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A Bayesian Approach to Nonstationary Processes *

Robert L. Winkler **

I. Introduction

In the usual Bayesian approach to problems of statistic-
al inference and decision concerning a parameter 6, Bayes'

theorem can be expressed in the form
£(8]x) = £(8) £(x[0)/ J £(8) f(x[0) do

with the usual abuse of functional notation. That is, assum-
ing that the prior information about 6 can be expressed in
the form of a prior distribution f(6) and that new informa-
tion x (sample information) concerning 6 can be summarized by
the likelihood f(x|6), Bayes' theorem revises the prior dis-
tribution on the basis of the new information. The revised
distribution £(6|x) is called a posterior distribution. This
provides a framework for inferences about 6, the uncertain
quantity or parameter of interest, and for decisions which

are related to 6. For detailed discussions of the Bayesian

x
This paper will be published in the Proceedings of
the Beaulieu Seminar on Decision Theory.

* %
Indiana University, U.S.A.; research scholar at the
International Institute for Apolied Svstems Analysis.



approach to statistical inference and decision, see Raiffa
and Schlaifer (8], DeGroot [4], and LaValle [6]. For a re-
latively non=-technical discussion of the Bayesian approach
see Winkler [13].

The above model for inference 1s a stationary model.
That is, it assumes that 6 takes on a single value, so that
f£(8) and f(8|x) represent uncertainty about what that value
is. For instance, 8 may represent the proportion of defect-~
ive items produced by a certain manufacturing process, the
proportion of consumers purchasing a given product, the mean
daily sales at a given store, the rate at which cars arrive
at a toll booth, the variance in the dlameter of parts
produced at a particular plant, and so on. In each case,
6 is assumed to be fixed but unknown. In the Bayesian
framework, information concerning 6 is expressed in terms of
a probability distribution. In general, the position taken
in this paper 1s that of the subjective interpretation of
probability (e.g. see de Finetti [3] and Savage [10]), so
that f(6) represents a quantification of the judgements of
the statistician or of an expert consulted by the statisti-
cian (e.g. see Winkler [12] and Savage [11]). However, this
assumption can be relaxed without loss of generality, since
the mathematical results will not depend on the source of
the prior distribution.

Many, if not most, real world data-generating processes

‘are characterized by nonstationarity rather than stationarity.



For instance, the probability that an item produced by a
manufacturing process is defective, and hence the proportion
of defective items generated by the process, will generally
vary over time, even over relatively short periods of time.
This i1llustrates nonstationarity over time. The probability
that a consumer will purchase a given product (hence the
proportion of consumers purchasing the product) may vary
over time, and in addition, the probability of purchasing
the product at a given point in time may vary from consumer
to consumer. This illustrates nonstationarity over time and
nonstationarity at a given point in time. The other examples
given in the preceding paragraph would obviously be more
realistic if nonstationarity were assumed.

Despite the presence of nonstationarity in many real-
world processes, formal Bayesian models involving nonstation-
arity have received little attention in the statistical 1lit-
erature. Exceptionq are articles by Bather [1,2]. For ex-
ample, in Bather.[2], a nonstationary model is used in the
study of pontrol charts and the determination of optimal
decision rules regarding the control charts. In Zellner [16],
certaln types of nonstationarity are considered within the
framework of regression models. The objective of this paper
is to present a brief preliminary report on an on-going re-
search program, the aims of which are to-develop formal models
for handling nonstationarity within a Bayesian framework, to

compare inferences from stationary and nonstationary models,



and to investigate inferential and decision-theoretic appli-

cations involving nonstationarity.

II. The Development of Bayesian Models Incorporating

Nonstationarity

If the process generating 6 is nonstationary, then it
is not particularly realistic to make inferences and deci-
sions concerning 6 as if 6 only took on a single value. In-
stead, one should be concerned with a sequence 60,61,62,...,&
of values of 0 corresponding to different elements of the
process, or members of the population of concern. If the
concern is with a particular stochastic process over time,
the subscripts represent different points in time; for in-
stance, 6; may be the value of 9 during time period i (e.g.
the probability that a given consumer will purchase a prod-
uct during time period i). If the concern is with different
elements at a particular point int time, the subscripts re-
present the elements; for instance, Bi may be the value of
8 for element i (e.g. the probability that consumer i will
purchase a product at a particular point in time).

The usual stationary model for inference and decision
assumes that.ei = 9j for all i and j, so that the common
value can be treated as a single parameter. Another possi-
bility is that 6; and g, are related in a deterministiec
manner. But if the deterministic relationship between °i
and ej is a one-to-one relationship for all i and j, then

8: can be related to a single parameter 68 for each i and the

1

i,u--



problem is once again reduced to one concerning a single
parameter, although inference concerning the single param-
eter may be a more difficult problem than in the case in
which 6; = ej for all i and j. In any event, the gituation
in which 8; and ei_are related in a deterministic manner is
not considered in this paper.

Two types of nonstationary models will be considered
here:

1. Models in which,ei and ej are related in a
stochﬁstic manner, and
2. Models in which 8, and ej are independent
and identically distributed, conditional
upon soﬁe'"second—order" parameter(s).

The first type of model is likely to be applicable when
non-stationarity over time is present, and the second type
of model, while also applicable for nonstationarity over
time, appears to be much more suitable than the first type
of model handling nonstationarity at a given point in time.

If 03 and ej are related in a stochastic manner, a
formal treatment of the situation necessitates some assump-
tions about the stochastic relationship. In many cases, the
specification of the stochastic relationship between succes-
sive values of ¢ is sufficient; if this relationship is
stationary (this is a type of second-order stationarity),

the stochastic.relationship between 85 and 9.

i+l i1s the same

as that betw_een:eji and ej+l for any i and j. If the rela-



tionship between ei and 0. can be summarized by a param-

i+l
eter (or vector of parameters) ¢, then information concern-
ing ¢ is useful in making inferences concerning ei. For ex-
ample, a production process may be nonstationary in the sense
that the mean weight of the output of the process may change
over time although the variance of weight is relatively con-
stant. Moreover, shifts in the mean from one time period to
the next may behave according to a random walk; that is,
0541 ° ei + €;, where the €; are independent and identically
distributed. If €5 is normally distributed with mean m and
variance v, then the parameters m and v summarize the sto-

chastic relationship between ei and 6, In the notation

i+l”
introduced earlier in this paragraph, ¥ = (m,v). Bather Ll]
investigates this particular example with m = O and known

v > 0.

If ¢ is kﬁdwn, the Bayesian approach to the problem is
straightforward. At the beginning of time period i, the in-
_formation about 6. can be expressed in the form of a probabil-~
ity distribution f(ei). During period i, ei is not observed,

but some sample information X4 is observed, and X; can be

used to update the distribution of ei in the usual manner:
£(8;[x5) = £(8;) £(x;]05)/ J £(8;) f(xs]e5) a6, .

This is identical to the procedure that is used in the sta-

tionary case. The revised distribution of §; can, in turn,



be used to determine f(6i+l),

the beginning of time period i+l:

£(8;,1) = J £(0,,,165,¥)

the distribution of ei+l at

f(eilxi) de. .

Thus, at the end”of a period, it is necessary to take into

" ‘account the sample information acquired during that period

and the relationship between the value of 8 during that

period and the value of 6 during the next period.

If ¢ i5 not known, revisions involve 8; and ¥:

The resulting distribution of ei+l

J £(05,¥) f(xilei,w) de, dy

and ¢ is

This situation is conceptually not
in which $ is known, but it may be
cult to hahdle in practice because
tribution of 6; and y at each time

The situation in which 6, and

chastic manner can be investigated

different from the case
considerably more diffi-
it involves a joint dis-
period 1i.

ej are related in a sto-

under various assumptions

concerning the relationship. For instance, in Winkler and

Barry [15], the situation in which shifts in the mean of a

process behaVé'aééording to a random walk is generalized to




the multivariate case, where ei represents a vector of means,
m represents a vector, and v represents a covariance matrix.
Further generalizations might include the relaxation of the
assumption that the variance of the process is stationary,

so that 68; = (ui,oi) in the univariate case, or the relaxa-
tion of the assumption that shifts occur at regular inter-
vals (e.g. the occurrence of shifts may behave like a Poisson
process). Another option is to assume that 8541 depends on
8;_1 (other than simply through 6;) as well as on 6.

The othef type of nonstationary model to be discussed
here requires the assumption that 802813+ +5845... are in-
dependent and identically distributed, conditional upon some
second-order parameters. Because of this assumption, the
problem is reduced to one of making inferences about the ais—
tribution of 6;, which might be calle& the "distribution of
nonstationarity." For instance, if 83 is the probability
that consumer i will purchase a given product, the distribu-
tion of nonstationarity might represent the distribution of
different values of 9§ across the population of consumers.

If 63 is the mean for day 1 of a stochastic process gener-
ating sales at a given store, the distribution of nonstation-
arity might represent the different values of 6 over time

(it might be assumed that the distribution of stationarity
remains the same over time, thus avoiding the problem of

second-order nonstationarity).

In many applications, it would be convenient to assume



a partiecular model- for the distribution of nonstationarity.
If 03 is the probability that consumer i will purchase a
given product, then a convenient and reasonable model is the
beta model, in which case the distribution of nonstationari-
ty is a beta distribution with parameters a and g. (Note
that if a and g are small enough, the distribution is U-
shaped, which might seem reasonable in some cases), If 65
is the mean for day i of the process generating sales at a
given store, then a-noermal model might be applicable, in

which case the distribution of nonstationarity is a normal
distribution with parameters p and 02. I: general, the dis-
tribution of nonstationarit& will have a parameter (or a
vector of parameters) which wiil be denoted by ¢, so that

the distribution of nomnstationarity can be written in the

form £(6;[¢) for all i.

The easiest situation to hagdle is that in which ¢ is
known. Indeed, this may be compared to the usual Bayesian
approach, in which the prior distribution is, for example,

a beta distribution with fixed o and B. It should be empha-
sized, however, that the interpretation of the distribution

is different and that since the process is nonstationary,

the usual application of Bayes' theorem is meaningless un-
less the-process is assumed to be stationary over short time
periods. If we know: that 6 is nonstationary and we know the
exact nature of the nonstationarity (i.e., since we know ¢,

we know the exact distribution of nonstationarity), then there

is essentially no uncertainty involving the distribution of
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6;- There is uncertainty about future sample outcomes, how-
ever, and this uncertainty at time i can be expressed in the

form of a predictive distribution:
f(x) = f £(e;]e) £(x|6;) dey

Predictive distributions such as these, although they are
often ignored, are of great importance since important de-
cisions may depend on a future sample outcome x rather than
on a parameter 6. (see Roberts [9]). For instance, decisions
concerning a new product depend on x, the actual future pur-
chase behavior, not on 6;, the probability that consumer i
purchases the product. The parameter 8; is only relevant .in-
directly, in the sense that the predictive distribution f(x)
depends on the distribution of 6, f(9i|¢), and on f(x|ei).

A more difficult, but more realistic, situation occurs
when ¢ is not known (i.e. the exacdt distribution of nonsta-
tionarity is not known). The recenf work by Ferguson [5]
concerning a Bayesian approach to nonparametric problems is
in this spirit. Empirical Bayes methods (e.g. Maritz [7] as-
sume that ¢ is not known but attempt to determine a point
estimate of ¢ instead of a probability distribution for ¢.

In the Bayesian approach taken in this paper, uncertainty
about ¢ can be formally expressed in terms of a probability
distribution f(¢), which might be called the prior distribu-

tion of ¢. New sample information x can now be used to re-
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vise the distribution of ¢, yielding a posterior distribution

f(¢|x), using Bayes' theorem:
£(olx) = £0o) x|6)/ [ £00) £Cxl0) a0

The "likelihood" in this application of Bayes' theorem
is f(x|¢), which is the predictive distribution in the sta-
tionary'Bayesian model (recall that in the stationary model,
¢ is known and the uncertainty concerns o). This "likeli-
hood" is related to the usual likelihood'f(x|ei) and to the

distribution of nonstationarity f(6i|¢) as

e(xlo) = [ rixlog) £(o;]e) ao,
The final distribution of interest in the nonstationary model
is the new "predictive“ distribution, which incorporates the
uncertainty about ¢ (the predictive distribution in the sta-

tionary model assumes ¢ is known):

£(x)

J f(x|¢) f£(¢) d¢ ,
or

£(x)

J J f(x|e,) £(6;]e) (o) a6 d¢

The_situation in which 60,91,...;ei,... are independent
and identically distributed can be investigated under vari-

ous assumptions concerning the distribution of nonstaticnarity,




f(ei|¢), and concerning f(¢). For instance, suppose that ei
represents the mean of a normal data-generating process with
known variance 02, that the distribution of nonstationarity
is a normal distribution with unknown mean m and known vari-
ance v, and that the prior distribution of ¢ = m is a normal
distribution. Then it can be shown that the posterior dis-
tribution of ¢ = m following samples from one or more of the
"populations™ (values of i) is also a normal distribution.

In the same situation, if the distribution of nonstationarity
is a normal distribution with known mean m and unknown vari-
ance v and if the prior distribution of ¢ = v is a translated-
inverted-gamma distribution, then the posterior distribution
of ¢ = v is also a translated-inverted-gamma distribution,
The application of Bayes' theorem under various distribution-
al assumptions such as these is now being studied.

The two types of models presented in this section are
quite general and should be able,-at least conceptually, to
handle a great variety of situations for which nonstationarity
is present. These nonstationary models are currently being
developed in greater detail, and questions such as tractabi-

1lity and applicability are being investigated.

III. Work in Progress

The models discussed in this paper allow the Bayesian
to formally introduce nonstationarity. Since stationarity

assumptions are often quite unrealistic, the introduction of
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possible nonstationarity greatly increases the realism and
the applicability of Bayesian procedures. Tﬁe objective of
the work in progress along these lines is to develop and in-
vestigate nonstationary Bayesian models, and this research
involves several facets, some of which are briefly discussed

in the following paragraphs.

A. Tractability

In the case where 83 and ej are stochastically re-
lated, the choice of a model to represent the stochastic re-
lationship has a direct bearing on how easy it is to make
various inferential statements and decisions concerning the
process of interest. Once certain models are assumed for
£(6;) and f(x;|65), the determination of f(e;|x;) proceeds
along standard lines, but yet another distribution, f(ei+1|ei,¢),
is needed to derive f(ei+1).
may be possible to find a family of distributions f(ei+l|ei,¢)

Corresponding to f(ei|xi), it

that is tractable in the sense that f(ei+l) is not difficult
to determine analytically if f(ei+1|6i,¢) is a member of the
given family. For instance, the example involving a random
walk mentioned in Section 2 yields a tractable solution.
Similarly, in the case where eo,el,...,ei,... are independent
and identically distributed, it may be possible to find
families of distributions f(¢) that simplify the analysis
somewhat if certain statistical models are assumed for f(ei|¢)

and f(x|ei), as in the standard Bayesian approach to station-



ary processes, This approach is analogous to the develop-
ment of natural-conjugate families of distributions for 8

in the stationary case (see Raiffa and Schlaifer [8]), but

it may be more complex because interrelationships among sev-
eral distributions are involved. In addition to the investi-
gation of the possibility of tractable families, the use of
numerical methods will also be considered. In situations
where it is difficult or impossible to find tractable fami-
lies or in situations where such families are not rich enough
to provide realistic approximations, numerical methods should

prove useful,

B. Comparisons of Inferences from Stationary and

Nonstationary Models

Such comparisons might indicate situations in which
the nature of the nonstationarity is such that its formal in-
clusion in the model has 1little effect on the ultimate infer-
ences which are drawn. In some cases it might be especilally
valuable to introduce nonstationarity formally, whereas in
other situations it may contribute very little. By consider-
ing various situations, it may be possible to draw some con=-
clusions regarding the conditions under which nonstationary

models are particularly valuable.

C. Applicability

To investigate the applicability of nonstationary

models, various specific applications will be studied. These
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might be drawn from areas such as finance (it might be as-
sumed that the mean daily change in the price of a security

is nonstationary (see Winkler [14] and Winkler and Barry [15]),,
marketing (simple Bernoulli and Markov models might be adapt-
ed to the nonstationarity case to study purchase behavior),

and production (manufacturing processes might be considered

to be nonstationary with respect to some parameters of inter-
est--see Bather [1]). Some work concerning nonstationary
Bayesian models for forecasting future security prices is

currently being conducted.

D. Implications for Decision Theory

Often decisions must be made in the face of non-
stationarity, and it should be useful to investigate the ef-
fect of the formal representation of nonstationarity on the
resulting decisions. For instance, with regard to the non-
stationary model for forecasting future security prices,
implications for the selection of an optimal portfolio of
.securities are of interest. The study of such implications
involves dynamic programming with revision of probability
distributions under a nonstationary model, With regard to
nonstationary models of purchase behavior, implications for
marketing decisions are of intérest. In a more general frame-
work, the effect of nonstationarity on the solutions to cer-
tain "standard" decision making problems (e.g. finite-action

problems with linear payoff functions) should be of interest.
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In summary, a formal Bayesian approach to nonstation-
arity may have important implications for statistical infer-
ence and decision. The ongoing research program described
in this paper is intended to study Bayesian models for non-
stationary processes and to investigate some inferential and

decision-theoretic implications of these models.
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