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of Experimental Data*

Robert L. Winkler**

1. Introduction

Bayesian statistics has received a considerable amount
of attention in the past two decades. For instance, statistical
journals have included numerous articles onjBayesian methods
in recent years. Several books regarding Bayesian statistics
have been published recently (some references will be given in
Section 5), and many general statistics texts now include one
or more chapters on Bayesian statistics. Moreover, the interest
in Bayesian methods is not limited to mathematical statisticians.
Primarily because of their implications for decision making,
these methods have received much attention in business schools.
Psychologists concerned with human behavior in inferential
and decision-making situations have used Bayesian methods
extensively. Economists have used Bayesian methods to compare
economic models and to develop models of rational economic
behavior. Other interesting applications have involved medicine,
law, meteorology, and many additional areas.

Formally, Bayesian statistics consists of a set of statis-
tical procedures that involve the use of Bayes' theorem to

. e s . . . . 1
revise probabilities as new information 1s obtained.
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The term "Bayesian statistics" covers a wide spectrum of topics,
and this paper is concerned with only a portion ofitﬁéf;sbéctrum,
the use of Bayesian procedures in the ahalysis of experimental
data. In order to carefully déliheate the area of interest;

it is first useful to diétinguish inferential procédures from
decision-making procedures.  The'motivation for much of the’
recent interest in Bayesian méthods has been decision-theoreétic
in'nature. These methods are adaptive in the sense that they
allow for the révision of probabilities on the basis of new
information, and thus they provide a useful framework for decision
making models.  In decision making, the ultimate objective

is the choice of an action from a particular set of  alternatives.
The objective of inferential statistics, on the othér hand,

is not to choose an action; but simply to make inferences

about some population or process on the basis of limited infor-
mation concerning that popuiation or processﬂ"Of course, the
“distinction between inference and decison making is often some-
what vague. For instance hypothesis-testing procedures can
bevthOught of as inférehtial in nature, or they can be considered
in a decision-making framework. Nevertheless, the main’ concern
in the analysis of experimental data is generally inference,

and this paper is thus oriented primarily toward the inferential
end of the infepencé—dépiéion;spéctrum.' ‘

' Iﬁ,brder torfurther-ciérify the: approach taken in tﬁié]
paper, 1t is useful to dlstlngulsh between statlstlcal theory

and statlstlcal practlce. The theory of Bayes1an statlstlcs

e



has received considerable attention in terms of underlying
foundational matters, the development of Bayesian procedures,
and the comparison of these procedures with most of the commonly
encountered inferential procedures of classical statistics.

In terms of statistical practice, however, the interest in
Bayesian methods has been almost exclusively from a decision-
making standpeint. Little actual use has been made of Bayesian
inferential procedures except insofar as they are useful in a
decision-making context. In shis paper, nc new theoretical
developments are presenteds; the emphasis is on statistical
practice rather than statistical theory.

This paper, then, is concerned with the use of Bayesian
procedures in the analysis of experimental data. In Section 2,
current statistical practice with regard to the analysis of
experimental data is investigated and criticized, and the factors
influencing current practice are discussed briefly in Section 3.
The analysis of experimental data is approached from a Bayesian
standpoint in Section 4, and Section 5 contains a brief con-

cluding discussion.

2. Current Statistical Practice

Although there are certainly some variations caused by
different types of problems and approaches in different areas
of application, it seems that the general approach to the analy-
sis of experimental data in practice is similar across areas.
Therefore, although some specific references are made in this

section to a particular field, that of experimental psychology,



the discussion applies not just to that field, but to the
analysis of experimental data in general. Experimental
psychology is of special interest becaﬁse it appears that
psychologists have been exposed to much more material concerning
Bayesian methods than have researchers in other areas where
experimental data are frequently collected and analyzed.
Beginning with Edwards, Lindman, and Savage [14], numerous
articles concerning Bayesian procedures vis-a-vis classical
procedures have appeared in psychological journals (e.g. Edwards,
3], Bakan, [1]; and Wilson, Miller, and Lower, [48]), and some
psychologists are deeply concerned about the philosophical impli-
cations of various statistical procedures (e.g. Meehl, [27]).
Moreover, many experimental psychologists are actively involved
in research in the area of human behavior in inferential and
decision—making situations, and Bayes' theorem is frequently
used &s a normative standard of comparison {(e.g. see Slivac

and Lichtenstein, [U47]).

Despite the fact that numerous psychclogists are familiar
with the Bayesian appfoach, the vast majority of analyses of
experimental data in the field of experimental psychology are
classical in nature. Of course, some Bayesian analyses can be
found (e.g. Beach and Phillips, [2]; Pitz, [32], [33], but they
are the exception rather than the rule. In addition, there are
papers where noc inferential technique is explicitly stated and
where the results are reported by a (hopefully judicious)
choice of descriptive statistics; papers of this nature may

reflect a trend toward simpler descriptions of data in reporting



experimental results. Of course, this most often occurs
when the results are fairly obvious and the choice of inferen-
tial procedures is more or less irrelevant.

The area of experimental psychology is not unique. 1In
general, regardless of the area of application, Bayesian analy-
ses of experimental data are seldom encountered in the published
literature. Moreover, as viewed from a Bayesian vantage point,
the situation is even worse than the lack of Bayesian analyses
suggests. When classical procedures are used carefully and
appropriately, they can sometimes be given a Bayesian interpre-
tation, and Bayesian procedures often represent an extension of
classical procedures instead of a completely unrelated set of
procedures (e.g. see Pratt, [36]).2 It appears, however, that
in practice the classical procedures are frequently not used
carefully and appropriately and that within the classical school
of thought there is a large gap between theory and practice.
This gap will be examined here by considering a particular type
of procedure, tests of sharp null hypotheses.

Many (perhaps most) statistical analyses of experimental
data that are reported in the published literature involve
tests of sharp null hypotheses, and the reporting of these
tests is frequently limited to presenting a significance level.
Unfortunately, this is exactly the type of procedure that care-
ful analysis reveals to be extremely suspect. Because of the
widespread use of such procedures, it is useful to examine them
in more detail here, although space limitations prevent a

thorough discussion.



First, consider the nature of the hypotheses frequently
encountered in practice. The "null" hyﬁothéSis is usually an
exact hypothesis, such as the hypothesis’ﬁhat a population mean,
i, exactly equals a particular wvalue, ﬁb;  Very seldom is it
reasonable to think that suchba hypothesis is éxactly true.

In genefal, the experimenter ig really interested in whether p

is élEEE to Ugs where the notion of closeness differs from situa-
tion to situation. Thus the question of interest in the experi-
mental situatior is not adequately reflected by the choice of

a statistical hypothesis. If it is recognizéd that the statisti-
cal hypothesis is only a rough approximation of the real
hypothesié of interest, a careful analysis can allow in part

for the degree of approximatidn arid can produce results that

make some sense in terms of the real hypothesis. Alternatively,
the statistical hypothesis can be altered so that it includes

an interval of values (e.g. My <>u < “2) instead of just a

single value. Such hypotheses can be handled within the classi-
cal framework, although the analysis requires a little more

time and effort on the part of the experimenter than is the

case with a sharp null hypothesis. In practice, unfortunately,
the shérp null hypothesis is often taken at facekvalue5 and tﬁe
resulting inferences provide answers to the wrong questions.

Next, consider the reporting of testé of sharp null hy-
potheses in terms of a single significance level. It is coﬁmon
to present just a statistic such as a t-statistic or an
F-statistic, along with a statement such as "significant aﬁ the

.05 level." This approach emphasizes only one of the two types



of errors. For example, consider a very simple situation in
which both the null hypothesis and the alternative hypothesis
are exact hypotheses. For a given experiment, the probabilities
of Type I and Type II errors, a and B, can be computed for each
possible choice of a rejection region. The ultimate choice
of a rejection region should depend on a trade-off between
these two types of errors, but in practice only one type of
error is usually taken into consideration. 1In terms of more
complicated situations involving sharp null hypotheses such
as u = yg and inexact alternative hypotheses such as p # Hgs
classical statistical theory provides power curves, operating
characteristic curves, error curves, and so on, to enable the
statistician to take both types of errors into consideration.
In practice, these curves are seldom encountered.

The combination of testing a sharp null hypothesis against
a two-tailed alternative hypothesis and reporting only a signi-
ficance level has very unfortunate implications. For example,
consider a test of u = Mg versus u # Hgs where p is the mean of
a normally—distributéd population with known variance 02. The
sharp null hypothesis is rejected if the sample mean falls
outside of the interval from Uy =~ zo/v/n to U + zo/v/n, where
z depends only on the choice of a significance level. But as
n increases, the interval becomes narrower and narrower, imply-
ing that the rejecfion region becomes larger and larger. In
essence, as the sample size increases, the test becomes more
and more sensitive to small deviations of ﬁ from Uy - In theory

this is fine, if such small deviations are of interest. 1In



moet situations, however, the question of interest is whether

L1 is close to Koo not whether p is equal to n Thus, ironie

0
as it may seem, a very large sampie size provides more preci-
sion than is necessary, and blind adherence to a particilar
significance level means that the null hypothesis is almost
certein to be rejected. This procedure, which is very commoc::
in practice, provides the right answer to the wfong quegtion;
by taking a large enough sample, cne ~an be virtually certain
of rejecting a sharp null hypcthesis that no one really be.iicved
was exactly true in the first placs. Moreover, this will be
true even if the experimental data strongly support the hypo-
thesis that the parameter of interest is close to the particu-
lar value of interest. This general problem was noted over
three decades ago by Berkson _3] in the context of tests of
goodness-of-fit; for more recent discussions, see Lindley (23]
and Jeffreys [20].

Another difficulty with the practice of testing sharp null
hypotheses and reporting only significance levels relates %o
the distinction between a sampling distribution and a likeli=-
hood function. If 6 is the parameter of iInterest and y repre-
sents the data, then the conditional distribution of y given ©
is a sampling distributicn. 3ignificance levels in classical
hypothesis testing correspond to areas under sampling distribu-
tions. Butba sampling distribution involves a fixed 6 and
variable y, whereas a likelihood function involves a fixed y
(the observed y from the experiment) and a variable 6. For

a likelihood function, the entire distribution of y given a



particular 8 is not of interest. Instead, one considers the
conditional probability (or density) of y given 6 , evaluated
at the observed value of y. This particular conditional proba-
bility (density) is the likelihood corresponding to the parti-
cular 6 , and by finding such a probability (density) for

all possible values of 6 , one generates a likelihood function.
The likelihood principle states that the entire evidence of the
sample with respect to inferences about 6 is contained in the
likelihood function (see Birnbaum, [4]). In an investigation
of a sharp null hypothesis and an alternative hypothesis, the
use of a sampling distribution to determine a significance
level completely ignores values of 6 other than the value
specified by the exact null hypothesis. The likelihood function,
on the other hand, considers all possible values of 6 and ig-
nores values of y other than the observed value on the grounds
that inferences should depend on the observed experimental data,
not on data that might have been observed but were not. It
must be stressed here that some classical procedures based on
the likelihood function have been developed, and once again

the problem is in part one of theory versus practice rather
than classical statistics versus Bayesian statistics.

The discussion in this section has dwelled upon a single
type of procedure, the testing of sharp null hypotheses by
reporting significance levels. This is admittedly more sus-
ceptible to criticism than many other procedures, but it is
also the type of analysis that is most frequently encountered

in practice. As noted in Section 1, this paper is concerned
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more with statistical practice than with stafistical theory.
Furthermore, the primary interest here goes Beyond differences
between classical statistics and Bayesian statistics to the
more general question of "good statistics" versus "bad statis-
ties." In this regard, it should be emphasized that classical
methods do not have a monopoly with respect to the problem of
misuse. It is certainly possible for Bayesian methods to be
used inappropriately. As will be seen in Section 4, however,
there is generally a more direct relationship between the
questions of interest in reality and the questions attacked

by Bayesian methods than is the case with classical methods.
Therefore, it might be hoped that Bayesian methods would be
less subject to misuse. Because of the scarcity of Bayesian
analyses appearing in the literature, insufficient evidence
exists at the present time regarding the extent of the misuse
of Bayesian procedures in practice.

As noted earlier in this section, Bayesian procedures
sometimes represent an extension of classical procedures in=-
stead of a completely unrelated set of procedures. The exten-
sion lies in the inclusion of prior information, and arguments
concerning the inclusion or exclusion of such information are
primarily philosophical in nature. The mathematics of Bayesian
procedures are not in dispute; the issues involved are more
foundational in nature. The discussion of scientific reporting
in Section 4 will touch on a few of these important issues,

and more detailed discussions can be found in Savage [41],
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[42], Kyburg and Smokler [21], Cornfield [7], and de Finetti

(8], [9].

3. Pactors Influencing Current Statistical Practice

In the previous section, current statistical practice
with regard to the analysis of experimental data was criti-
cized. Statistical theory provides sound techniques for making
inferences from experimental data, and some of these techniques
will be discussed in Section 4. Why, then, do experimenters
often use such weak, poorly-justified techniques to analyze
their data? In other words, what causes the apparent gap
between theory and practice in statistics?

The theory-practice gap appears to be due to a combina-
tion of factors, including tradition, statistical training,
lack of availability, computational difficulties, reporting
difficulties, and perceived resistence by journal editors.
Roberts [40] writes as follows:

There is no shortage of possible explanations
for inadequate reporting: editorial pressure
for brevity; the emphasis of much statistical
teaching on formalistic analysis and stylized
conclusions=-such as the ritual of "p-values";
the easy accessibility of packaged computer
programs to those who understand little about
statistics; and a climate of opinion in which
statistics is seldom taken more seriously than
any other mechanical prerequisite for publica=-
tion, such as correct spelling or inclusion of
references.

In this section some of these factors will be discussed briefly;

for a more complete discussion, see Winkler [50].
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Because of the history of controversy between proponents
of Bayesian and classical methods, it might be thought that
differences relating to philosophical considerations concern-
ing the foundations of statistics might play an important role
in the choice of methods of statistical analysis. However,
the grounds for the criticism in Section 2 are much more basic
than an overly simplified Bayesian-classical dichotomy. Even
in terms of classical statistics alone, there is a serious
theory-practice gap. Thus, the problems apparently cannot
be explained in terms of philosophical considerations alone.
Although this paper is written wholeheartedly from the Bayesian
approach, the choice of a philosophical approach to statisti-
cal inference still seems to be subordinate to the question of
whether the approach is used consistently, carefully, and ap-
propriately.

Tradition obviously plays an important role in the choice
of inferential procedures. If an experiment is to be conducted
in a particular area, it is easy to look at past experiments in
the same area and to use a similar type of analysis. In this
regard, it might be said that poor statistical practice breeds
more poor sfatistical practice.

The effect of tradition is also felt in the area of statis-
tical training, Most users of statistics are by no means
mathematical statisticians; they are specialists in some area
of application. While some users may have extensive training
in statistics, many have been exposed formally to statistical

methods only through one or more basic statistics courses.
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Such courses are often taught by instructors who have very
little training in statistics themselves and who tend to
perpetuate the procedures encountered in practice. Instructors
generally use traditional textbooks and teach traditional
methods. The stress placed on decision making (rather than
inference) by many Bayesians has further slowed the pace of
the dissemination of introductory-level material on Bayesian
inference. Introductory-level Bayesian textbooks with stress
on decision-making have appeared, but books with stress on
Bayesian inference at an introductory level are not as common
(however, see Section 5). Even after such books become
readily available, there will be a lag before they are widely
used and the methods are widely applied.

A related problem is caused by the fact that statistical
theory has not, in general, been translated into a form that
makes it readily accessible to experimenters, most of whom do
not (or cannot) read the statistical literature. In other
words, Bayesian techniques are not readily available for the
average researcher, where availability is to be interpreted
in terms of elementary discussions of the procedures, computer
programs, appropriate tables, and so on. Thus, at the present
time, the Bayesian approach requires a greater commitment of
time and effort on the part of the experimenter than do tradi-
tional methods that are widely used. Of course, a careful,
appropriate classical analysis also requires more time and
effort than the simple reporting of a significance level for

a test of a sharp null hypothesis.
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One of the advantages of Bayesian methods is that the
results can be presented in intuitively appealing and easily
interpretable forms. For example, it is much more appealing
to associate probabilities with hypotheses or with intervals
of values of the parameter of interest than to think in terms
of significance levels or classical confidence intervals.
(With respect to confidence intervals, classical statisticians
take great pains to emphasize the appropriate classical inter-
pretation, but this interpretation is so counterintuitive that
many users of statistics seem to think of classical interval
estimates in terms of the Bayesian interpretation.) Neverthe-
less, Bayesian procedures are encountered so seldom in analyses
of experimental data that their interpretations may not be
widely understood. Thus, the experimenter using Bayesian
procedures must explain the procedures and the interpretation
cf the results. A classical t test, for instance, ig familiar
to virtually all experimenters, whereas the Bayesian counter-
part may require a paragraph or two of explanation. Until
Bayesian methods are more widely used, applications of such
methods will be more difficult to communicate to readers than
are applications of standard classical procedures.

Perceived resistance of journal editors to new approaches
may also dissuade researchers from considering improvements
in statistical practice. Some researchers have the notion
that it is necessary to obtain a very low significance level
in order to have a paper accepted for publication. Unfortunately,

as observed in the previous section, a very low significance



-15-

level for the test of a sharp null hypothesis can be virtually
guaranteed by taking a large enough sample. Thus, a perceived
association between a low significance level and the probabili-
ty of acceptance of a paper encourages poor statistical practice.
Why should an experimenter invest a great deal of time and

effort in a careful, appropriate analysis when it appears that

a simple significance level for a test of a sharp null hypothe-
sis will serve the same purpose quite well in terms of yielding

publishable results that are acceptable professionally?

4. Bayesian Analysis of Experimental Data

In scientific experiments, statistical methods generally
enter into the picture at several stages, including the design
of the experiment, the analysis of the data, and the reporting
of the experimental results to the general scientific community.
These stages are interrelated to a considerable degree, of
course; for instance, considerations regarding analysis and
reporting must be taken into account during the design stage,
and considerations régarding reporting must be taken into
account dﬁring the analysis stage. In the first part of this
section, 'the question of scientific reporting is considered.

In the second part of the section, hypothesis testing is con-
sidered once again, and Bayesian alternatives to the procedures

criticized in Section 2 are discussed.

Scientific Reporting

The goal of scientific reporting might be stated in an
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oversimplified form as "complete disclosure." This implies
that the experimenter should report all details concerning

the design and carrying out of the experiment, the data that
are collected, any assumptions that are made, any analyses
that are conducted, and so on. These details enable a reader
of the report to understand fully each step taken by’ the ex-
perimenter, to consider alternative assumptions and analyses,
and even to replicate the experiment if it is deemed desirable
to do so. Complete disclosure ié useful for a reader who is
intimately interested in the problem that is being studied and
who wishes to be able to investigate carefully the experiment
and its results.

of bourse, not all readers of a scientific report are
interested in all of the details. Many readers are only
interested in a brief summary of the results of the experiment,
with enough information included to enable them to see if the
analysis seems to be appropriate and reasonable. Such a
reader may not want to "wade through" a complete report, which
is obviously the 1ea§t concise form of report. In most instances
of seientific reporting it is necessary to strike a baiance
between completeness and conciseness, with the point of balance
depending upon the details of the particular situation.

To reconstruct an analysis or to consider other analyses
"from scratch," it 1s necessary to have the raw data from an
experiment. When the amount of data is not too great, it may
be possible to include the data in the report. In many cases,

however, reporting the raw data from an experiment requires
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too much space to satisfy space limitations imposed by
journals. An alternative is to omit the raw data from the
report but to make it readily available to any interested
parties. This compromise makes the report more concise while
st111 making it possible for interested readers to obtain
"complete disclosure."

Even if the data are included in the report, they are
not adequate for reporting purposes, since they generally
necessitate too much effort on the part of the reader to under-
stand the results of the experiment. Therefore, some summari-
zation is needed, and an obvious choice is to report the
likelihood function, since the likelihood principle states
that the entire evidence of a sample is contained in the
likelihood function.

In most cases where a classical parametric analysis is
encountered, enough assumptions are made to allow the researcher
to determine the likelihood function. To the extent that
different individuals would agree that the assumptions are
reasonable, then, the likelihood function might be considered
reasonably "public" (i.e. most individuals, given the raw
data, would tend to agree with the assumptions and hence with
the likelihood function). It must be remembered, hoﬁe?er,
that choices regarding the acceptance or rejection of various
assumptions in building a model of the data-generating process
are ultimately subjective choices. Thus, elements of sub-
jectivity enter into the determination of sampling distributions

and hence of likelihood functions. Because of frequent reliance



-18-

on important mathematical results such as the central limit
theorem, some might argue that this element of the analysis
is "objective" in nature. Perhaps this is true to a degree,
but ultimately the entire model-building process is a subjective
process, and it is important in any application to carefully
investigate the appropriateness of assumptions such as inde-
pendence and normality. For reporting purposes, the experi-
menter should make every effort to justify all assumptions
and, insofar as possible, to present enough information to
enable the reader to make a personal decision regarding the
applicability of the assumptions. Although many statisticians
stress the importance of investigating assumptions, it appears
that this step is too frequently "glossed over" in practice.
Virtually any assumption is an approximation to reality, and
the reader has the right to know how "good" the.approximation
is.

Given the models and assumptions frequently encountered
in practice, the likelihood function is usually based on a
reasonably simple sufficient statistic. If a tractable
sufficient statistic is not available, it may be possible to
determine a partial likelihood function based on a nonsuffi-
cient statistic. The presentation of a partial likelihood
function may even be desirable when a full likelihood function
is available if it results in little loss of information and
if the partial likelihood function is much simpler and easier

to communicate than the full likelihood function.
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Knowledge of the likelihood function enables individuals
to insert their own prior distributions and to compufe the
corresponding posterior distributions. 1In Bayesian inference,
the primary inferential statement of cohcern is the pdsterior
distribution, which summarizes an individual's uncertainty
about a parameter after the experimental data have been ob-
served. Except in simple cases, however, the determination
of a posterior distribution may require a fair amount bf time
and effort on the paft of the reader. To reduce the computa-
tional burden on the reader, the experimenter might assume
the burden of performing the application of Bayes' theorem.
This could be accomplished by presenting postefior distribu-
tions corresponding to a variety of prior distributions, the
variety being broad enough to include (at least approximately)
the prior distributions, as anticipafed by the experimenter,
of as many readers as possible. (By way of analogy, note that
if there is some question concerning the assumptions underlying
the likelihood function, one might perform the analysis under
different possible sets of assumptions.) The set of prior
distributions may include the experimenter's own prior distri-
bution, but it should not be limited to that distribution.3

If the above approach is taken by the experimenter, the
problem is to select a set of prior distributions that is
not too large or too difficult to work with buﬁ is thought to
be "representative" of the.prior distributions of the audience

for which the report is intended. One candidate fdr inclusion
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in the set is a diffuse prior distribution, which is a prior
distribution that is relatively "flat" when compared with the
likelihood function (see Edwards, Lindman, and Savage, [14]).
The use of this distribution invokes Savage's principle of
stable estimation and yields a posterior distribution that is
approximately proportional to the likelihood function.
Therefore, this approach is similar to reporting the likelihood
function. Nevertheless, the posterior distribution is a
proper probability distribution and probability statements can
be made concerning the parameter of interest, so the interpre-~
tation is different from that of the likelihood function and
easier to understand for the average reader.

Another possibility is to consider families of conjugate
distributions, such as those developed by Raiffa and Schlaifer
[39]. Such families provide relatively simple functions
relating the parameters of the posterior distribution to the
parameters of the prior distribution. Presentation of the
functions allows anyone whose prior distribution can be closely
approximated by a member of the conjugate family to compute
a posterior distribution. Moreover, if the functions are
presented graphically, it should be easy for the reader to
see how sensitive the posterior distribution is to changes
in the prior distribution. In general, the question of the
sensitivity of results to changes in the inputs is an impor-
tant question in any statistical analysis.

In some instances, the bulk of the available prior infor-

mation is in the form of previously-observed data. In this case,
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the prior distribution might be considered to be reasonably
"public" in the same sense that "public" likelihood functions
were discussed earlier in this section. This might obviate
somewhat the need to consider a variety of prior distributions.
Of course, as more and more inputs to the analysis are consi-
dered "public," the need to worry about alternative inputs

and the sensitivity of the results to changes in the inputs

is greatly reduced.

Once a posterior distribution (or a set of pesterior
distributions corresponding to various prior distributions)
has been determined, the question of reporting still remains.
0f course, one can report the entire posterior distribution,
either in graphical form or in functional form, and 'graphiecal
presentations of distributions are very valuable. In addition,
it may be useful to aid the reader's interpretation of the
distributions by summarizing them in some way. A few well-
chosen summary measures often convey the main results with
little loss of information. Some possible summarizations
include parameters of the posterior distribution, if it"
is a well-known distribution; measures of location; measures
of dispersion; probabilities of selected intervals of values;
and so on. Credible intervals, which are intervals of values
accompanied by the corresponding posterior probabilities,
are particularly usef¥l summarizations.

The discussion of scientific reporting in this section

has been quite brief, as an attempt has been made to cover
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important points without going into much detail. For example,
problems that arise in multiparameter situations (e.g. the
reporting of marginal posterior distributions for individual
parameters, the inclusion of nuisance parameters to broaden

the model) have not been considered. For more detailed dis-
cussions of some of the points covered here, see Edwards,
Lindman, and Savage [14], Hildreth [19], and Roberts [LO].

As noted at the beginning of the section, it is necessary to
strike a balance between the conflicting goals of completeness
and conciseness in reporting experimental results. With regard
to the Bayesian approach, a report might include posterior
distributions and summarizations of posterior distributions
corresponding to one or more prior distributions. Alternatively
if the burden of applying Bayes' theorem is to be placed on

the reader, the experimenter might simply report the likeli-
hood function (or likelihood functions under different sets of

assumptions).

Bayesian Hypothesis Testing

Although a full Bayesian report of experimental data re-
quires the presentation of an entire posterior distribution
(or a set of distributions corresponding to different prior
distributions), simplifications are possible in the case in
which the primary interest is in certain hypotheses. The
inferential impact of new information with respect to two
hypotheses can be adequately summarized by a simple likelihood
ratio, and the multiplication of a likelihood ratio by a prior

odds ratio yields a posterior odds ratio. The determination
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of likelihood ratios for various specifications of hypotheses
will be considered in this section, and some brief remarks
will be made concerning the inclusion of prior odds ratios and
the notion of scientific reporting in the specific case of
hypothesis testing. The discussion will be restricted to the
case in which only two hypotheses are of interest; the geﬁerali—
zation to more than two hypotheses is straightforward.:

If the two hypotheses of interest are labelled Hl and H2,
and y represents the data, then the likelihood ratio of interest

is simply

f(ylH))

£(y|H,)

LR =

where f(y]Hi) represents'the probability (density) of thé
sample data, conditional upon Hi’ evaluated at the obserQed

y. For a very simple example, suppose that it is assumed fhat
the data are generated by a Bernoulli process and that H1 is
the hypothesis that p, the parameter of the Bernoulli process,
is equal to .3, whereas H2 is the hypothesis that p is equal

to .U. If two successes are observed in a sample of size ten,

then the likelihood ratio is a ratio of binomial probabilities:

10
202 ey B
IR = ( 2)(.3) (T = 1.93
(10) > 8
27(.1)<(.6)

Similarly, in sampling from a population that is assumed to
be normally distributed with known variance and unknown mean,

if the hypotheses concerning the mean are exact hypotheses,
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the likelihood ratio is a ratio of normal densities. In the
same situation with the variance unknown, the likelihood
ratio is a ratio of student t densities.

The above situations involve exact hypotheses, whereas
the hypotheses of interest in experimental situations are
frequently inexact. Given a posterior distribution for a
parameter, it is possible to determine probabilities for
different sets of values of the parameter. Posterior odds
ratios are simply ratios of such probabilities. A Bayesian
approach to a one-tailed test, then, might simply be to deter-
mine a posterior odds ratio of the form P(6 < Qﬁ/P(e > 84)
directly from the posterior distribution. Of course, the
cautions noted in the first part of this section regarding
scientific reporting and the choice of prior distributions
for reporting purposes still apply when the experimenter's
intent is to report the results to the scientific community
rather than simply to make private inferences.

Another Bayesian approach to inexact hypotheses is to
specify the hypotheses not in terms of sets of values of the
parameter of interest, but in terms of probability distribu-
tions over the parameter space. In general, then, Hi can be
expressed in terms of a distribution, fi(e). Note that this
includes the case of exact hypotheses, for fi(e) can be taken
as the degenerate distribution that places a probability of
one on a single value of 8. Now the likelihood ratio,
f(ylHl)/f(y|H2), is a ratio of probabilities (densities) that

are conditional on the entire distributions fl(e) and fz(e)
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rather than on single values of the parameter. Each of these
probabilities (densities) can be obtained by considering
the predictive distribution of y, which»is the marginal

distribution of y after 6 is integrated out:
elylEy) = [rlyle) £5(0) a0

(If the distribution of 8 is discrete, this is a sum rather
than an integral.) The likelihood ratio is then of the form
f(ylHl) (y]8) £,(8) a8

IR = =
£(ylH,)  f(yle) £,(e) de

For an example, suppose that the population of interesp
is assumed to be normally distributed with known variance 02
and unknown mean u. Moreover, assume that fi(u) is a normal
distribution with mean my and variance vy - For a sample of
fixed size n, the sample mean, m, is_a sufficient statistic.
Thus, for the purposes of inference, the sample data, y, can.
be replaced by m. For hypothesis Hi,.the predictive distri-

bution of m is given by

f(mlHy) = [ £(mlu) £;(u) du .

-0

But f(m|u) is a normal distribution with mean u and variance
02/n. Carrying out the integration, f(mlHi) is a normal dis-
tribution with mean m; and variance v, +‘(02/n). The likeli-
hood ratio is thus a ratio of normal densities determined

from the respective pfedictive distributions, evaluated at the

observed value of m.
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In the first part of this section, reference was made to
the notion of conjugate distributions. In the above example,
fl(u) and f2(“) were conjugate distributions. For wvarious
data-generating processes, including many of the processes
commonly assumed in applications (e.g. the normal process,
the Bernoulli process, the Poisson process, the normal re-
gression process, etc.), the form of the predictive distribu-
tion has been developed under the assumption that fi(e) is a
conjugate distribution (e.g. Raiffa and Schlaifer, [39]).
Therefore, if the hypotheses of interest can be expressed
in terms of conjugate distributions, the appropriate predic-
tive distribution can be found in the Bayesian literature
and the determination of the likelihood ratio is merely a
matter of calculating the appropriate probabilities (densities).

Once a likelihood ratio is determined, it can be multi-
plied by the pricr odds ratio to arrive at the posterior odds
ratio. For reporting purposes, the experimenter may want to
consider various possible prior odds ratios. Of course, if
the likelihood ratio is given, it is easy for any reader to
insert a prior odds ratio in order to determine a personal
posterior odds ratio.

It should be obvious by now that in the Bayesian approach
to hypothesis testing, a great deal of care must be taken in
the specification of hypotheses. An exact hypothesis can only
be entertained if one is willing to place a nonzero prior
probability on the single value represented by the exact hypo-

thesis. TFor instance, a Bayesian generalization of the notion
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of testing a sharp null hypothesis is to consider a "spike".
of probability at the value specified by the sharp null hypo-
thesis and an alternative hypothesis that is represented by
a distribution over the parameter space (e.g. see Jeffreys, [}O]).
The alternative hypothesis might be taken to be a diffuse
distribution, for example. If a "spike" at a single point
seems unreasonable, a further generalization is to let both
fl(e) and fz(e) be centered at the exact value corresponding
to the classical statistician's sharp null hypothesis but to
make fl(e) a much tighter distribution than fg(e).

In general, the primary concern in Bayesian inference
is the combination of prior information and sample informa-
tion to form a posterior distribution. ' In many cases a
Bayesian analysis of experimental data need not involve
hypothesis testing at all. In this section, however, an
attempt has been made to indicate how the Bayesilan approach.
can be structured in terms of hypothesis testing if the experi-

menter so desires.
5. Dbiscussion

In summary, there is an increasing interest in Bayesian .
procedures, although much of this interest is decision-oriented
rather than inference-oriented and is concerned with development
of theory rather than with the actual use of these procgdures
in practice. In the analysis of experimental results, the

main concern is generally inference rather than. decision,
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and the bulk of current statistical practice in this area
leaves much to be desired, as indicated in Section 2. Many
factors, including tradition, statistical training, computa-
tional difficulties, and reporting difficulties contribute to
poor statistical practice. As noted at the end of Section 3,
an experimenter has little incentive to invest a great deal
of time and effort in a careful, appropriate analysis when it
appears that a simple significance level for a test of a
sharp null hypothesis will serve the same purpose quite well
in terms of yielding publishable results that are acceptable
professionally.

How, then, might the weaknesses in current statistical
practice be remedied? Within the classical framework, improve-
ments in statistical training that place emphasis on meaning
rather than mechanics would be most useful, as would a will-
ingness on the part of journal editors and referees to demand
clear, meaningful statistical analyses. The discussion of
scientific reporting.in Section 4 is relevant here. Further-
more, since this paper is written from the Bayesian standpoint,
the view taken here is that the use of Bayesian techniques
would lead to great improvements in statistical practice,
provided that these techniques are used carefully and appro-
priately. Bayesian procedures generally provide answers to
the questions of interest to the experimenter rather than
answers to related but different questions. For example,
probability statements can be made directly about the parameters

of interest instead of indirectly in terms of probabilities
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of sample outcomes conditional upon the parameters.

In order to increase the use of Bayesian inferential
procedures in practice, it is necessary to narrow the "theory-
practice gap" by making Bayesian procedures more "available"
to experimenters. At the most basic level, this effort involves
the use of introductory-level, inference-oriented Bayesian
texts. Material on Bayesian inference above the elementary
introductory level is available in books such as Raiffa and
Schlaifer [39], Jeffreys [20], Lindley [24], [25], Pratt,
Raiffa, and Schlaifer [37], Good [17], DeGroot [10],

LaValle [22], Zellner [51], and Box and Tiao [5]; many of
these references also contain material on decision-making
procedures. Most introductory texts that are Bayesian in
nature are strongly decision~oriented (e.g. Raiffa, [38],
Lindley, [26], Moore, [28], and Brown, Kahr, and Peterson, [6])
Some other introductory Bayesian texts contain a mixture of
inferential material and decision-theoretic material. For
example, Schlaifer [43] was the pioneering introductory-level
book in this area (also, see Schlaifer, [UU]; Schmitt [U46]
places some stress on inference; Winkler [Mj] includes quite

a bit of inferential material; a recent book by Phillips [31]
is intended to "fill the gap" somewhat in terms of Bayesian
inference; and other books may be in preparation (e.g. Pitz,
[35]). More books emphasizing Bayesian inference at the intro-
ductory level are needed.

Moving from tﬂe training level to the level of actual

application of the techniques, further effort should be expended
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on expressing Bayesian procedures in forms that make them
more accessible to users. This involves such steps as expres-
sing the procedures in simplified form (e.g. simplifying
formulas for likelihood ratios as much as possible for situa-
tions that are widely-encountered) and developing computer
programs. Some individuals have worked on the first step
(e.g. Pitz, [34])and on the second step (e.g. Schlaifer, (us],
Novick, [qu. Furthermore, at the level of application,
perhaps the most useful step in terms of the advancement of
Bayesian inference would be the publication of more actual
Bayesian analyses of experimental data in journals in the areas
of application. An example of a particularly detailed analysis
that might be useful for researchers to look at is a disputed-
authorship problem studied in Mosteller and Wallace [29];
some applications in the area of medicine are presented in
Cornfield [7]; and an application in the area of education is
given in Novick EBQJ. For an interesting (and somewhat con-
troversial) application of Bayesian hypothesis testing, see
Good [18] and Efron [15].

Another area of interest is that of scientifie reporting.
Research in this area might concentrate on the development
of different "packages" of items to be reported in different
situations and on attempts to simplif& these packages without
a considerable loss in terms of the information content of
the packages. For example, Dickey [11] develops graphical

techniques for relating parameters of prior distributions to
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parameters of posterior distributions and considers bounds on
odds ratios for various situations (also, see Dickey and
Freeman, [12]). More work along these lines would be valuable.

In addition to the need to make simple Bayesian procedures
more available to users, further theoretical work would be
useful. Such work might involve the development of Bayesian
procedures for various types of models that have not been
studied extensively from the Bayesian standpoint to date and
the development of approximations that might simplify a Bayesian
analysis. For instance many different situations are reviewed
in Lindley [25], and various models have been considered in
recent work in Bayesian econometrics (e.g. see Zellner, [51],
and Fienberg and Zellner, [16)).

In this paper, some weaknesses in current statistical
practice have been discussed, and suggestions for remedying
these weaknesses have been presented. The Bayesian approach,
which has received much attention in recent years, particularly
in terms of decision making, provides a useful framework for
the analysis of experimental data. Efforts are needed to make
Bayesian procedures more readily available to researchers
dealing with experimental data, and some suggestions for the
direction of such efforts have been given in this concluding

section.
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Footnotes

lProcedures that do not involve probability revision are
frequently included under the heading "Bayesian statistics.”
In particular, because Bayesian methods use subjective proba-
bilities as inputs, it is often erroneously assumed that
"subjective" and Bayesian" are synonymous. Also, because
Bayesian methods are frequently used in decision-making
problems, it is often erroneously assumed that the adjective
"Bayesian" is always used in conjunction with "decision theory."

2Under certain circumstances, Bayesian and classical
procedures may yield similar numerical results. Even in such
instances, however, the interpretations attached to the numeri-
cal results by the two schools of thought are quite different.

3Statistical analyses are prepared for many different
purposes. If the experimenter only wants to use the analysis
for personal purposes, then it is appropriate to consider
only the experimenter's prior distribution. If the analysis
is being prepared for a particular client, then the client's
prior distribution would be the relevant distribution to
consider. This paper is primarily concerned with reporting
to the general scientific community. For this audience, the
posterior distribution following the experimenter's personal
prior distribution might be of some interest because of the
fact that the experimenter presumably has given the problem
at hand serious thought. However, others may have different
prior distributions, and it is generally inappropriate to con-
fine the analysis to the experimenter's own posterior distri-
bution.
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