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1. Introduction

Since the appearanceof a paper by H. Tui [14], maximization of

convex function over a polytope has attractedmuch attention. In his

paper, two algorithms were proposed: one cutting plane and the other

enumerative. However, the numerical experimentsreported in [16] on

the naive cutting plane approachwerediscouragingenough to shift the

researchersmore to the direction of enumerativeapproaches([7] ,[8] ,[17]).

In this paper, we will develop a cutting plane algorithm for

maximizing a convex quadratic function subject to linear constraints.

The basic idea is much the same as Tui's method. It also parallels some

of the recent results by E. Balas and C-A. Burdet [2]. We will, however,

use standardtools which are easier to understandand will fully exploit

the special structureof the problem. The main purposeof the paper 1S

to demonstratethat the full exploitation of special structurewill

enableus to generatea cut which is much deeper than Tui's cut and that

the cutting plane algorithm can be used to solve a rather big problem

efficiently.

We will first prove the equivalenceof the original problem and an

associatedbilinear program (See [9] for details) and then exploit its

special structure to obtain a 'deep' cut. The algorithm has been tested

on CYBER 74 up to a problem size of 9 x 19 and the numerical results

turned out to be quite encouraging. This work is closely related to [9 J
and its resultswill be frequently referred to without proof.
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2. E-Locally Maximum Basic FeasibleSolution

and Equivalent Bilinear Program

We will consider the following quadraticprogram:

max f(x)

s.t. Ax

t t
= c x + !x Qx

b, x > 0
(2.1)

h n m mxn nxn. . ..
were c, x E R , b E R , A ERandQ E R ｾｳ a ｳｹｭｭ･ｴｲｾ｣ ｰｯｳｾｴｾｶ･

semi-definitematrix. We will assumethat the feasible region

x = {x E R
n I Ax = b, x ｾ o} (2.2)

ｾ ｳ non-empty and bounded. It is well known that in this case (2.1) has

an optimal solution among basic feasible solutions.

Given a feasible basis B of A, we will partition A as (B, N)

assuming,without loss of generality, that the first m columns of A are

basic. Partition x correspondingly,i.e. x = (xB' ｾＩＮ Premultiplying

-1
B to the constraint equation BXB + ｎｾ = b and suppressingbasic

variables xB' we get the following systemwhich is totally equivalent

to (2.1):

s.t.

max ｉＨｾＩ = ｣ｎｾ + Ａｾｾ + <Po

ｂＭＱｎｾ ｾ B-lb, (2.3)

where xo _ ＨｸｾＬ ｾＩ = @-lb, 0) and <Po = f(x o). Introducing the notations:

ｾ = n - m, d = cN' Y

as:

ｾ Ｌ F

max g(y)
t t

= d y + !y Dy + <P
o

Q, we will rewrite (2.3)

s.t. Fy < f, y > 0 (2.4)
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and call this a 'canonical' representationof (2.1) relative to a

feasible basis B. To expressthe dependenceof vectors in (2.4) on B,

we occasionallyuse the notation deB) etc.

Definition 2.1. Given a basic feasible solution x £ X, let N (x) be
x

the set of adjacentbasic feasible solutions which can be reachedfrom

x in one pivot step.

Definition 2.2. A basic feasible solution x* £ X is called an £-loca11y

maximum basic feasible solution of (2.1) if

(i)

(ii)

d .s.. 0,

f(x*) > f(x) - £ \Ix £ N (x*), x

Let us intorduce here a bilinear program associatedwith (2.1), which

ｾ ｳ essentialfor the developmentof cutting planes:

s.t. (2.5)

Theorem 2.1 [9]. If Xis non-empty and bounded, then (2.5) has an

optimal solution Ｈ ｸ ｾ Ｌ ｸ ｾ Ｉ where ｸ ｾ and x; are basic feasible solutions

of x.

Moreover, two problems (2.1) and (2.5) are equivalent ｾ ｮ the

following sense:

Theorem 2.2. If x* is an optiam1 solution of (2.1), then (xl' x
2
) =

(x*, x*) is an optimal solution of (2.5). Conversely, if Ｈ ｸ ｾ Ｌ ｸ ｾ Ｉ is

optimal for (2.5), then both ｸ ｾ Ｌ ｸ ｾ are optimal for (2.1).
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Proof. Let x* be optimal for (2.1) and Ｈ ｸ ｾ Ｌ x;) be optimal for (2.5).

By definition.f(x*) ｾ f(x),\(x E X. In particular,

* * * *f(x) > f(x.) = ¢(x., x.), i = 1, 2- ｾ ｾ ｾ

also

ﾢ Ｈ ｸ ｾ Ｌ ｸ ｾ Ｉ

ｾ max{¢(x, x) I x £ X} = f(x*)

To establishthe theorem, it suffices therefore to prove that

becausewe then have ｦ Ｈ ｸ ｾ Ｉ > f(x*), i = 1, 2 and ¢(x*, x*) = f(x*)
ｾ -

(2.6)

Let us now prove (2.6). Since Ｈ ｸ ｾ Ｌ x;) is optimal for

(2.5), we have

Adding these two inequalities,we obtain

Since Q is positive semi-definite, this implies ｑ Ｈ ｸ ｾ - X;) = o. Putting

this into the inequality above, we get ct (x1 - ｸｾＩ = O. Hence

* * * * * *. II¢(x1' x2) = ¢(x1' x2) = ¢(x2' x2) as was ｲ･ｱｵｾｲ･､Ｎ

As before, we will define a canonical representationof (2.5)

relative to a feasible basis B:
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max 1J;(Y1' Y2)
t t t

+ 4>d zl + d z2 + zlDZ 2 0

s.t. FZ1 .::. f, zl ｾ 0 (2.7)

FZ2 .::. f, z2 ｾ 0

which 1S equivalent to (2.4) • Also let

R.
y ｾ o}y {y £ R Fy .::. f, (2.8)

3. Cutting Plane at an £-Loca11y Maximum Basic FeasibleSolution

We will assumein this section that an £-10ca11ymaximum basic

feasible solution X
O and correspondingbasis B have been obtained.

o

Also, let ｾ be the best feasible solution obtained so far by one't'max

method or another.

Given a canonical representations(2.4) relative to B ,
o

we will proceed to introduce a 'valid' cutting plane in the sensethat

it

(i) does eliminate current £-10ca11ymax1mum basic feasible

solution, i.e., the point y = 0,

(ii) does not eliminate any point y in Y for which g(y) > 4>max + E.

Theorem 3.1 [14J. Let e. be the larger root of the equation:'
1

d.>" + 12d•• >..2 = ｾ _ ｾ + £
1 11 't'max 't'o

Then the cut

(3.1)

H(e):

is a valid cut.

R.
E

i=l
y./e. > 1

1 1
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This theorem is basedupon the convexity of g(y) and the simple

geometric observationillustrated below for two dimensionalcase.

o
x

Yl axis Y2 axis

Figure 3.1

Though this cut is very easy to generateand attractive from

geometric point of view, it tends to become shallower as the dimension

1ncreasesand the results of numerical experimentsreported in [16J

were quite disappointing. In this ｾ ･ ｣ ｴ ｩ ｯ ｮ Ｌ ｷ ･ will demonstratethat if

we fully exploit the structure, then we can generatea cut which is

generally much deeper than Tui's cut.

Let us start by stating the results proved in [9J, taking into

account the symmetric property of the bilinear programmingproblem (2.7)

associatedwith (2.4).
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Theorem 3.2. Let 8. be the supremumof A for which
ｾ

0, J ｾ , z2 E Y}

< ep + E
- max

Then the cut

H(8) :
i
L: y./8. > 1

j=l J J

is a valid cut (relative to (2.4)).

Theorem3.3. 8. of Theorem 3.2 ｾ ｳ given by solving a linear program:
ｾ

8. min[-dtz + (ep - ep + E)Z ]
ｾ max 0 0

s.t. Fz - fz < 0
o

t
d. z + d.z = 1
ｾＮ ｾ 0

z > 0, z > 0
o

where d. is the ith column vector of D.
ｾＮ

For the proofs of these theorems, readersare referred to [9]. Also

Theorem 3.3 is proved in [2] using the theory of outer po1ars. We will

next proceed to the method to improve a given valid cut.

For a given positive vector S = (81' 8 ) > 0 let... , i '

t.(S) i
{y E R I

i
L:

j=l
y./S. < 1, y. ｾ 0, j

J J J
1, ... , i} (3.3)
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Theorem3.4. Let T > 8> o. If

and if

then

(3.4)

(3.5)

H(T) :
9-
L: y.h. > 1

j=l J J

is a valid cut (relative to (2.4)).

Proof. Let Yl = ｾＨＸＩ ny, Y2 = ＨｾＨｔＩＢｾＨＸＩＩ n Y, Y3 = ｙＢｾＨｔＩＮ

Obviously Y = Y
l

U Y2 U Y3. By (3.3) and (3.4), we have that:

By symmetry of function ｾ Ｌ we have that

ｭ ｡ ｸ ｻ ｾ Ｈ ｺ ｬ Ｇ z2) I zl £ Y2' z2 £ Yl } = ｭ｡ｸｻｾＨｺｬＧ ｾＲＩ I zl £Yl ,

z2 £ Y2}

and hence

Referring to Theorem 2.2, this implies that

max{g(y) I y£Yl UY2} < <P + £- max

This, in turn, implies that H(T) is a valid cut. II
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This theoremgives us a techniqueto improve a g1ven valid cut

(e.g. Tui's cut or the cut defined in Theorem3.2). Given a cut R(B),

let T. be
1

Figure 3.2

the maximum of A for which

then R(T) is also a valid cut as is illustrated in Figure 3.2.

It is easy to prove (See [9],Theorems3.2 and 3.3) that L. defined above
_1

is equal to the optimal objective value of the following 'linear program:

L' = min[-dt z + (<p - <p + EJ z ]1 max 0 0

s.t. Fz - fz < 0
0-

ｾ

E d..z. + d.z = 1 (3.6)
j=l 1J J 1 0

ｾ

E z./e. - z > 0
j=l J J 0-

Note that since d < 0 and <p - <p + £ > 0, (z, Z ) = (0, 0) is a
max 0 0

dual feasible solution with only one constraintviolated and it usually
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takes only severalpivots to solve this linear program starting from

this dual feasible solution. Also it should be noted that the objective

value is monotonically increasingduring the dual simplex procedureand

hencewe can stop pivoting whenever the objective functional value

exceedssome specified level.

Lemma 3.5.

(ii) If Q is positive definite and xl f x2' then

Proof.

(i) Assume not. Then

Adding these two inequalities,we obtain

which is a contradictionsince Q is positive semi-definite.

(ii) Assume not. As 1n (i) above, we get

which is a contradiction to the assumptionthat xl - x2 f 0

and that Q is positive definite.
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Theorem3.6. If Q is positive definite, then the iterative improvement

procedureeither generatesa point y £ Y for which g(y) ｾ ｾ ｭ ｡ ｸ + £

or else generatesacut which is strictly deeper than correspondingTui's

cut.

Proof. Let H(e) be Tui's cut and let H(T) be the cut resulting from

iterative improvement starting from a valid cut H(w) where w > O. Let

By definition:

(0, ...,0, T., 0, ... ,0),
1

1 1, ... , t

ep + E
max (3.7)

Case 1.

that

It follows from Lemma 3.5 and (3.7)

ep + E
max

1
Note that Zz £ Y.

Case Z. 1 1 1 1
ｾＨｚｬＧ Zl) > ｾＨｺｚＧ zZ)· Again by Lemma 3.5 and (3.7), we have

We will prove that this inequality is indeed a strong one. Supposethat

1 i i 1
ｾＨｚｬＧ Zl) = ｾＨｚｬＧ zZ), then

t i 1 t i 1
c (zl - Z ) + Z1D(zl - z ) = 0

2 Z

1 1 1 1
we obtainFrom ｾ Ｈ ｺ ｬ Ｇ zZ) > ｾＨｺｚＧ zZ)

t i 1 t i i > 0c (Zz - z ) + zZD(zZ - zl)1
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ｾ

Adding these two, we have that (zl
i

z2) < 0, which is a

contradiction. Thus we have established

which, in turn, implies that T. > e. since e. is defined (See (3.1))
ｾ ｾ ｾ

as a point at which g(e) attains the value ｾ ｭ ｡ ｸ + E.

It turned out that this iterative improvement procedurequite

often leads to a substantiallydeep cut. Figure 3.3 shows a typical

example.

II

The deeper the cut H(e) gets, the better ｾ ｳ the chance that some of

the non-negativityconstraintsy. > 0, ｾ = 1, ... , t becomesredundant
ｾ -

for specifying the reduced feasible region ｙ Ｇ ｾ Ｈ ｔ Ｉ Ｎ Such redundant

constraintscan be identified by solving the following linear program:

min{y. I Fy < f, Y ｾ 0, ｾ ｹ Ｎ Ｏ ｔ Ｎ > l}
ｾ J J

If the minimal value of y. is positive, then the constrainty. > °
ｾ ｾ -

is redundantand we can reduce the size of the problem. This procedure

ｾ ｳ certainly costly and its use is recommendedonly when there is a very

good chance of success,i.e., when T is sufficiently large.

4. Cutting Plane Algorithm and the Results of Experiments

We will describebelow one version of cutting plane algorithm which

has been coded in FORTRAN IV for CYBER 74.
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5

1
5.84 Zz =1

1
+ 6.13 z2= 1'\. "'. ,.'.:

3
, ,,

2 ,
'\.

ILLUSTRATIVE EXAMPLE OF ITERATIVE IMPROVEMENT

max -2z,- 3z2+ Ｒｺｾ - 2z,z2+ 2zi
s.t. - Z1 + z2 < 1

z, - z2 < 1
-z, +2z2 < 3
2z, - z2 < 3

£, > a ,z2 > a
_ .. _ .. - RITTER'S CUT

--. -_.- TU 1'5 CUT

_._. - B L P CUT

........... 1st ITERATION

---- -- 2nd ITE RATION

3rd ITERATION

Figure 3.3
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Cutting Plane Algorithm

Step 1.

Step 2.

Step 3.

Let i = 0 and X = X.
o

If i > i then stop. Otherwise go to Step 3.
max

oLet k = 0 and let x £ Xi be a basic feasible solution and

Step 4. Solve a subproblem:
k k+1

ｭ｡ｸｻｾＨｺＬ x) I z £ Xi} and let x and

k+1. . b' 'b .B be ｾ ｴ ｳ ｯ ｰ ｴ ｾ ｭ ｡ Ｑ ｡ ｳ ｾ ｣ ｦ ･ ｡ ｳ ｾ 1e ｳ ｯ ｬ ｵ ｴ ｾ ｯ ｮ and correspondingbasis.

Step 5. Compute d(Bk+1), the coefficients of linear term of (2.7)

relative to Bk+1. If d(Bk+1) {O, then add 1 to k and go to Step 4.

* k+1Otherwise let B = B x* = x and go to Step 6.k+1'

Step 6. Compute matrix D in (2.7) relative to B*. If x* is an

£-loca11ymaximum basic feasible solution (relative to X ), then let

ｾ . = ｭ｡ｸｻｾ ,f(x*)}, ｾ = f(x*) and go to Step 7.
ｾ ｭ ｡ ｸ Ｇ ｾ ｭ ｡ ｸ ｾ ｯ

to a new basic feasible solution i where f(x) = max{f(x)

oLet k = 0, x = x and go to Step 4.

Otherwisemove

Step 7.

Step 8.

o
Let j = 0 and let Y

i
+1 = Y

i
'

. '+1
Compute S(Yi+1) and let Yi+1

. .
Yi+l"- Il(S (Yi+1»' If

y j +1 - ｾ then stop.i+1 - ｾ Otherwise go to Step 9.

If a > a
o

then add 1 to j and

go to Step 8. Otherwise let X
i

+1 be the feasible region in X corresponding

to yi:i. Add 1 to i and go to Step 2.

Wh h· 1 . h 's 8' h j+1 b' hen t ｾｳ a ｧｯｲｾｴ m stops ｾ ｮ tep ｷ ｾ ｴ Y
i

+
1

･｣ｯｭｾｮｧ empty, t en

xmax £ X correspondingto ¢ is actually an £-optima1 solution of (2.1).max
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Though this algorithm may stop in Step 2 rather than in Step 8 and thus

may fail to identify an E-optimal solution, the numerical experiments

conductedon CYBER 74 are quite encourag1ng. Table 4.1 summarizes

some of the results for smaller problems.

Table 4.1

Size of the Problem No. of Approximate

E/CP
Local Maxima CPU time

Problem No. m n max Identified (sec)

1 3 6 0.0 1 0.2

2 5 8 0.0 2 0.6

3 6 11 0.0 1 0.3

4 7 11 0.0 1 0.5

5 9 19 0.0 2 3.0

6-1 6 12 0.05 5 2.5

6-2 6 12 0.01 6 3.0

6-3 6 12 0.0 6 3.0

7 11 22 0.1 8 28.0

Problems 1 ｾ 5 have no particular structure,while problems 6-1, 6-2,

6-3 and 7 have the following data structure:

ttlmax{cmx + !x 0 x A x < b , x > a}
111. m - m
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where

1 2 • m-l m 2 -1

2 3 m 1 -1 2 0
A = Q

mm

0 -1

m 1 . . . . m-2 m-l -1 2

c
m

t
(0, ..• , 0) , b

m
t

= (m(m+l)/2, ... , m(m+l)/2)

They have m local maxima with same objective functional values. All of

them are, in fact, global maxima.

The experimentsfor larger problems are now under way using a more

sophisticatedversion of primal simplex (to be used in Step 4) and dual

simplex algorithm (to be used in Step 8). These resultswill be reported

subsequently.
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