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The Elicitation of Continuous Probability Distributions*

James E. Matheson** and Robert L. Winkler**¥

1. Introduction

Various methods have been developed to aid an individual
in assessing (encoding) personal probabilities to be used
in inferential and decision-making situations (e.g. see
Winkler [12],and Spetzler and Stael von Holstein [9]).
Included among these elicitation procedures are scoring
rules, which encourage an assessor to reveal his opinions
and to make his stated probabilities correspond with his
judgments. Scoring rules, which involve the computation
of a score based on the assessor's stated probabilities and
on the event that actually occurs, are useful in the evalu-
ation of probability assessors as well as in the elicitation
process itself. For general discussions of scoring rules,
see Winkler [13], Murphy and Winkler [7], Stael von Holstein
[10], and savage [8].

The development of scoring rules has, in general, been

restricted to the elicitation of individual probabilities or
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discrete probability distributions. In Winkler [13], it is
pointed out that scoring rules developed for discrete situa-
tions can be used to elicit continuous probability distribu-
tions through the use of randomly generated partitions that
are not known to the assessor at the time of elicitation,
The purpose of this paper is to develop classes of scoring
rules based on the entire density function (or equivalently,
the distribution function) rather than just on a set of
probabilities determined from the density function via a
partition. We generate an extremely rich set of scoring
rules that includes previously developed rules (including
discrete rules) as special cases and provides the experi-
menter with a great deal of flexibility in choosing a rule
that is particularly appropriate for a given situation. The
families of rules generated in Section 2 are based on binary
scoring rules, and the families of rules generated in Section
3 are based on another type of payoff function, or scoring

function.

2. The Generation of Scoring Rules for Continuous

Distributions from Scoring Rules for Binary Situations

Consider the assessment of the probability of a single
event E. We assume a subject assigns probability p to the
occurrence of the event, but when asked to reveal his prob-
ability assignment states a probability r which might not be

equal to p. A scoring rule S(r) gives the subject a payoff



S(r) = Sl(r) is the event occurs and S(r) = Sz(r) if it
does not. The subject's expected payoff for this binary

situation is accordingly

E(S(xr)) = pSl(r) + (1 - p) Sz(r) , (1)
and the scoring rule is defined as strictly proper if

E(S(p)) > E(S(r)) , forr # p . (2)

The notion of scoring rules can be generalized quite
easily to the assessment of any discrete probability distri-
bution. Let Ei represent the ith event (or ith value of a
random variable), where iceI and I is finite or countably
infinite. Moreover, let P; and ry correspond to p and r in

the binary situation, and suppose that the scoring rule

S(rl,rz,...) gives the subject a payoff Sj(rl,rz,...) if Ej
occurs. Then
E(S(ry,ry,...)) = ¥ ijj(rl,rz,...) . (3)
jeI
and S is strictly proper if
E(S(pl,pz,...)) > E(S(rl,rz,...))
when
r, # p;  for any ieI . (4)

The literature regarding such rules is fairly extensive;

several forms of strictly proper scoring rules have been
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developed (e.g. see the references given in Section 1).
Three frequently-encountered examples are the quadratic,

logarithmic, and spherical scoring rules, which are,

respectively,
S.(r,,r ) = 2r, - § 2 (5)
j ll 21--- J l 4
iel
Sj(rl,rz,...) = log rj . (6)
and
2%
Sj(rl,rz,...) = rj/( y ri) . (7
ieT
Scoring rules have been extended to the continuous case
by limiting arguments. If x is the revealed value of the

variable of interest and r(+) represents the density function
assigned by the subject, continuous analogs of the gquadratic,

logarithmic, and spherical scoring rules are, respectively,

S(r(+)) = 2r(x) —[ 2(x) ax , (8)
S(xr(+)) = log r(x) , (9)
and
B 2 %
S(r(-)) = r(x)/( f r-(x) dx) . (10)

-0

Rules such as these are strictly proper scoring rules for the
continuous case. It might be argued, however, that such rules
are somewhat deficient. For example, they are sensitive to

the probability density function at the precise point of the



revealed value of the variable, but not to the amount of
probability mass nearby. The following development generates
continuous rules from binary rules to produce new continuous
rules that are sensitive to the entire density function, not
just to the density at a single value. 1In this sense, the
rules generated here can be thought of as sensitive to
distance (e.g. see Stael von Holstein [10]).

Consider the assessment of a probability distribution
for a variable defined on the real line. We assume the
subject assigns probability distribution function F(.) to
the variable, but when asked to reveal his probability
assignment states R(:). Let X be the revealed value of
the variable and let u be an arbitrary real number we shall
use to divide the variable into two intervals (see Figure 1),
I, = (-o,u] and I, = (u,»). Let E be the event that x falls

2

in Il' Applying the previous scoring rule with the identi-

fication p = F(u) and r = R(u), we have
Sl(R(u)) if erl ,
S(R{u)) = (11)
SZ(R(u)) if er2 ’
and
E(s(R(u))) = F(w) S5, (R(w) + [1 - F(w] s, (R(w) . (12)

If S is strictly proper, then



CUMULATIVE PROBABILITY

R(u)

F(u)

REVEALED

4 DISTRIBUTION - R (x)

F(x)- ASSIGNED
_______________ DISTRIBUTION

FIGURE 1. GENERATION OF PROBABILITY-ORIENTED

SCORING RULES



E(S(F(u))) > E(S(R(uw))) , if F(u) # R(u). (13)

Thus, the subject will maximize the expected payoff by setting
R{u) = F(u). If the subject does not know the value of u, he
clearly should set R(¢) = F(*); however, his payoff depends
strongly on the arbitrarily selected value of u. To elimi-
nate this dependence, we can simply integrate S(R(u)) over

all u and pay the subject this amount, which is

X o
S*(R(*)) = J Sz(R(u) du + J Sl(R(u)) du . (14)

-0 X

The corresponding expected score is

E(S*(R(*))) = J E(S(R(u))) du . (15)

Equations (14) and (15) are in direct analogy with
Equations (11) and (12). Equation (15) can be derived as
the expectation of Equation (14) with an interchange of
order of integration. If S is strictly proper, then S* is
strictly proper, and the subject maximizes his expected
payoff by setting R(u) = F(u) for each u. The above
approach is applicable to some scoring rules such as the
quadratic scoring rule, which will be considered later.
However, the required integral may not exist for many
other important rules, such as the logarithmic, so a more
general method is needed.

To increase the generality and usefulness of the above

result, we assume that the experimenter selects a probability



distribution function G(-) for u. After a value of x has
been revealed, he pays the subject the expected score using
this distribution. The expected score given the revealed

value x is

S**(R(+)) = Eulx (S(R(*)))
X [o o)
= f SZ(R(u)) dG(u) + J Sl(R(u)) daGg(u) , (16)
oo %

and before x is revealed the subject's expected score is

E(S**(R(+))) = { E(S(R(u))) 4G(u) . (17)

~o
Since S is strictly proper, S** is also strictly proper, and
the subject maximizes his expected payoff by setting

R(u) = F(u) for each u. Incidentally, note that the
experimenter could simply generate a single value from G(-) -
and use that value to reward the subject via Equation (11).
However, although the mathematical results are identical,

it seems preferable to pay the expected score given by
Equation (16) instead of the score obtained from a single
value generated from G(*).

If we write Egquation (17) in density form,

40
E(S**(R(+))) =J E(S(R(w))) g(u) du , (18)

-0

we see that g(.) serves as a weighting function which should

encourage the subject to pay more attention to his assess-



ments where g(u) is highest. Thus, if certain regions of
values of the variable are of particular interest, the
experimenter might make g{(:) higher in these regions than
it is elsewnere. Of course, g{(.) could be a general
weighting function (i.e. it is not necessary for G(.) to
be a probability distribution function), but this does not
increase the generality of our results. Technically, G(-)
must be selected so that the integral of Equation (18),
which depends on boththe scoring rule and the probability
distributions, will exist. If the interval of definition
is finite or the integrand is well-behaved, g(u) can be
selected as uniform or "diffuse" to yield the earlier
results of Equations (14) and (15).

This process generates continuous scoring rules from
each binary scoring rule. For instance, consider the

quadratic scoring rule defined by

s,(x) = -1 -n?
and
Sz(r) = —r2 ’
with
E(S(r)) = -p(1 - r)2 - (1 -p r2

—(p—r)2 -p(1 -p .

(19)

(20)

The generated continuous quadratic case defined by Equations

(16) and (17) is a payoff of
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x o]
S**(R(+)) = - [ R%(u) dG(u) - [ [l - r(w]? dc(u) (21)

-—C0 X

and an expected score of

+o0
E(S**(R(+))) = - [ [F(u) - R(u)]2 dG(u)
[+
- F(u)[1 - F(u)] dG(u) . (22)
If G(*) is "diffuse," then dG(u) is replaced by du and the

above equations have interesting graphical interpretations;

it is left to the reader to sketch them.l If the subiject
sets R(u) = F(u), then his expected score is
4o
E(S**(F(*))) = - f F(u [l - F(w] dc(uw , (23)

oo

which is a measure of the dispersion in his true probability
assignment. Thus, Equation (22) is the sum of two terms,

the first rewarding honesty and the second rewarding expertise
or sharpness. Although partitioning of the quadratic scoring
rule and the resulting "attributes" measured by elements of
various partitions have been studied (e.g. Murphy and

Epstein [6], Murphy [4, 5], it appears that partitioning of
the function representing the expected score has not been

considered.

1During the final preparation of this paper, we
learned that Brown (personal communication) has used a
different approach to generate a rule that is apparently
equivalent to the rule given by Eguation (21) with dG(u)
replaced by du.
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Although this work was motivated by the desire for
better continuous scoring rules, the results are applicable
for any probability distribution function F(+). Thus, they
are applicable to the discrete case, Moreover, the
continuous case can be discretized by choosing G(+) as a
step function. For example, suppose that G(+) is a step
function with positive steps 9yr9gr-++19y, at uy < u, < oo <un
and that R(ui) = R, and F(ui) =F, fori=1,2,...,n. Then

1 1

the quadratic binary scoring rule generates

ji-1 n-1
s**(R(+)) = - | R} g, - I (1-r)%g, , 1f x = uy  (24)
i=1 i=j
and
n-1 n-1
E(S**(R(+))) = - § (Fi—Ri)zgi— v F,(1-F)) g, . (25)
i=1 i=1

If 9y =9y = " = 9., this is not the usual quadratic rule,
but it is equivalent to the ranked probability score (e.g.
Epstein [1], Murphy [3], Stael von Holstein [101), which has
quite different properties. In particular, the ranked
probability score is sensitive to distance, and the
procedures discussed in this section can be used to

generate classes of scoring rules that are sensitive to
distance for the continuous case as well as the discrete

case.
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3. The Generation of Scoring Rules for Continuous

Distribution from Payoff Functions other than

Binary Scoring Rules

The rules generated in Section 2 are based on binary
scoring rules. Other rules for continuous distributions
can be generated from different types of payoff functions.
As in Section 2, we assume that the subject assigns
probability distribution function F(+) to the variable
of interest but states R(+) when asked to reveal his
probability assignment. 1In order to treat the cases of
discrete points and zero-probability intervals we shall

define the inverse functions

Fl(z) = min {u|F(w > z} (26)
u
and
R 1(z) = min {u|R(w) > z} (27)

u

for all ze(0,1). The typical case is illustrated in
Figure 2.

For any arbitrary ze[0,1], let the subject receive a
payoff according to the rule (R 1(z)). IfT is strictly

proper, then
E(T(F Y (2))) > B(m(R Nz))) , if RYz) # 7 ), (28
where

E(T(R 1(2))) = f (R 1(2)) aF(x) . (29)

-00
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FIGURE 2. GENERATION OF VALUE-ORIENTED
SCORING RULES
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For example, let T represent a payoff function for a
Bayesian point estimation problem under linear loss (e.q.
see Winkler [14], pp. 397-405 ). For this situation, which
is often called the "newsboy problem," the payoff function

can be represented as follows:

m(x) - (1-2)[RYNz) -x] if x < R N(z)
T(R™1(z)) = (30)
T(x) - z[k - R-l(z)] if x > R_l(Z) '

where 7m(x) is a function of x that represents the payoff if

X = R_l(z) (i.e. if the newsboy orders exactly the right

number of papers). Assuming that

f m(x) dF(x)

-0

converdges,

-1 ® R 7(2) -1
E(T(R ~(z2))) =J m(x) dF(x) —f (1-2)[R " (z) - x] 4F(x)
—J z[x - R-l(z)] arF (x) (31)
R 1(z)
is maximized only for R 1(z) = rl(z).

If the subject does not know the value of z, he should
set R(-) = F(+); however, the actual payoff depends strongly

on the arbitrarily selected value of z. To eliminate this
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dependence, we integrate over all z and pay the subject

-1 L -1
T*(R " (<)) = J T(R “(z)) dz . (32)
o)

The expected score is then

-1 R |
E(T*(R “(-))) [ J T(R ~(z)) dzdF(x)

-0 o

fl -1

J E(T(R ~(z))) dz . (33)
o)

The integration over z is analogous to the integration over u
in Section 2. If T is strictly proper then T* is also
strictly proper, and the subject maximizes his expected
payoff by setting R(+) = F(-).

We can now generalize the above result in a manner
analogous to the generalization represented by Equation (16)
in Section 2. Assume that the experimenter selects a
probability distribution function H(+) for z. After a
value of x has been revealed, the subject is paid the

expected score using H:

1

- -1 Y-
xRN0y =B L (TR L())) =[ (R 1(z)) aH(z) . (34)

o

ZlX

Before X is revealed, the subject's expected score is
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-1 ® 1 -1
E(T**(R ~(-))) J J T(R “(2)) dH(z) dF(x)

= 0
1 -1

=J E(T(R Y(2))) an(z) . - (35)
0

For example, the payoff generated by the scoring rule of

Equation (30) is

-1 R(x) -1
T** (R ~(*)) = ©m(x) - ( z[x - R (z)] dH (z)
o)
L -1
—J (1 - z2)[R " (2) - x] ad(z) . (36)
R(x)

If T is strictly proper, the subject maximizes his
expected payoff from Equation (35) by setting R(s) = F(-).
H is similar to G in that dH(.) serves as a weighting function
which should encourage the subject to pay more attention to
his assessments where dH(.) is highest. For example, if
the experimenter is particularly concerned about the
extreme tails of the distribution, he might select a
U-shaped dH(:): if the middle of the distribution is of
interest, dH(-) might be taken to be symmetric and unimodal
with mode at z = 0.5. Of course, dH(-) can simply be
uniform, in which case Equations (34) and (35) reduce to
Equations (32) and (33). If only certain fractiles are of
interest, H(+) can be chosen as a step function with

positive steps hl'hz""'hm at z, < 29 < eee < LI
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In this section we have generated a family of scoring
rules, with each member of the family corresponding to a
particular choice of T(*) and H(+). This is similar to the
situation covered in Section 2, where each member of the
family of scoring rules that is generated corresponds to
a particular choice of S(+) and G{(*). The two families
are completely different, however. The scoring rule S(-)
is defined on the probability space (the unit interval),
whereas T(+) is defined on the space of values of the
variable of interest (the real line). 1In practice, the
choice of a particular rule might be based primarily on
convenience and on psychological considerations relating to
the elicitation procedure. For instance, experimental
results suggest that different elicitation techniques may
yield quite different results (e.g. see Tversky and Kahneman
[11] and Kahneman and Tversky [2]). Clearly such factors

need to be investigated further.



-18-

References

[1] Epstein, E.S. "A Scoring System for Probability
Forecasts of Ranked Categories," Journal of
Applied Meteorology, 8 (1969), 985-987,

[2] Kahneman, D. and Tversky, A. "Subjective Probability:
A Judgment of Representativeness," Cognitive
Psychology, 3 (1972), 430-454.

[3] Murphy, A.H. "On the 'Ranked Probability Score',"

Journal of Applied Meteorology, 8 (1969), 988-989.

[4] Murphy, A.H. "Scalar and Vector Partitions of the
Probability Score: Part I. Two-State Situation,"
Journal of Applied Meteorology, 11 (1972), 273-282.

[5] Murphy, A.H. "Scalar and Vector Partitions of the
Probability Score: Part II. N-State Situation,"
Boulder, Colorado, National Center for
Atmospheric Research, unpublished manuscript, 1972,

[6] Murphy, A.H. and Epstein, E.S. "Verification of
Probabilistic Predictions: A Brief Review,"
Journal of Applied Meteorology, 6 (1967), 748-755.

[7] Murphy, A.H. and Winkler, R.L. "Scoring Rules in
Probability Assessment and Evaluation," Acta
Psychologica, 34 (1970), 273-286.

8] Savage, L.J. "Elicitation of Personal Probabilities
and Expectations," Journal of the American
Statistical Association, 66 (1971), 783-801.

(9] Spetzler, C.S. and Stael von Holstein, C.-A.S.
"Probability Encoding in Decision Analysis,”
Management Science, in press, 1974.

[10] stael von Holstein, C.-A.S. Assessment and Evaluation
of Subjective Probability Distributions. Stockholm:
Economic Research Institute, Stockholm School of
Economics, 1970.

[11] Tversky, A. and Kahneman, D. "Availability: A
Heuristic for Judging Frequency and Probability,"
Oreqgon Research Institute Research Bulletin, 11,
No. 6 (1971).




-19-

[12] Winkler, R.L. "The Assessment of Prior Distributions
in Bayesian Analysis," Journal of the American
Statistical Association, 62 (1967), 776-800.

[13] Winkler, R.L. "The Quantification of Judgment:
Some Methodological Suggestions," Journal of the
American Statistical Association, 62 (1967),
1105-1120.

[14] Winkler, R.L. An Introduction to Bayesian Inference
and Decision. New York: Holt, Rinehart and
Winston, 1972.




