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Nonstationary Means in a Multinormal Process*

Robert L. Winkler** and Christopher B. Barry***

1. Introduction

Multinormal processes have received considerable atten-
tion in the statistical literature (e.g. see Johnson and
Kotz [8, Chapters 35-36]). Although much of this work has
been in the "classical" tradition, the Bayesian approach to
multinormal processes is relatively straightforward. Con-
sider a multinormal process of dimension M with unknown mean
vector g and known covariance matrix §. In making infer-

ences about i, Bayes' theorem can be expressed in the form
el = e/ £anx],E) ay

with the usual abuse of functional notation. That is, as-
suming that the prior information about g can be expressed
in the form of a prior distribution f(E)’ and that sample
information from the process, denoted by X, can be summa-
rized (with respect to inferences concerning g) by the

likelihood function f(x|u), Bayes' theorem revises the prior
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distribution on the basis of the new information, yielding
o mosterior distribution f(u|x). This provides a framework
for inferences about I and for decisions that are related

Lo . For example, if f(B) is a multinormal distribution,
then it is conjugate to the data-generating process in this
instance, and the application of Bayes' theorem results in
4 rosterior distribution that is also a multinormal distri-
bution (e.g. see Raiffa and Schlaifer [9], or DeGroot [6]).

The inferential model presented above is a stationary
msdel. That is, it assumes that E takes on a single value
wnd that f(y) and f(B!§) represent uncertainty about what
that value is. For example, E could represent the mean rate
oF change of the prices of M securities, the mean change in
tn2 pulse rate of M individuals in response to a particular
drug, the mean daily sales at M stores, and so on. In each
cane, g is assumed to be fixed but unknown.

In many real-world situations, the assumption of station-
arity 1s questionable. For example, security price changes
nay be well-represented by a nonstationary model; Hsu, Miller,
and Wichern [7] claim that a nonstationary normal process is
consistent with empirical evidence (also, see Boness, Chen,
ind Jatusipitak [M]} Production processes may be stationary
~v-r short periods of time, but in most cases it would be ex-
wcted that for a lengthy period, stationarity would be a

doubtful assumption.



Despite the apparent existence of nonstationarity in
many situations, few Bayesian models for dealing with non-
stationary processes have been developed. Bather [2] de-
velops a model in which the mean of a univariate normal
process shifts stochastically over time and uses this model
in the study of control charts (also, see Carter [5]). Some
basic notions underlying this model are treated much more
generally in Bather [3].

In this paper, we consider inferences about the mean
vector of a multinormal process when the mean vector shifts
from period to period, with the shifts governed by an in-
dependent multinormal process. This is an extension to the
multivariate case of the situation treated in Bather [2].
The model 1s presented in Section 2, some applications to
portfolio analysis are considered in Section 3, and Sec-

tion 4 contains a brief summary and discussion.

2. The Development of the Model

Consider a data-generating process that generates M-

vectors (column vectors) of observations itl’ itZ""

during time period t according to a multinormal process with

mean«ﬁt and covariance matrix I. The covariance matrix &

1

is known and does not change over time,” whereas {i, is not

known and may change over time. In particular, values of

the mean vector for successive time periods are related as

11n this paper, all covariance matrices are assumed to
be positive-definite and symmetric.



By Be + €07 t = 1,25.0.., (2.1)
where Et+1 is a multinormal "random shock™ term independent
of T, with known mean e and covariance matrix Q.

t

If the prior distribution of gt at the beginning of
time period t is represented by f(ut), and a sample of sige
then

ne during period t yields Xt = (x X

t1° ~t2"'°’l‘tnt)’

Bayes' theorem can be used to revise the distribution of Et
f(gtlgt) « f(gt)f(gtlgt) . (2.2)

In general, this application of Bayes' theorem may be dif-
ficult to carry out. If the prior distribution of Et is
multinormal, however, it is possible to summarize the re-
vision of the distribution of Et in terms of two simple

formulas.

Theorem 1. If the prior distribution of Et is a multinormal

distribution with mean mé and covariance matrix Sé, and if

ﬁti’ i= 1,...,n,, are independent and identically distrib-
uted conditional upon Uy each having a multinormal distrib-
ution with mean u, and covariance matrix I, then the post-

erior distribution of ﬁt conditional upon Xt (xtl,...,xtn )
~ ¥ - i

is a multinormal distribution with mean mg and covariance
matrix Sg,-where

mf o= SES{Tmg ¢ ng 2 my) (2.3)



and
" =1 -1,-1
§t = (§t + ntg ) (2.4)
g
Here m, = ifl Zti/nt is the sample mean vector, and (nt’Tt)

is sufficient for inferences concerning ﬁt.

Proof. The proof follows directly from DeGroot [6, pp. 175-
176]. Pactoring out terms in f(ut) not involving My, we
have

f(L‘t) « exp[—(l/z‘)(gt - T;:)T§é-l(k‘t - Té)] ,

where "T" denotes transposition. Furthermore, since the
data-generating process is an independent multinormal pro-
cess, the likelihood function can be written

t T -1

n
£ lug) = exp[-(172) iil (Xgg = W) L T (xgy — up))

T -1
= exp[-(1/2)(mg - p ) (n D ) (mg - pp)]
From this likelihood function, it can be seen that (n ,m )
is sufficient. Applying Bayes' theorem yields
Flug1Xp) = £t lug)

= exﬁ{—(1/2)[(gt - Té)T§£—l(Bt - me)

+(mg =) 2T mg - pp])



Combining terms in the exponent, completing the square on His
and factoring out terms not involving Ups We have

f(Etl}ft) « exp[—(l/g)(gt - T’E)nghl(

where Tg and §g are given by (2.3) and (2.4). The distribu-
iian in (2.%) is in the form of a multinormal density with
mean TE and covariance matrix §%'

During the time period, then, the distribution of gt is
revised as new information becomes available. At the end of
time period t (the beginning of time period t + 1), the data-
generating process is governed by a new mean vector, gt+1’
30 it is necessary to use the posterior distribution of Et
and the relation given by (2.1) to determine the prior dis-

tribution of ﬁt+1 at the beginning of time period t + 1.

Theorem 2. If the posterior distribution of gt is as de-
rived in Theorem 1, and the relationship between Et and §t+1
is given by (2.1), where §t is independent of Et and multi-
normal with mean e and covariance matrix 9, then the prior
distribution of §t+1 is a multinormal distribution with mean

' 3 v 1 ] )
Mme vy and covariliance matrix §t+1’ where

]
Tee1 = Mg
and

1 -~ 1"
Sge1 T 5¢ v 0 (2

b -m] o, (2.5)

.6)

.7)



Proof. Since gt+1 is a linear combination of independent

multinormal random vectors, the result is trivial.
Combining the results of Theorems 1 and 2, we see that

prior distributions for mean vectors in successive perilods

are related as

_ ar-l -1,-1,4,-1, -1
Mgy 7 (S 7+ mgZ ) (S Tmg +ong I Tm) v (2.
and
-1 -1,-1
1 - t
S{41 = (8 ol ) e (2.
These formulas hold for t = 1,2,...3; if the initial prior

distribution at the beginning of period one is known, then
(2.8) and (2.9) can be applied each period after (nt’Tt) is
observed.

The updating procedure for the model developed in this
section is relatively straightforward, but difficulties are
encountered in attempting to investigate limiting properties
of the model. Starting with T' and S! and repeatedly apply-

1 ~1

ing (2.8) and (2.9), it is possible to express @é and §é as

functions of the initial values @' and S!, the sample sta-

1 <1’

tistics (ni’Ti)’ i=1,...,t-1, and the known parameters I,
, and e. However, these functions are quite complicated,

1 -1.-1

as terms such as (Sé- +n, L

¢Z 7) 7 in (2.9), when applied re-

peatedly, do not yield simple expressions. In the univariate
case, such difficulties are not encountered, because the re-
spective variances can all be expressed as constant multiples

of each other.



To avoid the difficulties mentioned in the preceding
paragraph, we will investigate a simplified form of the gen-
eral model. The simplifying assumptions are that S! and @

are constant multiples of I

S = (n!) r ., (2.10)
and

Q=w I . (2.11)

The first assumption, given by (2.10), is frequently encoun-
tered in Bayesian work. Essentially, it implies that the
prior information at the beginning of period one can be
thought as equivalent to the information obtained from a
sample of size ni from the process. Assumption (2.11) im-
plies that the random shocks that change the mean vector

from period to period are such that they do not change the
underlying relationship among the elements of the mean vector.

With the inclusion of assumptions (2.10) and (2.11),

(2.8) and (2.9) can be expressed in more simplified form:

_ -1
mey,p = (0 + ng) T(nm! 4+ nem) e (2.12)
and
- ; -1 -1
Sty = [nf + 0™ +w™ ] 2, (2.13)
for t = 1,2,.... Moreover, if né+1 is defined as

ni,; = [ng o+ n)™h 2 w7170 (2.14)



then

s! = (n! -1

~t+1 t+1)

I . (2.15)
From (2.15), it is apparent that the limiting behavior of S!
can be studied by investigating the limiting behavior of né.
Looking at the special case in which the sample size is the

same each period, we can find a limit for ng -

Theorem 3. If n£+1 is defined as in (2.14) and if ng = n
for t = 1,2,..., where ni,n, and w are all strictly positive,
then
1
2im né = % (1 + EE)E -1 . (2.16)
t oo n

Proof. Pirst, if a 1limit n, exists, it must satisfy

L

(n. +n) w
- -1 -1j-r _ L 7
np, = I}nL +n) W ] - np tno+w ?
which simplifies to
n’ +nn, - nw = 0 (2.17)
L L ‘

2 1
_-n + (n° + Inw)? _ n bwli _
n, = . = §[(1 + ——) 1] . (2.18)
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This is the 1imit postulated in (2.16); does the sequence

{né} converge to

o]
1
3
1

From (2.17), the

nL? Consider

(né -n)w (n! - n) w - n, (n!

L't
né +n+ w L n! +n+w

+n+w)

(w - nL)(né - nL) - (ni + nnp - nw)

n. +n+w
t

last term in the numerator is zero, so

Also, (2.17) implies that n2 = n(w - nL). Thus,

W-l’lL

implying that

L

>0 and [(w-np)/(nl +n+w)] >0

3

w - myp t
Inger -l Sl ) Iml -l (2.19)
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Thus,

2im n! = n . (2.20)
tro t L
An immediate corollary of Theorem 3 is that under the

conditions of the theorem,

pim 8! = n "1s (2.21)
torw ~
where ng is given by (2.18). This result follows directly
from (2.15) and (2.20). Moreover, it is possible to con-
trast this result with that of the stationary case. The
stationary case can be thought of as a limiting form of the
1

nonstationary case with e = 0 and w ~ = O. Thus, from (2.14),

we have, for the stationary case,

Therefore, assuming that n, is a positive integer for all t,

t

né increases without bound as t increases, so that, from
(2.15), §é approaches a matrix of zeros as t increases.
Intuitively, in the stationary case, the distribution of the
unknown parameters becomes tighter as we obtain more infor-
mation. In the nonstationary case, né+1 < né + n, because
of the additional uncertainty involving the shifts in the

mean vector, and the distribution does not necessarily be-

come tighter as t increases. In fact, if ni, the initial
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value of né, is larger than n;, the elements of §£ will
increase as t increases. In this case, initially there is
a great deal of information concerning El' Even though the
observations in the first period yield yet further informa-
tion concerning El’ the random shock at the end of the pe-
riod is strong enough to imply that there is less informa-
tion about EZ at the beginning of the second period than
there was about gl at the beginning of the first period.

On the other hand, if n!

1

tion obtained each period "overrides" the uncertainty caused

is less than n, then the informa-

by the random shock, in a sense, and there is more informa-

tion about Eg at the beginning of the second period than

there was about El at the beginning of the first period.
Next, we will investigate the behavior of the sequence

{mé}. Without loss of generality, assume that e = 0. Then,

from (2.12), T£+1 can be expressed in the form
' = 1 -
miey T Mgt (D - ag) mp (2.22)
where
q = nl/(ng +n) . (2.23)

Successively applying (2.22) gives T%+1 as a function of m!

~1°?
the initial mean, and ms and g, for i=1,...,t
t t-1 t
m} = n q,}m+ £ (1-aq;) I q.]m. +(1-4gq)m
~t+l 121 1 ~1 j=1 J izj+1 i <] t’ <t

(2.24)
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Theorem 4, Under the conditions of Theorems 2 and 3, and

with e = O and n! = n

(2.25)

(2.26)

= n

1 L?
t-1
] - - i t .
my = (- §oatm ;¢ atm
i=0
where
q = nL/(nL + n)
Proof. From (2.19), nj = n; implies that n
t = 2,3,...; one the process reaches the limit nr, it re-
mains there. Also, in Theorem 3, it was assumed that n

for all t. Thus, from (2.23), we have

q = nL/(nL +n) =q for all t.

On substituting q for each a; s i=1,...,t, in (2.24), we

get (2.25).

Under the assumptions of Theorem 4, the prior mean

vector at the beginning of any period can be expressed as a

sum of 1) the initial prior mean vector mi, suitably dis-

counted by a factor of qt and 2) an exponentially weighted

sum of the observed sample means. This result seems in-

tuitively appeiling; recent observations are weighted more

heavily than not-so-recent observations. Observations from

a process with a mean that is only "one shock removed" from

the current mean receive a weight of (l1-q), whereas obser-

vations from a process with a mean that is, say, "i shocks
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removed," receive a weight of (1—q)qi"1 Since 0 < q < 1,
the impact of a particular sample mean on future values of
m{ decreases as t increases.
Theorem 4 utilizes one assumption not previously used:
the assumption that ni = ng. This assumption implies that
at the beginning of tne first period, the model is already
in steady-state form in the sense that the sequence of
variances S{ will be a constant sequence. As long as |ni - nLl
is not too large, (2.25) will provide a good approximation
to the behavior of the sequence Té‘ Furthermore, in any

event the approximation will improve as t increases.

3. Application to Portfolio Analysis

One potential area of application of the model discussed
in the previous section is portfolio analysis. In portfolio
analysis, the process of interest is the process generating
changes in security prices, and the decision making objective
is to determine an "optimal" portfolio of securities. 1In
Winkler [lO], a Bayesian model for forecasting future securi-
ty prices under the assumption of stationarity is presented,
and this model is used in Winkler and Barry [11] in the de-
termination of portfolio selection and revision policies
that are optimal in the sense that they maximize the expected
utility of the decision maker's wealth at some prespecified
future time (i.e. end-of-horizon wealth). In this section,
we will sketch briefly the application of the model of Sec-
tion 2 to allow the determination of optimal portfolios

under nonstationarity.
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Using the notation of Section 2 suppose that M securi-
ties are under consideration for inclusion in the portfolio,
and one observation of prices will be made each period, so
that n, =1 for t = 1,2,.... The variable of interest in
period t is %t (since ng = 1, we drop the second subscript
for convenience), the vector of log price changes of the M
securities, which has a multinormal distribution with mean Et
and covariance matrix L. The process generating successive
values of the mean vector at the beginning of period one are
just as in Section 2. At the end of time period t, a, denotes
vector of holdings (in dollars) of the M securities, and the

decision maker's wealth at this time is simply wt = lTa

£
where 1 is a vector of ones.

A convenient assumption is that the time periods under
consideration are short enough that the log price changes
are unlikely to differ from zero by a substantial amount.
Under this assumption, %t provides a good approximation to
the vector of rates of return, and we will treat gt as if it
were a vector of rates of return. Then the wealth at the
end of period t can be written in the form

Wy = (v x) (3 ¥ Bely T )
where p,_, and q;., are vectors of the amounts bought and
sold, respectively, of the M securities at the end of time

period t-1.

the
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To keep matters simple, we will consider only a single-
period model, which is a model in which the decision maker's
time horizon is always only one period into the future.
Thus, at the end of period t-1, the decision maker wants to

choose Pe_y and A1 to maximize

~ 5 T
EU(W, ) EU[(l * X ) (ag g YR T 9‘5-1)] >

subject to

and

where the vector inequalities imply that the inequality holds
for each pair of corresponding elements of the vectors, c¢
represents a constant per-unit transaction cost (for both
buying and selling), and U represents the decision maker's
utility funection for wt. The first constraint reflects the
effect of transaction costs, the second constraint prohibits
short selling, and the second and third constraints are
simply non-negativity constraints.

The uncertainty in the portfolio analysis problem in-

veclves X Given some assumptions about the data-generating

~t
process and given prior distributions for the underlying
parameters of the process, it is possible to determine the

distribution of it, which is called predictive distribution.

For the nonstationary model of Section 2 with e = 0 and with
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the simplifying assumptions (2.10) and (2.11), the predictive

Xy

normal distribution with mean m{_, = m{ and covariance matrix

distribution of at the end of time period t-1 is a multi-

[né + nt)/né]g.

Given the predictive distribution of gt’ it is easy to
compare the stationary and nonstationary models. Suppose
that at the beginning of time period t-1, the prior distri-

bution of {i, _, is the same ror the two models. ‘sing (2.14),

we Ve

v o -1 -14-1
ny = [:(n,'c_l ) +w ]

But the stationary model can be thought of as a limiting form
of the nonstationary model with w"1 = 0, so né will be larger
for the stationary model than for the nonstationary model.
Hence, the elements of the covariance matrix of %t will be
smaller in absolute value for the stationary model.

Given U, one can solve for the optimal portfolio revi-
sion at the end of time period t-1. PFor instance, if U is
quadratic, the problem is a quadratic programming problem.
For quadratic and exponential utility functions, the optimal
solution is found in Barry [1]. Moreover, this solution is
compared with the optimal solution to the corresponding
stationary model. For a situation with one risky security
and one risk-free security, it is found that, all other
things being equal, the decision maker using the nonstation-

ary model will hold an amount of the risk~free security
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greater than or equal to the amount held under the stationary
model. This seems intuitively reasonable, since the utility
functions imply risk aversion and there is additional uncer-

tainty concerning the mean return from the risky asset in the
nonstationary model. The case of two risky securities is
also investigated (with similar results) in Barry [1].

The single-period portfolio models allow for the revi-
sion of probability distributions and portfolios as new in-
formation is received, but they do not take into account
the dynamic nature of the portfolio analysis problem. A
multiperiod model that does consider the dynamic nature of
the situation has been studied in some detail under station-
arity, and a nonstationary multiperiocd model should also be
of considerable interest. For instance, it should be useful
to compare the steady-state behavior of the nonstationary
multiperiod model (where né = n;, 80 that né+l, né+2,...,
are all equal to nL) with the behavior of the stationary

multiperiod model (where n form a strictly in-

t+1? Mgaoo e

creasing sequence).

4, Summary and Discussion

In Section 2 a Bayesian model for dealing with a multi-
normal process with a nonstationary mean vector was discussed.
When the model is expressed in its most general form, it ap-
pears difficult to make broad statements about the limiting
behavior of the model, although formulas for revising the

distributions of interest can readily be obtained. With some
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simplifying assumptions, primarily concerning the structure
of the covariance matrices included in the model, it is pos-

sibtle to determine the limiting covariance matrix of ﬁt.

Unlike the stationary case, the limiting covariance matrix
is nonzero, because even though more information is obtained
in each period, the mean vector is also shifting stochastic-
ally in each period, so uncertainty remains about the value
of this mean vector.

Various extensions of the model in Section 2 could be
considered. It was assumed that I, the covariance matrix of
the data-generating process, was known, and this assumption
could be relaxed by assessing a joint prior distribution for
gl and g at the beginning of period one and revising this dis-
tribution as new information is obtained. If this joint
prior distribution is Normal-inverted-Wishart, the extension
from the case of known E is simple to handle. Similarly, it
could be assumed that e and 9 are unknown, although the model
could become quite cumbersome if all parameters are assumed
unknown. Another possible extension is to assume that the
shocks that shift the mean occur stochastically instead of
regularly at the beginning of each time period. TFor example,
the shocks might be assumed to be generated by a Poisson
process. Carter [5] considered this type of extension for
the univariate situation studied by Bather [2].

In Section 3 a very brief outline of the application of

the nonstationary model to portfolio analysis was presented.
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In the context of Bayesian models of security price changes,
a nonstationary model seems more realistic than a stationary

model (e.g. it seems reasonable for the variances not to

approach zero). For a simple single-period model, the non-
stationary model of this paper 1s compared with a stationary
model in Barry [1], and the results indicate that nonstation-
arity causes some changes in the optimal portfolios. 1In view
of the apparent applicability of nonstationary models in
portfolio analysis and in other situations, further work re-

garding such models seems warranted.
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