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In a 1971 paper, Suzukili and Kiyose give a model for light
water moderated atomic reactor refueling optimization.
$pecifically, they present a linear programming formulation
for minimizing the number of fresh fuel assemblies required
ﬁy a reactor over a finite planning horizon subject to power
generation and safety requirements and rcactor design specif-
ications. The optimal refueling policies found by Suzuki and
Kiyose were useful in reducing the fresh fuel required, but
two difficulties were encountered. First, the optimal linear
programming solutions included small fractional numbers of
fresh fuel assemblies which were difficult to round off. Thse
second difficulty was that their formulation had approximately
165H constraints where H is the length of the planning horizon.
The problems solved had H=10, but it was desired to analyze

the problem for longer planning horizons of 20 to 30 stages

without solving prohibifively large mathematical programming
problems. :

In this paper, we give a reformulation of the reactor
refueling optimization problem that consists of épproximately
15H constraints and a large number of columns. This reform-
ulation is required because the state-of-the-art of integer
programming does not usually permit the solution of integer
programs with thousands or even many hundreds of constraints.
Moreover, the reformulation should permit the linear programm-

ing approximation to be more eastly solved, at least




approximately. Finally; the reformulation identifies and
analyzes explicitly the fundamental activity in refueling
optimization; namely, the introduction, degradation and
removal of fuel assemblies. This should make it easier to
modify the model to take into account additional features of

the problem such as a dost for moving an assembly from one

location to another.

1. Statemert and Reformmlation of the Problem

A fuel assembly is introduced into the reactor at a
burnu§ level 1 and degrades with time to burnup level j
j=1,...,J. Time i3 measured in discrete stages and we let
h =1,...,Ii, dencte the periods in the planning horizon. The
exact degradation of an assembly during a given périod decpends
cn the zone in which it operates. Let i = 1,...,I denote these

cones and let T.(j) > J denote the burnup level of a fuel

(
i
assembly at the end of a period spent in zone 1 when it was

st a burnup level jJ at the start of the period.

The formulation of Suzukil and Kiyose 1is an fTollows.

- h . -
Lot ﬁjj denotec the number of fuel assemhlies of huriup lave’

J assigned to zone i in period h. The integer programming

problem which minimizes fresh fuel 1is



z=min I I xb, . (1.1)
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xij > and integer for all i,j,n, (1.4%)

where the integer aij is a technological coefficient for an
assembly in zone 1 at burnup level j and

-1,., .
Ti () is the burnup level at the start of a period of an

assembly located in zone 1 which degrades to level j by the
end of the period. Note tha* the slacks on the constraints
(1.3) are the burnup assemblies of levels j which are
discarded at the start of period h+l. 1In the actual applic-
ation, there are 2 IH .constrainte of the type (1.2), including
T® equality constraints. Moreover, there are upper bound
constraints on the slack variables S? on the

constraints. We have stated (1.2) in the simpler form, and
omitted the bounds on the S?, in order to be able to present
an uncluttered discussion of our approach. These details can
be feinstated without difficulty when computation is done.
The idea behind our reformulation is that the constraints
(1.3) have an implied network structure which 1s not being
exploited and moreover, which is inefficzency described by a

large system of inequalities.



We define a fuel assembiy schedule to bte an H-vector
with entries 0,1,2,...,1 where the entry in the hth component
indicates the zone in which it is located in period h and
zero indicates it is not used. The non-zeros must run

consecutively. An example of a schedule when H=10 is the Vectof
(0,0,0,3,3,2,2,0,0,0) indicating the assembly is introduced
into the reactor in zone 3 at the start of periocd 4, is

relocated in zone 2 at the start of period 6, and iz removed

at the end of period 7.

Fach assembly schedule implies unigque burnup levels of

the assembly. Specifically, we have

assembly used in periods ho,hO + l,...,hO + T
located 1 s i 1. i
ed 1in zone 10, 11,. ,1T

burnup levels j j |
where

Jg T T3 (Js-l) i 5= 1,...,0

s—-1

and

g = 1.

0

The information in (2) is used to define the performance
coefficients
if h e {ho,....,hO + T}

h. + T}

‘
O i ¢ - o @
{ho, ’ 0

Let V denote the IH vector with components v?.

In order to state our reformulation of problem (1), we need

"""""""""""""-;————————-____;_________________



a complete enumeration of such columns, say V , k = 1,...,K,
with components v?’k. Let X denote the number of times
schedule k is to be used. Then problem (1) is equivalent to

b? for all i, h (3)

n
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[ e -
<
"

=
IA

0 and integer for all k

el
v

The number of schedules will in general be quite large and
a rethod is required to generate good schedules iteratively
but not exhaustively. The linear programming problem which
results if the integrality restriction in (3) is omitted is

denoted by L.P. (3) and its minimal objective function value

by L.

2. Geoneration of Fuel Assembly Schedules

It is clear that I.P. (3) has an enormous number of
cclumns for an application of any realistic size; for
i=5,J =150, H = 30, we estimate I.P.(3) would have
between 10,000 and 20,000 columns. Thus, some pricing
prncedure for generating good columns for I.P.(3) without
exhaustively generating all columns is required. Since
there is nothiné inherently special about I.P.(3), a column
generation procedure for it is applicable to a number of
similar I.P. cclumn generation problems such as the cutting

stcck problem, multi-commodity flow problems and others



(Lasdon (1970)). For this reason, the general theory of
I.P. column generation will be presented in another paper.
We give here only a brief discussion of how columns can be

generated.

The idez behind column generation for L.P.(3) is linear
" programming 4dual pricing (Lasdon (1270)). Specifically, let
T denote a non-naegative IH vector of prices on the constraints

in L.P.(3). The column generation procedure is to zolve
minimize w V

s.t. V feasible colunn
in order to find a specific column 7V with the property

T V< -1. If this last inequality holds, then the column

=1

locks attractive for use in L.P.(3) since its redunced cos+

+ 7V is negative relative to the prices m. JTn this case.

-]

a1

7 i added with an appropriate variable to L.P.[3).

The column generation problem has A shortest route
network interpretation. The nodes and arcs are gencrated
recursively from the foliowing initial set nf ncdes and arecs.
The initial set of nodes are an origin node, a removal node,
and noder i1, 1, h,for all i, h. There are arcs drawn from
the zrigin t2 nodes i, 1, h,with are lengths ﬂ?aﬁ 1

)
starting from node i, 1, h, there are a number of ares drawn
0o the removal node. Each arc corrcsponds %o nmaintaining
the fuel assembly in zone i for r additional periods,

-

r = 5,1,2,...,R, where R is a practical upper limit on




assembly life; probably R=l4 will suffice for the given
problem. If r=0, the arc length is 0, whereas if r > 1,

the arc length is

wh+la + + “h+ra r
i i,Ti(l) 3000 i i,Ti(l)

where

i
n
-
Lo
(]
(]
=
-

-1
Ti(1) = T.(P; (1)) ,

and

Ti(l) Ti(l) .

The additional nodes and arcs are generatively recur-

sively from the nodes i, 1, h. Specifically, a node i, j, h

r+l

previously generated will generate ncdes i”7, Ti

LAY

{3y,

h +r + l\for all i # i” and for r = 0,1,...,R, and arcs
drawn from 1, j, h to these nodes. These correspond to
maintaining the assembly in zone i for r additional periods
and then shifting the assembly to zone i”“. The =2ssociated

arc length is

+ h+ h+r+l
ﬂ? 1a +y.0.,+ T ra. r,., + T.. a. .
i 1,Ti(3) 3. i

i %1,7,(5) T

5T

where only the last term is present if r=0.

The column geheration problem is solved when we have
found the shortest route path from the origin node +to the
removal node. If the length of this path is less than - 1,
then the corresponding path can be used to generate a column

to add to L.P.(3). The example illustrated in figure 1 will
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Figure 1.
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trat is, a fresh assembly in zone 3 for two periods degrades

suffice to show Lhow this is done. ©Notice that T-(1) = 27;
to a2 burnup level of 27. The shortest route path corresponds
to a schedule (0,0,0,3,3,4,4,4,0,...,0). From this schedule,

a column V is unigquely define?l.

The network we are describing is clearly vexy large for
the giver values I = 5, J = 150, H = 30. However, our
proposed method for solving and using the network should
eliminate most of the difficulties. The idea is to adapt
Dijkstra's algori*hm (1959) for solving shortest route
rroblems. The algorithm hegins with arcs drawn from the
origin to the nodes i, 1, h, with their associatad langihs
for all i, h. hese arcs are ordered according *o length,

reating a path list, and the minimal one drawn to 2 specific
node i, 1, h, is selented. The algorithm th=sn consilers the
K 4+ 3 paths érawn out of the specifi~ i, 1, 1, t» tha rewoval
node und selects the minimal length one Trom among *hese.
This path represents a completed schedule and it beromes %he

incumbent shecrtest rocute path until a better is discovered.

The path to i, 1, h, is also extended tn tho nodes

- . +
1 il 1(

» T 1), h + r, for all i“ # i and for r = C.1,...,R.

These paths are ofdered according to length and “he ordered
list is merged with the previous ordered path list with the
minimal element deleted (it is replaced by the newly gener-
ated paths). The minimal element of the path list is again

selected and the path is extended@ in the same manner.



L.P. Column Generation Algorithm

Step 1 (Initialization):

FPor i =1,...,I, h=1,.,..,H, add 1 1 h to path list

1 Order path list by

increasing length. .Set the incumbent length of shortest

with associated length ﬂ?ai

route path to the best known (or estimated) valne @.
Ster 2.

Stop if path list is empty. Otherwise, select first
path from path 1list (i.e., path with minimal length}.
Suppose it is drawn to node i jJ h and has length c.
(Optional: search through the 1list and eliminate all other

paths drawn to i J h). Extend path to removal node by short-

et path by caleulating r € {Oll,...,R} satisfying

T _h+t .. 3 n+t
T T a.m (;) = mninimum L Ty ﬂith]) .
t=1 1 =05 1,...,R t=1 i
if
T
c + 7 “?+taiTt(') < ¢ -
g=1 7 Titd

replace incumbent by this path and set & egnal %o the left
hand sum. Delete all paths from path 1list with length

greater than € - A where

A =R * min n?a

i i3
i,j,h L



_10_

For i, # i and r = 0,1,...,R, extend path to nodes

il, T§+1( ), h + r + 1 with associated length
T _h+t h+t +1
c + I L aiTt(') + o a, Tr+1(.)
t=1 it "1 171 Y

excegt if this length is greater than é - A. Merge these
paths with the paths on path list so that the augmented path
list is still ordered by increasing length. Return to

Step 2.
Pemarks

Step 1. The shortest rc=te path from the previnus zalculat-
ion with different ﬂ? can be used to give a value of & using

the new arc lengths ﬂ?a. Alternatively, we can take

ij°
¢ = -1 since any basis activities in L.P.(3) correspond to
raths with length -1.
Step 2{a). Since any column with reduced cost less than -1
can be uzed to improve the solution to IL.P.Y3), the stopping
criterion can be &€ < -1 -¢ for some € > O.

(p). There may be relatively few paths drawn to the
same node in the network. Therefore, it may not be worth
the work at each step to make the optional substep.

(c). The value A is selected so that any incompleted
path with length greater than @ - A will not have a completed

length less than €. The value A is a gross overestimate and

it will probably be preferable to use a smaller value in



spite of the émall risk that the shortest route path may

be deleted before it is completed. .

Ster 3(a). There may be a cost associated with moving an
assembly from one .zone tc another. If the objectiva function
of the problem (3) were changed to one of minimizing cost
rather than the numbter of fresh fuel assemblies used, then
the moving cost could be inrcluded as we'l.

This ccmpletes our discuésion of coslumn generation for
L.P.(3). The problem we really want to solve is I.2.(3).
Thus, the gquestion remains: How do we adapt or continue the
linear programming column generation process to solve the
integer programmiﬁg problem? In a separate paper we will
give a theoretical procedure which allows this to bhe done.
Roughly speaking, the idea i1s to add additiosnal structure to
the shortest route problem so that paths other than those
correspondirz to thé optimal linear programming basic
activities are pgenerated.

Frem a practical viewpoint, hewever, the procedure for
generating additional columns for I.P.(3) needs to be combined
with branch and bound and heuristics. We will be ia a bLetter
positicn to judge these practical matters when computational
experiments currently urnderway are completed. We plan *o
write another version of this paper including computatirnal

experiernce.
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