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Algorithms for the Stochastic

Inflow-Nonlinear Objective Water Reservoir

Control Problem

J. Casti

I. Introduction

In earlier IIASA WP's [1,2], algorithms to determine the

optimal control of a water reservoir network with stochastic

inflows and nonlinear utilities have been proposed. Both

studies [lJ and [2J utilize a dynamic programming-typeapproach,

coupled with approximationsof one type or another, in order

to yield a computationalalgorithm in which the bulk of the

calculation is carried out by efficient (and rapid) network

flow algorithms. The purpose of this note is to presenta

synthesisof the work [1,2J and to spell out the precise steps

of an algorithm in sufficient detail to enable a computer pro-

gram to be constructed.

2. Basic Problem

Before consideringour algorithm, let us briefly review

the basic water reservoir control problem. We are given m

reservoirsconnectedin some type of network configurationsby

various branches (rivers, tributaries, etc.). At the beginning

of each time period t, reservoir i containsan amount of water

s., i = 1,2,•.. ,m and various demandsfor water for irrigation,
ｾ

flood control, drinking, navigation, etc. are placed upon the

system. The problem is to determine the amount of water u. ,
ｾ

i = 1,2,•.• ,m, to be releasedfrom each reservoir in order that
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some measureof utility of the water releasedis maximized,

subject to various constraints. For a single stageprocess,

this problem is not too difficult; however, the real problem

is complicatedby being a multistageprocesswith the added

feature of having stochasticinflow at each reservoir at each

time due to rainfall and undergroundwater run-off. In addi-

tion, the various utility functions for each reservoir are

often nonlinear, thereby precluding any direct application of

linear programming procedures. Consequently,other approaches

are required.

In order to formulate our problem in mathematicalterms,

let

s. (t) = amount of water available in reservoir i at
1

time t,

u. (t) = amount of water releasedfrom reservoir i at
1

time t,

ri(t) = external inflow to reservoir i at time t

(stochasticquantity), i = 1,2,••. ,m, t = O,l, ••• ,T.

Clearly, the dynamics of each reservoirare describedby the

equation

s. (t+l)
1

= s.(t) - u.(t) + r.(t) +
111

L B.u. (t)
j £1. J J

1

(1 )

where I. is the subsetof {1,2, ... ,m} consisting of those
1

reservoirswhich input water to reservoir i, and B. represents
J

the fraction of water releasedfrom reservoir j which is absorbed

by the network before it reachesreservoir i, a < 8. < 1,
J

i=1,2,••. ,m.
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Let us assumethat there is a certain cost associatedwith

having an amount of water s. available at reservoir i. Follow-
1

ing [lJ, we assumethis cost is expressibleby the convex func-

tion ¢. (s.), i = 1,2,••• ,m, i.e. The total objective function
1 1

is

(2 )

Since the quantities ri(t) in (1) are random variableswith

distribution functions dG. (r), our optimization problem may be
1

formulated as

min €[J]

over all control sequences{ul(t) , •.. ,um(t), t = 0,1,. ,.,T-l},

where set) and u(t) are related by (1) and the constraints

lJ. (t) < u. (t) < s. (t)
1 - 1 - 1

(3 )

are satisfied. Here e denotes the expectedvalue relative to

the distribution function dG. (r), while the quantities lJ. (t)
1 1

representcertain minimal demandsfor water which must be met

by releasefrom reservoir i, i = 1,2,.•. ,m.

We tackle this problem by dynamic programming. Let

ft(sl, ••• ,sm) = expectedvalue of J when the process

has T-t time periods remaining, is in

state (sI, ..• ,sm) and an optimal policy

is pursued, t = 0,1,... ,T.
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Then it is an easy application of the principle of optimality

to see that f t satisfiesthe functional equation

min

11. (t) < u. (t) < s. (t)
1 1 - 1

i=1,2,... ,m

1:3.u.
J J

s 2 - u 2 + r 2 + L:: S .u . , ... , )] dG (r)
jE:I J J

<

t = 0,1,... , T-l (4 )

3. ｾ ｰ ｰ ｲ ｯ ｸ ｩ ｭ ｡ ｴ ｩ ｯ ｮ ｳ

(5)

Our next objective is to make approximationsin Eg. (4)

so that it will be possible to utilize network flow algorithms

to effect the minimization over the u's for fixed values of

sl,.·.,sm' r l ,· ,.,rm· This means that both the individual

reservoir costs cp. (s.) and the "next stage" return
1 1

f t +l (al ,a2 , ... ,am) must be judiciously approximated. The heart

of our methods is in the selectionof approximationsfor these

quantities that not only preserveaccuracy, but also enable us

to apply network flow techniquesfor solution of the minimiza-

tion over the u's.

The first approximation is to replace the individual

reservoir costs by piecewise linear functions. Since we have
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assumedeach ｾ Ｎ is a convex function of its argumentwith
1

ｾＮ (0) = 0, we have
1

<p. (5.) =
1 1

S.
1

o < s. < s. (1)
1 - 1 (6)

(1 )
S.

1
< S.

1
< s. (2)

1

Hence, in each segmentof the form s. (j)
1

< S.
1

< (j+l)s. ,
1

the function ｾ Ｎ is linear.
1

Our secondapproximation is in "policy space", i.e. we

guessan operating policy UO(sl" .. ,sm i t) and use this policy

to determinea return function from the relations (4) and (5).

This is a type of approximationwell-suited to taking advantage

of experienceand "seat-of-the-pants"operating rules for

reservoir systems. In addition, it can be shown that the

algorithm describedbelow will monotonically improve (in the

senseof the criterion (2» the current policy as the iteration

procedureprogresses. Thus, we have a systematicmethod for

improving any existing policy.

Having fixed an approximationto the policy u, our last

L:
jEI

m

approximation is to the optimal

f t +l (Sl - u l (sl'" ,sm;t) + r l +

sm - u (sl""'s ;t) + rm m m +

value function

L: (3.u.(sl""'s it),
J J mjEll

(3.u.(sl""'s ;t»). By virtue
J J m

of the criterion (2) and the structureof the ｾ Ｎ Ｌ it is not
1

difficult to see that the function ft+l(·, •.. ,o) should be
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separablein its arguments, i.e.

, (7 )

where the functions y. will be convex relative to the variable
1

s. (here we use a. = s. - u.(sl'."'s it) + r. + ,L:B.u.(sl' ... 's it).
1 1 11m 1 J JJ m

Again, we may approximatethe y's by piecewiselinear functions,

thereby giving f t +l (., ... ,.) the desired linear structure.

Clearly, the previous approximationto the ¢. will be used to
1

approximatefT(al, ••• ,am), while for t < T - 1, approximation

algorithms in the DYGAM program may be employed.

4. The Algorithms

We shall present two alternativealgorithms in this section.

The first will be baseddirectly upon the policy space idea

presentedabove, while the second is basedupon ideas introduced

in [2J. In both cases,the primary objective is to reduce the

calculation to a level at which almost all the work is done by

the efficient network flow algorithms.

Alternative I (Policy Space Iteration)

The steps in this algorithm are the following:

1. Approximate the functions ¢. (s.) by piecewiselinear
1 1

functions as in (6);

2. oGuess an initial policy u (sl"" ,sm;t) for all

sl' ... ,sm' t = 0rl, ••• ,T-l;

3. Determine the approximateoptimal value functions

ｦ ｾ Ｈ ｳ ｬ Ｇ ..• ,sm) by iterating the relation (4) for t = 0,1,••• ,T-l,

using the initial function (5);
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4. Approximate each function ｦ ｾ Ｈ ｡ ｬ Ｌ ••• ,am) by piecewise

linear functions of al, •.. ,am as in (7);

1Determine the up-datedpolicy estimateu (sl, •.• ,sm;t)

as that function which minimizes

B.u.,••. ,s
J J m

- u + r +m m

Notice that for each fixed set of values for sl, .•• ,sm'

r l , ... ,rm, t, this is a network flow problem. This step is

carried out for all t = 0,1,... ,T-l, and all sl,s2,•.• ,sm.

(Remark: For computationalpurposes,it may be better to let

the si vary only over the regions (sl'O'... 'O), (0,s2'0'... '0),

... , (O,O, ..• ,O,s ) and then interpolatethe values of Ul(sl' .•• 's )m m

for non-lattice points). Having obtained the next policy u l ,

return to step 3 and continue until convergence.

Alternative II:

In this approach (which follows [2J), we note that the

*optimal releasepolicy {u. (t), t = O,l, .•• ,T-l, T = 1,2,••• ,m}
1

*is equivalent to knowledge of the optimal levels {so (t)}. Hence,
1

we reformulate the problem in terms of water levels only. That

ft(Sl<tl' ... 'Sm<t» =J[JI ｾｫＨｓｫ＼ｴﾻＩ

f t +l (Sl (t+l) , ••• , sm(t+l») ] dG(r)
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when the optimal policy is used at time t, or, equivalently,

when we have optimal water levels at time t+l (here the random

quantities r. are implicitly included in the term s. (t+l)).
1 1

The problem, of course, is that the optimal levels s. (t+l)
1

(for fixed r.) are not known and must be determined. To
1

accomplishthis task, the following algorithm is proposed:

o. Let t = T-l and approximateft+l(Sl(t+l) , •.. ,Sm(t+l))

= I ¢. (s. (t+l)) as in (6);
. 1 1 11=

1.

2.

3.

Fix a value of the water levels, say Sl (t), .•. ,sm(t);

Fix a value of the random parametersr. (t);
1

Solve the network-flow problem of minimizing

over all ll. (t) < u. (t) < S. (t), where s. (t+l) is given by (1);
1 - 1 - 1 1

4. Change the random variables to new levels and repeat

steps 2-4, forming expectedvalues according to the probability

distribution dG(r);

5. Change to a new set of water levels S. (t) and repeat
1

step 3 until all levels have been considered;

6. Approximate the function ft(sl' ... ,sm) by a piecewise

multilinear form (using DYGAM subpackage),let t + t ｾ 1,

and return to step 1.

Remarks

i) At step 1, in view of the separableform of the ｯ ｢ ｪ ･ ｣ ｾ

tive function, it will again probably be best to use only water

levels of the form (51 ,0, ..• ,0), (0,52 , ... ,0), etc. This will
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save on computing time by cutting down the number of cases,while

still yielding sufficient information to make the approxima-

tion in step 6 accurateif the s. grid is fine enough;
1

ii) In the approximationof step 6, some experimentation

will probably be necessaryto determinehow many pieces should

be taken in the "piecewise" multilinear form. The usual trade-

off between fewer pieces and high-order terms vs. more pieces

and lower order approximationsneeds to be examined. Generally

speaking, however, it is preferableto take several low-order

pieces.
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