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A Survey of Applications of Integer and

Combinatorial Programming in Logistics

by .r'eremy 1". Shapiro

Introduction.

There are a number of definitional ground rules to be

establishedbefore we enter into our survey. First, an appli-

cation is taken to be a study in which concern over a real

world problem causedthe formulation of an integer or combina-

torial programmingmodel, the collection of data for this

model, and the calculation of numerical solutions using a

computer. This is in contrast to studies in other social

science fields where mathematicalmodels are used to obtain

qunlitative insights without necessRrily ｲ ･ ｱ ｵ ｩ ｲ ｩ ｮ ｾ data and

numerical calculations.

A second ground rule is to agree that we will not try to

define logistics, but rather to considerspecific illustrative

applicationswhich most of us would agree addresslogistics

problems. These applicationsare chosen from the functional

areasof distribution, location, scheduline,production/

inventory control, communicationsand reliability.

Another reason for considering illustrative applications is

that the number of applications is enormous and a comprehensive

survey is not possible. Our purpose instead is to discussby

example the underlying principles used in these applications.

The principles are derived from the synergismthat exists between
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mathematical ｰ ｲ ｯ ｧ ｲ ｡ ｭ ｭ ｩ ｮ ｾ theory as it relates to algorithms,

the constructionand use of computer systems,and the institu-

tional aspectsof the applicationsthemselves.
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Discrete Programming

In mathematicaltermst the most general statementof the

class of mathematicalprogramming models we will discuss is the

following. The object is to maximize the quantity f(x) where the

vector x is cnosen from a finite or denumerableset X contained

in a finite dimensional spacet say Rn . The set X may be given

implicitly or defined explicitly by a set of constraint functions

including integrality restrictionson the variable values.

Discrete programmingdiffers from nonlinear programming in that

differential methods cannot be usect directly to analyze the

objective and constraint functions. Moreovert convex combinations

of solutions from X may not themselvesbe points in X and

therefore linear programmingapproximationsmay be inexact.

Within.the class of discrete programminv, problems there

are two overlapping subclasses: integer programming and

combinatorial programming problems. We can think of integer

programming problems as being of the form

min flex) + f 2(y)

s.t. Al(X) + A2(y) > b-
x > 0 t Y ｾ 0 and integer t

where usually A2(y) = A2Yt i.e., the function A2(y) is a linear

function, and slightly less often f 2(y) = f 2y. For a system

problem such as this one, one uses integer programming system

theory including number theory and branch and bound (e.g.,

Geoffrion and Marsten (1972), Gorry, Northup and Shapiro (1973)).
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By contrast, combinatorial programming problems have a

less explicit mathematicalstatement. They contain network

optimization problems as substructuresincluding shortestroute,

maximal flow, minimum spanningtree and minimum cost flow problems.

All of these network optimization problems can be solved by "good"

algorithms which means algorithms with a number of steps upper

bounded by a polynomial in the parametersof the problem

(Edmonds (1911), Karp (1912». An algorithm is not "good" if

it is possible for the algorithm to require on some problems a

number of steps that grows exponentiallywith the parametersof

the problem. "Good" algorithms are good in a practical as well

as theoretical senseand network optimization problems of

significant size can often be solved in a matter of a few seconds

on large scale computers (Glover et al (1974».

There are other relatively simple combinatorial optimization

problems which appear as subproblemsin applications. These

include simple ｣ ｯ ｶ ･ ｲ ｩ ｮ ｾ and matching problems (Garfinkel and

ｎ ＼ ｾ ｭ ｨ ｡ ｵ ｳ ･ ｲ (1972», discrete deterministic dynamic programming

problems (Wagner (1969», and others. Although "good" algorithms

may not exist for these problems, they are often easy to solve

relative to the complex combinatorial programming problems found

in practice.

Specifically, the combinatorial programming models arising

in logistics applicationsare often a synthesisof several

similar or different problems of the above types, plus complicating

constraintsor relations. Practically all of these problems can

be formulated as integer programming problems, but often the
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special structureof the problem is lost. A good example of

this is the symmetric traveling salesmanproblem for which there

is an ｩ ｮ ｴ ･ ｧ ･ ｲ ｰ ｲ ｯ ｧ ｲ ｡ ｭ ｭ ｩ ｮ ｾ formulation with approximately2n

constraints,where n is the number of cities to be visited (Held

and Karp (1970».' The majority of theseconstraints,however,

describesa minimal spanningtree problem, and Held and Karp

(1970, 1971) exploit this structure in a special purpose

algorithm for the traveling salesmanthat involves the solution

of an effective n constraint approximationof the problem.

The choice of an integer programming or combinatorial

programming formulation of a discreteoptimization problem is

closely related to the choice one must make between a general

purposeor special purpose algorithm for the given problem.

IJnfortunately, this choice cannot always be made as definitively

as it can be for the ｴ ｲ ｡ ｶ ･ ｬ ｩ ｮ ｾ salesmanproblem. The conflict

can be resolved in large part, however, by the modular design

0f integer programming and network optimization computer codes

so that the synthesisrequired for a specific application can be

made without a complete set-up. As we shall see, the synthesis

of a model from its componentparts can be effected by the

application of dual or price directive decompositionmethods

of mathematicalprogramming. Decomposition'canalso be effected

by resourcedirective methods,but this approachhas found little

if any application. See Lasdon (1970) for a discussionof

these approaches.
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Illustrative Application One:

Multi-item Production Schedulingand Inventory Control

(Lasdon and Terjung .(1971».

Consider a manufacturingsystemconsistingof I items

for which production is to be scheduledover T time periods.

The demand for item i in period t is the non-negativeinteger

r it ; this demand must be met by stock from inventory or by

productionduring the period. Let the variable xit denote

the productionof item i in period t. The inventory of

item i at the end of period tis.

t=l, .•. ,T

where we assumeYi 0 = 0, or equivalently, initial inventory,
has been netted out of the rite Associatedwith xit is a

direct unit cost of productionCit. Similarly, associated

with YO t is a direct unit cost of holding inventory hOt
11.

The problem is complicatedby the fact that positive produc-

tion of item i in period t uses up a quantity ai + bixit of

a scarce resourceqt to be sharedamong the I items. The

parametersai and bi are assumedto be non-negative.

Lasdon and Terjung (1971) applied this model to the

schedulingof automobile tires production. The scarce

resourcein each period was machine capacity. The number

of different items (tires) was approximately 400, and the

planning horizon was approximately 6 periods.
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This problem can be written as the mixed integer

programming problem

I
s.t. E (ao15't + boX ot ) < qt' t=l, ••• ,T

i=l 1. 1. 1. 1.

S s
E xit - Yis = E r it , s=l, ••• ,T

t=l t=l

xit < Mit c5 it , t=l, ••• ,T-

(l.la)

(l.lb)

(l.lc)

(l.ld)

YOt > 0,
1. -

15 i t = 0 or 1, t=l, ••• ,T

(l.le)

'1'
where Mit = E r is is an upper bound on the amount we would

s=t

want to produce in period t. The constraints (l.lb) state

that sharedresourceusage cannot exceedqt. For simplicity,

we have assumeda single resourceto be sharedin each pro-

duction period. The model can clearly be used when there are

K sharedresourcesin each period. The constraints(l.lc)

relate ac-cumulatedproductionand demand through period t to

ending inventory in period t, and the non-negativity of the

Yit implies demandmust be met and not delayed (backlogged)•

'I'he constraints(l.ld) ensure that 15it = 1 and therefore the

fixed charge resourceusageai is incurred if production Xit

it positive in period t. Problem (1.1) is a mixed integer
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programmingproblem with IT zero-one variables, 2IT contin-

uous variablesand T + 2IT constraints. For the application

of Lasdon and Terjung, these ｦ ｩ ｧ ｵ ｾ ･ ｳ are 240 zero-onevariables,

480 continuous variables and 486 constraintswhich is a mixed

integer programmingproblem of significant size.

For future reference,define the set

(1.2)

satisfy (l.lc),(l.ld),(l.le)}.

This set describesa feasible production schedule for item

i ignoring the joint constraints (l.lb).

The integer programmingformulation (1) is not effective

becauseit fails to exploit the special structure of the

sets Ni . This can be accomplishedby dual (price rtirective)

decompositionwhich proceedsas follows. Assign prices

ut ｾ 0 to the scarceresourcesqt and place the constraints

(l.lb) in the objective function to form ｴ ｨ ｾ lagrangean.

T
L(u) = - E utqt

t=l

I T
+ minimum E E '{(cit+utb,)x' t(oOt,XOt,Yot)EN. i=l t=l 1 1
111 1

Letting

T
minimum E {(cot+Utbo)Xot

Ｈ ｾ x y ) N t=l 1 1 1U't' °t' 't E .111 1
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the Lagrangeanfunction clearly separatesto become

T I
L(u) = - ｾ utqt + L Li(u).

t=l i=l

Each of the problems (1.3) is a simple dynamic programming

shortestroute calculation for schedulingitem i where

the dual prices on shared resourcesadjust the costs as shown.

It is easily shown that L(u) is a lower bound on the

minimal objective function cost v in problem (1.1). The best

choice of prices is a vector u· Which provides the greatest

ｬ ｯ ｷ ･ ｾ bound; namely, a vector u· which is optimal in the

dual problem

w = max L(u)

s.t. u > 0,

where clearly w ｾ v. The ｲ ･ ｡ ｾ ｯ ｮ for this selectionof

prices ｩ ｾ that if the maximal dual objective function value

w equals the minimal primal objective function value v, then

it is possible to solve (1.1) by calculation of Li(u·) for

each item i. Approximate equality between v and w obtains

when the number of items I is significantly greater than

the number of joint constraints (l.lb) in the planning

problem.

The dual problem Ｈ ｬ Ｎ ｾ Ｉ can be solved in a number of ways.

One algorithm is generalizedlinear programming, otherwise

known as Dantzig-Wolfe decomposition (Lasdon (1970». This

is the approach taken by Lasdon and Terjung who, in addition,
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used the generalizedupper bounding technique (Lasdon (1970»

to solve the linear programmingSUbproblemswhich arise in

the use of this algorithm. Further discussionabout general-

ized linear programmingand duality is containedin Magnanti,

Shapiro and Wagner (1973).

If there is a sUbstantialduality gap betwee.nthe primal

problem (1.1) and the dual problem (1.4) (i.e., if v - w is

a large positive number), then problem (1.1) becomesmore

difficult to solve. In this case, the dual decomposition

approachneeds to be combined with branch and bound (see

Fisher, Northup and Shapiro (1974». To the best of my know-

ledge, the model (1.1) ha5 never been used to analyze a

real-life logistics problem where the number of joint con-

strai nt::; (l . III ) is of the same order of mal.':nitude as the

number of items for which production is being scheduled

and a large duality ｾ ｡ ｰ is likely.

Another application of combinatorialmethods to ｰ ｾ ｯ ､ ｵ ｣ ﾭ

tion is containedin Mueller-Merbach (1973). He considers

a production systemconsistingof a hierarchy of assemblies

to be merged into final products. The assemblyprocessis

describedas a network for the purposesof analyzing

explosion of material requirementsand costs.
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Illustrative Application Two:

WarehouseLocation and Multi-Commodity distribution

(Geoffrion and Graves (1973».

In the previous application,we considereda discrete

optimization problem for which the mixed integer programming

formulation was inefficient becauseit failed to. exploit

special structure.We consider now an application in which

mixed integer programmingwas successfullyapplied. The model

used in the application is an example of a large class

called location-allocationproblems (see Lea (1973) for an

extensive bibliography)•

The application of Geoffrion and Graves involved a

two-level distribution systemwith plants each producing

a number of different commodities to be shipped to ware-

houses from which wholesale customersare supplied. These

decisions to be made were: (1) what warehousesites should

he used; (2) what should be the ｳ ｩ ｺ ｾ of each warehouse;

(3) which customersshould be servedby each warehouse;and

(It) what is the optimal pattern of multi-commodity transpor-

t.ation flows?

Let i be the index for commodities, j the index for

plants, k the index for P0ssib1ewarehousesites and 1 the

index for customers.Define the variables xijkl as the non-

negative amount of commodity i produced in plant j for

delivery to customer 1 via a warehouseat site k. Let the

zero-one variable jk determinewhether (zk = 1) Dr not
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\

(zk = 0) a warehouseis constructedat location k. Let the

zero-one variable Ykl determinewhether (Ykl = 1) or not

(Ykl = 0) customer1 is supplied from warehousek.

The warehouselocation and multi-commodity distribtuion

problem can be-written as the mixed integer programming

problem

min ECijkl xijkl + E {fkz k + vk I dil Ykl}
ijkl k il

(2.la)

s.t. I xijkl < s··- J.J
kl

L xijkl = dil Ykl
.j

1.: Ykl " = I

k

-v zk < E dil Ykl < vk zk-:..}{ -
il

all ij

all ikl

all I

all k

(2.1b)

(2.lc)

(2.ld)

(2.le)

Linear configurationconstrai.ntson y and z

Xijkl > 0 for all ijkl

Ykl = 0 or I for all k, I

zk = 0 or I for all k

(2.lf)

(2.lg)

The constraints (2.lb) limit the supply of commodity

that can be shipped from plant j. The constraints(2.lc) and

(2.ld) togetherstate that the demand for commodity i by

customer I must be met and by shipment from exactly one
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warehouse.The constraints (2.1e) state that if warehouse

site k is selected(Zk = 1), then total storage of all

commodities for all customerssupplied from k must be

between the lower and upper linits !k and Vk • The constraints

(2.1f) are a variety of logical constraintson the zero-

one decisionvariables such as E l' zk ｾ 1 implying no more
k£K

than one warehousesite can be selectedfrom a subset Kl

of the possiblesites. Finally, ;the objective function

(2.1a) consistsof linear terms and fixed change terms

involving the variables Ykl and zk.

For the application of Geoffrion and Graves, there were

17 different commodities, 14 plants, 45 possiblewarehouse

sites and 121 customers.The mixed integer programming

problem (2.1) consistedof 11.854 rows, 727 binding variables

and 25.513 continuous variables. These large figures are

somewhatmisleadingbecausethe continuous part of the

problem consistsof a number of transportationproblems

with simple structure. Fortunately, it was possible to

exploit these structures,and at the same time solve the

mixed integer programmingproblem, by the use of Benders'

m8thod for mixed integer programming as shown schematically

in figure 1.



TRANSPORTATION MODELS
,FOR EACH COMMODITY,

INTEGER VARIABLES" SHADOW PRICES
- 1 -..

INTEGER ｖａｒｉａｂｌｅｓｾ 2 SHADOW PRICES
ｾ

•······
·
•

·- IP ·············
INTEGER VARIABLES · SHADOW PRICES

ｾ 17 -..

INTEGER CONSTRAINT

FIGURE 1
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The integer programmingsubproblem(IP) involved the

variable Ykl and zk and the constraints(2.ld), (2 .le) ,

(2.lf) and the zero-one constraintsin (2.lg) plus

constraintsapproximatingthe objective function (2.la)

from below. The transportationmodels ｾ ｯ ｮ ｳ ｩ ｳ ｴ ･ ､ for each

commodity i of (2.lb) and (2.lc) where the variablesYkl

were fixed at zero-one values. The objective functions

consistedof the linear terms.E ciJ·kl xi ·kl for each
Jkl J-

commodity i. Benders' method proceedsby alternatively

solving the integer programmingsubproblemand the contin-

uous transportationproblem. It stops when the integer

constraint derived from the transportationSUbproblems

does not cut off the previously optimal solution to the

integer programmingSUbproblem.

As we indicated, each solution of IP produceda

better lower bound to the optimal objective function value

in (2.1). Moreover, each solution of the 17 transportation

problems produceda feasible mixed integer programming

solution to (2.1). Thus, it is possible to terminate compu-

tation before optimality is reached (or proven), and have a

bound on the objective function cost loss due to non-optimality.
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Illustrative Application Three:

Optimal pesign of Offshore Natural-GasPipeline System

(Rothfarb et al (1970».

The previous two examples have involved continuousas

well as discretedecision variables and therefore they re-

quired mixed methods of solution. ｓ ｰ ･ ｣ ｩ ｦ ｩ ｣ ｡ ｬ ｬ ｙ ｾ dual pricing

of scarceresourceswas required in order to adjust the costs

on discrete decision variables. By contrast, the application

to be discussedhere is purely discreteand requires combi-

natorial algorithms adaptedfrom algorithms for simpler

problems o'f similar type. Moreover, the complexity of the

problem necessitatesthe use o,f heuristic methods because

optimality is too costly to obtain.

Figure 2 depicts a typical design of a pipeline system

connectingoffshore gas fields (nodes) to an onshoresepar-

ation and compressorplant. The location of the fields is

assumedgiven and the graph of the system is always a tree

(i.e., one and only one path from a gas field to the plant).

The pipeline systemis required to carry known flow per day

from each gas field accordingas

flow = K (pressurechange)2

'pipe lenOgth
pipe diameter

where K is a ｰｲｯｰｯｲｴｩｯｮ｡ｾｩｴｹ constant.



SHORE

-17-

SEPARATOR AND
COMPRESSOR PLANT

FIGURE 2
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the selectionof minimal cost pipeline diameter

given a pipeline network and delivery rcquirer;,entsj

the design of a minimal cost pipeline network given

gas field locations and delivery requirements.

(2)

The variables on the right side of (3.1) are the design

parameters.In addition, there are upper bound constraints

on pressuredue to safety and design considerations,and

lower bounds due to delivery requirementsat the plant.

The cost of a pipeline link dependson its diameterand the

depth of the water. The plant costs depend upon flow and

delivered pressure.

The two main problems addressedby Rothfarb et al were:

(1 )

Problem (1) is a SUbproblem of problem (2).

Problem (1) was surprisingly difficult to optimize

becausethe relation (3.1) and the pipe costs are nonlinear,

the number of different pipe diameterswas 7 and the number

of gas fields was 20 or more. As a result, the number of

design combinationswas quite large and the nonlinearities

ｭ ｾ ､ ･ it difficult to identify dominating subsetsof the combi-

nations. Heuristic rules were developedto eliminateapparent

uneconomicaldiameter combinationswithout exhaustiveenumer-

ation. The heuriRtics were based on looking at critical paths

which are those to the ends of the trees where the flow and

therefore the pipe diametersare smallest. The heuristics

entailed local optimization at these ends followed by a

merging of the nodes at the end into a single node with a

aggregatedesign and flow requirements.The analysis was
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then repeatedon the reducednetwork.

Problem (2) subsumesproblem (1) and required additional

heuristics.First, it is known that the pipes connected

directly to the plants, called arms, play an important role

in determining overall cost. It is assumedeither that these

are given by the user, or problem (2) must be solved for all

possible combinationsof arms. An automatic tree generator

is used to generatea distribution of candidatesfor solution.

Two guidelineswere used:

(1) efficient trees have low total pipe length; and

(2) efficient trees have nearly equal flow in their

arms.

If the first guideline were the only criterion, then the

problem of pipeline network design could be solved as a mini-

mum spanningtree problem by a "good" algorithm.

This illustrative application is only one of many

examplesof network design and analysis for problems where

exact optimization is difficult. An attractive possibility
,

is to use man-machineinteractive computerprograms to find

satisfactorydesigns. Such a program has been constructed

by Schneideret al (1972) to design urban transportation

networks.

A class of network design problems from an entirely

different application area giving rise to optimization

problems with similar mathematicalstructureare ｣ ｯ ｾ ｰ ｵ ｴ ･ ｲ

communicationsnetwork design problems. A number of remote

terminals are to be attachedto a central computer by a
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communicationsnetwork. The costs to be minimized are line

costs plus concentratorcosts for those nodes where many

lines are accumulated.See Frank et al (1971) for a

discussionof models of this type.
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Application Four: .

Routing Problems.

We have not found in the literature a single application

of the routing problem illustrating many of its ｾ ｾ ｰ ･ ｣ ｴ ｳ Ｎ

A simple version of this problem is the following. A

trucking company must deliver a quantity qi of a single

commodity to customer i for i = 1, ••• ,m. The compcmy h3.s

an unlimited number of trucks of capacity Q which can trans-

port the commodity from the warehouseto the customers.We

assumeqi ｾ Q for all i and orders cannot be split between

two or more delivery trucks. The objective is to minimize

the total ､ ｩ ｳ ｴ ｾ ｮ ｣ ･ traveled by the delivery trucks. Let

d.. = d .. denote the distance from customer i to custome-r j
1.J J1.

where dOj is the distance from the warehouseto customer j .

Figure 3 depicts a typical problem of this type with a

solution involving four trucks.

An integer programming formulation of the problem

has been given by Balinski and Quandt (1964). A generic

activity aj , called a tour, is an m-vector with compo-

nents

a.. =1.J

1

o

if delivery route j visits

customer i

otherwise

m
, where the a.. satisfy t a1.'. q. ｾ Q. The objective function

1.J :l. =1 J 1.



/

FIGURE 3
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coefficient c. associatedwith a. is the shortestdistance
J J

tour, starting and ending at the warehouse,of the customers

visited by the activity. The calculation of c. is a traveling
J

salesmanproblem. The delivery problem is solved by solving

the set partitioning problems.

n
min 1:

j =1

n
s.t. 1:

j=l

c. x.
J J

a.. X.
l.J J

= 1 1 = 1, ... ,m (1.1.1)

xj = 0 or 1, j = l, ... ,n

where n is the total number of tours satisfying
n
1: a.. qi ｾ Q. This number can be quite large and Balinksi

i=l l.J

and Quandt suggesta column generationtechnique Himilar
to the one discussedin the multi-item production scheduling

example. Of course, there are a number of generalizationsof

the problem as statedinclUding the use of trucks of

different sizes, multi-commodity delivery, etc.

Hausmanand Gilmour (1961) applied a model of this

general type to the problem of schedulingfuel-oil delivery

to home customers.The costs of delivery included a fixed

cost for each delivery in addition to distancetraveled,
/

and the frequency of delivery was a factor in the problem.

The optimal tour distance for each group of customers

servicedby a single delivery truck was ｡ ｰ ｰ ｲ ｯ ｸ ｾ ｭ ｡ ｴ ･ ､ by

multiple regression,using a few simple statisticsfor the
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group. Practical problems involving 120 customerswere

solved with a substantialcost reduction over hand solutions.

An important class of routing problems with the- form

(4.1) are the airline crew schedulingproblems (e.g., see

Arabeyre et a1 (1969) and Simpson (1969». For these

problems, the "customers" are cities and the "warehouse" is

a home base for crews and planes. A route map is given

with the existing flights, and their times, which must be

flown betweencities during a given time period, usually

a few days or a week. An activity a. correspondsto a
J

sequenceof cities connectedby flights that can be flown by

a crew without violating safety and union constraints.The

cost Cj of such an activity are the bonuses,per-diem and

overtime payments. In practical applicationsof the airline

crew schedulingproblem, there can be more than one home

base for crews, and additional constraintslimiting the

number of crews which can begin and end their tours at each

home base.

Laderman (1966) and Lasdon (1973) have formulated and

solved some large routing problems for ships on the Great

Lakes. Mevert (1974) reports on a large trans-Atlantic

shipping problem which has been formulated as a problem of

the type (4.1) with a number of side constraints.
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Conclusions

We have tried to present applicationsof integer and

combinatorial programming in logistics which illustrate

the current state-of-the-artof these methods and some

principles to be applied to new applications.There are a

number of application areaswhich were not mentioned

including, for example, reliabilH:y (Kershenbaumand

Van Slyke (1912», decision CPM (Crowston (1970», and the

setting of traffic signals (Little (1)66». Finally, we

have tried to indicate a representativerather than an

exhaustivelist of references.Extensive bibliographies

can be found in Garfinkel and Nemhauser(1912) and

Scott (1910).
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