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Dixon D. Jones

Boundariesof Stability

(A Potpourri of Dynamic Properties)

OR

Is ResilienceResilient?

."

THE STRATEGIC PROBLEM

There is more to a system than its equilibrium points.

Associatedwith every stable equilibrium point (or stable limit

cycle) is a region of state-spacesuch that any unperturbedtra-
I

jectory initiated in the region'will stay within that region.

This is called the region of stability. The boundariesof sta-

bility separatecontiguous stability regions. An important

property of systembehavior near these boundariesis that a very

small perturbationcan move the stateof a systemacross a boun-

dary and transfer the system entirely from one region to another.

The system'sstatecannot move back across the boundarywithout

a subsequentoutside perturbationo

The performanceof systemsnear their equilibrium points

has been the focus of a considerableamount of investigation.

Considerationsof optlllization, maximization, stable statesare

examples. The propertiesof systemsfar from equilibrium, and

particularly near regions of instability (i.e., the boundaries)

are not well known.

The significant strategicproblem that this paper hopes to

addressis to locate theseboundariesand to determine ｳ ｹ ｳ ｾ ･ ｭ

I

t •
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dynamics near them. On a tactical level, some approachesare

suggestedand their usefulnessdiscussed.

SYSTEM DESCRIPTION

,"

The state variable descriptionof a system specifies the

stateof a systemat any instant by a collection of variables:

For a dynamic system x is a function of time,

x = ｾ (t) ,

that develops temporally by a relation such as

This relation is true for all systems--fromreal ecologicalones

to formal mathematicalabstractions. The function ﾣ Ｈ ｾ Ｌ ｴ Ｉ is the

set of all 'rules' that cause ｾ to change through time from x at

(I)

(2)

(3)

t l to ｾ at t 2• The rules may be divine guidance, a complex FORTRAN

program, or a Latka-Volterra equation. Stochasticprocessesare

included in the function.

The "sol ution" of Equation (3) is a record of x over time.

The nature of the systemwill dictate how the solution is ｯ ｢ ｴ ｡ ｩ ｾ ･ ､ Ｎ

It might be from field observation, laboratory experiment, simu-

lation, or analytic integration. Obviously the solution for all.
initial conditions may be hard to find becauseof time, expense,

or analytic intractibility.
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In lieu of solutions to (3), what can we infer from the

instanteousrules f(x,t) about the qualitative behavior of the

systemover time? Specifically, what can be said about boundaries?

If we have defined our systemwe can find ﾣ Ｈ ｾ Ｌ ｴ Ｉ for at least

a certain number of points. In some sensethe set of rules ﾣ Ｈ ｾ Ｇ t)
,"

is the system. In a field experiment,thepoints ｾ where Ｑ Ｎ Ｈ ｾ Ｌ ｴ Ｉ

is known are specified for us. In the laboratory we can select

x and measuref. The same applies to a simulation model. In

,the analytic case ﾣ Ｈ ｾ Ｌ ｴ Ｉ is known explicitly.

For simple (2-dimensional) systems, the rrsolution" will likely

be easy enough to find, at least in approximation. But for larger

systemsthis will be the exception. For example, the most effi-

cient way to locate boundariesin the predator/preysimulation

seemsto be to plot trajectorieson a phaseplane and locate them

by eye.

In this paper I will deal with rather simple systems. Not

becausethey are fundamentalor even realistically interesting,

but becauseif I can't find ways of looking at these simple systems

first, then it won't be fruitful to try the generalcase.

The first simplification is to restrict ourselvesto con-

tinuous, autonomoussystems. In this case Equation (3) becomes

11: = 1. Ｈ ｾ Ｉ (4)

d
where x = ､ｴｾ is a consequenceof continuity. The system is

autonomousbecause1. does not explicitly contain t the rules

do not changewith time -- and the variables x "drive themselves"•

...

r" I

I

I
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Most of the formalism to. follow applies to the n-dimensionalcase.
I

Frequently, the 2-dimensionalsystem

x = P(x,y)

Y = Q (x,y)

will be used for illustration.

The "solution II, of (5) is the set of all trajectories from

all starting points (x ,y ):
o 0

This is what is being done in the simulation models by picking

initial points and plotting the subsequenttrajectory.

PHYSIOMORPHISM .

Physiomorphismis the attribution of the notions of physics

(5 )

(6)

to things that are not basically physical. It is a phenomenon

that is frequently observedamong systemsecologists. Rather than

reject it outright, let's consider some of the possibilities.

A. We would like to develop some measurethroughout the state-

space that will indicate where the trajectorieswill go and at

what rates. In two dimensions this is some function U{x,y) where

the shapeof its surface implies the systemdynamics. What is

suggestedhere is some equivalent to potential energy.

Before proceeding,we shift the state-spaceaxes so that

the origin is at an equilibrium point. We can assumefor the

moment that there is a finite region of stability surrounding

this point. Severalconditions on the fur.ction U (x,y) can be
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specified:

a} U(x,y} should be a minimum at the origin. We can

set U(O,O} = 0 without loss of generality.

b} U(x,y} should increaseas we go outward from the

origin to the boundary..That is, U(x,y} is bowl-shapedand cen-

tered at the origin. (Formally, U(x,y) is positive-definite

within the region of stability.}

c) Points and trajectoriesare mapped one-to-onefrom

the x,y-p1ane to the surfaceU(x,y).

IMAG-.E. OF" TRA.>€:CroRY
Z------- MAPPED ｏ ｾ ｔ ｏ

U{It,y) ｓ ｕ ｾ ｾ ａ Ｎ ｃ ･ Ｚ Ｎ

'"------TRA)ECTO RY'IN PHASE. PLANE
x

____Ｎ Ｎ Ｎ ［ ［ Ｚ Ｚ Ｚ ｡ Ｎ Ｎ Ｎ Ｎ Ｌ Ｎ Ｎ ｾ ｾ ｹ

d) Mapped trajectoriesfollow a path from higher U

to lower U. A by-product of this is that the boundariesbetween

regions of stability would be relative high points.

e} Since x = x(t), Y = y(t}, the function U(x,y} can be

consideredto be U = U(t} along trajectories, and

(7)

where we have used the vector notation of Equation (4).
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B. We have not yet specifiedwhat it is that U measures. For

this function to have any use, the contours U(x,y} = constant

must have some relation to the systemor its dynamics.

Consider the following: Let

u= -).., .. {8}

that is, U decreasesat a constantrateA. In this case, the

.contours U = constantare "isoclines of time", i.e., all trajec-

tories take the same amount of time to travel between contour

lines.

When {8} is applied to {7}, we get the partial differential

equation

,,"U·.f = - A

with the condition U{O} = O. In 2-dimensions,

{9}

dU {dX p x,y} + du "oy Q{x,y} = -A, U{O,O} = o. {IO}

In general, we cannot expect {9} or {IO} to be easier to solve

than the trajectoriesof the original Equation {4}. These iso-

clines could be easily establishedonce x{t} and y(t} are known.

At this point, there doesn'tappear to be much future for this

interpretationof U.

C. Next consider a velocity vector·

A = x = .f (1S.)

" t:" "':'
Q{x,y}S'= xi, + S'J = p{x,y}1. + {ll}

/':- ......
where l. and j are unit vectors along the x- and y-axes, respec-

tively. A is the instantaneousrate of changeof the state·of
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the system. 'If we say that trajectories "go down U(x,y) like a

ball rolling down, a hill", then A will be co-linear with the

direction of steepestdescent (the fall line) of the surfaceU(x,y) •

The line of steepestdescentis a vector called the gradient of

u (x, y) ,
.'

Gradient U(x,y) =VU(x,y).

If A is co-linear with VU, then

ｾ ｕ = kA

However, it is a property of vectors that the curl of a gradient

is zero, i.e.,

'V X VU = 0

(12)

(13)

but in general.

Thus we 'can eliminate this interpretationof U.

D. We have ｾ ･ ｦ ｩ ｮ ･ ､ A as the velocity vector of our system. The

2propuct A • A = A is a measureof the speedof the systemmotion.

2If ｕ ｾ Ｉ = A , then U is a measureof speed. If we are willing to

suspendreality momentarily, we will note that A2 = (x)2 is very

like the kinetic energy of a mechanicalsystem Ｈ ｾ ｶ Ｒ Ｉ •. Further,

in a conservativesystem, (x)2 is a linear function of the potp.n-

tial energy. With these tenuous links, we try

U (x) = ＨｾＩ 2 = A . A = ａｾ

- p2 + Q2. (14)
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We have autoI\latically U (0) = o becausex = o at the orig in.

The gradientof U is

\,U = 2r(pP " QQy »)'1+ QQ )i + (PPy +, x x

where the partial derivativesare
.'

(15)

From (7), we have

Jp
= oy , dQ

= ax '

.
U = V U • x = ,,"u • A

= 2 { p 2px + Q2Qy + PQ (Qx + Qy )} •

. ｾ
We require that U - O. It is not obvious that this requirement

will be satisfiedby (16), and in fact examples can be found that

violate this condition.

E. The conditions that we have set for U(x) in SectionA.above

are equivalent to the conditions used to determinestability by

Liapunov's Direct Method. This proceduresays that if one can

(16)

find some function V (x) > 0 with V(2S) ｾ 0, then the

equilibrium point is stable. However, this function need not

have any other significance -- it is not a measureof what is

going on (besidesestablishingstability). The conditions that

we have put on ｕ ｾ Ｉ mean that it would qualify for a Liapunov

function, ｖ Ｈ ｾ Ｉ Ｎ Unfortunately, since Liapunov developedthis

test in 1892, no generalmethod has been found to construct ｖ Ｈ ｾ Ｉ Ｎ

The prospectsof finding U(x) appear smaller than weld like.
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F. Before leaving our fling with physiomorphism,we should

examine the idea of force. In mechanicalsystems, force is pro-

portional to the gradient of a potential energy.

The concept of a force in a general system is about as realis-

tic as calling (!)2 an energy as we did earlier. Therefore, we
."

may as well continue to use ｕ Ｈ ｾ Ｉ == A • A as a potential energy

even though it did not provide us with our earlier objective.

We proposeas a force

F = - Vu = - V (A • A) = -2 (A • 'V )A + 2A X (\7 X A)

= -2 {(PP + QQ ) 'i + (pP + QQ )1} .x x y y

from (15) above. We leave this one at this point for now.

G. An alternatecandidateof force comes straight from Newton's

Second. Namely, force = mass x acceleration,or

F e:: d
2
x d ＨｾｾＩ .dt2 = dt

In our system, Ｈ ｾ ｾ Ｉ = A. Thus,

(17)

(18)

d d ｾ d QA
J
,

dt A = dt ｰ ｾ + dt

= @. • V Ｉｾ

= ｾ \f (A 0 A) - A X ('il X A)

= ｾ V u + (VX A) X A (19)

The pseudoforcethat we have derived is the sum of two terms:

(a) ｾ ｾ (A • A), the gradient of a scalar ｰ ｯ ｾ ･ ｮ ｴ ｩ ｡ ｬ ［ and (b)

('9' X ｾＩ X A, which suggeststhe existenceof a vector potential.



10

The scatarpotential (A • A) was discussedabove. ｾ ｻ Ｌ ｨ ｡ ｴ

meaning can be attachedto (vr X A) X A ?

the curl (or rotation) of the vector A o

The factor (V' X A) is

-
It can be thought of as

a measureof the curvature of the trajectqries. The secondterm

isa vector product which reorients (VX A) back into the phase
,.

plane and makes the units equivalent to the A2 found in the

scalar potential.

In our 2-dimensionalexample (5), we have

(Q1
/to

(V'X A) X A = (P
y - Q ) - Pj)x

=(QP - QQ )1 A
+ (PQ - PP ) .

Y x x Y J

= - (V B)B, (20)

where

Q
h h

B = 1. - PJ

is the vector A rotated clockwise by 900
• The factor VB, the

divergenceof B, is a scalar. Therefore (V'X A) X A = -(CVB)B

is a vector P9inting at right angles to the trajectory. Thus,

the pseudoforceis the vector sum of the gradient of a potential

and a vector perpendicularto the motion of the trajectory.

A very obvious exact physical analogy comes to mind -- the

motion of a chargedparticle in an electromagneticfield, where

our pseudoforceis isomorphic with the Lorentz force. We there-

fore have a consistentformulation of a force with

A • A = scalar potential

A = vector potential '(21)



In ｰ ｲ ｡ ｣ ｴ ｾ ｣ ･ Ｌ the pseudoforceｾ ｴ A =

mate as

A (t + A t) - A .(t)
A ｾ

At

RESILIENCE

11

.
A is easy to approxi-

(22)

o

'Our developmentof a force has lead to A, which is nothing

more than the secondtime derivative of the state vector. The
.

vectors A and A do not cause the state vector to move, they merely

describehow the statedoes move. By the same ｭ ｡ ｮ ｮ ･ ｾ do the

'rules', 1. ＨｾＩＬ cause ｾ to changeor do they describe the 'change?

There is no right answer to the question. Cause and effect are

linked cyclically in the system:

f (x) ｾ X -'JI-o f (x).-,... x ｾ f (x) -+- x etc.

The motion causesthe 'force' just as much and the 'force' causes

the motion.

The dynamic characteristicsof the system state ｾ are enough

of a description of the systemwithout the artificial addition

of 'force' and 'energy'. The accelerationvector A provides the

performanceascribedto force without its physical connotations.

This does not negateour reason for developing a ｕｾｦｵｮ｣ｴｩｯｮＬ as

long as that function is some measureof the dynamics of the

system.

Insofar as perturbationscan be consideredas rates, the
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A is a measureof the system'sability to remain within its

regioncof stability.

We can intuitively define resistanceas the opposition of

a perturbationby the motion of state. The greater the projection

of· A in a direction opposite to the perturbation, the greater..
the resistance.

Resiliencecan be defined as the amount of resistance

·offered to a perturbationof the state toward a boundary. In

the figure, B is the boundary to a stable region below it. The

vector ｾ is a unit vector normal to the boundary.
.
A is the

accelerationof x at a nearby point. The projection of A onto

ｾ is the resilienceR.

TRAJECTORY

ｾ• n

,
\
\

Resistanceand resilienceare propertiesof points within the

(23)

region of stability rather than propertiesof the ｲ ･ ｧ ｩ ｾ ｮ as a whole.

A distinction should be made betweenresistanceand resi-

lienee. Resistancerelates the unperturbedmotion of the system

to the direction of an applied perturbation. Resilience, on

the other hand,-relates the motion of the unperturbedsystem to

a particular location in ｴ ｨ ｾ state-space-- the boundary of

.-



13

stability. ｾ ｨ ｩ ｳ interpretationof resiliencebecomesambiguous

at points far from the boundary.-- distancebeing measuredin

terms of the size of the stable region and the size of ､ ｩ ｳ ｴ ｯ ｲ ｾ

tions in the boundary. It should be noted that both resistance

and resilience can be negative. The interpretationof negative

.'
values is that a perturbation is reinforced by the system

dynamics rather than impeded.

Resistanceand resilience, as defined above, have not been

operationally testedas measures.of systemstability under per-

•
turbation. Some combination of A and A may prove to be a more

advantageousdevice for jUdging systemresponseto change.

POINTS, PATHS, AND PERTURBATIONS

Perturbationshave been used in an intuitive senseonly.

Before we can judge system responseto change, theseperturba-

tions must be related to the statedynamics. There are two basic

categoriesof perturbations: (a) Those that directly change

the componentsof the state vector ｾ Ｌ and (b) Those that change

the, 'rules' of the system. A simple examplewill illustrate

the distinction.

Consider the one-dimensionalsystem

x = bx.

This is the same type of system as Equation (4). Perturbation

type (a) would change (24) to

(24)
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X =\bx + a (t) , (25)

where Ｍ ｾ Ｈ ｴ Ｉ adds directly to x. The term a(t} is commonly ｣ ｡ ｾ ｬ ･ ､

a forcing function or a driving variable. Type (b) perturbations

are of the form

.-.
. x = b (t) x.

Here x changesindirectly through changesin the parameterb(t).

The perturbationa(t} can be added directly to the statevelocity

A = bx

to give A I = A + a (t) •

Stability under a(t} is determinedby the magnitude of A of

the unperturbedsystem. A perturbationof type (b) clearly

changesthe systemgeometry and the boundary location and the

meaning of resiliencebecomesunclear.

(26)

(27)

Implicit in our approachto instability is that perturbations

act over a short amount of time. If the perturbationhas a long

or continuousduration, then the entire system is time-varying'

and the boundarieschangewith time. The systembecomesnonauto-

nomous, i.e.,

A region of stability would be defined as that area (Region I)

where for all starting points and times within it the subsequent

trajectoriesremain within some finite region (Region 2) for

all time.

(28)

r
!
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Although complexity increaseswhen we go from ｦ Ｈ ｸ Ｉ ｾ f(x,t),

the problem can be handledby ｭ ･ ｴ ｨ ｯ ｾ ｳ similar to what we have

employedhere. In fact, f(x,t) can be made autonomousby adding

the additional statevariable time: the systembecomes

ｾ = f (x, t)
dt

dt
dt = (29)

By our old standards,this system is unstablebecauseone of the

state variables (time) goes to infinity. The projection of all

trajectoriesonto the ｾ (hyper)planewould provide the required

regions of stability.


