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Abstract

Bounds for ｇ ･ ｮ ･ ｲ ｡ ｬ ｩ ｺ ｾ ｾ ｮ ｴ ･ ｧ ｾ Programs

David E. Bell

International Institute for Applied Systems Analysis

2361 Laxenbure

Austria

Generalizedlinear programming problens have been well
solved by column generationand dual ascentprocedures. The
same ｾ ｲ ｯ ｢ ｬ ･ ｭ ｳ with the variables restricted to be integer
have only been solved when all the coefficients are known
explicitly. This paper finds lower bounds for the optimal
value of such programs requiring only the implicit defini-
tion of the activities.



Bounds for GeneralizedInteger Programs

Some linear programs having a larce number of variables

may be solved relatively easily becauseeach column of the

coefficient matrix is defined implicitly as a feasible solu-

tion to some other problem. For example, the columns of the

maximal flow prohlen (Ford and Fulkerson [4J) and multicom-

modity flow problem (Tomlin [14J) are defined implicitly as

all routes between sourcesand sinks in a network. Other

column defining subproblemsare the minimum spanninctree

calculation for the traveling salesmanproblem (Held and

Karp [lOJ) and the knapsackproblem for the cutting stock

problem (Gilmore and Gomory [5J). Dantzig and Wolfe [2J

have generalizedthis approachin connectionwith the

decompositionof general large scale linear programs.

Little progresshas been made in adapting these methods

to deal with the same problems when the variables are

constrainedto be integral although Shapiro [13J has given a

dual method for casesin which all coefficients may be

generatedexplicitly beforehand.

The aim of this paper is to solve such problems in the

manner of the linear program, that is by consideringmost

of the activities implicitly. It will be shown how a lower

bound for the optimal value of the program may be obtained

which can then be incorporatedinto a branch and bound

procedureif necessary.

The first section sets out the problem in more detail

and is followed by two sectionsriving details of two

separatebounding procedures. Section four gives a worked

example of a cutting stock problem as a demonstrationof the

ideas. It might be useful to glance at that example before

reading on.
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1. The Problem

The integer program to be consideredis

Z· = min r c . x .
jEJ J J

s.t. r a.x. > b (1)
jEJ J J -

x. > o and integer
J -

where {a.}. J are activities defined as the set of solutions
J JE

to some sUbproblemwith IJI assumedto be large. All the

coefficients in (1) will be taken as integral.

Considering (1) as an ordinary integer program and

using Gomory's group reformulation (see [6J), an equivalent

problem is

Z· = Zo + min r c.x. + c s
jEN J J s

-1 B-ILs B-lbr (B a.)x. - <
jEN J J

-1 B-ILs B-lbr (B a.)x. -
jEN J J

x., Ls > 0 integer
J -

B is an optimal L.P. basis, N the non-basicactivities,

L = (1 .. ) is defined by
1J

(2)

and

1.. =[1 if slack s. is non-basic
11 1

o otherwise
-1cj = cj - cBB aj are the revised cost coefficients.

The symbol '=' will representequality modulo 1, that is,

a = b if and only if a - b is integral.

A lower bound for Z· may be obtainedby forming the

unconstrainedgroup problem suggestedin [6] which is
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precisely (2) with the inequality constraintsrelaxed

ｾ z* + min

s.t.

r C.x. + C s
j EN J J s

-1 -1r (B a.)x. - B Ls
j EN J J

( 3)

x j ' Ls ｾ 0 integer

that generated,

and may be

Wolsey [15]).
by considering

Shapiro [8] and

a lower bound Z

The group associatedwith this problem is
-1with addition modulo 1, by the columns B a.

J

shown to have an order which is a factor of Idet BI (see

This group problem may be solved very quickly

it as a shortestroute problem (see Gorry and

Gorry, Northup and Shapiro [7]) and provides
for Z*.

For the problems under consideration, IJ/»Idet BI so

that many activities will be mapped into the same group

element in (3) thus giving a decompositionof J into equi-

valence classes. Let the group be G = {go' gl' ... gD-l}'

say, then define

1
-1

J. = {j EJ B a. -
1 J

g. }
1

Now consider the following problem

min
D-l
r h.x.

i=l 1 1
+ c ss

s.t.
D-l -1
r g.x. - B Ls-

i=l 1 1

(4 )

Ls, x. > 0 integer,
1

where

i = 0, 1, ... D-lh. = min c.
1 Jj EJ.

1

and hi = Ｋｾ if J i ］ｾＮ The optimal value of this problem is

evidently equal to that of (3) since at most one variable
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from each equivalenceclass will be used in the solution to

(}), and (4) includes the cheapestfrom each class. So the

lower bound Z may now be found if the value of h = (hO' hI'

... hD- l ) is known. It could be found by explicit calcula-

tion ([13J) but this is prohibitive if IJI is too large.

The next section discusseshow, for certain subproblems,

h may be found by dynamic programming.

2. A Dynamic ProgrammingApproach

If the subproblemwhich generatesthe activities of J is

a dynamic programmingproblem, it may be possible to find h

by means of a simple extensionof the state space.

For a problem having a finite state space Z and a

function C : Z x Z + R representingthe cost of transferring

from one state to another, define t : Z + R to give the

minimum cost of reaching a given state S from some initial

state by a sequenceof transferals. The recursion

ｾ Ｈ ｓ Ｉ = min ｻ ｾ Ｈ ｓ ｬ Ｉ + C(Sl,S)}
Sl£Z

togetherwith initial values, will give an optimal routing

to each state. Now if each transferal is assigneda group

value from G, we may consider the problem of reaching a

given state by a sequenceof transferalswhose group sum is

a given element of G. If ｾ Ｊ : Z x G + R is defined by the

recursion

ｾ Ｊ ｲ ｓ Ｌ ｧ ｝ =
(6)

it can be seen that ｾ Ｊ Ｈ ｓ Ｌ ｧ Ｉ representsthe minimum cost of

reaching state S with group value g. Comparing (6) with

(5) it can be seen that



h. = min l6 (S,gl·)
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- (7)

o

where Z c Z is a subset of final states. This extensionof

the state spacemay be applied to any monotone sequential

decision process,as describedby Karp and Held [11]. Thus
a lower bound may be obtained for Z· by solving the sequence

of problems (6), (7), (4). The size of this effort evident-

ly dependsupon IGI, but relaxation proceduresexist for

reducing it if necessary(see Gorry, Shapiro and Wolsey [9J).
If IGI is too large and cannot be reduced the methods of the

next section may be applied.

As an example, consider the problem of finding the

shortest route between source and sink in the undirected

network of Figure 1.

z
Figure 1
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The state space for this problem is the set of nodes,

the non infinite statechange costs are shown toget er with

the value of rIJ at each node. The set of final stat ,s is

Z = {sink} so that the shortest route has length 6. ) Now a

group weight from the addition modulo 2 group, G = {P, l},
I

is assignedto each arc and as the shortest route ｨ ｾ ｳ group
'j

sum 1, the object is now to find the shortestroute iwith

group sum O. The situation of (6) may be considered"

diagramatically in Figure 2.

f<6 }0/

[<a,l{

12)' j

\
ｾＮ

\

\
'.

-"" I \,
'< \."'-.... \.

"\

f12, ｏｾ

l"7: 0 i
ｾＭＭＭＭ｟ＢＧＺＺＺＺＺＺＺＺＭｯｯＺＺＺＺＺＺＺＺＭＭＭＭＭＮＮＡＭＭＭＭＯｬ

/ 1",- ｾ｜

Figure 2
Each node has been replicated (G) times and the short-

est route of group sum gEG is the shortestroute from the

"0" source node to the "g" sink node. The vector

{rIJ(s,g),g} is marked at each node in Figure 2 showing that

the shortestroute of group sum 0 has length 8.
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3. Bounds for the EquivalenceClasses

The aim of this section is to find h or a set of lower

bounds h for h, in caseswhere dynamic programming is

inappropriatefor solution of the subproblem. Recall from

section 1 that J was divided into equivalenceclasseswhere

aI, a2 are equivalent if and only if

B-lal :: B- l a2

Theorem 1 If cl ' c2 are the modified objective costs of

. 1 . .. 1 2 tequlva ent actlvltles a , a hen

Proof Since the objective coefficients were assumedto be

integral cl :: c2 :: 0

-1 1B a B-1 2. 1· -1 1 - B-1 2- a lmp les cBB a = cB a

II

o < h < 1

where cB is the vector of costs associatedwith

the basic variables. Thus
-1 1 _ -1 2 -

cl = cl - cBB a = c2 - cBB a = c2

The important implication of this theorem is that if

j e:J. then h. :: c..
1 1 J

Define h by the relation

h :: h

Theorem 2 Let Z be the optimal value of the unconstrained

group problem (4) with the objective coefficients h. Then

Z is a valid lower bound for Z*.

Proof With B an optimal LP basis

cj ｾ 0 for all je:J,

hence h > O.
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Thus h ｾ h, and Z < Z < Z· II

Note that in caseswhere J is large,the value of hi might be

expectedto be near zero and perhaps less than one in which

casehi = hi. Comparedwith the task of finding h, the

problem of finding h is trivial. All that is required is

any integer vector a for which B-la = gi then hi is known
-1

from the value of cBB a. Indeed if G = {go' gl' ..gD-l}

is known explicitly, then h = (cBgo , cBgl , ... cBgD- l ).

Even if ｾ < h. the relative easewith which it may be
1. 1.

obtainedcould more than compensatefor any worsening of

the resulting bound.

Under certain circumstancesit is possible to show that

as long as a given equivalenceclass is non empty then
h. = h .. The conditions of Theorem 3 enforce all activities

1. 1.

in the same class to have the same revised objective costs

but this is overly strict since it only requires one of the

activities of each class to be less than one in order to

have h = h.

Since the activities are generatedimplicitly by a

subproblem, so too must the objective coefficient be so

generated. Assume that for some integral vector (ro ' r)
the cost of an activity a. is

J

c. = r + ra. .
J 0 J

All the examplesquoted in the introduction have such a

representation.

Partition the optimal L.P. basis B for (1) as
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-1
ｌ ｾ ｴ n = 1.Bl ' with aj =

accordancewith B.

Theorem 3 For a non empty equivalenceclass J.
1

h"":" = h. if
1 1

(i) nalj > 1 - llr o for all j E:J .
1

(ii) r 2 = 0

Proof 0)
-I

Let r = (rl , r 2) so that

-1
cj = cj - cBB aj

-1= r o + rlaij + r 2a2j - (rol + rlBl + r 2B2,0)B aj
-1= ro(l - nalj ) + r 2(a2j - B2Bl alj ) •

Now h. = h. if
1 1

o < c. < 1 for all jE:J.
J 1

which with r 2 = 0 is equivalent to

o < r (1 - nal .) < 1 •
- 0 J

Since B is optimal c. > 0 is automatic so that condition
J

(i) enforces i1':"' = h.. II
1 1

Definition A set of activities will be called complete

if for a given activity a, if a is any integer vector for

which 0 ｾ a ｾ a, then a is also an activity.

For example, solutions to the Knapsack problem form a

complete set as indeed do the set of solutions to inequali-

ties of the form Ax ｾ b where A is a non-negativematrix.
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The shortestroute and minimum spanningtree subproblemsdo

not have complete sets of activities.

Theorem 4 For problems having a complete set of activities

there exists an optimal basis having no slack variables,

hence condition (ii) of Theorem 3 may always be satisfied.

Proof The idea is that if a given optimal basis uses slacks

then the optimal activities may be reduced so that the

slacks become zero.

Considerany row in the given basis which has a basic

slack,

*Ea..x. = b.
lJ J 1

*+ S.
1 ,

*s. > 0
1

Case 1 For some j * *a..x· > S ••lJ J 1

Then choose 0 < ｾ < a..
- lJ - lJ

Replace the activity aj by

to maximize -- * *a..x. < s..
lJ J - J

a· .lJ

a· .
IJ

a..
lJ=a.

J

amj

* * *so that now Ea..x. = b. + (s. - a.. x.).
lJ J 1 1 lJ J

* *If a.. = 0 then x. > s. so in this case letlJ J 1

alj.
a. = a.. - 1

J lJ.
a

mJ
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a. .
J

by
o
o.

-1

0

* * * -* *Replace x. by x. - s. and let x. = s .
J J ]. J ].

* * * *Then E a.kxk + a.. (x. - s. ) + (a.. - l)s. = b.
k¢j ]. ].J J ]. ].J ]. ].

aQd replace the slack column

The new matrix has the correct number of columns and is

nonsingularbecauseits determinant is unaffected. (Adding

one column to another does not affect the determinant).

* *Case 2 For all J , a..x. < s . .].J J ].
alj.

Then replace a. by a. = then
J J 0

a .
mJ

* * * *E a.kxk + a..x . = b. + ( s . - a..x.).
k¢j ]. ].J J ]. ]. ].J J

* *If s. = a..x. replace the slack column by any independent
]. ].J J

activity.

Since either case 1 or case 2 must apply the above

processmay be repeateduntil the required matrix has been

obtained. The resulting solution is non-negativeby

constructionand must be optimal if r· > O. Indeed if
]. -

r i > 0 this row would have no slack anyway for then the

above constructionimproves the basis. II

Theorem 5 If the objective cost of all activities is

constant, condition (i) of Theorem 3 is automatically

satisfied for almost all equivalenceclasses.
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In this case (I' , 1') = (1, 0), so that it need only be
o

shown that

1 - nalj < 1

or nalj > ° for all j £J . 0

1

The objective function l:c.xo may be
J J

rewritten as rl(Lx j ) + rAx

which equals I' (LX.) + rb + rs 0

o J

The dual of min LX. + 1'5

J J

Ax - Is = b

s, X > 0

( 8 )

is max yb

yA < 1

- Y ｾ I'

so that with I' = 0, Y ｾ 0 0

If B is the optimal basis for (8) then the optimal y in (9)

is -1
Y = (loB l ,0) = (nJO) which implies that TI ｾ O.

Hence 0<'C:"<1
- J-

so that 'i1"':" = h 0 unless there exists a class J. for ｾ Ｂ ｨ ｩ ｣ ｨ
1 1 1

every' activi ty has 'C:" = 1. In this case 'Fl:'" = 0 h 0 = 1
J 1 ' 1 '

and each activity satisfies

= 0 . II

Lagrangemultipliers have been used to improve the bound

given by the unconstrainedgroup problem [3], [12] 0 The

methods of this section may be adaptedfor this case, see

chapter 2 in [1] 0
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4. An Example - A Cutting Stock Problem

The cutting stock problem was first solved using column

generationmethods by Gilmore and Gomory [5J and concerns

the minimization of material required to fulfil given orders.

Consider a situation in which a supplier has rolls of

cloth of a given length L. He has orders for b. rolls of
1

cloth of a smaller length w. i = I, .
1

m. Each roll

may be cut into smaller rolls by using any cutting pattern
Which producesa non-negativeinteger number a. rolls of

1

length w. sUbject only to the condition
1

m
1: a.w. < L .

. III1=
(10)

Hence the set of activities for this problem consistsof all

non-negativeinteger solutions to (10). Clearly this set is
-complete if a > a > 0 then (10) implies

m
E a.w. < L

. III1=

to satisfy the order, the

have r o = 1 r = 0 so that

satisfies the conditions of Theorem 4.
number of rolls on which cutting

so that this problem

Let x. representthe
J

pattern a. is used so that if the objective
J

number of rolls of length L used

coefficients c. = r + r.a. = 1
J 0 J

this problem also satisfiesTheorem 5.

function is the

As a numerical example, supposeL = 58, bl , b2 , b3 = 7

with WI = 7, w2 = 11, w3 = 16. The object is thus
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minimize 1: x.
j e:J J

s.t. 1: a.x. > b (11)
j e:J J J -

x. > 0 integer
J -

where the {a.}. J are any non-negativeinteger solutions to
J Je:

7al · + lla2 · + 16a3. < 58 (12)
J J J -

The optimal L.P. basis uses activities (2, 1, 2), (2, 4, 0)

and (1, 0, 3) each 1.4 times for an objective value of 4.2.

B = ｮｾｄ
II = l.B- l =

-1B = 1
10

1 (1, 2, 3).
10

Since two activities are equivalent if they have the same

values of -1 (mod 1) the equivalenceclasses deter-B a are

mined by the values k
l

, k2, k
3

given by

a) 2al + 4a2 + 6a
3 - k l (mod 10)

b) 7al + 4a2 + a3 - k2 (mod 10)

c) 2al + 4a2 + 6a
3 - k

3
(mod 10)

Clearly k l :: k
3

and since k l :: 6k2 the equivalenceclasses

may be determinedsolely by the value of

7al + 4a2 + a
3

(mod 10)

al + 2a2 + 3a
3

(mod 10)
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9
min 1 (E kXk + sl + 2s2 + 3S

3)
10 k=l

s.t.
9
E kx + sl + 2s2 + 3s3 = 8

k=l
(mod 10)

Xk ' si ｾ 0 integral

which has an optimal value of 0.8. This gives a lower

bound of 4.2 + 0.8 = 5.0 for the number of rolls required.

There are many optimal solutions to (13) a sample of which

are
(i) xl = 8 (ii) x2 = 4

(iii) x4 = 2 (iv) x8 = 1

(v) sl = 8 (vi) s2 = 1, s3 = 2

(vii) x2 = 2, sl = 1, s3 = 1.

Some of these solutions may not be feasible in (11) and

since there are so many it would be useful to have criteria

for choosing amongst them.

Criterion 1 The optimal solution which minimizes

should be chosen.

E x.
j EN J

Reasoning This criterion is just as applicable to all the

problems fitting the model of this chapter. The inequality

constraintsomitted from (13) are

E (B-la.)x. - B-ls < B-lb (14)
j EN J J

which, if summed to give a single surrogateconstraint

yields

or

-1 -1
E (loB a.)x. - loB s <

j EN J J

E (ITa.)x. - ITs < ITb
j EN J J

(15)
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indicating that a good choice of optimal solution is one

that minimizes the left hand side of (15). Now the object-

ive function of (13) is

r (1 - ITa.)x. + ITs
j EN J J

or
r x. - ( r (ITa.)x. - ITs)

j EN J j EN J J

For all optimal solutions, the quantity (16) is constant

hence the minimizing of the left hand side of (15) is

equivalent to minimizing r x ..
j EN J

This criterion orders the optimal solutions given with (v)

and (vi) as the best and (i) as the worst.

Criterion 2

the value of

The optimal solution (x*, s*) which minimizes

max ｻｸｾＬ ｳｾｽ should be selected.
i,j J J

Reasoning Criterion 1 was developedby an averagingof the

constraintsbut it has been observedfrom hand computations

that if one variable has a high value it is likely to cause

infeasibility in (14) even though (15) is satisfied. Hence

criterion 2 suggestsan ｡ ｶ ･ ｲ ｾ ｧ ｩ ｮ ｧ out of the values of the
variables. This criterion would give (iv) as the best and

(i) and (v) as the worst of the optimal solutions to choose.

There is evidently some disagreementbetween the

criteria as solution (v) appearsas the best and the worst

in two lists. A suggestedcombination criterion is the

minimization amongst the ｯ ｰ ｴ ｾ ｭ ｡ ｬ values of
* * *r x. + ｾ max {x., s.}

j EN J i,j J 1
(17)

This gives a final ordering of the selectedoptimal solu-

tions of (vi), (iv), (iii), (vii), (v), (ii), (i).
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(vi) s2 = 1, s3 = 2 is a feasible correction giving an

optimal value of 5 with solution

2 (D + 2 (D
*Solutions for which r x. = 0 are particularly simple to

j e:N J

check since it is not necessaryto calculate any elements

of the equivalenceclasses.

(iv) Xg = 1

The activities of this section, which may be found by

dynamic programmingas indicated in section 2 are

1, 2, 1

2, 3, 0

6, 1, 0

0, 1, 2

0, 4, 0

g, 0, 0

4, 2, 0

2, 0, 2

5, 0, 1

3, 1, 1

of which only the first two will make the correction

Xg = 1 feasible. This fact raises an important procedural

point. It has already been noted in Theorem 4 that certain

problems may be made easierby including activities in the

L.P. basis which are strictly dominated by other activities.

Here, neither of the two feasible correction activities are

maximal, they are dominated by (2, 2, 1) and (2, 4, 0)

respectively.
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(iii) x4 = 2

The activities here are

0, 2, 0

4, 0, 0

1, 0, 1

2, 1, 0

and although none of these activities on their own provide a

feasible correction the activity (0, 2, 0) used once

togetherwith either (1, 0, 1) or (2, 1, 0) is feasible.

In summary, solution (vii) has a feasible solution

whereasnone of (v), (ii), (i) have. The calculation here

would, of course, have stoppedwith (vi), the other solu-

tions were examined for the purposesof the example only.

Note that the bound from (13) was exact, as in fact none

of the equivalenceclasseswere empty.

This example has shown the importanceof testing all
the alternative optimal solutions to the group problem and
thus of making good ranking decisionsamongst them.
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