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Analysis of a Compact Predator-Prey Model

I. The Basic Equations and Behaviour

D.D. Jones

Introductio

This paper is the first of a series dealing with the
analysis of a compact, relatively uncomplicated predator-
prey model. Here, only the basic equations are given and a
selected subset of system behaviour illustrated. Written
documentation concerning this model and its analytic investiga-
tion are being documented as completed to speed communication
among interested parties. As this model is becoming a focus
for several methodological and conceptual discussions, the
need has arisen for a concise description of the equations.

The model itself stands midway between more traditional
differential or difference equation systems and complex simula-
tion models. (For a review of systems of the former type
and access to the flavor of their behaviour, see May, 1973 or
Maynard Smith, 1974.) This model is not an embellishment of
simpler classic equations but rather an aggregation and conso-
lidation of a complex detailed predator-prey simulation model
developed from an extensive program of experiment and sub-
model development (Holling, 1965, 1966a, Griffiths and Holling,
1969). The objectives of that program are best summarized
in Holling 1966b. The complete model continues to be refined,

but a detailed documentation, with primary emphasis on the



predation process has been prepared (Holling, 1973b). In its
present form the model is a synthesis of the best validated
components of the analog processes of predation and parasitism.

The performance of the simulation model exhibits dynamic
systems behaviour with far-reaching conceptual and theoretical
implications. Holling's paper (1973a) on the resilience of
ecological systems is the overture to a major reorientation
of ecological perspective. To further explore the dynamic
properties of this class of system, we mathematically and
pragmatically require an analytic system that is tractable
while providing the rich variety of behaviour found in the
full simulator.

The goal of this series of 1IASA working papers is to
explore the dynamic topology of this analytic system and out-
line a general protocol for analysis of similar systems. There
is clearly room to venture back into the ecological domain
and use this model to gain insight into the biological aspects
of the predation process. However, such a move is not en-
visioned in the current context. In a subsequent paper I
will include a discussion of the theoretical and experimental
foundations of this model complete with ecological assumptions
and limitations. At present I am offering a system of equa-

tions for mathematical enquiry.

The Model Equations

The model is equivalent to a deterministic pair of dif-

ference equations. Indeed it can be so formulated, but to



do that would cloud, rather than clarify. The iteration
time interval is. unspecified in absolute terms. During each
time step, predators attack and remove prey. Then predators
and prey both reproduce. The event orientation of the formula-
tion tie the iteration most strongly to the prey generation
time.

The two state variables are the densities of predators
and of prey. At the start of each iteration the initial

densities are

X initial prey density

(1)

y initial predator density

The functional response of predator attacks to prey density
is
ax
_ alxe _ alx
g(x) = : = . (2)

-0
1 + a2xemx e ¥ + a2x

Because attacks of predators on prey are distributed non-
randomly among the prey, we incorporate the negative binomial
distribution to account for this (see Griffiths and Holling,
1969). The number (per unit area) of prey attacked is z and

is expressed as

z = f(x,y) = x

k1 ey g(x)]-k
1 -[1 + i ] g (3)

The number of prey that escape predation is

X=x-2z . (4)



These reproduce according to some function H(X) that provides
a density of prey x' at the beginning of the next time step.
The reproduction function used is a descriptive one. It
incorporates a minimum density reproduction threshold and a
maximum at some finite prey density.

Prey reproduction depends on three parameters:

X, = minimum density for reproduction
M= maximum reproductive rate (5)

OPTX = prey density at maximum reproductive rate

These parameters are recombined as

Yy = 1 + OPTX
= b} - - - -

u OPTX - x_ =y 1 - x (6)
. oH

CH:_I_VI_ezm(E)uzM.c
H H u
u

The final form of H(§) is
x' = H(X) = CH » e~ (X"%X) . (% - x OV ex (7)

The function describing predator reproduction incorporates
both "contest" and "scramble" types (Nicholson, 1954). The
parameter C, varyies between O and 1, and specifies the degree
of scramble in the process. The predator density that begins

the next iteration, y', is given as

y' = p(x,2) = ¢; Z(l -C-z §4%4§J%—E) . (8)



In summary the equations are

a|x
g8(x) = —%x% (2)
e + a,Xx
2
) k, =y - 8(X)]-k$
z = £(x,y) = xgl - [1 + = (3)
X = x-z (4)
x' = H(X) = CH » e-(x-xo) . (x - xo)u . X (7)
y' = p(x,z) = clz(l -C-+ 1z Ejfiij%—z) (8)

The "graph" of this model is relatively simple (Figure 1).
The quantity y' is entered twice to emphasize the symmetry.
The broken arrows from x' to x and from y' to y indicate

a new iteration in the time sequence.

Model Behaviour

A BASIC program was written to implement this model on
a Hewlett-Packard 9830A calculator. A small subset of the
possible conditions are illustrated in Figures 2 through 5.

In the course of development'of this experimental and
modelling work, certain parameters have evolved into what we
call our "Standard Case". These particular values do not
necessarily carry any fundamental biological significance;
they only serve as a common base for comparing the effect of
changes in parameter values. The "Standard Case" in the

present notation is



= [ ¢
al 2.5
a, = 0.0714
a =0
k1 = 30
k = 0.78
xo = 0.001
= 1.1
M = 3.0
cC =20
c1 = 0.95

Figure 2 shows a phase plane trajectory for the Standard
Case. 'The initial starting point is at "x"; the trajectory
then spirals counter-clockwise into an equilibrium point.
(The trajectory has been terminated before it reached that
point.)

The Standard Case is not globally stable. Combinations
of state variables that lead to prey densities less than Xq
result in extinction of the prey population followed by the
predators. Figure 3 shows an enlarged section of the state
plane with a disperse collection of starting conditions.

The actual trajectories have been surpressed in this plot.
Initial points are marked with "x"; subsequent locations are
marked with "O" if they are outside the domain of attraction

or with "+" if they eventually lead to equilibrium. With

enough trial initial points , the boundary of the attractor



domain begins to be defined as indicated by the freehand curve.

Previous explorations with the full simulation model have
identified k and C as important and sensitive parameters to
the topology of trajectories (Jones, 1973). PFigure 4 (a through
f) illustrates a range of k values when C = 0 (i.e. "contest"
predator reproduction Figure 5 (a through f) is for another
k series when C = 1 ("scramble" reproduction).

The qualitative behaviour of figures 4 and 5 are summarized
in Table I. The exact division between these modes have not
been located. They could be, of course, given enough paper and
patience. The goal of the present analytic effort is to
shortcut that necessity and develop a more comprehensive pro-

cedure for looking at this type of system.



(1]

(2]

[3]

[4]

t7]
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[10]
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Table I. Behaviour trend with

increasing k, for C = 0 and

c =1.
k C =0 C =1 k
0 o)
Long Narrow Domain of
Attraction (perhaps ex-
i tending to y =00 )
A~ 0.4 |- e Large Domain of Attraction
Beginning of Oscillatory (perhaps infinite in high
0.6 Trajectories. Finite X, y corner)
Domain.
Neutral Orbits Inside a
0.825 Finite Domain
_____________________________ ?
Global Instability
Increasing speed to
extinction. ’
Finite Domain of Attraction
10

Contraction of Domain

100
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Figure 2. Sample Trajectories for "Standard Case"
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Domain of Attraction for "Standard Case"

Figure 3.
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Figure 4a. Sample Phase Plane Trajectory for C = 0
and k = 0.05
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Figure 4b. Sample Phase Plane Trajectory for C = 0
and k = 0.2
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Sample Phase Plane Trajectory for C = 0

and k

Figure 4c.
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Figure 4d. Sample Phase Plane Trajectory for C = 0
and k = 0.825
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Figure 4e.

Sample Phase Plane Trajectory for C
and k = 1.0 '
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Figure A4f.

Sample Phase Plane Trajectory for C
and k = 1.4
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Figure 5a. Sample Phase Plane Trajectory for C = 1

and k = 0.6 )x
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Figure 5b.
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Figure 5c.

Sample Phase Plane Trajectory for C =1

and k
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Figure 5d.

Sample Phase Plane Trajectory for C
and d ’
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Figure 5e. Sample Phase Plane Trajectory for C =1

and k = 10
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Figure 5f.

Sample Phase Plane Trajectory for C
and k = 100
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