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1.

Game Theoretical Treatment of

Material Accountability Problems:
Part II

Rudolf Avenhaus* and Fans Frick**

Abstract

In a previous paper, the optimal strategy for an
inspection authority which has to safeguard material on
the basis of material accountability principles has been
determined with game theoretical methods: Sets of reason-
able inspection and diversion strategies have been de-
fined, and a saddlepoint of the overall probability of
detection for n inventory periods during the reference
time under consideration has been determined.

In this paper the problem of the appropriate choice
of the number of inventory periods per reference time has
been analyzed: it has been shown that the overall prob-
ability of detection in the case of one inventory period
per reference time is always larger than that in the case
of n inventory periods for n > 1, and further it has been
shown in which way this result is reflected in the expected
detection time.

Introduction

In the first part of this study on material accountability

problems [1], the following guestion has been analyzed: In an

industrial plant the material to be processed is safeguarded

on the basis of the material balance principle, i.e. from

time to time the so-called book inventory

(starting inventory
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plus receipts minus shipments) is compared with the physical
inventory. If no material has disappeared, the two inven-
tories should be the same. However, the situation is obscured
by measurement errors which are committed inevitably.

A (zero sum) game theoretical analysis has been performed
in the first part of the study under the assumptions that
during the reference time period in whichn physicél inventories
will be taken

1) the plant operator or people in the plant will divert

at least the amount M of material;

2) the probability for at least one false alarm induced

by the inspector is not larger than o;

3) the measurements are stochastically independent; and

4) the payoff to the inspector is the total probability

of detection.

In this part the question of the appropriate number of
inventory periods during a reference time (say one year) has
been analyzed for the following reasdn. The inspection author-
ity has the objective of achieving a probability of detection
as high as possible; however, it also has the objective of a
short detection time. As the detection time is determined by
the frequency of the physical inventories, a statement of the
inspector whether or not a diversion has taken place cannot be
made before the book and the physical inventory have been

compared. It is important to know the impact of the number of



inventory periods during the reference time under considera-
tion.

In the following it is shown thaf the overall probability
of detection in the éase"of one inventory period per reference
time is always larger than that in the case of n inventory
periods for n > 1, and fﬁrthermore, in which way this result

is reflected in the expected detection time.



2. Analysis of the Influence of the Number of Inventory

Periods on the Probability of Detection

2.1 Formulation of the Problem

Let us consider the reference time interval

J: = [tO'tE]CR ’

where t_. < t_,. We call

0 E
Z,: = {tno: = tortopreert jeto, T tE,tni
<toiel Yl =0,...,n-1} , . (2-1)
a partition of J.
At times tni,i = 0,...,n, physical inventories Ini'

(IO = InO’Inn =

ventories Bni’ which are the sums of the starting inventories

IE) are taken and compared with the book in-—

S at time i-1, and the throughput measurements Dni in the

ni-1

time interval [t . ,.t.;

B . =28 +D . , i=1,...,n . (2~2a)

The starting inventories are linear contributions of the

ending physical and book inventories:

)]
1]
H

nO 0



Sni—l

where the weights a

= a_,
ni-1

ni-1

(2-2b)

are determined by the measurement

variances of the physical and book inventories (see Ref. (1],

eq. (2-5)):

ni-1

1

var I

ni-1

var Bni-l

+ s
var Inl—l

var Snifl

var Bni-l

var I . 4

(2-3a)

(2-3b)

In the following, it is assumed that the sum of all throughput

measurement variances is independent of the partition (2-1),

n

i=1

 var D ;

2

[

(2-4)

The difference between the book and the physical inventory at

time t_.
ni

MUF

var MUF_ ..
ni

ni’

is called

"Material Unaccounted For"

g

ni

2
ni

= Ing

= var S_,
ni

-1

+ var D_.
ni

(MUF) :

+ B_.
var B,

(2-5a)

. (2-5b)

The safeguards procedure consists of a series of signif-

icance tests with respect to the expectation values of the

Material Unaccounted For in the different inventory periods:




Let us assume that in the plant either no material is diverted
at all (Null hypothesis HO) or that in the n,i-th inventory

period the amount M , is diverted (Alternative hypothesis H;):

E(I_,_q +Dy; — I [H) =M

ni-1 ni ni i=1,...,n . (2-6)

Then the hypotheses of the tests can bewritten as follows
(see Ref. [1]. eq. (2-8)):

E (MUF_; |H =0 , i=1,...,n (2-7a)

o)

E (MUF_.|H + M

1) T YnitYni = 31 " Ypiog ni’Yni - Mni

(2-7b)

Let a_; be the false alarm probability (error of the first
kind probability) for the n,i-th test, let a be the total false
alarm probability and let l-Bn be the.total probability of de-
tection (one minus the total error of the second kind probability).

Then the calculation gives (see Ref. [l], egs. (2-11), (2-12)):

(2-8a)

—
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=
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n
1-a= T (L -a.) , (2-8b)

where ¢ is the normal distribution function and U its inverse,

In the first part of this study, the following problem



has been solved. The operator diverts the amounts M_ .,

i=1,...,n such that he gets the total amount M:
n
M= § M. , (2-8c)

and that the total probability of detection 1 - Bn is mini-
mized. The inspection authority chooses its set of false
alarm probabilities, ani,i =1,...,n, such that an agreed

total false alarm probability o is not exceeded and that

_ . - . * *

1 Bn is maximized. Let us call the optimal values (anl""'ann
* * 3 3 * * i

and (Mnl""’Mnn)' It is important that (anl""’ann) is

independent of the value of M.

In this part, we want to analyze the influence of the
number n of inventory periods on the optimal probability of
detection (the value of the two-person zero-sum game).

If we take the logarithm of Bn in eq. (2-8a):

o Xni. Yni
F_(x,y) = ] &nolule ") - =— (2-9a)
n . o_ .
i=1 ni
defined on Xn X Yn, where
n n
Xooo= Ax) = (x qr-e00x ) R, .) Xpg = Al - a)
i=1
0> x> n(l - o) Vi=1,...,nt (2-9b)
n n-1
Yn: - {yn = (ynl’ ) ’ynn) eR Ypn ¥ 121 - anl)'y i~ M}



for given O <a. <1, M > O, this is equivalent to the question,

does an optimal partition, Zm,exist, i.e. a partition Zm with
* * * *
Folxx,yx) < Fox2yR)

* = - * 3 i -
where Xr 4n (1 ani)’ for all partitions Zn. In the follow

ing, we will show that z, = {to,tE} is the only optimal partition.

2,2 Optimality of One Inventory Period

In order to prove the optimality of z; we will make

use of some properties of the normal distribution function:

Lemma 2.1 Let Q(x),xcR , be defined by

Q(x) = 6 (%) . (2-10)
Then one has
Q"(x) > O for xR . (2-11)

Proof. Let R(x),xcR , be defined by

R is called "Mill's Ratio." Then one can show that

" > 0 for xcR
<7



(see, e.g. [3], [4]). as Q(x) = (R(-x)) ! the proof is

completed. u

Lemma 2.2. Let Q(x) be defined by eg. (2-9). Then Q(U(e™))

is strictly convex for x < O. Especially, one has

X

i an(l - a)))

n
1 Qtwe ) <dtwe

i=1

for all x = (xl,...,xn); the < sign holds if x is not of the
form x(3) = (x{??..,xé])), xij) =0Vi % 3, Xéj) = ¢n(l - a).

Proof. As we have

0% (ue*))

QJ|Q.A
3

. . . %Uz e*)
= 20" » (u(e™) - owE®) + V2Zr - e
= 20" - (u(e®)) ,

we obtain with the help of Lemma 2.1, that

0% (ue*))

Qalfl
%

is strictly monotonously increasing on x < 0. Therefore,

QZ(U(eX)) is s;rictly convex for x <0, and

n 2 Xi
s(x): = ] 07(u(E M)

i=1
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is also strictly convex on X 0 and with

the following inequality holds:

: _ n . n .
Q®etrt =@y, -y s 1s(§ A.x(3)>
321 j=1 7
n .

n z ijgj)

= 7 o*lued™? )
i=1

where the > sign holds if )‘j <1 for one j. [ ]

In addition, we will make use of some properties of the

Material Unaccounted For as defined in the previous section:

Lemma 2.3. Let MUFni’ i=1,...,n, be defined by eq. (2-5a).

Then, we have

nil E
(1L - a .) * MUF_, + MUF = I, + D . +1I
i=1 ni ni nn (o] ic1 ni E
(2-12)
and therefore,
n-1 n
E .Z (1 - ani).MUFni + MUan\Hl = .2 Mni
i=1 i=1
(2-13a)

If I Dnn are stochastically independent, we have

O,IE,Dln,...,
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+ Dn+ln+l - In+ln+l

=1 I

n+tln T Pn+in+1 T Intin+1 .

Therefore, eq. (2-12) is also true for n+l.

From eqg. (2-12) which we write in the following form:

ntl ; 2 2
var('z (1 - a ;) MUF_, + MUan) = 1 Q-ay o *tO
i=1 i=1
n
= var I + var I + .Z var D, (2-13b)
i=1
Proof (by induction). For n = 1, eq. (2-12) is true. Let us
assume that eq. (2-12) is true for n. Then we have
n n-
LT ey MUF Ly MUF g S iz (L=ap iy M0Fhy
* MUFn+ln ~ %p+ln MUFn+1n * MUFn+ln+l
v
= IO * iél Dn+li - In+ln T %n+ln’ MUFn+ln * MUFn+ln+1
Now, with egs. (2-2a) and (2-2b):
T8n+l MUFn+ln * MUFn+ln+l
= -an+ln Bn+1.n + 4n+1n In+ln + Bn+ln+1 - In+ln+l
= _an+ln ) Bn+ln + an+ln ' ;n+ln * Sn+ln
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n-1 n
_g (1 - a )*MUF . + MUF_ =TI, + .2 D ; ~ Ig
i=1 i=1
n .
- _Z (Inl—l M Dnl - Inl
i=1
we immediately get eq. (2-13a). Because of the independence

assumed we finally get

n
var <i£1 (1 - a_,) « MUF ; + MUan)

n-1
_ 2 2
- .Z (L -ap;) = 9py * 9np
i=1
n
= var I, + var I + Z var D_.
0 E i=1 ni ]

In order to prove the optimality of the partition Zl’

i.e. to prove

Fl(x*,y*) < Fn(x;,y;) Vn#1l , (2-14)

we proceed as follows: Let Zn' n > 1, be an arbitrary, but

fixed partition of J. If we prove
Fl(X*,y*) < Fn(x;,yr'l) Vn#l (2-15)

for one specific yéeYn where Yn is given by (2-9c), then we

also have proven (2-14) as
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Fl(x*,y*) - Fn(x;,y;)
= Fn(x*,y*) ~ max Fn(x;,y)
yEeEY
n
_<_Fl(X*,y*) - F xr,y') <O

For the proof of (2-15) we will use

2 M
yﬁ = (ynl""’ynn) = Q]'_ anl) *On1 " T
: P
2 M
(1 - ayn) * Oon ;7) ’ (2-16a)
where
annf =0
0%: = var 12 + var 1° + 1% (2-16b)
e} E
and where 22 is given by (2-4). Because of eqg. (2-13b), the

vector yﬁ given by (2-16a) fulfills the condition yéeYn.

Therefore, with

Fl(x*,y*) = Fl(x,y) = Fl(ln(l - a),M)

= ing(U(l - o) - D)
it only remains to be proven that

g (UL - a) = B) < F(xX,y})
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where yg is given by (2-16a).

Theorem 2.4. Let A(M) be defined by

M 2 X
AM): = &no(U(Ll - a) = =) - Z Rn¢<U(e =)
P el
i=1
- (1-a.0 . M (2-18)
ni ni ;7 ’
where x; = (x;l,...,xgn) X, is given by Theorem (3-12),
Ref. [1]. Then we have
A(M) <O V.M>0 . (2-19)
Proof. In the following, we will omit the index n. In order
to prove the inequality we will show
A(0) = 0O, AT (0) < O, A" (M) <O
n
(i) A(0) = #n(l - a) - 7§ x¥ = 0 as 2

defined by (2-9b).

(ii) According to Theorem (3.12), Ref. [1], we have

o > xz > n{(l - o) ¥ i=1,...,n . (2-20)

Therefore, with (2-10),
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d -
mA(M)IM—O
_ 1 oi x}
= -2 QUL =) +2(1-a) 50U )
i P
2
a,
1

IA

I 2 %1\x 2, ¥E\y
B QU (1l a)) + (i(l - ai) ;Z) . (?Q (Ule )))

X*
%— [—Q(U(l - &) +<;QZ(U(e 1)))%} <o

1

where Schwarz's inequality has been used, egs. (2-13b) and

(2-16b), and Lemma 2.2.

(iidi)
2
d 1 M
— A(M) = Q'(U(1 - a) - =)
dm ? P
1 2 2 x3 M
- _Z';(l - ai) oy Q'(U(e ) = (1 - ai) * oyt —7)
p1 P
*
1 M 1 22 . Xk
< « Q'(U(l - a) - =) - (1l - a,)%% « min Q'|U(e
= o2 ' P T 4 k (
M
i (l - ak) . Gk - ;5)
1 M ' X
== [b'(U(l - a) - =) - min Q'(U(e )
p p k

-1 -a) o0 - fr)] <0 ;

where in the last equation Lemma 2.3 was used, and the < sign

in the last inequality follows from

X*
eJLn(l - a)) k

U <U(e 7) for k = 1,...,n (see 2-20),

and
(1 - ak)-ok <p for k =1,...,n
because of _
2 2 2
Zi(l—ai) 0y =P . n
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2.3 Additional Remarks

In the last section it has been shown that the
partition Z is better than the partition Zn for n > 1.
Under the assumptions

(i) wvar (Ii) =0 for i = 0,1,...,3 and jeN , and

(ii) var (Dji) = %22 for i = 1,...,j and jeN

one also can show that the partition Zn is better than the

partition z for n,meN .

+m

Under some assumptions, e.g.

(i) wvar (Ii) = oi for i = 0,1,...,j and jeN , and
(11) var (p,) = %22 for i = 1,...,j for jeN

one can show at least

lim (1 - B.) = a . (2-21)
j+eo J
Therefore, for each nelN there exists anm, with the property
that the partition Z, is better than the partition Zn+m for
all m > m .

In Fig. 1, the results of some numerical calculations
for a realistic case are given; the data have been taken from
Ref. [2]. The special cases mentioned above, as well as
numerica. calculations, indicate that one has in general
Zn > Zn+m for n,meN even though it was not possible to prove
this.

It is clear that the number of inventory periods per

reference time determines the detection time, i.e. the time
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where the Material Unaccounted For is greater than the signif-
icance threshold for the first time. Now this gives two
effects. First, one would assume that the shorter one in-
ventory period is, the shorter the detection time is. Second,
according to the foregoing results, with an increasing number
of inventory periods per reference time, the probability of
detection decreases. Therefore, detection may depend on the
values of the parameters of which of the two effects is
stronger.

If one wants to define the expected detection time
(measured in units of inventory periods) one has the difficulty
that one does not know which detection time one should fake
in the case that no detection at all takes place during the
reference time. One possibility would be to define the

expected detection time as

where

Pi: = prob {MUFni > Sni} for i =1,...,n. (2-22b)
Another possibility would be to take the expected detection
time under the condition that a detection will take place

during the reference time:

n i-1
J i+ P;+ T (1= P.)
g . = i=1 j=1 )
oT: = = , (2-23)
1- 0 (1-P,)
i=1 *
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where Pi again is given by eg. (2-22b).

InFigs. 2a and 2b, the results of the calculations for
both the detection times (measured in fractions of the
reference time) on the basis of the data used earlier are
represented. 1In both cases one sees that there exists a

minimum which may be explained with the arguments given above.



-19-

3. Conclusion

It has been shown that in the case that the overall prob-
ability of detection for a reference period of time is the
criterion of optimization, it is best to have only one inven-
tory period in the reference time. However, there are con-
siderations which indicate that not only the probability of
detection but also the detection time should be taken as a
criterion of optimization. As the detection time is regulated
by the number of inventory periods per reference time--a
detection cannot take place before the end of an inventory
period--one might want to have more than one inventory period
per reference time at the expense of the probability of
detection. Therefore, a reasonable procedure would be first
to decide about the minimum probability of detection, and
thereafter to choose as many inventory periods as are compatible

with this minimum.
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