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A Bayesian Approach to Portfolio Selection and Revision*

Robert L. Winkler'* and Christopher B. Barrf**

I. Introduction

In portfolio analysis, the basic setting is that of an
individual or a group of individuals making inferences and
decisions in the face of uncertainty about future security
prices and related variables. Formal models for decision
making under uncertainty require inputs such as probability
distributions to reflect a decision maker's uncertainty about
future events and utility functions to reflect a decision
maker's preferences among possible consequences Eﬁﬂ. More-
over, when a series of interrelated decisions is to be made
over time, the decision maker should 1) revise his probability
distributions as new information is obtained and 2) take into
account the effect of the current decision on future decisions.
In terms of formal models of the decision-making process,
probability revision can be accomplished by using Bayes'
theorem and the interrelationships among the decisions can be
taken into consideration by using dynamic programming to de-
termine optimal decisions. Since portfolio selection and
revision involves a series of interrelated decisions made over

time, formal portfolio models should, insofar as possible,
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incorporate these features. A search of the extensive
literature concerning portfolio models indicates, however,
that such models have ignored one or both of these features.
Since Markowitz [1&] developed his original model of
portfolio selection, a considerable amount of work has been
conducted in the area of mathematical portfolio analysis, and
much of this work is summarized by Sharpe [31] and Smith EBj].
Although the emphasis in portfolioc analysis has been primarily
on single-period models and portfolio selection, multiperiod
models and portfolio revision are investigated by Tobin [35],
smith [32], Mossin [21], Pogue [22], Chen, Jen, and Zionts [3],
and Hakansson [13,1{1. In addition, general multiperiod models
of consumption-investment decisions are developed by Hakansson
[10,11,12], Merton [19], Samuelson [29], Fama [6], and Meyer [20].
However, 1t is generally assumed that the probability distri-
butions of interest are completely specified and that they are
unaffected by new information, implying that the portfolio
revision models do not involve probability revision over time.
Bayesian models have received virtually no attention in the
portfolio literature. Mao and Sarndal [17] present a simple,
discrefe, single-period Bayesian model in which the returns
from securities are related to the level of general business
activity and information is obtained concerning business
conditions. KXalymon [16] develops a model that is similar to
the inferential model presented in Winkler [37] and discussed
in Section II of this paper, but his paper is primarily con-

cerned with measuring "risk" in terms of the variance of returns;



the implications of changes in the relevant distributions
over time with respect to multiperiod portfolio models are
not investigated.

The purpose of this paper is to present general models
for portfolio selection and revision that utilize Bayesian
inferential procedures to formally update probability distri-
butions as new information is obtained. Both single-period
(myopic) models and multiperiod models are considered. 1In
Section II a Bayesian inferential model is discussed, and in
Section III the portfolio selection and revision models are
presented. Section IV illustrates the models with examples
involving linear and quadratic utility, and a brief summary

and discussion is presented in Section V.

ITI. A Bayesian Model for Forecasting Future Security Prices

Suppose that a particular security is under consideration,
and let ;i represent the price of that security at time i,
where 1 = 0 corresponds to the current time. The objective
in developing a model to forecast a future price such as it
is to include restrictions that simplify the analysis without

greatly limiting the realism of the model. As a starting

point, a very simple model will be presented. The model deals

~

with price differences, d; = %5 - X590 and assumes that the
price differences are independent and identically distributed
and thHat the distribution of di belongs to a certain family

of distributions which may be indexed by the parameter (or

vector of parameters) 6. Given a prior distribution, f(8),



the marginal distribution at time O of ;t’ which is called
a predictive distribution in Bayesian terminology, can be

found.

For example, suppose that di is normally distributed with
unknown mean p and known variance 02 and that the prior distri-

bution of p is a normal distribution with mean m, and variance

o°/ng. Then at time O, the marginal distribution of d,

is a normal distribution with mean me and variance

(n, + l)cz/no, and the predictive distribution f(xtlxo) is a

0
normal distribution with mean Xg # tmo and variance (nO + t)oZ/nO.
Note that the particular choice of distributions greatly

simplifies matters. Since d; is normally distributed for each

t -
i, the sum of price differences ] c‘l‘j = it - Xy is normally
j=1

distributed. Given that u is also normally distributed, the
derivation of f(xt,XO) is guite simple.

Bayes' theorem is used to revise the distributions of é
and of ;t as new information in the form of observed prices
becomes available. To simplify matters, it is assumed that

th time period

the only relevant information available in the i
(the period from time i-1 to time i) is ii' For the example
utilizing normality assumptions, the distribution of u at time
ifi = 1,...,t = 1), f(ulxo,...,xi), is normal with mean

ms = (nomo *oxg - xo)/(nO + i) and variance 02/ni = 02/(nO + i),
The predictive distribution of it at time i is normal with

mean X. + (¢t - i)mi and variance (ni +t - i)oz/ni.



Perhaps the most important aspect of the implementation
of a model of this nature is the determination of the neces-
sary inputs, which include the length of the time intervals,
the definition of price, the measure of price shifts, the
statistical model for the data-generating process, and the
prior distribution. As in any modelling situation, the in-
puts must be chosen to provide a suitable balance between
realism and manageability.

From a decision theoretic standpoint, the average, high,
and low prices of a security during a period may be of greater
interest than the closing price at the end of the period.

The model in this paper can be formulated in terms of closing
price., average prices, high prices, low prices, or possibly
yet other definitions of price. The definition of price may
affect other details of the model (e.g. the variance of an
average price might be expected to be smaller than that of

a closing price), so it is necessary to carefully specify
which definition is to be used (see [36]).

In the literature concerning probability distributions
relating to security prices, the variable of interest is
frequently the difference in the natural logarithms of prices.
Replacing éi with Zi = log ii ~ log ii-l would be a convenient
modification of the model if the process that generates
differences in log prices can be represented by a reasonably
tractable family of distributions. For instance, the
normal family of distributions, which is relatively easy to

work with, may provide a closer fit to differences in log



prices than to straight differences in prices. Furthermore,
a difference in log prices is the logarithm of 1 + Pi, where
r. o= (x. - ii_l)/g If the time periods are short enough

i i i-1°

that values of ;i far from zero are very unlikely, then Zi is
approximately equal to ;i’ which is a convenient variable to
consider in portfolio problems.

The model is flexible in terms of the choice of a statis-
tical model to represent the data-generating process as well
as in terms of the choice of variables. The example assumed
a normal data-generating process, but empirical evidence
(e.g. see [4]) suggests that the distribution of price changes
of securities is non-Gaussian and can be represented most
generally in terms of the family of stable distributions
{(which includes the normal distribution as a special case).
Unfortunately, the family of stable distributions is more
difficult to work with than the normal distribution [5,7,8].
Of course, statistical models other than the normal and
stable models might also be considered [23,25,26]. An impor-
tant question in the choice of a family of distributions for
éi is the sensitivity of the inferences and decisions produced
by the model to variations in the distribution of éi. If such
inferences and decisions tend to be somewhat insensitive to
moderate deviations from normality, then the normal family
might be a useful approximation to the distribution of éi.

The model is also flexible in terms of the choice of

a prior distribution. For the sake of tractability in the

application of Bayes' theorem, it is convenient if this



distribution is conjugate with respect to the family of dis-
tributions chosen to represent the data-generating process
(see r28]). Otherwise, it may be necessary to use numerical
methods to revise the distributions of interest. 1In the
example presented earlier in this section, the normal distri-
bution for § is a conjugate distribution. If the conjugate
family is considered too restrictive, it can be broadened
considerably without much loss in tractability by allowing
mixtures of conjugate distributions. For instance, if the
conjugate family is the family of normal distributions, only
symmetric, unimodal conjugate prior distributions are avail-
able; mixtures of normal distributions, on the other hand,
include asymmetric and multimodal distributions. 1In a study
by Bartos [2], distributions for future security prices
assessed subjectively by security analysts frequently were
multimodal, suggesting that mixtures of conjugate distributions
may provide good representations of subjective prior opinions.
Of course, even within a family of conjugate distributions
or mixtures of conjugate distributions, the problem of choosing
a specific distribution remains. Various aspects of the
assessment of probability distributions for future security
prices are discussed by Bartos [2], Fried [9],
Stiel von Holstein [34], and Winkler [36].

The general model presented in this section is reasonably
flexible, and various extensions make it even more flexible.

For example, it can be extended to the situation in which



several securities are of interest and variables other than
simply the security prices are considered. Such variables
might include economic indicators, variables related to parti-
cular industries, variables related to individual securities
(e.g. earnings per share), or even forecasts of future values
of certain variables. For details concerning such extensions,

see [37].

III. Portfolio Selection and Revision

The model described in Section II is of some interest in
a purely inferential sense, but that aspect is overshadowed
by the potential interest in the model as a basis for making
decisions. A portfolio selection and revision procedure
utilizing a Bayesian model of security price movements has
the desirable feature of updating the probability distributions
of interest as new information is obtained. 1In this section
both a single-period portfolio model and a multiperiod model
are presented.

Assume that a decision maker (e.g. a portfolio manager)
has wealth WO (which may be in the form of cash or in the form
of an existing portfolio of securities) at time O and that he
wants to determine an optimal portfolio to hold during the
first time period. If W, consists of cash, this is a portfolio

0

selection problem; if W. consists of a portfolio, it is a

0
portfolio revision problem. In either case, of course, the
decision making problem for subsequent periods will be a

portfolio revision problem.



It is assumed that the portfolio will be chosen from
M risky securities (securities with uncertain rates of return)
and one risk-free security (a security with a positive rate
of return that is known but may vary from period to period).
The risk-free security is labelled security 0, and the risky
securities are securities 1 through M. Wi rerresents the
decision maker's wealth at time i (i = 0,1,...), and a?
denotes the total amount invested in security k (k = 0,...,M)
at the end of pericd 1 - 1 (i.e. at time i) before the
portfolio is revised at time i. Thus,

M
K
W. = ] ai
Toxo 7

and the portfolio before revision at time i1 can be represented

by the 1 x (M + 1) vector a; = (ag,ai,...,a?). Furthermore,

p? and q? represent the amount of security k that 1is purchased

and sold, respectively, at time i. After revision, then, the

k k

total amount invested in security k at time i is a; + p? - q;-

The rate of return on security k during period 1 + 1 is de-

noted by rk so the amount invested in security k at time

i+1°

i + 1 before revision is

(1 + rk

k k k
i+1) (85 * Py - ay)

and the total wealth at time i + 1 is simply

M
S= Y (1+ S )(a

ko, koK
k=0 A

* Py oTay

The decision variables at time 1 are the vectors

. o 1 M o 1 M .
Py - (pi,pi,-..,pi) and a; = (qi,qi,...,qi), and the uncertainty

facing the decision maker involves future rates of return,

rj = (r?,?%,...,;?), for 3 =1+ 1,i + 2,.... (The uncertainty
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only involves the last M elements of %j’ since r?, the return
on the risk-free security during period j, is known.)
Inferential models such as the model presented in Section II
can be used to update the probability distribution of ;j.
The details of such models are not required for the purposes

of this section, but the examples in Section IV will illustrate

the use of a specific Bayesian inferential model in portfolilo

selection and revision.

A. A Single-Period Model

The distinguishing feature of a single-period portfolio
model, as opposed to a multiperiod model, is that the decision
maker behaves myopically in the sense that he never looks
more than one period into the future. At time i, he chooses
a portfolio to maximize EiU(&i+l), the expected utility of
his wealth at time 1 + 1, where the subscript on the expecta-
tion operator indicates that expectations are taken with
respect to the decision maker's joint probability distribution
at time 1i.

First, consider the case in which there are no transactions
costs. Then at time i1 the decision maker wants to choose ps

and a3 to

k

~ Kk Kk k
(1 + ri+l)(ai + pi - ql)] B

He~1=

Max EiU[

k=0
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subject to the following constraints:

prk: gk
k20 ' ko
k k

0Lay £a;y k =0, M,

Kk

plio 3 k-‘-’O, ’M )
and

k k

pia; =0 , k = 0,...,M

The first constraint states that the total amount of securities
purchased must equal the total amount sold, the next 2M + 2
constraints require‘that all amounts purchased and sold be
nonnegative and that the amount sold of any security cannot
exceed the amount currently invested in that security (i.e.
short sales are not allowed), and the final M + 1 constraints
are included to preclude the possibility of simultaneously
purchasing and selling positive amounts of the same security.
Because there are no transactions costs, simultaneously
purchasing 20 shares and selling 10 shares of a security is
equivalent to purchasing 10 shares and selling none. If the
final M + 1 constraints were not included, the decision making
problem as stated above would have an infinite number of
solutions corresponding to a single optimal portfolio;
precluding simultaneous purchasing and selling results in a
one-to-one correspondence between a choice of (pi,qi) and the
resulting portfolio, a3 + Py = Q-

As stated above, the decision making protlem is one of

portfolio revision. If the decision maker's initial wealth W,
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is in the form of cash, then ag = qg = 0 for all m, and the

problem is one of portfolio selection

M
“k. ok
Max EOU[kZO (1 + 1) PO] ,

subject to

and
pg;O sk =0,...M

Next, suppose that there are transactions costs, repre-
sented by the positive, increasing functions Cg and Cg
where Cg(z) is the transactions cost associated with purchasing
an amount z of security k and Cg(z) is the transactions cost

associated with selling an amount z of security k. At time i,

the decision maker wants to choose Ps and 93 to

M
~k k k k
Max EiU[Z (1 + ri"’l)(ai + Pi Qi)] >
k=0
subject to the constraint set
M M
k k, k k k, k
G. = {psya;| J [ps +C(py)] = T [a:i - ¢ (a:)] ,
1 e k=0 1 p 1 k=0 1 q 1
k k -
0 < a; £ ay k =0,...,M ,
k = }
and Py Z o , k = 0, > M

The first constraint reflects the fact that transactions costs

reduce the total amount of securities that can be purchased
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as a result of selling other securities. In selling q? of
: L) : . s . k
security k, the decision maker only recelves q? - Cg(qi),and

in order to purchése p? of security k, he must spend

k K,k o0 oAk o_ ko . .
p; + Cp (pi). Note that if Cp z Cq = 0, the first constraint
"is identical to the first constraint in the zero-transactions-

kK, k, _ _k kK, ke _ Kk ,. _ .
p(pi) = epj; and Cq(qi) = cqy (i.e. if

there is a constant per-unit transactions cost of ¢ for both

cost case. Also, if C

purchasing and selling), the first constraint can be written
in the form

M

(1+c) ] pf=@Q-07] a

k=0 k=0
in which case the total amount of securities purchased can
only be (1 - ¢)/(1 + ¢) times as great as the total amount
of securities sold. Obviously, since ¢ > 0, (1 - ¢)/(1 + c)
< 1. Also, unless ¢ < 1, the transactions costs would be
confiscatory.

The constraints included in the first model in this

section to prevent simultaneous purchasing and selling of the

same security (pli{qk =0, k = 0,...,M) are not needed when

i
transactions costs are always positive. If p?q? > 0, reducing
both p? and q? by z = min{pg,qg} yields the same amount of

security k in the portfolio but changes the transactions

costs associated with security k from C;(p?) + Cg(q?)

k

to Cg(pg - z) + Cg(qi - z). This change is a reduction

because Cg and Cg are increasing functions. The amount thus
saved could always be invested in the risk-free security to

yield a certain return of rg > 0, thereby increasing

i+l
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EiU(W ), assuming of course that U is monotone increasing.

i+1
Therefore, the optimal solution to the portfolio revision
problem in the case of positive transactions costs will

never involve simultaneous purchasing and selling of the same
security.

If the decision maker's initial wealth WO is in the form

of cash, the portfolio selection problem with positive trans-

actions costs is to
M
. ~ky_ k
Ma x EOU[REO (1 + rl)po] ,

subject to

M
. - k kK, ky7 _
Gy {golkz [po + Cp(po)] = W,
and
PE >0,  k=0,...M

To avoid the possibility of holding cash, it is assumed that

the expected return from at least one security is large enough

to assure that the decision maker will be fully invested.

This can be guaranteed, for instance, by requiring that

zrg > Cg(z) + Cg(z) for all i and z, implying that holding

the risk-free security is always better than holding cash.
Although the single-period portfolio models presented

in this section are myopic by definition, they do provide

for portfolio revision on the basis of new information. This

information includes the past returns on securities and any

other information that is included in the inferential model

used to update probability distributions for future returns.
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B. A Multiperiod Model

Single-period models ignore the dynamic nature of the
portfolio selection and portfolio revision problems. Mossin
[21, p.215] states, "In a multiperiod theory the development
through time of total wealth becomes crucial and must be
taken into account." The most general multiperiod model
involves an infinite horizon, but the model presented in this
section assumes a finite horizon of t periods (t = 1 corresponds
‘to the single-period model). That is, at time O, the decision
maker wants to maximize the expected utility of &t’ the wealth
at the end of the finite horizon, taking into consideration
the uncertainties involving future returns and the possibility
of revising the portfolio at times 1,2,...,t - 1. This
requires a dynamic programming formulation whereby the optimal
solution is determined through backward induction, starting
with the decision at time t - 1 and working backward to the
decision at time O.

At time t - 1, there is only one period remaining until
time t, so the single-period model is applicable. Assuming

positive transactions costs, the decision maker should

choose Py_1 and Q.1 to

M
~ky o,k k k
Max E__,U [L(ZO (L +r)(ag  * Peog - qt—l)] >

subject to the constraint set G The solution of this

t-1°
problem for any given a g yields the optimal portfolio

revision at time t - 1.
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Before time t - 1, of course, is not known, but

a1

previous decisions must be related to the decision at time

t - 1. Define UE_l( ) to be the expected utility corres-

2t-1
ponding to the optimal solution to the portfolio revision

problem at time t - 1, given a

t-1°

*
Ui-1(2

~t_1) = max E, UL 7 (L +r

where the maximization is subject to the constraint set G _

l,
of course. The decision maker's objective at time t - 2,
then, should be to choose p,_, and q,_, to maximize
. -
Et_z[Ut—l(?t—l)J‘ But
kKo ~ k kK _ ok
agy T L+ rp )lag o, + e p - ay)
so the portfolio revision problem at time t - 2 can be written
M k k
max E_» max Et_lUEKZO (1 + rt){(l + rt-l)
P23t Pe-109¢-1
Kk kK _ k K _ k }
lagp + g~ Agp) *eey - ag oty
subject to the constraint set {G,_,,G, _;}. If the maximum
value of this objective function at time t =~ 2 is denoted by

N . . _ .

Ut—2(§t-2)’the decision at time t 3 1s to choose Py _3 and
.. .

ap_5 to maximize Et-SEUt-2(?t-2)]'

The process of backward induction continues until the

initial portfolio revision problem is reached. At time O,

the decision maker should choose Pg and 5 to maximize
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EO[UE(?l)]. That is, he should

max Eo{ max E, { max E, ... { max Et—lU(wt)}"'}}

Po>9p £1:% Prs9s Pro12%¢-1

where the maximization at time i is subject to the constraint
set G.. (If the decision maker's initial wealth Wy is in the
form of cash rather than an initial portfolio ay, the constraint
set at time 0 is G6.)

The multiperiod portfolio model, like the single-period
model, provides for portfolio revision on the basis of new
information. In addition, it takes into consideration the
potential effects of a portfolio revision decision on future
portfolio revision decisions.

The determination of the necessary inputs for the
portfolio selection and revision models presented in this
section is an important and often very difficult aspect of
the implementation of such models. The determination of
inputs for the inferential model was discussed in Section II.
Of course, the decision making problem may dictate which
uncertain quantities are of interest and may therefore affect
some details of the inferential model. On the other hand,
it is possible that certain assumptions concerning the inferen-
tial model may lead the decision maker to reformulate the
decision making model in slightly different terms.

In addition to the inferential inputs, the portfolio
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models require the assessment of a utility function, the
choice of functions to represent transactions costs, and

the choice of a time horizon in the multiperiod model. The
utility function, which represents the decision maker's
relative preferences among various amounts of money, is
perhaps the most crucial of these inputs. In theory, at
least, one can elicit a decision maker's utility function by
asking questions concerning his preferences between two
gambles and by adjusting the pairs of gambles to determine
various points on hi; utility function [24]. This process

is not quite as simple as it sounds, however, and more work
is needed regarding the assessment of utility functions.
Moreover, it is convenient from the standpoint of tractability
if the utility function can be approximated closely by a
simple mathematical function. (This is analogous to the
desirability of choosing a prior distribution that is a
member of the conjugate family of distributions.) Some of
the simple functions that have been used to represent utility
functions in various applications are linear, quadratic,
exponential, and logarithmic functions, and the relative
merits of these and other functions have been widely debated.
With respect to portfolio analysis, most studies have used
the mean-variance approach, which, in the absence of distribu-
tional assumptions, implies a quadratic utility function.
However, some recent articles have seriously questioned the
applicability of quadratic utility (e.g. [15]). A final

point with respect to utility theory is that if the portfolio
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selection and revision problem involves a group or a corpora-
tion rather than a single individual, the difficulties
encountered in determining an appropriate utility function

to be used in the model are intensified (e.g. [1]).

The choice of functions Cg and Cg to represent transactions
costs technically should be determined by the institutions
controlling the purchasing and selling of securities. These
functions are subject to modification from time to time,
however, and they are not always convenient to use from the
standpoint of tractability. Matters are greatly simplified

if it can be assumed that Cg = ¢ and Ck = C_ for all k and

p q

that Cp = Cq = C. Under these assumptions, it is only

necessary to determine a single function C. Under these

assumptions, it is only necessary to determine a single

function C. Some possibilities are a stepwise linear

function (e.g. [22]), a linear function with a fixed charge [C(z

b + cz], and a linear function without a fixed charge [C(z) = cz)
In some problems the selection of a time horizon t may

be simple (e.g. if a portfolio must be liquidated at a certain

date in the future), but in most cases it is by no means

obvious. The sensitivity of portfolio decisions to the choice

of t is of considerable importance. It may be that the optimal

portfolio at time O varies little as the number of periods

until the horizon increases beyond some finite t. The choice

of t may involve a trade-off between computational ease and

the accuracy of the initial portfolio allocation.
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IV. Examples

The purpose of this section is to illustrate how, given
a particular inferential model and a particular portfolio
selection and revision model, an optimal portfolio can be
selected. The examples to be presented are purposely quite
simple, involving one risk-free security, one risky security
(M= 1), and a time horizon of two periods (t = 2) in the
multiperiod case. A constant per-unit transactions cost of
¢ > 0 is assumed, with ¢ = O corresponding to the case of no
transactions costs.

The inferential model assumes a stationary normal data-

generating process for the log price changes, A% = log i%
- log ii_l, of the risky security. The data-generating
process has known variance 02 and unknown mean p. (This

differs from the example in Section II in that Ai instead of

d% is assumed to be generated by a normal process.) The

decision maker's prior distribution for u at time O is a
normal distribution with mean my and variance n6102.
time i, then, the distripution of u is a normal distribution
+ % A%)/(n + 1) and variance

j7i 9O

At

with mean m, = (nomO

(ng + i)—102, and the predictive distribution of A%+1 is a

normal distribution with mean m. and variance (no + 1+ 1)02/

(nO + 1), Furthermore, it is assumed that the time periods

1

are short enough (implying the potential values of Ai are

small enough) that Ai provides a very close approximation to

r%—— in this section, A% and r} are considered to be
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interchangeable. The risk-free security, of course, has

fixed return rg in period 1.

A. Linear Utility

The easiest situation to deal with in terms of utility
is the situation in which the decision maker's utility function
is linear with respect to money. U can then be taken as
U(W) = W, so the decision maker's objective is to maximize
expected terminal wealth. Linear utility and the optimal
portfolios generated under the assumption of linear utility
seem unrealistic, but the use of linear utility serves to
demonstrate in a simple manner the differences among the
different portfolio models presented in Section III,

First, consider the single-period model. At time 1,
the decision maker should choose s and q; to

1

0 0 0 0 = 1 1 1
s40(a5 *p; - ay) + (1 o+, )(a) +p; - ay)]

Max E,[(1 + r i

subject to
- 0 1, _ 0
G; = {p3,q;1(1 + o)(P] + p7) = (1 - )(af + aD)}
k k
0 < a; £ a; k = 0,1 and p? 20 ,
k = 0,1}

o)

If ¢ = 0, the constraints p.q? = 0, k = 0,1, must be added.

[
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Taking expectations, the objective function can be expressed

0 )(aO 0

0 1 1 1
1410 (a5 *p; - ) ¢ (1 o+ m)(ay + py - qi)]

Max [(1 + r i

This is a simple linear programming problem, and the solution’

is
-1.1 . 0]
[ (87"a;,0) if 1+ x> 80 +m)
- |
. -1 0
( 0 1) i (0,0) if B (1 + mi) <l+ri,
p;>Pi) =
| < B(1l + mi) R
-1.0 . . 0 -1
[ (0,8 ai) if 1 + ri, <8 (1 + mi) s
where B = (1 + ¢)/(1 - ¢) is the amount of one security that

must be sold to buy one unit (i.e. $1) of the other security.
Since M = 1,qg = Bpi and q% = Bpg, solutions in this section,
therefore, are just given in terms of Dy -

In the case of zero transactions costs (¢ = 0), 8 = 1,

and the optimal strategy at time i is

1 . 0
o 1 (a;,0) if riyg 2mgy
(py,p3) =
0 o 0
(O,ai) if ri my

At each time period, then, the decision maker invests every-

thing in the security with the higher expected return for the
next period. In fact, this result generalizes to the case of
more than two securities. If ¢ > O, it is possible that\the

optimal poftfolio will not contaln the security with the

higher expected return for the next period. The effect of
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nonzero transactions costs is to make it less 1likely that a
portfolio will actually be changed at any particular time.
(Note that for any value of ¢, though, if the portfolio is
changed, it will be changed to a portfolio containing only

one security.) For instance, if the optimal portfolio at time

O consists solely of the risk-free security (i.e. if aé + pé

- qé = 0), then the probability of including any of the risky
security in the optimal portfolio at time 1 (implying that

the decision maker will switch entirely to the risky security)

is
-1 ~ oy 0
< BRTT(L o+ ml)] = P(my 2 Bry + B- 1)

Without transactions costs, the probability of switching to

the risky security at time 1 is just P(r~n1 > rg). Since B > 1
for nonzero transactions costs, Brg + B -1> rg, so the

decision maker is less likely to switch when ¢ > O.

If the initial wealth wO is in the form of cash,

o_ .1_ o0 _ 1 _ . . .
4y 7 A = 4y T Q9 = 0, and the optimal ?O is given by

Itv
2}

1+ ¢]™My,0) if r

0 1y _.
(po,p05 =~

= O

-1 o)
(0,[1 + ] "y if ry < m,

In this situation, the optimal portfolio will always consist
of just one security, ignoring the borderline situation in
which any portfolio is optimal (at time O, this situation
occurs 1if ro = m.). If W. consists of an initial pcatfolio

1 0 0

. 0 1
ao with aO > 0 and ag

portfolio), the decision maker will retain a diversified

>0 (i.e. an initial "diversified"
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portfolic as long as the difference between rg+l and ms is
small enough that (pg,p%) = (0,0), even if U is linear.
In the multiperiod portfolio model with t = 2, the

decision at time 1 is identical to that of the single-period

model
-1.1 . 0
(8 al,o) if 1 +7r) 2 B(1l + ml) 5
o 1. (0,0) if g7 (1 +m) <1+ rO
(p7,p7) = . g
1°P1 9
< B(1 + ml)
) -1 0 . 0 -1
(0,8 aj if 1 + r, < B ~(1 + ml)

At time O, the decision maker should choose Py and dq to

0 0y,,0 , O _ 0O
Max  E [ max B {(1 + r)[(1 + r])(ag + pg - qf)
o290 P1°%
o_ 0 -1 51
+py - qu + (1 + r2)[(1 + rl)

1 1 1
(a5 + p5 - 9p) * P = 9]

subject to the constraint set {GO’GI}' The objective function

simplifies to

‘ .0 0y,,0 , O _ 0O
Max  E [(1 + rj(1 + r])(aj + py - ag)
po Sqo
~1 1 1 1
+ (1 + ml)(l + 11)(ao + Py - qO)

+ max {(1 + rg)(pf - qf) + (1 + ml)(p% - Q%)}]
P1°%
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or

0 -1 1

0 0 0 0 2 2 1
Max (1 +r2)(1 +r1)(ao-+po qO) + {Q +mo) + ny7o } (aO +pg - qg

Pos9p

1

% - (1 +m1)](aé+po—qé) £(m,) dm,

+ j (1 +r%)[8-1(1 +r,

A

e[ e ) - 4D @) esd - ad) £tm) any
B

where
A={m|1+ro>8(1+m)}
1 2 = 1
and
¢ -1
B {m |1+, <8 "(1+ ml)} .
0

(The region 871 + ml) <l+r

in that region, pg = p% = qg = q} = 0, and thus the relevant

partial expectation is zero.) At time O, the distribution of

my is a normal distribution with mean m, and variance
n'é(no + 107162, The objective funciton, then, reduces to

0 0 0 1 1 1
Max Ko(aO + Py - qo) + Kj(ag + py = qg)

3

where

Ko = (1+rg)(1+rC1)) + EO(B)[(I +r?){8_1(1 +E11) - (1 +rg)}]

1

5 < B(1 + ml) is omitted because

)
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1.2

Ky = (Lam)® + ngte® w Bg [ +FD 8T 4 ) - (1enT]

1

and E and EO(B) denote partial expectations, taken at time

o(a)
0, over the sets A and B, respectively. The partial expecta-
tions reflect the effect of the anticipated second-period

decision on the first-period decision. The solution to this

linear programming problem is

-1_1 .
(87 ag,0) if Ky 2 BK,
o 1, _ . -1
(pospo) = (0,0) if B Kl < KO < BKl R
-1.0 -1
(0,8 "ay) if Ko 2 8 7K

This solution is of the same general form as the solution

at time O for the single-period model, with KO replacing
1+ P? and K1 replacing 1 + my . If the decision maker's

initial wealth is in the form of cash, the solution is

([1+ ™ wg,0 dirky 2k
0

1y
(poapo) -

._1 .
(0,1 + c]""Wy)  if Ky < Ky

B. Quadratic Utility

Unless the initial wealth is in the form of a diversified
portfolio and transactions costs are high enough relative to
differences in expected returns to make it optimal to retain
the initial diversified portfolio, the decison maker with

linear utility will always invest all of his wealth in a single



-27-

security. Since real-world investors do not usually behave
in this fashion, linear utility is a very questionable
assumption. Traditionally, mathematical portfolio analysis
has focused on the mean-variance approach, which (in the
absence of distributional assumptions) implies some sort of
quadratic utility function. A quadratic utility function of

the form

U(W) = W - bW2 for W < 1/2b ,

where b > 0, is assumed in this subsection. This utility
function implies that the decision maker is risk-averse and
that he becomes more risk-averse as W increases.

In the single-period model, the decision maker's objective

at time i should be to choose p; and Q; to

0 o, 0_.0 =1 1 1.1
i500(af P - ay) + (1 + %), )(@; + py - qp)

1 s .
Max Ei{( tr i i i+l i

O va0 4 0 . 0
- oL+ ry (e + 0y - ogy)

~1 1 1 1.92
+ (1 + ri+l)(ai + pi = qi)] } >

subject to Gi' This can be simplified to

0,2 1,2 0 1
Max [Jl(pi) + J,(p3)° + J4p; + Jupi] s

subject to

0 < p? < e'la% and 0 < pi -1,0
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where
- 0O 2 _ ,,2 2 . .\ -1 2
Iy =h(1 o+ rg ) BB {(1 + m)" + (ny + 1 + 1) (ny+1i) 0%}
+ 2b8(1 + r1+l)(1 +omg ),
Y- 0 2 _ 2 . L\ -1 2
J2 = -bR(1 +.rs +l) b{(1 + mi) + (no + 1+ 1)(no + 1) “o
+ 2bB(1 + r Qe m
_ 0 _ _ 0 2
J3 = (1 + P1+1) R(1 + m. ) 2ba (1 + r1+1)
1 2 . =1 2
+ 2b8§i{(l + mi) + (no + 1 + l)(no + i) o}
4+ 2b(3a. - ay )(l + 2 )(1 +my ) s
and
Jy = -B(1 + r )t (e mg) + 2b8a 1+ r? 2
b i+l
1 2 . =1 2
—2bai{(1 + mi) + (no + 1+ l)(no + 1) "o}
+ 2b(8a. - a; Oy + r (1 + my)
Note that the cross-product terms involving p?pi in the original
objective function drop out, since P;P; = S—ngqg = 0. The
solution to this quadratic programming problem is
-1.1 : -
(877a3,0) if ~J5/23 > 8 1a} ,
(=J5/23,,0) if 0 < -Jg/20, < 3'1a1 ,
(p?,p}) =< (0,0) if -J,/2
15D} s 1 3 J; £ 0 and —Ju/ZJ2 <0
(0,-J,/727 ] - -1 0
»=Jy/235) if 0 <-3y/e5, < 8710
-1 0
(0,8 "ai) iF - -1.0
B i 1 Ju/2J2;B ai

3
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If ¢ =0, J1 = J2 and J3 = —Ju, and the solution takes on

the form

1 . 1

(a3,0) if =Jg/23, 2 a;
. _ 1
o 1 ( J3/2J1,O) if 0 < =J5/23, < aj
(pi,pi) = ) . 0
(0,75/27, if 0 < J;/23, < a;
0 . 0

(O,ai) if J3/2J1 > as

If the initial wealth W, is in the form of cash, then

the decision maker should choose Pq and dq at time 0 to
0,.0 ~1, 1 0,.0
Max EO{(l + rl)pO + (1 + rl)pO - b[(1 + rl)po
~1, 142
+ (1 +r]pgl°t

subject to G*. The soclution is

0
(L1 + ] hig,0) ifL<oO |,
0 1, -1 , 1
(pgsPg) = ([1 + ¢] "Wy - L,L) if 0 < L < (1 + ) hu,
(0,1 + ¢] W) ifL > (1+e) W
’ 0] = 0 ’
where
L = L/2bL, ,

Ip = (14mg) = (1+rd) + 26(1 + o) higf(1 + md)?

- (1 + w1+ r?) + o+ 1)02/n0} ,

0

and

Ly = [ +my) = (1 +2DI2 + (ny + DaP/n, .
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In the multiperiod model with t = 2, the decision at time
1 is identical to that of the single-period model. At time O,

the decision maker should choose Pg and g to

2
Max E,[ max E (W, - bW5)]

Pordo P10

subject to {GO,G }, where

1

~ 0 0,,.0 0 _ 0 0 _
Wy = (1L + r)[(1 + rd)(ag + by - ap) + py = ay]
-1 ~1 1 1 1 1 1
+(1 + r?)[(1-+r1)(ao +po-—qO) +py - ql]'

This is a problem of the form

0,2 1,2 0 1
* * * *
Max  J7(pg)® + J5(pg)" + J3pg *+ Jipg
pO’qO
subject to
0 < pg < 8_1aé and 0 < pé £ B_lag

The algebraic expressions for J*, Jg, J%, and Jﬁ are quite long
and are functions of the decision variables through partial

expectations over sets such as

-1.1
{m1|O < =J /27, < B ay’

3

(see the solution to the portfolio problem at time 1 under
quadratic utility). In order to conserve space, these expres-
sions are not presented here. In general, this maximization

problem must be solved numerically rather than analytically.
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C. Numerical Examples

To illustrate the two-security, two-period models pre-
sented in this section, suppose that a decision maker has

initial wealth W, = 1, consisting of equal amounts of the

0
risk-free security and the risky security (i.e. ag = aé = ,5).
Moreover, the risk-free security has a fixed return of .02
in each period (r? =r; = .02), and the decision maker's

uncertainty about the risky security can be summarized by

my = .035 (the expected return), 02 = .001l, and ng = 2.

The constant per-unit transactions cost is ¢ = .006.
Assuming linear utility, the optimal decision at time

0 under both the single-period model and the multiperiod

model is qg = ag = .5. That is, the decision maker should

sell all of the risk-free security, and the resulting portfolio

is ag * Py - qy © (0, .994). At time 1, the decision maker

should make no change if m, > .0078, but he should switch

1

entirely to the risk-free security otherwise. The transactions

costs are high enough that the switch should be made only if

;.l
1

decision maker at time O, is only .017. Incidentally, if wo

< -.047, and the probability of this event, as seen by the

consists of cash, the optimal portfclio is Py = (0, .994).

The single-period and multiperiod models do not, in
general, yield identical solutions. For instance, if m,
were .03 instead of .035, the solution to the multiperiod
model would be unchanged but the solution to the single-period

model would be py = q4 = (0,0). The transactions costs
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are more crucial when the time horizon is only one period;

even though EO(E%> - r? = .01 and the decision maker is not

risk—éverse, the single-period model does not result in any
sellingzof the risk-free security.
Assuming quadratic utility with b = .37 (implying that

the utility function is defined for W < 2.7}, the optimal

decision at time O under the single-period model is pé = .08,
yielding ag = Py " g (.419, .580). Under the multiperiod
model, pé = .458, yielding a, + p, - 9, = (.037, .958). Thus,

in the multiperiod model, more of the holdings of the risk-

free security are transferred to the risky security than in

the single-period model, in spite of the small amount of prior
information. If more prior information were available (i.e.

ir Ny were 1érger), the variances of the predictive distributions
for ;% and }é would be smaller, thereby making the risky security
even more attractive to a risk-avoider with a gquadratic

utility fﬁnction.'

The examples indicate that the single-period and multi-
period models may lead to quite different portfolios, although
the differences (as well as ﬁhe sensitivity of the objective
fuh;tions £o such differences) obviously depend on the exact

nature of the situation and the assumptions that are made about

the situation.

V. Summary and Discussion

In this paper we have presented models for portfolio

selection and revision that utilize Bayesian inferential
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procedures to formally update probability distributions of
uncertain quantitites that are relevant to the decision making
problem. In these models, the decison maker selects an
initial portfolio and earns some return on this portfolio,
and at the same time he is learning more about the process
that "generates" security price changes as well as changes
in other variables of interest. This additional information
about the process is useful when the decision maker contemplates
revision of the portfolio. Even in a single-period model,
this "learning effect" occurs. TFurthermore, in a multiperiod
model, the decision maker chooses a portfolioc with an eye
toward its ramifications for future portfolio revision decisions.
Although the specific models presented in this paper
are admittedly quite simple and ignore many considerations
that may be important in real world portfolio selection and
revision, the general approach, as summarized in the preceding
paragraph, seems to be a reasonable description of the actual
behavior of individuals who make portfolio selection and
revision decisions. Such individuals gather a considerable
amount of information over time, both from the "tape" and
from other sources, both in terms of "hard data" and in terms
of what might be called "soft data" (e.g. verbal information
that must be interpreted by the decision maker). As such
information is gathered, the decision maker's opinions about
the potential returns of various securities are modified, and
such modifications may lead to revision of the portfolio.

Moreover, by analogy with the multiperiod model, it is not
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unreasonable to suggest that a successful portfolio manager,
like a successful chess player, is always thinking ahead and
contemplating the effects of current decisions on future
"moves." The point of this discussion is not to claim that
individuals responsible for portfolio decisions actually use
models like those presented in this paper; sophisticated,
realistic models of this nature are simply not available.
However, the general approach of these models is intuitively
appealing and may be a good approximation to the procedures
used in practice by portfolio managers.

Given that the general approach is appealing, the next
‘question concerns the realism of the specific models presented
in this paper. Obviously these models are but a first step,
and, as noted previously, many important factors are omitted
from consideration. The determination of inputs for the models
(e.g. the set of securities and other variables, the statisti-
cal model for the data-generating process, the prior distribu-
tion, the utility function) is a crucial consideration that
has already been discussed in Sections II and III. In addition,
further extensions of these models need to be investigated if
a realistic model is desired. Such extensions might include
tax effects, short sales, borrowing and lending, costs asso-
ciated with updating probabilities and determining an optimal
portfolio revision strategy, the effect of positive or negative
increments in the available wealth due to extraneous factors
(i.e. income to and consumption from the portfolio over time),
legal and/or policy restrictions, time preferences (i.e.

preferences among different "wealth paths" that may lead to
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the same terminal wealth), and nonstationarity in the data-
generating process. This list is intended to be illustrative,
not exhaustive, but hopefully it includes most of the impor-
tant factors. Some of these factors might be incorporated
into the model without too much difficulty (e.g. the inclusion
of short sales appears to require only a modification of the
constraints)--others might be more troublesome in the sense
that they may complicate the model. 1In any event, such
extensions, which would make the portfolic selection and
revision models more realistic, are fertile grounds for further
research.

The actual implementation of the models presented in
this paper, whether as research tools to investigate the
general nature of optimal portfolio revision strategies in
various types of situations or as operational procedures to
assist decision makers in selecting and revising portfolios,
depends not only on the realism of the models but also on the
ease with which the optimal solutions can be determined. Of
course, this is quite dependent upon the exact checice of
inputs; as in just about any mathematical modelling situation,
there is a trade-off between realism and tractability. For
example, normal distributions are generally easier to work
with than other families of distributions that may provide
better approximations to reality; the use of certain simple
mathematical functions (e.g. linear, quadratic, exponential,
or logarithmic functions) to represent the decision maker's

utility for money is convenient, but such functions often may
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be poor approximations to a decision maker's utility function.
Of course, the question of tractability relates to the use to
which the model is to be put and to the desired form of the
solution. Obtaining general analytical solutions like those
presented in Section IV for linear and quadratic utility
requires that the inputs be 1n reasonably simple form. On

the other hand, if the primary concern is determining
numerical solutions for specific cases, much more flexibility
is possible in the choice of inputs because numerical methods
can be used in solving the problem. The use of numerical
methods implies, for example, that a decision maker's utility
function can be approximated as closely as desired even though
it may bear no resemblance to any of the simple mathematical
functions commonly used to represent utility functions. With
respect to implementation, the question of tractability, both
in analytical terms and in numerical terms, is quite important,
and some work regarding tractability under various conditions

is currently being conducted.
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