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Analysis of a Compact Predator-PreyModel

I. The Basic Equationsand Behaviour

D.D. Jones

Introduction

This paper is the first of a seriesdealing with the

analysis of a compact, relatively uncomplicatedpredator-

prey model. Here, only the basic equationsare given and a

selectedsubsetof systembehaviour illustrated. Written

documentationconcerningthis model and its analytic investiga-

tion are being documentedas completed to speed communication

among interestedparties. As this model is becoming a focus

for severalmethodologicaland conceptualdiscussions,the

need has arisen for a concise descriptionof the equations.

The model itself standsmidway betweenmore traditional

differential or difference equationsystemsand complex simula-

tion models. (For a review of systemsof the former type

and accessto the flavor of their behaviour, see ｍ ｡ ｾ 1973 or

Maynard Smith, 1974.) This model is not an embellishmentof

simpler classic equationsbut rather an aggregationand conso-

lidation of a complex detailed predator-preysimulation model

developed from an extensiveprogram of experiment and sub-

model development (Holling, 1965, 1966a, Griffiths and Holling,

1969). The objectivesof that program are best summarized

in Holling 1966b. The completemodel continues to be refined,

but a detailed documentation,with primary emphasison the
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predationprocesshas been prepared (Holling, 1973b). In its

present form the model is a synthesisof the best validated

componentsof the analog processesof predation and parasitism.

The performanceof the simulation model exhibits dynamic

systemsbehaviourwith far-reachingconceptualand theoretical

implications. Holling's paper (1973a) on the resilienceof

ecological systemsis the overture to a major reorientation

of ecological perspective. To further explore the dynamic

propertiesof this class of system, we mathematicallyand

pragmatically require an analytic system that is tractable

while providing the rich variety of behaviour found in the

full simulator.

The goal of this seriesof IIASA working papers is to

explore the dynamic topology of this analytic systemand out-

line a general protocol for analysis qf similar systems. There

is clearly room to venture back into the ecological domain

and use this model to gain insight into the biological aspects

of the predation process. However, such a move is not en-

visioned in the current context. In a subsequentpaper I

will include a discussionof the theoreticaland experimental

foundations of this model complete with ecological assumptions

and limitations. At present I am offering a system of equa-

tions for mathematicalenquiry.

The Model Equations

The model is equivalent to a deterministic pair of dif-

ference equations. Indeed it can be so formulated, but to
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do that would cloud, rather than clarify. The iteration

time interval is unspecified in absolute terms. During each

time step, predatorsattack and remove prey. Then predators

and prey both reproduce. The event orientationof the formula-

tion tie the iteration most strongly to the prey generation

time.

The two state variables are the densitiesof predators

and of prey. At the start or each iteration the initial

densitiesare

x = initial prey density
(1)

y = initial predatordensity

The functional responseof predatorattacks to prey density

is

g(x) =
a xeClX

1 = (2)

Becauseattacks of predatorson prey are distributed non-

randomly among the prey, we incorporatethe negativebinomial

distribution to account for this (see Griffiths and Holling,

1969). The number (per unit area) of prey attackedis z and

is expressedas

1 [+ kl ·kYX· g(X)]-k lz = f(x,y) = x 1 - 1 ｾ

The number of prey that escapepredation is

"-
:x: = x - z (4 )
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These reproduceaccording to some function H(x) that provides

a density of prey x' at the beginning of the next time step.

The reproductionfunction used is a descriptive one. It

incorporatesa minimum density reproductionthreshold and a

maximum at some finite prey density.

Prey reproductiondependson three parameters:

minimum density for reproduction

M = maximum reproductiverate (5)

OPTX = prey density at maximum reproductiverate

These parametersare recombinedas

y = 1 + OPTX

ｾ = OPTX - x = y - 1 - xo 0

ｾ

CH = M • e = ｍＨｾＩｬｬ = M • C
11 II ｾ

l.i

/'<0

The final form of H(x) is

(6)

The function describingpredator reproductionincorporates

both "contest" and "scramble" types (Nicholson, 195!1). The

parameterC, varyies between0 and 1, and specifies the degree

of scramble in the process. The predatordensity that begins

the next iteration, y', is given as

y' = p(x,z) = c1 • Z (1 - C • Z 1 + k )
k • x + Z

(8)



-5-

In summary the equationsare

g(x) :; (2)

Z :;
k • Y •

+ 1
kx

x :; x-z

'"x' :; H(x)

(4)

Y':;P(X,Z):;CIZ(l-C.Z l+k )
k • x + Z

(8)

The "graph" of this model is relatively simple (Figure 1).

The quantity y' is entered twice to emphasizethe symmetry.

The broken arrows from x' to x and from y' to y indicate

a new ｩｾ･ｲ｡ｴｩｯｮ in the time sequence.

Model Behaviour

A BASIC program was written to implement this model on

a Hewlett-Packardg830A calculator. A small subsetof the

possible conditions are illustrated in Figures 2 through 5.

In the courseof developmentof this experimentaland

modelling work, certain parametershave evolved into what we

call our "StandardCase". These particular values do not

necessarilycarry any fundamentalbiological significance;

they only serve as a common base for comparing the effect of

changesin parametervalues. The "StandardCase" in the

presentnotation"is
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a1 = 2.'5

a2 = 0.0714

a = 0

k l = 30

k ::; 0.78

Xo = 0.001

Y = 1.1

M = 3.0

C = 0

cl = 0.95

Figure 2 shows a phase plane trajectory for the Standard

Case. rl'he ini tiul starting point is at "x"; the trajectory

then spirals counter-clockwiseinto an equilibrium point.

(The trajectory has been terminatedbefore it reachedthat

point.)

The StandardCase is not globally stable. Combinations

of state variables that lead to prey densitiesless than Xo
result in extinction of the prey population followed by the

predators. Figure 3 shows an enlargedsection of the state

plane with a dispersecollection of starting conditions.

The actual trajectorieshave been ｳ ｵ ｲ ｰ ｲ ･ ｳ ｳ ･ ｾ in this plot.

Initial points are marked with "x"; sUbsequentlocations are

marked with "0" if they are outside the domain of attraction

or with "+" if they eventually lead to equilibrium. With

enough trial initial points , the boundary of the attractor
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domain begins to be defined as indicatedby the freehand curve.

Previous explorationswith the full simulation model have

identified k and C as important and sensitiveparametersto

the topology of trajectories (Jones,1973). Figure 4 (a through

f) illustrates a range of k values when C = 0 (i.e. "contest"

predatorreproduction Figure 5 (a through f) is for another

k serieswhen C = 1 ("scramble" reproduction).

The qualitative behaviour of figures 4 and 5 are summarized

in Table I. The exact division between thesemodes have not

been located. They could be, of course, given enough paper and

patience. The goal of the presentanalytic effort is to

shortcut that necessityand develop a more comprehensivepro-

cedure for looking at this type of system.
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Table I. Behaviour trend with increasingk, for C = 0 and

C = 1.

k C - 0

o o
Long Narrow Domain of

Attraction (perhapsex-

tending to y =co )

"oJ 0.4

0.6

0.825

Beginning of Oscillatory

Trajectories. Finite

Dorr.ain.

Neutral Orbits Inside a

Finite Domain

Global Instability

Increasingspeed to

extinction.

Large Domain of Attraction

(perhaps infinite in high

x, y corner)

----------------------------- ?

Finite Domain of Attraction

Contraction of Domain 10

100
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Figure 2. Sample Trajectories for "StandardCase"
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Figure 3. Domain of Attraction for "StandardCase"
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Figure 4a. Sample PhasePlane Trajectory for C = 0

and k = 0.05
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Figure 4b. Sample PhasePlane Trajectory for C = 0

and k = 0.2

3.0 +---.........ＭＭｾｩｯＭＭＫＭＭＮＭＭＭＭＫＭＭＭＭＭｴＭＭＭＫＭＭＭＭＫ

2.B

l.B

B.B

-l.U
0
1&1
u:
l:l.

..... -2.'l
>-
l.!J
tJ
...J

-J.B

-5:.Pl

-6.'1

-7.1!5
l'il lSI lSI til lSI lSI I'.liI lSI. . . . . . . .
:r r1 N - ｾ N 1'1

• • • I

LOG X, PREY



Figure 4c. Sample PhasePlane Trajectory for C = 0

and k = 0.6
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Figure 4d. Sample PhasePla;neTrajectoryfor C = 0

and k = 0.825
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Figure 4e. Sample PhasePlane Trajectory for C = 0

and k = 1.0

3.ld ＫＭＭＭＭＭＫＭＭＭＭＫＭＭＭＭＭＫＭＭＭＭＭｉｾＭＭ｟ｴ｟ＭＭ｟｟ｬｴ｟｟ＭＭ｟Ｋ

2.0

I.D

I!J. tl

-1.k1
0
w
u:
u.

'" -2.k1
>-
1.!1
CJ
..J

Ｍ Ｓ Ｎ ｾ

-6.B

D g

-7.m
lSI lSI 151 51 fii1 151 lSI 151. . . . . . . .
;r M N - ISZ N 1"1
I t t t

j,
LOG XI PREY



Figure 4f. Sample PhasePlane Trajectory for C = 0

and. k = 1. 4
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Figure Sa. Samole PhasePlane Trajectory for C = 1

and k = 0.6
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Figure Sb. Sample PhasePlane Trajectory for C = 1

and k = 1.8
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Figure 5c. Sample PhasePlane Trajectory for C = 1

and k = 3.0
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Figure 5d. Sample PhasePlane Trajectory for C = 1

and d = 6.0
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Figure Se. Sample PhasePlane Trajectory for C = 1

and k = 10
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Figure Sf. Sample PhasePlane Trajectory for C = 1

and k = 100
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