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Consider an imaginary research institute where the
director has to make decisioné under uncertainty concerning
the institute's research funds which when received, must be
allocated by him between several projects. The project
leaders have supplied him with their utility functions
Ups Uspes-U for their own project funding, that is, project

leader k uses utility function u, in matters concerning

k
funding for his own project.
Now the director decides that, given an amount of

research funding x, he will allocate an amount x, to project

k

k so as to maximize

) + ... +u (x )

ug (x) + uylx, n'*n

1
subject to the eonstraint Xq + ... + x =x .

The question considered here, posed to me by Ralph L. Keeney,
is, what is the implied utility function of the director?.

Note that what follows applies also to the case where

the director chooses to maximize

for some positive weights ki since utility function u, may

be rescaled without loss to kiui.

Let

u(x) = Max [Ll(xl) + ...+ un(xn5]




Result 1 It is sufficient to consider the case n = 2 since
& general case méy be obtained by repeated épplication of
the n = 2 cese.

Prooft.

We reguire

u(x) =x o fix . [ﬁl(xl) +u,(x,) + u3(x3)]
1 "2 "3
but let us consider first the function

v(y) = nax [hg(yg) + uE(YB)]
Ypt¥g =¥

It will be sufficient for the result to show thet

u(x) = ma x [;l(xl) + v(y)] .

xl+y = X
But
oz, Balede e () sG]
1 Yotyg =
= nax Eﬁ}xl) + u2(y2) + u3(y3)] = u(x) .||

xl+y2+y3 = X
Hence until further notice this paper will consider the

problem

u(x) = max ul(y) + u2(x - y) . (1)
y

For clarification of notation

- ( I
r(x) = dti(t) t=x



so, for example,

8 (v-x) = ey (Y
dxu(y x) u(y X)(dx 1)
where
! du(t
u(y-x) = d—f:( )
t=y-x

Result 2 An optimal y exists and is unique for (1) if

u, and u, are strictly concave.
[

1

Proof First note that ul(y) + u. (x - y) is strictly

2

concave in y since uy and u, are, and the sum of two

concave functions 1s concave.
Hence a maximum 1s attained and 1s unigue. Il
Define y(x) by the relation
alx) = ul(y(x)) + UB(X - y(x))

then result 2 shows that y(x) is well defined on x.

Result 3 If u, and u, are twice differentiable and strictly

1 2

concave then

1

1.'1(x) = L‘xl(y(x)) = u2(x - y(x))

Proof
Let

6(y) = ul(y) + u2(x -vy)
then

deo _ 1 ! _

iy ul(y) u2(x y) .
Hence

a6

1 1
0 where ul(y) = u2(x -y) . (2)

dy
e A



This is a maximum since O(y) is strictly concave iu y.
Equation (2) will always be satisfied if it is assumed that
the ranges of hl and hz are equal. For most utility functions
this range is ( - *®, 0), and thus (2) will hold.

Using a Taylor expansion
1 1 1
u(x) + 8x u(x) = ul(y) + Sy ul(y) + u2(x—y) + (6x-68y) u2(x—y).
(3)
and (1) and (2) give that

) 1 1 !

Sxu(x) = Gy(ul(y)) + (8x~-8y) uz(x—y) = 6xul(y) ) ||

Result 4 If the total funding x is increased then each

group receives an increased allocation.

Proof Using a Taylor Expansion for the optimal y y(x),

u(x + 8x) ul(y + 8y) + u2(x +y + 6x - 8y)

s0o that
2

u, (y) + 8y él(y) + g%— gl(y)

u{x + 8x)

1 — 2
(x-y) + (6x-8y) uy(x-y) + L8200 4 (oy)

s

+

s

using (1) and (2) gives

] 6 2 " (6){‘6 )2 " .
u(x+8x) = u(x) + 8x u(x) + —%— ul(y) + ———E—l—— u2(x—y)-

Maximizing (4) with respect to 8y implies that

" 1"
8y uyly) - (8x - 8y) u, (x - ¥y) =0



that iS ]

(x = ¥y)
§y - 2 Y > 0

(y) +{'12 (x - y)

since v and u2 are strictly concave.

. u, (y)
1 - 87 = L > 0

5x  uw (y) +w. (x - y)

Also

2
also so that each group receives a strict increase in
allocatiou. | |
Theorem . Assuming

(1) uy and u, are strictly increasing, strictly concave

with continuous second derivatives

1
(ii) ui(x) > 0 as X >

> - as x > -

then
u(x) = (u; + u, gt ﬁl) (1 + u)? ﬁl)_l(x)] .

Proof We have from (2) that

1

u () = w, (x - y)

|
and since u, is strictly decreasing and continuous it has

1 _ 1
an inverse u2l which is valid over the range of u;, SO that
'_l 1
X -y o= u,ou (y) (5)
or
_ '_l 1] _ '_l |
x =y +ou, ul(y) = (1 + u, ul) (y)



. [
Since %% > 0 and u2l is continuous we have that
|_l y :
1+ us” u, is strictly increasing and continuous so that it

too has anwinverse, hence

Since
u(x) = ul(y) + u2(x - y)

from (5) and (6) we have that

n
o
+
=
i
o -
—
S
«

u(x)

= (u +u, uytu) [0+ )t ap™h (0] L]

(7)

Note that the formula is entirely in terms of the known

functions ul and u2.

Examples

Take ul(x) = log (x + a) u2(x) = log (x + b)

so the problem is, find u(x) such that

u(x) = m%x [log (y + a) + 1log (x - y + b)]

By differentiating, setting to to zero we have

1 _ 1 = 0
y + a x -y +b
. x -y +b =y + a
x — a + b



Hence
— + -_—
u(x) = lOg(E———%———E + a) + log(% 2 r e 4 p)
, X a + b
= 2 log( 5 )

Now to demonstrate that the same result may be had using

(7).

1 l 1 l
(x) =
ul(x) X + a u2\x) x + b
Thus
'-1 - L _
u2 (x) = X b
- 1
y(x) = (1 +u,” u)(x) = x +3 - b
u, (x)
= 2x + a - b
. '-1 " -1 X — & + b
- (1 + u, ul) (x) = »
Now
'_l 1
(ul +ou, u, ul)(x) = log(x +a) + log (x + 2a - b + b)
Hence
|_l ] l_l [} ._l
(up + uy uy™ wy) [(1 + u,” uy) (x)]

2 10g(5—1—g—i;3 + a)

x + a + b

2 log ( 5

) as required.
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Hence u, = log(x + a) u, = log(x + b) yields a utility
function of log(x + a + b) for the director.

Az an exercise for the reader, it may be shown

either by direct route or via (7) that if

-cX _ __—dx
ul(x) = -e and u2(x) = -e
- then _ Cdx B c _ a )
_ c+d ( c c+d 4 c+d
a(x) = ($) (2)
Hence ul(x) = -e X | u,(x) = ~e 4% yields a utility
cd
- c+dx .
function of -e for the director.

In these two standard cases u(x) is the same form as the

functions u, and u,.

1 2
Indeed 1if
a, (x) = -me” ¢¥ u.(x) = —ne_dx
1 2
then _ Cdx
c+d

u(x) n -e

that is, the directors weighting of the projects does not

affect his decisions.

Theorem 2

If each member of the group has

—c X
(i) a utility function -e k=1,...,n
(ii) a utility function log(x + ak) k =1, ,n

or (iii) a utility function —-(x + bk)_p p >0, k=1,...,n

then the group utility function u is independent of the
weightings given to the individual members utilities.

Proof Since it is merely a matter of solution the proof
will be omitted. However the statement of the theorem will

be amplified.



(1) It
u(x) = max Wyuq + Wou,t +wou
vhere e %
u (x) = -e k
k
then
-cx
w(x) = =£(Wy,-- Vs Cpse cac ) e
where
£(+) > 0 and
L N
c cy c
(ii) if
uk(x) = log(x + ak)
then
u(x) = g(al, 85 Wi ,wk) log (x + a)
where
= + + . > .
a a,) &, g(+) >0
(iii) 1If
uk(x) = - (x + bk)—p for some constant p > O
then
u({x) = -h(wl,-~-,wn, p) (x + ) P a(e) > D
where b = b1 + ...+ bn' ||

The importance of this result lies in the observation

that the group decision maker need only know the group
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members' utilities before making decisions on group funds.
He need not decide beforehand how he will weight the
importance of the group members. In particular the role
of group decision maker and weighting decision maker may
be divided between two different people (or groups) who

need not even communicate with each other.

The interestingly simple expression for the exponential
coefficient in Theorem 2 (i) can be generalized.
Theorem 3 If r(x) is the coefficient of risk for the group
utility function and rk(x) that for the individual members

then

where X, is the optimal allocation to group member k.

_E(X)
&(x)

Froof Recall that r(x) =

Note that this result is true whatever the forms of the
uy but that this does not imply the proof of a gencral
form of Theorem 2 because the optimal = will depend on the

welghtings.

For simplicity's sake we will prove it for the case

Tor ar owvrinal .



_ll_

Phus, differentiating with respect to X,

u(x) = ul(y) %‘%

From the proof of Result &

dy 1p(x = v)
i 1" "
o u, (¥y) + u,(x - y)
1" 1" 3
. n _ ul(y) u, (x = v)
* M u(x)— " T
u, (y) + uy(x - y)
that is
1 1 1

n = t T

u{x) ul(y) uz(x -y)

Using (8, once more we have that

x) u, (v) u,(x - y)
a(x) w(y)  uylx - y)

whicl gives the result. The extension to a general n 1s

trivial using Result 1.




-12~

The following is @ characterization (perhaps not complete)
of functions having the property of Theorem 2.
Theorem 4 If all members of the group have a utility

function
uk(x) = v(akx + bk)

then u(x) the group utility function, is independent of the

weightings assigned to the group members if

(1) 8v(x) = vix + £(8)) (where £ T exists)
or if (ii) wv(ex) = v(x) + g(8) .
Frcof Note that it is sufficient for (i) to take bk = 0
and for (ii) to take a, = 1.
We will also just prove it for the case n = 2.

(i) At optimality

L{x = ¥))

! \
ale(uly) = alv(aa

or using property (i)

v(ayy + £(8)) = via,(x - y)) .

Since v — exists
a,y + £(B) = az(x - y)
and
) azx-f(G)
y a, + a
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- 5 +
. a,a,Xx alf(e) &, 8,X aef(e)
. u(x) = 6v P + v 2 t a
1 2 1 2
(alagx - alf(6)+ f(e))+ . (ala2x . agf(G))
= v - -
a;ta, a,ta, ayta, a;¥a,
a a,x a2f(6)
=293 75, T3 +a
o | y 2%8p 1785
‘* M.\]’i‘ YO ﬂ.,vrfi;\%;‘t.{;'p.y-g. Yol Yl A “ o ' A N ) " -

W

which is independent of the weighting ©.

(ii) At optimality

v(iy + bl) = V(b2 + x - y)
1 ]
Now Bv(x) = v(%) from (ii)
hence
y+b1=b,,+x—y
e a8
| .e(bg + x) - b,
o1 y = 1 + 0
. B(b, + b, + x) b, + b, + x
_ 1 2 P
u(x) = 6v< 176 ) + v( T+ 5 )
= (1 +6) v (b, + b, + x) + (_Q_ + g
1 2 \1%6 El1+6

which again is independent of the weightings. |
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Concluding Remarks Results have been presented when a

group decision maker allocates resources using the criterion
of maximizing totel utilities. This criterion has not been
justified, although Theorem 2 suggests to me that it may
well be reasonable and certainly simple to use.

Additivity is not essential for many of the results.

For example if the criterion used is
u(x) = max _ ul(xl)u2(x2) ces un(xn) .

Many of the results are actually simpler because the problem
of weightings does not arise. The results of this paper may

be applied very straightforwardly to the situation

log u(x) = max log ul(xl) +...+ log un(xn)



