesof sUbjective probability can

reasonably ｢ ｾ made (e.g., extraordinary floods beyond the

worst flood of record, the carcinogeniceffects of

cyclamates,etc.) and events which cannot be defined, let

alone associatedwith some level of probability. For

example, we could not reasonablyhave predicted a priori

the now well-known effects of DDT, nor could we have

agreed on a probability density for various intensities of

these effects even if some perceptivebiochemist had

sounded the alarm. Moreover, no clear policy could have

emerged simply by documentingthe ecological threat; the



- 9 -

trade-off between damage (particularly limited damage) and

starvation (assumingfor the moment that there is no

immediately available alternative for pest control) is

very elusive, and certainly depends on whether the decision-

maker is starving, preparedto augment someone else's

depleted crop, or merely looking on from afar.

Holling and others have remarked that our knowledge of

ecosystems,however extensive,will always be exceededby

our ignorance. Thus we will always run the risk of being

surpri ｾ Ｚ ［ ･ ､ by environmentalconsequences,and a traditional

factor of safety, at least in the structural sense,is

inadequateprotection against this form of surprise. We

thus GjstinguifJh between ｣ ｾ ｬ ｣ ｵ ｬ ｡ ｴ ･ ､ risk, however that

calculQtion might be made, and surprise. This difference

is mor8 profound than the familiar distinction between

risk and uncertainty. We deal here with events which are

not defined, not merely with those events for which we

cannot reasonablyassign probabilities. We plan to promote

resili0nt systems, to discouragebrittle ones. We plan to

explore the region of the responsesurface near the

optimum, to determine what happensif the system "flips"

off its peak and tumbles into the surrounding lower region

ｾ ｯ ｷ steep? How far down? How fast?) And we plan to

investigatewhat happensif the rules are changed to the

extent that a new deck of contours is dealt. We posit

that the peak of the responsesurface may not be the best
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place to be becauseit may be so situatedwith respect to

the boundariesof the domain of stability that a surprise

will drive the system beyond its stable regime into a new,

uncharteddomain.

An Example

Consider the water-resourcesystem in Figure 2. Two up-

streamreservoirs service in-streamwater demands in

accordancewith the standardor Z-shapedoperatingpolicy

in Fir;ure 3. The policy is characterizedby two parameters,

the reservoir capacity and the target draft, and by the

assumptionthat the total inflow for the current time

period (day, week, month, season,year or whatever) is

known at the start of that period. This appearsto be

very restrictive, but experienceover many years suggests

that reservoir inflow and outflow are continuous variables

and that the characteristictime period for most models

can be made small, thereby rendering the assumption

acceptable. The abscissaof Figure 3 gives the total

amount of water available, consistingof initial reservoir

contents plus inflow during the period. The policy

ordains that if this is not greater than the target, the

total supply is releasedand the reservoir remains empty.

Any available supply in excessof the target is stored

until the capacity of the reservoir is reached,whereupqn

the reservoir spills unavoidably.
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Under the initial objectives promulgated for this simple"

system, each reservoir services its associatedtarget

without regard for the other reservoir or for the potential

use to which the water might be put by the city located

downstream,but there is a penalty function for not meet-

ing a downstreamtarget expressedat the city. Releases

from the two reservoirsare assumedto be additive with

respect to the downstreamtarget, and there is no interme-

diate or unregulatedinflow entering the system between

either reservoir and the city. Thus if one upstreamtarget

were violated, the downstreamtarget might still be met by

a spill from the other reservoir. It is convenient to

think of the upstreamtargets as in-streamuses, but this

need not necessarilybe the case. The reservoirscould be

used to meet irrigation targets on the assumptionthat the

return flow over a long time period, say a year, were

equal to the diversion. The point is not to quibble over

the exact uses of the water but to investigatesystem

performanceunder this and a new set of system objectives.

We assign benefits to the several releases. The numerical

values of flows, storages,targets and capacitiesare all

integers to facilitate computation in this example, so

that costs and benefits are then readily tabulated for

each of the few possible draft and capacity ｣ ｯ ｭ ｢ ｩ ｮ ｡ ｴ ｩ ｯ ｮ ｾ Ｎ

The inflows are presumedto derive from a Markov process
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at each dam site, with the relevant data shown as part of

Figure 2.

It is then a simple matter to calculate the steady-state

inflow distributions at each site, the steady-state

storageprobabilities at each reservoir, and the draft

probabilities at each site and at the city. From these

and from the simple benefit functions we compute expected

net benefits, the benefit:cost ratio (discountedand un-

discounted) and a few miscellaneoussummary statistics

for system operation. There is nothing extraordinaryabout

this 8xercise; it has been done, for one reservoir, by

Thomas in 1958 (Harold A. Thomas, Jr: unpublishedmemoran-

dum to the Harvard Water Program), by Fiering (for corre-

lated Gaussianflows) in 1961 (Myron Fiering: Queueing

Theory and Reservoir Design JASCE, Hyd Di0,and by others

since. It is a straight-forwardmatter to locate the

optimal design (or combination of targets and capacities),

albeit it is a tiresome computation. Supposeeach reser-

voir can be as large as 3 volume units (4 choices) and

that the annual flows cannot exeed 4 units. It is then

sensible to talk of annual targets of 1 or 2 volume units,

so that the total number of design combinations,at both

reservoirs is 4 x 4 x 2 x 2 = 64. One of these is optimal,

as shown in Table 1.
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Table 1. System PerformanceUpstream-

Dominate

Rpservoir 1 Reservoir 1 Reservoir 2 Reservoir 2 Upstream Downstream

Ｇ ｾ ｡ ｰ Ｒ Ｎ ｣ ｩ ty ｔ ｡ ｲ ｧ ･ ｾ ｾ Capacity Tar-get Dominates Dominates
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