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In a 1971 paper, Suzuki and Kiyose give a model for light

water moderatedatomic reactor refueling optimization.

Specifically, they present a linear programming formulation

for minimizing the number of fresh fuel assembliesrequired

by a reactor over a finite planning horizon subject to power

generationand safety requirementsand reactor design specif-

ications. The optimal refueling pOlicies found by Suzuki and

Kiyose were useful in reducing the fresh fuel required, but

two difficulties were encountered. First, the optimal linear

programming solutions included small fractional numbers of

fresh fuel assemblieswhich were difficult to round off. The

second difficulty was that their formulation had approximately

l65H constraintswhere H is the length of the planning horizon.

The problems solved had H=lO, but it was desired to analyze

the problem for longer planning horizons of 20 to 30 stages

without solving prohibitively large mathematicalprogramming

problems.

In this paper, we ｧ ｾ ｶ ･ a reformulation of the reactor

refueling optimization problem that consists of approximately

l5H constraintsand a large number of columns. This reform-

ulation is required becausethe ｳ ｴ ｡ ｴ ･ Ｍ ｯ ｦ Ｍ ｴ ｨ ･ ｾ ｡ ｲ ｴ of integer

programming does not usually permit the solution of integer

programs with thousandsor even many hundreds of constraints.

Moreover, the reformulation should permit the linear programm-

ing approximation to be more easily solved, at least



approximately.
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Finally, the reformulation identifies and

analyzesexplicitly the fundamental activity in refueling

optimization; ｮ ｡ ｭ ･ ｬ ｹ ｾ the introduction, degradationand

removal of fuel assemblies. This should make it easier to

modify the model to take into account additional features of

the problem such as a ｾｯｳｴ for moving an assembly from one

location to another.

1. ｓ ｴ ｡ ｴ ･ ｾ ･ ｰ ｴ and Rpfornulation of the Problem

A fuel ｡ ｳ ｳ ･ ｾ ｢ ｬ ｹ is introduced into the reactor at a

barnup levelland degradeswith ｴ ｩ ｾ to burnup level j

J = 1,... ,J. Time is measuredin discretestagesand we let

h = J,••. ,n, denote the periods in the p'anning horizon. The

exact ､ ･ ｧ ｲ ｡ ､ ｾ ｴ ｩ ｯ ｮ of an a.ssemblyduring a g17en period depends

on the zone in which it operates. Let i = 1, ... ,I ､ Ｎ ･ ｮ ｯ ｴ Ｈ ｾ these

ｾ ｯ ｮ ･ ｣ and let T.(j) > j denote the burnup level of a fuel
1

assemblyat the end of a period spent in zone i when it was

at a burnup level j at the start of the period.

The formulation of Guzuki and KiyoGC is an folJows.

h-;-;: .. denote the number of fuel asscmr.lics
IJ

j assignedto zone i in period h. The integer programming

problem which mlD1m1zes fresh fuel 1S
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H I
hZ = mJ.n L: L: xiI

h=l i=l

J h ｢ｾs.t. L a .. x .. <
j=l J.J J.J - J.

I
h+l I

L < L h'x .. xiT:-l(j)
i=l J.J i=l J.

for all i,h

for all j ,h

except j=l, h=H

(1.1 )

(1. 2)

h
x .. > 0 and integer for all i,j,h,

J.J (1. 4)

where the integer a .. J.5 a technological coefficient for an
J.J

assembly in zone i at burnup level j and

T- l (.) .i J J.8 the burnup level at the start of a period of an

assembly located in zone i which degradesto level j by the

end of ｴ ｨ ｾ period. Note ｴ ｨ ｡ ｾ the slacks on the constraints

(1,3) are the burnup ｡ ｳ ｳ ･ ｭ ｢ ｬ ｩ ｾ ｳ of levels j which are

discardedat' the ｾ Ｚ ｴ ｡ ｲ ｴ of period h+l. In the actual applic-

ation, there are 3 IH .constraintsof the type (1 2) . 1 d'. ,J.nc U J.ng

IR equality ｣ ｯ ｮ ｳ ｴ ｾ ｡ ｩ ｮ ｴ ｳ Ｎ Moreover, there are upper bound

constraintsaD the slack variables ｳ ｾ on the
1

GQnstraints. We have stated (1.2) 1D the simpler ｦ ｯ ｾ ｭ Ｌ and

omitted the bounds on the ｳ ｾ Ｌ J.n order to be ｡ ｢ ｬ ｾ to prespnt
J.

an uncluttereddiscussionof our approach, ThesQ ､ ｾ ｴ ｡ ｩ ｬ ｾ can

be reinstatedwithout difficulty when computation is done,

The idea behind our reformulation is that the constrRint3

(1.3) have an implied network structurewhich is not being

exploited and ｭ ｯ ｲ ･ ｯ ｶ ｾ ｲ Ｌ which is ｩ ｮ ･ ｦ ｦ ｩ ｣ ｾ ･ ｮ ｣ ｹ describedby a

large system of inequalities.
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We define a fuel assembiy scheduleto be an H-vector

with entries 0,1,2,... ,1 where the entry in the hth component

indicates the zone in which it is located in period hand

zero indicates it is not used. The non-zerosmust run

consecutively. An example of a schedulewhen H=lO is the vector

(0,6,0,3,3,2,2,0,0,0)indicating the assembly is introdueed

into the reactor in zone 3 at the start of period 4, is

relocated in zone 2 at the start of period 6, and ｾ ｳ removed

at the end of period 7 .

Each assembly schedule implies unique burnup levels of

the assembly. Specifically, we have

assemblyused in periods

located in zones

burnup levels

where

and

j = l.
o

iO' il;···,iT

jo' jl'''' ,jT

s= 1, ... ,T

( 2 )

The information in (2) ｾ ｳ used to define the performance

coefficients

h ,aihjh
if h e: {hO,···,hO + T}

v. =
ｾ

I 0 if h ¢ {h O' ... , hO + T}

Let V denote"the IH vector with components hv .•
ｾ

In order to state our reformulation of problem (1), we need
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k
a complete enumerationof such columns, say V k = 1, ... ,K,

h,k
with componentsv. .

1
Let x

k
denote the number of times

schedulek is to be used. Then problem (1) is equivalent to

ｾ = m1n

K
s . t . ｾ

k=l

K
ｾ

k=l

h,k < b?
vi X k 1 for all 1, h

x > 0 and integer for all k
I;: -

The number of scheduleswill in general be quite large and

a nethod is required to generategood schedulesiteratively

but not exhaustively. The linear programming problem which

results if the integrality restriction in (3) is omitted is

denoted by L.P. (3) and its minimal objective function value

by L.

2. ｇ ｾ ｮ ･ ｲ ｡ ｴ ｩ ｯ ｮ of Fuel Assembly Schedules

It is clear that I.P. (3) has an enormous number of

ccJ.umns for an application of any realistic S1ze; for

i = 5, J = 150, H = 30, we estimate I.P.(3) would have

｢ ･ ｴ ｷ ･ ･ ｾ 10,000 and 20,000 columns. Thus, some pr1c1ng

pr0cedurefor generatinggood columns for I.P.(3) without

･ ｸ ｾ ｡ ｵ ｳ ｩ ｩ ｶ ･ ｬ ｹ generatingall columns is required. Since

th0.re is nothing ｩ ｮ ｨ ･ ｲ ｾ ｮ ｴ ｬ ｹ special about I.P.(3), a column

genera7.ionprocedure for it is applicable to a number of

similar I.P. column generationproblems such as the cutting

steck problem, multi-commodity flow problems and others



(Lasdon (1970)).
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For this reason, the general theory of

I.P. column generationviII be presentedin another paper.

We give here only a brief discussionof hov columns can be

generated.

The idea behind column generationfor L.P.(3) 15 linear

programming dual pricing (Lasdon (1970)). Specifically, let

TI denote a ｮｾｮＭｮ｣ｧ｡ｴｩｶ･ 1H vector of prices on ｾ ｨ ･ ｾ ｯ ｮ ｳ ｴ ｲ ｡ ｩ ｮ ｴ ｳ

in L.P. (3). ｔ ｨ ｾ column generationprocedure is to solve

minimize 1T V

s . t . V feasible column

ｾ ｮ order to find a specific column Vwith the property

TI V < -1. If this last inequality ｨ ｯ ｬ ､ ｳ ｾ then the column

y' looks attractive for use in L.P.(3) since its :'educed cos":,

1 + ｾ V 18 negative relative to the prices IT. In this case.

V 16 ｡ ､ ､ ｾ ､ with an appropriatevariable to L.P.(3).

The column genF:ration problem has :'\ shortest ri)ute

n0twork interpretation. The nodes and arcs are gen0.rat0Q

recursiv01y from the following initial set nf nnden and arcs.

ｾ ｨ ･ initial set of nodes are an or1g1n node, a removal node,

and ｮ ｯ ､ ･ ｾ i, 1, h,for all 1, h. There are arcs drawn fT0m

the ｾ ｲ ｩ ｧ ｩ ｮ to nodes i, 1, h
h,with ｡ ｲ ｾ lengths Ｑ ｔ Ｇ ｾ ｩ 1

1 .. ,

starting from node i, 1, h, there are a number of arcs ｾ ｲ ｡ ｷ ｮ

ｾ ｯ ｴ ｨ ｾ ｲ ｾ ｭ ｯ ｶ ｡ ｬ node. Each arc correspondsｾ ［ Ｌ Ｉ ｭ ｮ Ｎ ｩ ｮ ｴ Ｚ ｾ ｩ ｮ ｩ ｮ ｣ ［

the fuel assembly in zone 1 ｾｯｲ r additional periods,

r = 0,1,2,... ,R, where R is a practical upper limit on
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assembly life; probably R=4 will sUffice for the given

problem. If r=O, the arc length is 0, whereas if r ｾ 1,

the arc length ｾ ｳ

h+l
:rT i ai,To(l)

ｾ .

where

+ , ••. , +

and

ｔ ｾ ( l) = To ( 1 )
ｾ ｾ

r == 2,3,... ,R

The additional nodes and arcs are generatively recur-

sively from the nodes i, 1, h. Specifically, a node i, J, h

Previouslv generatedwill generatenodes i', Tr+1r J
o)" i \ ,

h + r + 1 for all i ｾ i' and for r = 0,1,... ,R, and arcs

drawn from i, j, h to these nodes. These correspondto

maintaining the assembly in zone ｾ for r additional periods

and then shifting the assembly to zone

arc length is

o ,

ｾ . The '?.ssociated

h+l
1To aOT(O)
ｾ ｾ Ｌ i J

+ , ••• , +
h+r h+r+l

1To aOTr(o)+1To.. aO'Tr+l(O)
ｾ J.'i·J J. ｾ Ｇ Ｍ ｩ J

where only the last term is present if r=O.

The column generationproblem is solved when we have

found the shortest route path from the origin node to the

removal node. If the length of this path is less than - 1,

then the correspondingpath can be used to generatea column

to add to L.P.(3).
ｾ

The example illustrated in figure 1 will



'1
1T43., T

f, 4

-'1a-

origin

ｾ ｟ ...

4,2'1,6 .-,.,-J
I
!
i
I
I
I,

{hS£ *'
l r P ffiova1
'\...... .J'

Figure 1.
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,..,
suffice to show how this is done. Notice that ｔ ｾ Ｈ ｬ Ｉ = 27;

that is, a fresh assembly in zone 3 for two periods degrades

to a burnup level of 27. The shortestroute path corresponds

to a schedule (0,0,0,3,3,4,4,4,o,... Ｌ Ｐ Ｉ ｾ From this schedule,

a column V is ｵ ｮ ｩ ｾ ｵ ･ ｬ ｹ definci.

The network we are describing 1R clearly very large for

the given values I = 5, J = 150, H = 30. However, 0'1r

proposedmethod for solving and using the network should

eliminate most of the difficulties. The idea is to ｾ ､ ｡ ｰ ｴ

Dijkstra's ｡ ｬ Ａ ｯ ｲ ｩ ｾ ｨ ｭ (1959) for ｳ ｯ ｬ ｶ ｾ ｮ ｧ 3hortest route

problems. The ｡ ｬ ｾ ｯ ｲ ｩ ｴ ｨ ｭ begins with arcs drawn from the

origin to the nodes i, 1, h, with their ｡ ｳ ｳ ｯ ｣ ｩ ｡ ｴ ｾ ､ ｬ ｾ ｮ ｧ ｴ ｨ ｳ

for all i, h. These arcs are ordered according ｾ ｯ ｬ ｾ ｮ ｧ ｴ ｨ Ｌ

creating a path list, and the minimal one drawn to ｾ specific

The ｡ ｬ ｧ ｄ ｾ ｩ ｴ ｨ ｭ ｴ ｨ ｾ ｮ ｾ ｾ ｮ ｳ ｩ ｬ ･ ｲ ｾ the

R + 1 paths drawn out of the Ｓ ｰ ･ ｣ ｩ ｦ ｩ ｾ i, 1, h, t,.., ｴｾｾ ｲ･ｾｯｶ｡ｬ

node ｾ ｮ ､ selectsthe minimal length Ｐ ｮ ｾ ;rom ｾ ｲ ｮ Ｐ ｮ ｧ ｴ ｨ ･ Ｓ ｾ Ｎ

This path representsa completed scheduleand it ｢ ･ ｲ ｾ ｭ ･ ｳ thp

incumbent nhcrtest route path until a better is ､ ｩ ｳ ｣ ｯ ｶ ･ ｲ ｾ ｡ Ｎ

The path to 1, 1, h, is also extendedto thn nones

i ' , r, for all i' 1 i and for r = C,l, ... ,n.

These pat.hs are ordered according to lene;th anJ. ....11e orde:red

list is merged with the previous ordered path li'1t with t.he

minimal element deleted (it is replaced ｾ ｹ the neWly ｧ ･ ｮ ･ ｲ ｾ

ated paths). The minimal element of the path list is ag.n1n

selectedand the path is extendeain the same manner.



L.P. Column GenerationAlgorithm

Step 1 (Initialization):

For i = 1,•.. ,I, h = 1, •.• ,H, add i 1 h to path list

with associatedlength ｔ ｉ ｾ ｡ Ｇ ｬ Ｇ
. 1 1

Order path list by

increasing.length. .Set ｾ ｨ ･ incumbent length of shortest

route path to the best known (or estimated) value c.

Step 2.

Stop if path list is empty. Otherwise, select first

path from path list (i.e., path with minimal ｬ ･ ｾ ｧ ｴ ｨ Ｉ Ｎ

Suppose it is drawn to node i J h and has length c.

(Optional: search through the list and eliminate all other

paths drawn to i j h). Extend path to removal node by short-

'.'::t path by ,-:-alc1.l1n.t.irig r E {OIl, .. , ,R} satisfyi.ng

if

r h+t
r 'IT, a'Tt(,) =

t=l 1 1 i J

h+t
minimum E TI, a'Ttr')
ｾ Ｍ ｏ 1 R t=l 1 1 Ｑﾷｾｊ"'-, , ... ,

r
h+t

C + l. TI . a. • rpt ( . )
.t:.:l J 1. i J

< C

replace incuIilbent . by this path and s('!t ｾ eq'lal to,,-) the left

band sum. Delete all paths from path list with ｬ ･ ｮ ｾ ｴ ｨ

greater than c - 6 where

/). = R • ID1n

i,j,h

h
7T, a, .

1 1.1
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Step 3.

1 i and r = 0,1,... ,R, extend path to nodes

h + r + 1 with associatedlength

c +
r h+t h+t+l
L 11". a.Tt(.) + n. a. Tr+l( ')

t=l 1 l"i J 1 1 1 1 i J

except if this length is greater than c - ｾＮ ｍｾｲｧ･ these

paths with the paths on path list so that the augmentedpath

list is still ordered by increasing length. Return to

Step 2.

P.emarks

Step 1. The shortest ro';te path from the previ,")us ｾ ｡ ｬ ｣ ｵ ｬ ｡ ｴ Ｍ

lon with different Ｑ Ｑ Ｂ ｾ con be used to give a ｶ｡ｬｾｊＢ･ 0::' e using
1

the new arc lengths Ｑ ｔ ｾ ｡ Ｎ .. Alternatively, we can tqke
1 1J

e = -1 since any basis activities in L.P.(3) correspondto

paths with length -1.

Step 2(a). Since any column with reduced cost less than -1

can be used to improve the solution io L.P.(3), the ｳ ｴ ｮ ｰ ｰ ｩ ｮ ｾ

criterion can be e < -1 -£ for some £ > O.

(b). There may be relatively few paths drawn to the

same node in the network. Therefore, it may not be worth

the work at each step to make the optional ｳ ｵ ｢ ｳ ｾ ･ ｰ Ｎ

(c). The value ｾ is selectedso that any incnmpleted

path with length greater than e - ｾ will not have a completed

length less than e. The value ｾ is a gross overestimateann

it will probably be preferable ｴ ｾ use a smaller value in



spite of the small risk that the'shortestroute path may

be deleted ｢ ｾ ｦ ｯ ｲ ･ it is completed.

Step 3(a). There may be a cost associatedwith moving an

-
assembly ｦ ｲ ｯ ｾ one -zone to another. If the ｯ ｢ ｪ ･ ｾ ｴ ｩ ｶ ｾ function

of the problem (3) were changedto one of minimizing cost

rather than the ｮ ｵ ｭ ｾ ･ ｲ (If fresh fuel assembliesuseds then

the moving cost could be ｩ ｮ ｾ ｬ ｵ ､ ･ ､ ac ｷ ･ ｾ ｬ Ｎ

This ccmpletes our ､ ｾ ｳ ｣ ｵ ｳ ｳ ｩ ｯ ｮ of column generationfor

L.P.(3). The problem we really want to solve ｩ ｾ ｉ Ｎ ｾ Ｎ Ｈ Ｓ Ｉ Ｎ

Thus, the ｱ ｵ ｾ ｮ ｴ ｩ Ｐ ｮ remains: How do we adapt or continue the

linear programming column generationprocessto solve the

integer programr.ing problem? In a separatepaper we will

give 3 ｴｨ｣ｯｲｾｴｩ｣ｾｬ ｰｲｯ｣･､ｵｲｾ which ｾ ｬ ｬ ｯ ｷ ｳ this to be done.

Roughly spenkings the idea 18 to add adJitiJnal structure to

the shortest route problem so that paths other than those

correspondingto ｴ ｨ ｾ optimal linear programming basic

activities aTe ･ ｾ ｮ ･ ｲ ｡ ｴ ･ ､ Ｎ

From a practical viewpoints hcwever s the procedurefor

generatingadditional columns for I.P.(3) needs to be c0robined

with branch and bound and heuristics. We will be ｩ ｾ a better

position to judga these practical matters when ｾ ｯ ｭ ｰ ｵ ｴ ｡ ｴ ｩ ｯ ｮ ｮ Ｚ

･ ｸ ｰ ･ ｲ ｩ ｭ ｾ ｮ ｴ ｳ ｣ ｵ ｲ ｲ ｾ ｮ ｴ ｬ ｹ underway are completed. We plan ｾ ｯ

write annthpr vcrS10n of this paper including ｲ ｾ ｭ ｰ ｵ ｴ ｡ ｴ ｩ Ｐ ｮ ｡ ｊ Ｎ

･ ｸ ｰ ｾ ｲ ｩ ･ ｮ ｣ ･ Ｎ
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