Boletim de Pesquisa 217 e Desenvolvimento ISSN 1678-0892 Dezembro, 2013

Levantamento Pedológico Semi-detalhado (1:30.000) do Parque Estadual da Mata Seca, Município de Manga - MG

ISSN 1678-0892 Dezembro, 2013

Empresa Brasileira de Pesquisa Agropecuária Embrapa Solos Ministério da Agricultura, Pecuária e Abastecimento

Boletim de Pesquisa e Desenvolvimento 217

Levantamento Pedológico Semidetalhado (1:30.000) do Parque Estadual da Mata Seca, Município de Manga - MG

Maurício Rizzato Coelho Ricardo de Oliveira Dart Gustavo de Mattos Vasques Wenceslau Geraldes Teixeira Ronaldo Pereira de Oliveira Maria de Lourdes Mendonça Brefin Ricardo Luís Louro Berbara

Embrapa Solos Rio de Janeiro, RJ 2013

Embrapa Solos

Rua Jardim Botânico, 1024. Jardim Botânico. Rio de Janeiro, RJ

CEP: 22460-000 Fone: (021) 2179 4500 Fax: (021) 2274 5291

Home page: www.cnps.embrapa.br E-mail (sac): sac@cnps.embrapa.br

Comitê de Publicações da Unidade

Presidente: Daniel Vidal Pérez

Secretário-Executivo: Jacqueline Silva Rezende Mattos

Membros: Ademar Barros da Silva, Adriana Vieira de Camargo de Moraes, Alba Leonor da Silva Martins, Claudia Regina Delaia Machado, Joyce Maria Guimarães Monteiro, Maria Regina Capdeville Laforet, Maurício Rizzato Coelho, Quitéria Sonia Cordeiro dos Santos.

Supervisão editorial: Jacqueline Silva Rezende Mattos

Revisão de texto: André Luiz da Silva Lopes

Normalização bibliográfica: Ricardo Arcanjo de Lima Editoração eletrônica: Jacqueline Silva Rezende Mattos

2ª edição

E-book (2013)

Todos os direitos reservados

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).

Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Solos

C672l Coelho, Maurício Rizzato.

Levantamento pedológico semidetalhado (1:30.000) do Parque Estadual da Mata Seca, município de Manga - MG / Maurício Rizzato Coelho ... [et al.]. — Dados eletrônicos. — Rio de Janeiro : Embrapa Solos, 2013. 264 p. - (Boletim de Pesquisa e Desenvolvimento / Embrapa Solos, ISSN 1678-0892; 217).

Sistema requerido: Adobe Acrobat Reader.

Modo de acesso: < http://www.cnps.embrapa.br/publicacoes>.

Título da página da Web (acesso em 21 dez. 2013).

1. Relação solo-paisagem. 2. Floresta estacional decidual. 3. Grupo Urucuia. 4. Grupo Bambuí. I. Dart, Ricardo de Oliveira. II. Vasques, Gustavo de Mattos. III. Teixeira, Wenceslau Geraldes. IV. Oliveira, Ronaldo Pereira de. V. Brefin, Maria de Lourdes Mendonça. VI. Berbara, Ricardo Luís Louro. VII. Título. VIII. Série.

CDD (21.ed.) 631.4

Sumário

Resumo 5
Abstract 7
1. Introdução 9
2. Material e Métodos 11
3. Resultados e Discussão21
4. Conclusões81
5. Referências 82
Anexo I - Perfis representativos do Parque Estadual da Mata Seca87
Anexo II - Mapa semidetalhado de solos (1:30.000) do Parque Estadual da Mata Seca, município de Manga – MG . 260
Anexo III - Carta-imagem com as unidades de mapeamento de solos do Parque Estadual da Mata Seca, município de Manga - MG

Levantamento Pedológico Semidetalhado (1:30.000) do Parque Estadual da Mata Seca, Município de Manga - MG

Maurício Rizzato Coelho¹
Ricardo de Oliveira Dart²
Gustavo de Mattos Vasques¹
Wenceslau Geraldes Teixeira¹
Ronaldo Pereira de Oliveira¹
Maria de Lourdes Mendonça Santos Brefin¹
Ricardo Luís Louro Berbara³

Resumo

Um dos pré-requisitos para o sucesso na seleção e implantação de áreas de pesquisa é o conhecimento preciso da distribuição dos solos e de seus atributos na paisagem. Isso pode ser obtido com o levantamento e mapeamento pedológico convencional e/ou através de técnicas de mapeamento digital de solos (MDS). Este trabalho apresenta os solos identificados no Parque Estadual da Mata Seca (PEMS), localizado no município de Manga, região norte do Estado de Minas Gerais. É parte integrante de um projeto maior, cujo objetivo é explorar novas técnicas de MDS em pequenas extensões territoriais, avaliar e validar seus produtos e estabelecer um protocolo de procedimentos para tal. Abrangendo a extensão de 10.281,44 ha, o PEMS tem sua geologia associada a coberturas cenozóicas derivadas de: (a) rochas pelíticocarbonáticas que compõem o Grupo Bambuí, de idade proterozóica, (b) arenitos cretáceos do Grupo Urucuia e, (c) depósitos quarternários resultantes do retrabalhamento do rio São Francisco. Os tipos e diversidade de

¹ Pesquisador da Embrapa Solos. E-mail: mauricio.coelho@embrapa.br, gustavo.vasques@embrapa.br, wenceslau.teixeira@embrapa.br, ronaldo.oliveira@embrapa.br, lourdes.mendonca@embrapa.br

² Analista da Embrapa Solos. E-mail: ricardo.dart@embrapa.br

³ Professor Associado da UFRRJ - Seropédica, RJ. E-mail: berbara@ufrrj.br

material de origem foram os fatores preponderantes na formação e distribuição dos solos e na sua relação com os demais elementos formadores da paisagem local. Em termos gerais, a seguinte relação solo-paisagem pode ser observada na área: Latossolos Amarelos e Vermelho-Amarelos distróficos e de textura média ocupam os platôs (chapada) de relevo predominantemente plano, situados nas cotas mais elevadas do PEMS e sob domínio das coberturas relacionadas aos arenitos do Grupo Urucuia. A vegetação de Carrasco é exclusiva e marcante dessa paisagem, seja observando-a in loco, seja por meio de imagens de sensores remotos. Há uma faixa transicional entre esses domínios e aqueles situados em cotas ligeiramente inferiores, que são influenciados exclusivamente pelas rochas calcárias. A existência de eutrofismo associado à textura média em Latossolos Vermelho-Amarelos, Vermelhos, Chernossolos e Cambissolos (latossólicos), bem como a vegetação de Caatinga Arbórea Densa (de médio porte) são evidências do caráter transicional. As paisagens sob domínio das rochas pelítico-carbonáticas em que se desenvolve a Floresta Estacional Decidual Densa de alto porte (Mata Seca) são de maior extensão e complexidade na área. Nelas, o relevo e a proximidade do material de origem exercem ação modificadora na formação dos solos. As seguintes subordens taxonômicas foram observadas nesse domínio fisiográfico: Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos e Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos e Melânicos. Dentre estas, os Latossolos Vermelho-Amarelos e Vermelhos juntamente aos Cambissolos Háplicos dominam em extensão, distribuindo-se em aproximadamente 87,0% das áreas sob influência calcária. Finalmente, nos depósitos quaternários do rio São Francisco, em relevo plano e sob Floresta Tropical Pluvial Perenifólia, foram mapeados Cambissolos Flúvicos e Neossolos Flúvicos em condições de boa drenagem, enquanto os Gleissolos Háplicos ocorrem nas áreas deprimidas, permanente ou temporariamente inundadas.

Termos de indexação: relação solo-paisagem; Grupo Urucuia; Grupo Bambuí; Floresta Estacional Decidual; Furado; Caatinga.

Semi-detailed soil survey of the "Parque Estadual da Mata Seca", Manga county, Minas Gerais State

Abstract

A crucial prerequisite for the successful selection and implementation of research areas is the precise knowledge of the distribution of soils and their attributes in the landscape. This can be achieved with the techniques of soil survey and digital soil mapping (DSM). This paper reports the soils identified in the Parque Estadual da Mata Seca (PEMS) and and it's part of a larger project whose main aim is to explore new MDS techniques in small areas, evaluate and validate their products and establish a procedures protocol for such. The PEMS is located in Manga county, north of the Minas Gerais State. With an area of 10,281.44 ha, the PEMS has its geology associated with Cenozoic sediments derived from: (a) carbonate-pelitic rocks that make up the Bambui Group (Proterozoic age), (b) Cretaceous sandstones of Urucuia Group, and (c) quaternary deposits from reworking of the São Francisco River. The types and diversity of parental material were predominant in the soil formation and its distribution of the study area. In general, the following soil-landscape relationship can be observed in the area: medium textured Latossolos Amarelos and Latossolos Vermelho-Amarelos with low base saturation related to the plateaus of higher altitudes of the PEMS. "Carrasco" vegetation is typical of this landscape observed "in loci" or by means remote sensing image. There is a transitional area between Carrasco vegetation and those in lower altitudes under the influence of limestone rocks. The evidences of these transitional area is the presence of higher base saturation

associated to medium textured in Latossolos Vermelho-Amarelos, Verme-Ihos, Chernossolos and Cambissolos (latossólicos), as well as to the "Dense Arboreal Caatinga" vegetation (midhight). The landscapes of larger extension and complexity of the PEMS are related to carbonatic rocks and Tropical Dry Forest. In these landscapes relief and proximity of parent material modify the soil formation. The following taxonomic suborders were observed in this fisiografic domain: Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos and Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos and Melânicos. Among these soil classes the Latossolos Vermelho-Amarelos and Vermelhos together with Cambissolos Háplicos are more extensive, comprehending approximately 87% of the areas under the limestone influence. Finally, in quaternary deposits of São Francisco river, in flat topography and Evergreen Rain Florest, were mapped Cambissolos and Neossolos Flúvicos in well drained conditions, while Gleissolos Háplicos were mapped in permanent or temporary flooded areas.

Index terms: soil-landscape relationship; Urucuia Group; Bambuí Group; Tropical Dry Forest; Caatinga vegetation.

1. Introdução

A justificativa para quase todos os levantamentos de informações é auxiliar no planejamento e manejo de alguma forma (SCHOKNECHT et al., 2008). Também é o caso dos levantamentos de solos: sua proposta fundamental, a de mostrar a distribuição geográfica e fazer predições a respeito dos solos na paisagem (ESTADOS UNIDOS, 1999), possibilita obter informações necessárias à tomada de decisão de como usar e manejar as terras. Consequentemente, as decisões tomadas sem a adequada informação de solos conduzem ao uso ineficiente dos recursos naturais, à degradação ambiental (MCKENZIE et al., 2008), a enganos ou dificuldades nas interpretações dos resultados das pesquisas quando esse recurso natural é negligenciado e determinante como variável ambiental. Portanto, o levantamento de solos deveria ser parte integrante de todo projeto de pesquisa agropecuária ou de planejamento de propriedades agrícolas (FASOLO, 1996), sendo imprescindível para seleção e planejamento de áreas ou campos experimetais. Ademais, o conhecimento dos solos e de sua distribuição na paisagem possibilita extrapolar os resultados de pesquisa para outras áreas com características ambientais semelhantes.

Em termos gerais, o levantamento de solos é um estudo do terreno (BURINGH et al., 1962). Inclue um mapa de solos e um relatório técnico que contém a descrição dos solos, sua classificação taxonômica e, em muitos casos, interpretações para diversos usos. Dentre essas interpretações incluem-se aquelas relacionadas ao desenvolvimento urbano, rural e recreacional (ESTADOS UNIDOS, 1999), bem como ao planejamento do layout, manejo e conservação de unidades de conservação, como os Parques Nacionais.

Novos e práticos métodos de levantamento das terras tem emergido desde 1985 e estão começando a atender a crescente demanda por informações quantitativas (MCKENZIE et al., 2008) e precisas de solos, fequentemente atualizadas, espacialmente referenciadas e disponíveis em tempo hábil e em escala de publicação adequada ao objetivo dos usuários. Esta necessidade coincide com o enorme avanço na computação e das tecnologias de informação, as quais permitem predizer, de forma ágil e efetiva, as classes e os

atributos de solos de uma determinada área, bem como avaliar as incertezas a eles associadas (MCBRATNEY et al., 2000). Ao conjunto dessas tecnologias que lançam mão de modelos numéricos para a estimativa de variações espaciais e temporais dos solos e de seus atributos, baseados em informações pedológicas e variáveis ambientais relacionadas, denomina-se Mapeamento Digital de Solos - MDS (LAGACHERIE; MCBRATNEY, 2007).

O MDS, portanto, é uma técnica contemporânea, usuária, simultânea e, de certa forma, indutora de avanços científicos e vem suprir a atual e crescente demanda por informações quantitativas e espacializadas de solos em substituição (ou em conjunto) aos métodos convencionais de levantamento, considerados qualitativos, lentos e onerosos.

O presente trabalho é parte integrante de um projeto que visa explorar as novas técnicas em MDS, avaliar e validar seus produtos e estabelecer um protocolo de procedimentos para tal, os quais devem orientar trabalhos futuros e similares, desenvolvidos em diferentes ambientes e resoluções espaciais. Para tal, um mapa de solos foi gerado por procedimentos convencionais a fim de compará-lo ao obtido por MDS. O referido projeto, intitulado "Mapeamento digital de classes e atributos de solo: um estudo de caso no Bioma Caatinga, região norte do Estado de Minas Gerais", integra a carteira de projetos da Embrapa, enquandrando-se como Macroprograma 3 no seu sistema de gestão de projetos e processos.

O objetivo deste trabalho é apresentar o relatório técnico e o mapa do levantamento pedológico realizado por procedimentos convencionais da área selecionada para o desenvolvimento do projeto supracitado: o Parque Estadual da Mata Seca (PEMS), situado no município de Manga, região Norte do Estado de Minas Gerais. Como objetivo específico, o levantamento pedológico da área possibilitará a obtenção de informações precisas sobre o recurso solo, incluindo as características físicas, químicas, morfológicas e mineralógicas das principais classes de solos, sua distribuição dentro do PEMS e sua classificação segundo o sistema taxonômico vigente.

2. Material e Métodos

2.1 Caracterização do meio físico

O local de estudo é o Parque Estadual da Mata Seca (PEMS). Localiza-se no município de Manga, região Norte do Estado de Minas Gerais (Figura 1), entre as seguintes coordenadas geográficas: ao norte - 14° 48′ 51,5" latitude sul e 43° 55′ 49" longitude oeste; ao sul – 14° 56′ 37,2" latitude sul e 44° 03′ 41,1" longitude oeste. O Parque foi criado pelo decreto nº 41.479, de 20 de dezembro de 2.000, com a finalidade de proteger a fauna e a flora regionais, as nascentes dos rios e córregos da região, além de criar condições ao desenvolvimento de pesquisas. A área destinada ao PEMS é de 10.281,44 ha (DART et al., 2010).

Na região Norte de Minas Gerais, a cobertura vegetal é naturalmente complexa, composta por formações vegetais distintas, dominantemente caducifólias (IEF, 2007). Insere-se numa ampla faixa transicional entre três domínio fitogeográficos: Caatinga (ao norte), Cerrado (à oeste) e Mata Atlântica (à leste) (ARRUDA et al., 2013). Devido ao contato entre esses domínios, esta região é classificada como zona de tensão (AB'SABER, 2003) ou ecotone, com uma mistura de formações vegetais que são de difícil caracterização e manifestam uma complexa composição florística que se distribue entre várias fitofisionomias. Estas alteram de acordo com a topografia e condições edáficas locais (BRANDÃO, 2000). Além das formações decíduas, destacam-se florestas perenifólias que ainda recobrem porções significativas das várzeas do rio São Francisco (IEF, 2007). Segundo Belém (2008), dentre

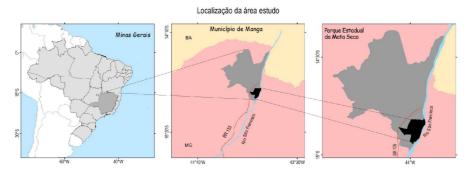


Figura 1. Mapas esquemáticos mostrando a localização (a) do estado de Minas Gerais e do município de Manga no Brasil; (b) e (c) do Parque Estadual da Mata Seca no município de Manga – MG.

as fitofisionomias encontradas no PEMS, destacam-se: a Floresta Estacional Decidual Densa e de alto porte ou Mata Seca, a Floresta Tropical Pluvial Perenifólia ou Mata Ciliar, a Caatinga Arbórea Aberta ou "Furado" e o Carrasco. A primeira é encontrada nas áreas onde os solos eutróficos de origem calcária favorecem o desenvolvimento de uma vegetação estacional de grande porte (GLAUCIA; MARTINS; MACHADO, 2005). A Mata Ciliar, por sua vez, restringe-se às margens do rio São Francisco e ao entorno das lagoas marginais (BELÉM, 2008; BRANDÃO; NAIME, 1998). A Caatinga Arbórea Aberta desenvolve-se sobre afloramentos de calcário em forma de lajeamento. Essa fitofisionomia geralmente se localiza em depressões alagáveis por ocasião das chuvas e recebe localmente o nome de "Furado" (BRANDÃO et al., 1998). Belém (2008) argumenta que outros trabalhos identificam a vegetação sobre lajeado de calcário como Caatinga Hiperxerófila, diferindo da Caatinga Arbórea Aberta pelo fato de não se alagar no período das chuvas. Por fim, o Carrasco é um tipo vegetacional xerófilo que ocorre em solos arenosos sobre as chapadas contíguas (AGEITEC, 2013). Inclui espécies da Caatinga, mas é florística, fisionômica e fenologicamente (semidecídua) mais próximo ao Cerrado (PRADO, 2003), podendo ser reconhecido como um entidade própria (AGEITEC, 2013). Segundo Araújo et al. (1998), o termo Carrasco tem sido usado para designar diferentes tipos de vegetação do nordeste do Brasil e fora dele, abrangendo caatingas arbustivas de solos pedregosos, capoeiras (vegetação secundária) e áreas de pequeno porte que ocorrem nas chapadas de Minas Gerais.

Brandão (2000) considera que, na região Norte de Minas Gerais, a Floresta Estacional Decidual e a Caatinga Arbórea são duas fitofisionomias que se distinguem no tocante à fisionomia e a florística. Segundo o autor, a Floresta Estacional Decidual apresenta grande porte, com árvores de altura superior a 15 metros e um dossel mais fechado, enquanto que a Caatinga Arbórea não passa de 10 metros, podendo ser densa ou aberta. Floristicamente ambas possuem espécies comuns, mas a Caatinga Arbórea raramente apresenta indivíduos da espécie *Cavanillesia arborea*, popularmente conhecida como Barriguda Lisa (BRANDÃO, 2000).

Sanches-Azofeifa et al. (2005), trabalhando no PEMS, definiram o conceito das Florestas Tropicais Secas para esse domínio bioclimático. Segundo os

autores, os seus bosques secos foram definidos num conceito amplo, compreendendo um tipo de vegetação dominada tipicamente por árvores deciduais (pelo menos 50% das árvores), além de aspectos relacionados ao clima, como temperatura média anual igual ou superior a 25°C, precipitação anual variando entre 700 mm e 2.000 mm, com três meses ou mais de seca por ano (precipitação < 100 mm / mês).

O balanço hídrico climatológico do município de Manga, segundo o método de Thornthwait e Mather (1955), é apresentado na Tabela 1. Observa-se que as temperaturas e precipitações médias anuais são de 24,3 °C e 828,8 mm, respectivamente. O mês mais seco é julho, sendo que as precipitações mensais não ultrapassam 60 mm de abril a setembro. O clima é semiárido, classificado como transicional entre as tipologias Aw e BSw, segundo a classificação de Köppen (1948), sendo o mês de janeiro o único com algum excedente hídrico (Tabela 1).

Em trabalho preliminar no PEMS, Dart et al. (2010) constataram como solos predominantes os Latossolos Vermelhos eutróficos relacionados aos sedimentos pelíticos-carbonáticos do Grupo Bambuí. Secundariamente, Cambissolos, Vertissolos e Plintossolos distribuem-se também nos domínios sobre influência desses sedimentos, geralmente nas porções mais baixas das paisagens locais. Segundo os autores, no domínio dos depósitos fluviais do rio São Francisco, Cambissolos Flúvicos, Neossolos Flúvicos e Gleissolos são os solos predominantes.

Em termos geológicos, o vale do rio São Francisco, na região Norte de Minas Gerais, exibe uma sucessão sedimentar constituída por coberturas neoproterozóicas (Grupo Bambuí) e fanerozóicas (Grupo Urucuia e depósitos terciário-quaternários) pertencentes à Bacia Intracratônica do São Francisco (ALKMIM; MARTINS-NETO, 2001). Iglesias e Uhlein (2009), estudando a estratigrafia do Grupo Bambuí no norte de Minas Gerais, apresentaram o mapa geológico da região no qual as coberturas terciário-quaternárias são de grande distribuição na área e praticamente exclusivas no município de Manga. Apresentam-se geralmente inconsolidadas, com espessuras variáveis e podem ser classificadas como coberturas aluvionares, coluvionares e eluvionares (IGLESIAS; UHLEIN, 2009). Segundo os autores, essas cobertu-

ras resultaram de intensos processos erosivos que afetaram as diversas Formações geológicas que ocorrem na área por eles estudada. Dentre elas, destacam-se a Formação Serra de Santa Helena (pelítico-carbonática) e a Lagoa do Jacaré (carbonática), ambas do Grupo Bambuí e de ampla distribuição no norte de Minas Gerais. A primeira é composta por siltitos, folhelhos e margas de cores esverdeadas, com intercalações métricas de calcário cinza escuro. A Formação Lagoa do Jacaré, por sua vez, é composta por calcários pretos e cinza, brechas intraclásticas, margas e intercalações de siltitos e folhelhos de cor esverdeada (IGLESIAS; UHLEIN, 2009).

Tabela 1. Balanço hídrico climatológico mensal para o município de Manga, Minas Gerais, mostrando os seguintes parâmetros climáticos: temperatura (T), precipitação (P), evapotranspiração potencial (EP), evapotranspiração real (ETR), deficiência hídrica (DEF) e excedente hídrico (EXC).

Estação:	Colônia do Jaiba		Município:	Manga		
Latitude*:	-15,21		Longitude:	-43,4	Altitude (m):	450
					CAD=100 mm	
Mês	T°C	P (mm)	ET (mm)	ETR (mm)	DEF (mm)	EXC (mm)
Jan	25,2	144,0	129,8	129,8	0,0	4,1
Fev	25,3	98,7	116,7	115,2	1,5	0,0
Mar	25,7	106,8	131,8	125,3	6,5	0,0
Abr	24,7	51,2	108,8	79,7	29,1	0,0
Mai	23,6	6,2	94,4	27,6	66,8	0,0
Jun	22	1,7	71,7	9,3	62,4	0,0
Jul	21,8	0,8	71,7	4,6	67,1	0,0
Ago	23,3	2,2	89,6	4,4	85,3	0,0
Set	24,9	14,9	110,0	15,8	94,2	0,0
Out	25,5	65,5	126,8	65,8	61,1	0,0
Nov	25,2	157,8	122,5	122,5	0,0	0,0
Dez	24,9	179,0	124,7	124,7	0,0	0,0
Anual	24,3	828,8	1298,5	824,7	473,9	4,1
Ih**	-21,4	Clima:	Semi árido		Megatérmico	_
Iu	0	Köppen:	Aw/Bsw			
Ia	35,7	Número de mese	s secos***: 6			

^{*}Coordenadas geográficas expressas em decimal

^{**}Ih = índice hídrico; Iu = índice de umidade; Ia = índice de aridez

^{***}Precipitação mensal < 60 mm

2.2. Bases de referência

O presente trabalho foi elaborado a partir da utilização e interpretação conjugadas dos seguintes materiais: imagem de satélite Quickbird multiespectral, com resolução de 4 metros e data de aquisição de 18/09/2004 e fotografias aéreas pancromáticas na escala 1:60.000, datadas de 1964.

2.3. Compartimentação preliminar das unidades fisiográficas

2.3.1. Interpretação preliminar

Realizou-se a interpretação preliminar da área de estudo a partir da fotointerpretação das fotografias aéreas pancromáticas (escala 1:60.000), registrando-a manualmente em papel transparente, com posterior vetorização e transposição dos delineamentos para as imagens de satélite Quickbird. Nelas, impressas em escala 1:10.000, foram redelimitadas, também manualmente, as unidades fisiográficas, baseando nos seus elementos observáveis, tais como: cor, textura, tonalidade, forma e dimensão.

2.3.2. Definição da legenda preliminar

Após a fase de interpretação, estabeleceu-se uma legenda preliminar que se baseou nos dados obtidos em trabalho de campo anterior para o reconhecimento da área. Essa etapa possibilitou a associação das unidades fisiográficas delimitadas na imagem Quickbird às classes de solos predominantes em cada unidade. Com essas informações, estabeleceu-se um roteiro de viagem, delineado na imagem interpretada, abrangendo todas as unidades fisiográficas observadas na área a fim de orientar as atividades futuras de campo para o mapeamento dos solos.

2.4. Trabalhos de campo

2.4.1. Método de prospecção

O método de prospecção foi o de caminhamento livre, seguindo o roteiro preestabelecido no escritório e utilizando-se, como base de referência, a imagem com os delineamentos de solo obtidos com a interpretação preliminar.

As observações de campo consistiram na coleta e descrição de perfis em trincheiras (1,5 x 2,00 x 1,70 m) e de amostras extras obtidas com

tradagens e minitrincheiras (1,00 x 1,00 x 1,00 m). Em alguns locais apenas foram feitas observações e descrição geral dos solos e a paisagem do entorno, sem coleta de amostras, para auxiliar na delimitação dos solos, bem como na definição das unidades de mapeamento. Todos os locais amostrados e observados foram georreferenciados com a utilização de equipamento GPS (Trimble GeoXM series 2005), com precisão aproximada de 10 m.

Em cada ponto amostrado com o trado, em geral, foram coletadas duas amostras: uma à superfície (O a 20 cm) e outra a maiores profundidades (80 a 100 cm). Eventualmente, foram coletadas amostras intermediárias (40-60 cm), ou devido às dificuldades de se aprofundar o trado, ou a fim de verificar sutis variações no solo e dirimir dúvidas sobre seus atributos e classificação. Minitrincheiras foram abertas para dirimir dúvidas sobre a classe de solo sempre que as tradagens não forneciam dados suficientes para tal.

Locais representativos da paisagem foram selecionados para abertura das trincheiras e descrição completa de perfis de solos (perfis modais), seguindo recomendações de Santos et al. (2005). Na área mapeada foram abertas 44 trincheiras em diferentes unidades fisiográficas para representar as classes de solos, e nelas foram coletadas amostras deformadas para caracterização física, química e mineralógica. Para identificação dos solos em campo, utilizaram-se os critérios estabelecidos por Santos et al. (2006).

2.4.2. Densidade de amostragem

A densidade de observações seguiu as recomendações de Embrapa (1995), considerando-se a escala de mapeamento, o objetivo, o nível do levantamento e o grau de heterogeneidade ou uniformidade da área. Foram realizadas 458 observações na área de estudo, perfazendo uma densidade de 0,05 observações por hectare, compatível, portanto, com o nível de detalhamento e o objetivo do presente trabalho, tal como definido por Embrapa (1995). Estão assim distribuídas: 44 perfis completos, 188 minitrincheiras, 96 tradagens e 130 locais observados (com trado ou em minitrincheira), sem coleta (Anexo III).

2.5. Procedimentos de laboratório

As amostras de solos coletadas com tradagens e exames de minitrincheira e perfis foram analisadas nos laboratórios da Embrapa Solos, conforme os métodos constantes em Embrapa (1997). Para tal, inicialmente se procedeu o preparo das amostras que consistiu na separação, por destorroamento e tamisação, das frações terra fina (material que passa na peneira de 2 mm de malha), e eventuais frações de cascalho (material retido na peneira de 2 mm) e calhaus (material retido na peneira de malha de 20 mm) para determinação da proporção destas frações.

As determinações analíticas foram efetuadas na terra fina seca ao ar (TFSA) Os resultados químicos obtidos para as amostras foram corrigidos segundo seus respectivos fatores de umidade para expressar os valores a 105°C (terra fina seca em estuda – TFSE).

Foram os seguintes procedimentos analíticos adotados (EMBRAPA, 1997):

2.5.1. Análises físicas

Granulometria: empregou-se NaOH 4% como dispersante e agitação em alta rotação por 15 minutos: areia grossa (0,2 - 2 mm) e areia fina (0,05 - 0,2 mm) foram obtidas por tamização; argila (< 0,002 mm) determinada pelo método do densímetro; o silte (0,002 - 0,05 mm), obtido por diferença entre as frações areia e argila. Pelo mesmo procedimento, com substituição do dispersante químico por água destilada, determinou-se o teor de argila dispersa em água.

Densidade das partículas: determinação do volume de álcool necessário para completar a capacidade de um balão volumétrico, contendo solo seco em estufa.

2.5.2. Análises químicas

2.5.2.1. Análises de rotina

Os valores de pH em água e em KCl 1N foram medidos com eletrodo de vidro, em suspensão solo-líquido na proporção 1:2,5; o conteúdo de carbono orgânico (C) foi determinado por oxidação da matéria orgânica por dicromato de

potássio 0,4 N em meio sulfúrico e titulação por sulfato ferroso amoniacal 0,1N. Fósforo assimilável foi extraído com solução de HCI 0,05 N e H₂SO₄ 0,025 N (Melhich I - North Carolina) e dosado colorimetricamente pela redução do complexo fosfomolíbdico com ácido ascórbico, em presença de sal de bismuto. Com solução de KCI 1 N na proporção 1:20 foram extraídos cálcio (Ca²⁺) e magnésio (Mg²⁺) trocáveis e alumínio (Al³⁺) extraível. Numa mesma alíquota, após a determinação do Al por titulação da acidez com NaOH 0,025 N, foram determinados Ca e Mg, com solução de EDTA 0,0125 M, e em outra somente Ca. Finalmente, os elementos Ca, Mg e Al extraível foram determinados em espectrofotômetro de absorção atômica. Potássio (K⁺) e sódio (Na⁺) trocáveis foram extraídos com HCI 0,05 N na proporção 1:10 e determinados por fotometria de chama, e a acidez potencial ou extraível (H⁺ + Al³⁺) por titulação com solução de NaOH 0,0606 N, após extração com solução de acetato de cálcio 1 N ajustada a pH 7, na proporção 1:15.

2.5.2.2. Ataque sulfúrico

Para as determinações SiO₂, Al₂O₃, Fe₂O₃ e TiO₂ através da digestão sulfúrica, utilizou-se a metodologia preconizada por Vettori (1969), com adaptações sugeridas por Embrapa (1979). Essa metodologia pressupõe que somente minerais secundários (argilominerais) são dissolvidos. Sendo assim, os valores dos elementos obtidos são próximos aos da fração argila dos solos.

2.5.3. Análises mineralógicas: Mineralogia da fração argila desferrificada

A fração argila de 12 amostras selecionadas e referentes aos horizontes B de perfis representativos das classes de solo do PEMS foi separada no laboratório de física da Embrapa Solos por pipetagem, segundo Embrapa (1997). Foram analisadas em condição "ao natural" (não tratadas) e sob os seguintes tratamentos: desferrificação por ditionito-citrato-bicarbonato de sódio (DCB), de acordo com Mehra e Jackson (1960); saturação com potássio e aquecimento por duas horas, após montagem da lâmina, nas temperaturas: 110°, 350° e 550°C; saturação com magnésio e solvatação com etileno glicol, conforme Embrapa (1997) e Calderano et al. (2009). As lâminas foram preparadas de forma orientada pelo método do esfregaço.

A análise mineralógica foi realizada por difratometria de raios-X em um difratômetro RIGAKU, modelo Miniflex II, utilizando-se tubo de cobre como fonte de radiação Ka e monocromador de grafite, com tensão de 30 kV e corrente de 15 mA. As leituras foram feitas por passo, com variação de 0,050° s⁻¹. O intervalo de varredura para todas as amostras foi de 2° a 45° (2g).

Os difratogramas foram confeccionados usando o programa Microcal Origin 6.0. São apresentados na seguinte ordem: amostra não tratada (Am.total); amostra desferrificada e saturada com magnésio (Mg) e posteriormente solvatada com etileno glicol (MgEG); amostra desferrificada e saturada com potássio, com leituras executadas à temperatura ambiente (K25) e, após aquecimento, nas temperaturas assinaladas (K110, K350 e K550).

Os difratogramas das amostras não tratadas (Am. Total) também são apresentados em separado. Sua observação possibilita melhor visualização de alguns minerais, como os óxidos-hidróxidos de ferro, bem como uma melhor expressão da predominância relativa entre os minerais presentes nas amostras.

Os difratogramas foram interpretados com base nas tabelas do JCPDS constantes em Berry (1974), além de tabelas e critérios de Thorez (1976), Brindley e Brown (1984), Fontes (1990), Kampf, et. al. (1995) e Moore e Reynolds (1997). A grafia dos nomes dos minerais está de acordo com Branco (1987).

2.6. Trabalhos de escritório

2.6.1. Classificação dos solos

De posse dos resultados analíticos, os perfis foram classificados segundo o Sistema Brasileiro de Classificação de Solos (SiBCS) até o nível de família (EMBRAPA, 2006). Os dados morfológicos e analíticos das amostras coletadas com trado e minitrincheiras foram analisados e comparados aos dos perfis, possibilitando a classificação taxonômica, também em nível de família, dos pontos amostrais assim coletados.

2.6.2. Representação cartográfica: obtenção do mapa de solos

Após interpretação das fotografias aéreas e transposição dos delineamentos e de todos os pontos coletados e observados nos trabalhos de campo para a imagem Quickbird, devidamente classificados segundo Embrapa (2006), procedeu-se o ajuste e estabelecimento dos delineamentos (ou manchas de solos) e da legenda de solos definitivos em ambiente SIG. Esta última representando as unidades de mapeamento de solos, que são áreas de solos definidas em função das unidades taxonômicas que as compõem (EMBRAPA, 1995).

As unidades de mapeamento do presente trabalho foram constituídas por alguns delineamentos de diferentes formas e tamanhos. Cinco tipos de unidades de mapeamento foram estabelecidas: as unidades simples, na qual ocorre uma única classe de solo; os tipos de terreno; e as unidades compostas, nas quais ocorrem duas ou mais classes ou componentes, correspondendo as associações, complexos ou grupos indiferenciados de solos. As associações são constituídas por classes distintas de solos, com limites nítidos ou pouco nítidos entre si. Podem ser separadas em levantamentos pedológicos mais detalhadados. Os complexos, por sua vez, compreendem duas ou mais classes de solos taxonomicamente distintas, mas que se distribuem com um padrão tão intrincado na paisagem que não se conseguem individualizá-los ou mapeá-los como unidades de mapeamento simples, mesmo em levantamentos ultradetalhados. Os grupos indiferenciados de solos são constituídos por duas ou mais unidades taxonômicas com semelhanças morfogenéticas e, portanto, pouco diferenciadas. Os tipos de terreno são unidades de mapeamento especiais e não são classes de solos (SANTOS, 2005). No presente trabalho compreendem afloramentos de rochas e áreas antropizadas (cascalheiras).

O mapa de solos semidetalhado na escala 1:30.000 é apresentado no Anexo II, com a localização dos 44 perfis coletados em campo. Também é apresentada a imagem de satélite Quickbird (Anexo III; Carta-imagem com as unidades de mapeamento de solos do Parque Estadual da Mata Seca, município de Manga - MG) na mesma escala do mapa e contendo os delineamentos de solos, a identificação e localização de todos os perfis, das amostras extras (tradagens e minitrincheiras) e das observações efetuadas nos trabalhos de

campo, possibilitando, dentre outros usos, a análise de seus elementos observáveis, tais como cor, textura, tonalidade e forma, os quais, analisados de maneira integrada entre si e aos dados de campo e laboratório, foram utilizados para delimitar as unidades de mapeamento de solos do PEMS.

3. Resultados e Discussão

3.1. Aspectos gerais, legenda de identificação e distribuição dos solos no PEMS

A Tabela 2 apresenta os solos e sua extensão nas unidades de mapeamento (UM) da área de estudo. Através do mapa de solo semidetalhado (Anexo II) publicado na escala 1:30.000, é possível visualizar sua distribuição geográfica no PEMS.

Foram identificadas 35 unidades de mapeamento de solo, nas quais distribuem-se as seguintes ordens taxonômicas, segundo o SiBCS (SANTOS et al., 2006): Cambissolos, Latossolos, Plintossolos, Neossolos, Gleissolos, Vertissolos e Chernossolos. Existe uma estreita relação entre as classes de solos, seu substrato geológico e o relevo, a saber:

(1) nos sedimentos quaternários do rio São Francisco desenvolvem-se os Cambissolos Flúvicos e Neossolos Flúvicos em condições de boa drenagem, enquanto os Gleissolos Háplicos ocorrem nas áreas deprimidas, permanente ou temporariamente inundadas. Ocupam toda a porção leste da área de estudo, em relevo plano que, desde o rio São Francisco até seu final (que se dá nos solos oriundos de sedimentos pelíticos-carbonáticos do Grupo Bambuí), apresentam larguras mínima e máxima ao redor de 890 m e 2.200 m, respectivamente. Os solos originados desses sedimentos apresentam, em sua maioria, um padrão muito intrincado na paisagem, o que torna difícil, se não impossível, individualizar uma determinada classe de solo, em nível de ordem taxonômica, em uma UM simples, mesmo em levantamentos mais detalhados; fato comum em sedimentos aluvionares. Em vista disto, foram agrupadas, predominantemente, como complexos de solos. Distribuem-se em 2.534,12 ha, o que corresponde a 24,65% de toda a área estudada;

(2) os solos relacionados aos sedimentos pelíticos-carbonáticos do Grupo Bambuí predominam na área de estudo. Estendem-se por 5.844,62 ha, o que perfaz 56,85% da área do PEMS. Compreendem as seguintes subordens taxonômicas: Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos e Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos e Melânicos. Os Latossolos e Cambissolos dominam em extensão. Os primeiros ocupam aproximadamente 46,0% desse domínio e os Cambissolos, 41,1%. Enquanto esses últimos se distribuem em diferentes porções da paisagem, os Latossolos relacionam-se exclusivamente aos platôs de relevo plano e suave ondulado. São predominantemente vermelhos, eutróficos e argilosos, com horizonte A moderado ou mesmo chernozêmico. Os Chernossolos, Vertissolos, Gleissolos e Plintossolos ocupam os restantes 12,9% da área sob influência calcária. Esses últimos estão intimamente associados aos Cambissolos com petroplintita em profundidade, bem como aos talvegues estreitos e secos (drenagens secas) que ocorrem nos platôs com predomínio dos Latossolos Vermelhos; condição esta que favorece o acúmulo de água na estação chuvosa, bem como o desenvolvimento de colorações amareladas e de nódulos petroplínticos ao longo do perfil. Os Chernossolos e Vertissolos, por sua vez, correspondem às porções mais baixas da paisagem sob influência dos calcários. Iglesias e Uhlein (2009) ao estudarem a estratigrafia do Grupo Bambuí no norte de Minas, nomearam essas áreas de coberturas terciárias. Segundo estes autores, são resultantes dos intensos processos erosivos aos quais as formações originais foram submetidas. A transição dos Latossolos Vermelhos, localizados nos platôs, para os Vertissolos e Chernossolos, se dá por meio de uma ruptura de declive, transicionando de plano e suave ondulado no platô, para ondulado, mantendo-se com essa classe de declive até alcançar as áreas de domínio dos Vertissolos e Chernossolos. A rampa formada com a ruptura de declive é também dominada por Latossolos Vermelhos eutróficos, com inclinação aproximada de 30% e de extensão que, em geral, não ultrapassa 300 m. Afloramentos de rochas (pedregosidade e/ou rochosidade) que apresentam forte reação ao HCI ocorrem nos solos provenientes das coberturas terciárias. No entanto, são mais frequentes nas áreas de domínio dos Vertissolos e Chernossolos. Sua presença, mesmo nos Latossolos, pode sugerir que os solos são formados a partir da alteração das próprias rochas subjacentes (margas, calcários margosos, calcários), e não das coberturas cenozóicas oriundas dos intensos processos erosivos, tal como afirmam Iglesias e Uhein (2009). Nas áreas de domínio dos Chernossolos há relevo ondulado, predominando, no entanto, o plano e o suave ondulado. Os Vertissolos, por sua vez, ocorrem exclusivamente em relevo plano;

(3) os solos relacionados aos arenitos cretáceos do Grupo Urucuia distribuem-se em 1.902,70 ha, o que corresponde a 18,5% de toda a área de estudo. Dominam nos platôs mais elevados da paisagem (chapadas), situados, em geral, a poucos metros acima dos depósitos relacionados ao Grupo Bambuí, sob relevo plano e suave ondulado. Essa situação topográfica se justifica pela idade mais recente dos depósitos psamíticos em relação aos pelíticos-carbonáticos, com os primeiros deposicionando-se sob os segundos, tal como pode ser observado na coluna lito-estratigráfica da região (IGLESIAS; UHLEIN, 2009). Os Latossolos Vermelho-Amarelos, Amarelos e Vermelhos, bem como os Cambissolos Háplicos distribuem-se nesses domínios fisiográficos que são facilmente identificáveis quando estão relacionados a solos distróficos (unidades de mapeamento LAd, LVAd2 e LVd2), quer por meio de sensoriamento remoto, analisando as imagens de satélite (Anexo III), quer nas prospecções durante os trabalhos de campo, por meio da observação de sua vegetação. Esta é denominada regionalmente de Carrasco. Sua fácil identificação com o uso de imagens de satélite é devido ao contrastente padrão de textura, muito mais liso e uniforme em relação as demais áreas do PEMS (Anexo III). Os Latossolos e Cambissolos de textura média e eutróficos no PEMS (unidades de mapeamento CXbe1, CXbe2, CXbe9, LVe2, LVAe2 e LVAe3) possivelmente têm sua origem relacionada as áreas transicionais entre os depósitos psamíticos e pelíticos-carbonáticos. Tais áreas foram computadas como relacionadas aos arenitos do Grupo Urucuia e nelas predominam vegetação de Caatinga Arbórea Densa (de médio porte). Distribuem-se por 1.115, 44 ha, o que representa 10,85% do PEMS, enquanto as áreas de solos distróficos (unidades de mapeamento LAd, LVAd2 e LVd2) ocupam 708,65 ha, representando apenas 6,89% de toda a área mapeada. Outra provável área transicional entre os materiais de origem supracitados é aquela relativa à unidade de mapeamento LVd1 (Tabela 2). A associação de textura argilosa com distrofismo e coloração avermelhada nos Latossolos Vermelhos desta UM convergem para justificar tal suposição. No entanto, sua área foi computada como pertencente aos sedimentos pelíticos-carbonáticos do Grupo Bambuí.

Tabela 2. Legenda e classificação dos solos, extensão e distribuição das unidades de mapeamento na área de estudo.

	Área			
Classes de solos e símbolos das unidades de mapeamento			Relativa à Subordem	Relativa ao total
Classes de solos/Unidades de Mapeamento	Símbolo	ha	%	
CAMBISSOLOS FLÚVICOS				
Associação de CAMBISSOLO FLÚVICO Ta ou Tb Eutrófico típico, textura média, A moderado, bem drenado, fase relevo plano + TIPO DE TERRENO	CYve1	15,18	1,33	0,15
Complexo de CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média ou argilosa ou estratificada, com carbonato ou não – NEOSSOLO FLÚVICO Ta Eutrófico típico, textura média ou média/arenosa, ambos A moderado, bem drenados, fase relevo plano	CYve2	1.125,60	98,67	10,95
CAMBISSOLOS HÁPLICOS				
Associação de CAMBISSOLO HÁPLICO Ta Eutrófico vertissólico, A moderado + CHERNOSSOLO HÁPLICO Órtico vertissólico, ambos lépticos ou não, textura argilosa, moderadamente drenados, fase relevo suave ondulado e ondulado, ligeiramente pedregosa + CAMBISSOLO HÁPLICO Tb Eutrófico típico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo suave ondulado e plano	CXve	346,26	10,83	3,37
CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, textura média, A moderado, acentuadamente drenado, fase relevo plano	CXbe1	44,54	1,54	0,43
CAMBISSOLO HÁPLICO Tb Eutrófico latossólico ou latossólico petroplíntico, textura média, A moderado, acentuadamente drenado, fase relevo plano e suave ondulado	CXbe2	74,67	2,59	0,72
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico ou não, fase relevo suave ondulado e plano + CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, fase relevo plano + LATOSSOLO VERMELHO Eutrófico típico, fase relevo plano e suave ondulado, todos textura argilosa, A moderado, bem drenados.	CXbe3	1.160,51	40,22	11,33

Tabela 2. Continuação.

, , , , , , , , , , , , , , , , , , , 				
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa/argilosa com cascalho ou cascalhenta + CAMBISSOLO HÁPLICO Tb Eutrófico léptico ou latossólico, textura argilosa, todos A moderado, moderadamente drenados, fase relevo plano, ligeiramente pedregosa	CXbe4	74,11	2,57	0,72
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico saprolítico ou típico, textura média/argilosa com cascalho ou cascalhenta ou argilosa/argilosa com cascalho ou cascalhenta, fase relevo suave ondulado e plano + CAMBISSOLO HÁPLICO Carbonático típico, textura argilosa, fase relevo plano, ambos moderadamente drenados + CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, textura média/argilosa ou argilosa, fase relevo plano e suave ondulado, imperfeitamente drenado, todos A moderado	CXbe5	169,19	5,86	1,65
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico ou típico, A moderado, bem drenado + CHERNOSSOLO ARGILÚVICO ou HÁPLICO, ambos Carbonáticos ou órticos, vertissólicos, moderadamente drenados, todos textura média/argilosa ou média/argilosa com cascalho, fase relevo plano e suave ondulado	CXbe6	362,84	12,58	3,53
Associação de CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa/argilosa com cascalho, moderadamente drenado + GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura argilosa, imperfeitamente drenado, ambos A moderado, fase relevo plano.	CXbe7	30,66	1,06	0,30
Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico e LATOSSOLO VERMELHO-AMARELO Eutrófico petroplíntico ou típico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano.	CXbe8	102,51	3,55	1,00
Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico e LATOSSOLO VERMELHO- AMARELO ou VERMELHO Eutrófico típico, ambos textura média, A moderado, acentuadamente drenados, fase relevo plano e suave ondulado	CXbe9	211,74	7,34	2,06
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico + PLINTOSSOLO PÉTRICO Concrecionário êutrico, ambos textura média/argilosa com cascalho ou cascalhenta, A moderado, epidistrófico ou não, moderadamente drenados, fase relevo plano	CXbe10	53,92	1,87	0,52
Associação de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, bem drenado + CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, moderadamente drenado, ambos textura argilosa ou muito argilosa, A moderado, fase relevo plano e suave ondulado + VERTISSOLO HÁPLICO Órtico típico ou chernossólico, textura muito argilosa ou argilosa, A moderado ou chernozêmico, imperfeitamente drenado, fase relevo plano	CXbe11	579,31	20,08	5,63
CAMBISSOLO HÁPLICO Tb ou Ta Eutrófico vertissólico petroplíntico, textura argilosa ou argilosa/argilosa com cascalho, A moderado, imperfeitamente drenado, fase relevo plano	CXbe12	21,31	0,74	0,21

Tabela 2. Continuação.

CHERNOSSOLOS HÁPLICOS				
Associação de CHERNOSSOLO HÁPLICO Carbonático vertissólico + VERTISSOLO HÁPLICO Carbonático chernossólico, ambos textura muito argilosa ou argilosa, imperfeitamente drenados, fase relevo suave ondulado e plano, ligeiramente pedregosa	MXk	82,60	51,24	0,80
Grupo indeferenciado de CHERNOSSOLO HÁPLICO Órtico petroplíntico e CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, A moderado, ambos textura média/média com cascalho ou cascalhenta, moderadamente drenados, fase relevo plano e suave ondulado	MXo	78,61	48,76	0,76
GLEISSOLOS HÁPLICOS				
GLEISSOLO HÁPLICO Ta Eutrófico vertissólico ou não, neofluvissólico, textura argilosa ou muito argilosa ou argilosa/média ou média, A moderado, muito mal drenado, fase relevo plano	GXve	909,00	100,00	8,84
GLEISSOLOS MELÂNICOS				
Grupo indiferenciado de GLEISSOLO MELÂNICO Ta Eutrófico luvissólico petroplíntico ou não, A chernozêmico e GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, A moderado, ambos textura média/argilosa, mal drenados, fase relevo plano	GMve	24,63	100,00	0,24
LATOSSOLOS AMARELOS				
LATOSSOLO AMARELO Distrófico típico, textura média, A moderado, álico ou não, fortemente drenado, fase relevo plano e suave ondulado	LAd	165,58	100,00	1,61
LATOSSOLOS VERMELHOS				
LATOSSOLO VERMELHO Distrófico típico, textura argilosa, A moderado, álico, acentuadamente drenado, fase relevo plano e suave ondulado	LVd1	67,07	2,13	0,65
LATOSSOLO VERMELHO Distrófico ou Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano	LVd2	67,29	2,13	0,65
LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado, epidistrófico ou não, bem drenado, fase relevo plano e suave ondulado	LVe1	326,43	10,34	3,17
LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano e suave ondulado	LVe2	561,60	17,79	5,46
LATOSSOLO VERMELHO Eutrófico típico ou chernossólico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo plano e suave ondulado	LVe3	1.903,91	60,32	18,52
Associação de LATOSSOLO VERMELHO Eutrófico típico + CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano e suave ondulado	LVe4	229,85	7,28	2,24

Tabela 2. Continuação.

LATOSSOLOS VERMELHO-AMARELOS				
Grupo indiferenciado de LATOSSOLO VERMELHO- AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, fortemente drenados, fase relevo plano e suave ondulado	LVAd1	51,45	6,80	0,50
Grupo indiferenciado de LATOSSOLO VERMELHO- AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, álicos ou não, fortemente drenados, fase relevo plano e suave ondulado.	LVAd2	424,33	56,05	4,13
LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado, acentuadamente drenado, fase relevo plano	LVAe1	20,00	2,89	0,19
LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano	LVAe2	163,02	22,67	1,59
Grupo indiferenciado de LATOSSOLO VERMELHO- AMARELO e LATOSSOLO AMARELO, ambos Eutróficos típicos, textura argilosa ou média, A moderado, acentuadamente drenados, fase relevo plano e suave ondulado	LVAe3	60,76	8,40	0,58
NEOSSOLOS FLÚVICOS				
Complexo de NEOSSOLO FLÚVICO Psamítico típico, excessivamente drenado + CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média ou estratificada, acentuadamente drenado, todos A moderado, fase relevo plano	RYq	237,63	100,00	2,31
VERTISSOLOS HÁPLICOS				
VERTISSOLO HÁPLICO Carbonático chernossólico ou típico, textura argilosa/muito argilosa ou argilosa, A chernozêmico ou moderado, imperfeitamente drenado, fase relevo plano	VXk	68,43	49,25	0,67
Associação de VERTISSOLO HÁPLICO Órtico típico ou chernossólico, textura argilosa/muito argilosa ou argilosa, A moderado ou chernozêmico + CHERNOSSOLO HÁPLICO Órtico vertissólico, textura argilosa, ambos imperfeitamente drenados, fase relevo plano	VXo	70,52	50,75	0,69
AFLORAMENTO DE ROCHA	TT1	127,02	87,04	1,24
AFLORAMENTO DE ROCHA + CASCALHEIRA	TT2	18,91	12,96	0,18
CORPOS D'ÁGUA	Água	246,71	100,00	2,40

A seguir, são apresentados os dados morfológicos e analíticos (granulometria e química) das classes de solo de cada unidade de mapeamento (UM), sua extensão e distribuição geográfica e, quando pertinente, suas semelhanças e diferenças em relação aos solos de outras unidades de mapeamento (UMs).

3.2. Unidade de mapeamento CYve1: Associação de CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média, A moderado, bem drenado, fase relevo plano + TIPO DE TERRENO

Essa UM, representada por apenas um delineamento de solo, é a menor dentre todas as demais. Ocupa uma estreita faixa transicional de 15,18 ha (Tabela 2) entre os sedimentos quaternários do rio São Francisco e as coberturas pelítico-carbonáticas cretáceas. Associado aos Cambissolos, que são predominantes nessa UM, há a ocorrência de áreas com cascalhos, calhaus e matacões desde a superfície do terreno, cuja constituição é de fragmentos de rocha calcária e poucos seixos rolados oriundos do transporte fluvial, evidenciando sua origem transicional entre os sedimentos. Há pouco material terroso entre as frações granulométricas supracitadas. Essas áreas aparentemente sofreram alguma intervenção antrópica, como remoção de material terroso e aplainamento da superfície, destoando da paisagem do entorno. Há também poucos calhaus e matacões de petroplintita soltos e acima do solo. Devido a essas características, foram denominadas de Tipo de Terreno.

Os Cambissolos Flúvicos, por outro lado, manifestam características semelhantes aos da unidade de mapeamento CYve2, sobretudo os de textura média, que predominam nessa UM. Assim, serão descritos naquela UM.

3.3. Unidade de mapeamento CYve2: Complexo de CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média ou argilosa ou estratificada, com carbonato ou não – NEOSSOLO FLÚVICO Ta Eutrófico típico, textura média ou média/arenosa, ambos A moderado, bem drenados, fase relevo plano

Os solos da unidade de mapeamento CYve2 agrupam tanto aqueles que apresentam forte desenvolvimento de estrutura poliédrica no horizonte diagnóstico subsuperficial, com textura argilosa e média, como solos sem unidades estruturais, do tipo maciça ou grãos simples. Esses últimos tipos são de textura média ou média/arenosa. Em comum, invariavelmente apresentam camadas estratificadas, típicas de sedimentos aluvionares, cujo teor de argila reduz até a profundidade de 100 cm a partir da superfície do solo, e os teores

de silte, em geral, são mais elevados (> 200 g kg¹) em relação aos solos mais antigos (oriundos de sedimentos pelíticos-carbonáticos relacionados ao Grupo Bambuí e psamínitos relacionados ao Grupo Urucuia), apesar de variarem muito no perfil. A Tabela 3 mostra os dados analíticos de horizontes A (camada a) e B (camada b) selecionados da UM em questão.

Diferente dos solos das demais UMs relacionados ao intemperismo e processos erosivos que afetaram as rochas dos Grupos Bambuí (rochas pelíticocarbonáticas) e Urucuia (arenitos), os dessa UM apresentam elevados coeficientes de variação (> 60%) para os atributos areia grossa e areia fina (Tabela 3), reflexo da natureza diversificada dos sedimentos que compõem o depósito quarternário estudado. Em termos químicos, são solos de elevada fertilidade natural, o que pode ser evidenciado pela elevada soma de bases (média de 11,5 e 8,0 cmol kg-1 nos horizontes superficiais e subsuperficiais, respectivamente) e saturação por bases (acima de 50% para ambos os horizontes), com valores de Al extraível baixos ou, em geral, nulos tanto em superfície com em subsuperfície. Os valores médios de capacidade de troca de cátions a pH 7 (Valor T) não são muito elevados, com média de 10,2 cmol kg-1 de solo em subsuperfície (Tabela 3). No entanto, os solos dessa UM são predominantemente de textura média (média de 313 g kg⁻¹ de argila nos horizontes subsuperficiais; Tabela 3); fato que, no cálculo da atividade da argila, obtêm-se valores acima de 27 cmol, kg-1 de argila para a maioria dos horizontes diagnósticos subsuperficiais, configurando, portanto, solos de argila de atividade alta.

O perfis P5 e P22, mostrados no Anexo I, são os representativos dessa UM. Neles, observam-se colorações centradas nos matizes 5YR e 10YR para os horizontes A, com valores e cromas geralmente baixos, 2,5/1, 3/2, 4/1, respectivamente. Os horizontes B e/ou C geralmente estão centrados no matiz 10YR, podendo apresentar mosqueados e fragmentos de rocha em avançado estádio de decomposição. Em termos de atributos morfológicos que definiram a presença ou não de um horizonte B incipiente e, por consequência, as ordens taxonômicas existentes nessa UM, os perfis supracitados diferem, sobretudo, pelo desenvolvimento de estrutura: enquanto o P22, um Cambissolo Flúvico, a apresenta bem desenvolvida, do tipo poliédrica, em blocos subangulares e

angulares, de grau forte, no P5, um Neossolo Flúvico, não apresenta unidades estruturais bem definidas, sendo do tipo maciça, secundariamente se desfazendo em blocos subangualres e angulares.

A unidade de mapeamento CYve2 é a mais extensa dentre as cinco UMs existentes nos depósitos quaternários do rio São Francisco, distribuindo-se em 44,76% de sua extensão. Dominam nas áreas sutilmente mais elevadas e, por consequência, melhor drenadas em relação às áreas de ocorrência de Gleissolos Háplicos e Melânicos (Unidades de mapeamento GXve e GMve).

Outras classes de solos ocorrem nessa UM. Devido à pequena extensão, as seguintes classes foram consideradas como inclusão: Gleissolos Háplicos Ta Eutrófico vertissólicos e Cambissolos Flúvicos Ta Eutróficos gleissólicos. Ocorrem próximos aos lagos e as UMs dominadas por solos de drenagem impedida, periódica ou permanentemente inundadas com ocorrência exclusivamente de Gleissolos. À medida que se afasta dessas áreas de drenagem impedida, há sutil elevação da paisagem e abaixamento relativo do nível do lençol freático. Nesse sentido de caminhamento, os Gleissolos dão lugar aos Cambissolos Flúvicos intermediários para os Gleissolos, com mosqueados de redução e horizontes glei que se manifestam dentro de 150 cm da superfície do solo, até o completo aparecimento dos solos mais representativos dessa UM.

Tabela 3. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CYve2.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	33	60	597	290	135,4	46,8
Argiia	b	6	121	409	313	103,4	33,0
Silte ⁽⁴⁾	a	33	48	566	342	111,0	32,5
Sille	b	6	200	528	327	133,6	40,9
Areia fina ⁽⁴⁾	a	33	21	884	319	209,8	65,9
Areia iina	b	6	97	673	321	195,3	60,9
Areia grossa ⁽⁴⁾	a	33	2	255	50	54,5	108,6
Areia grossa	b	6	4	129	39	48,5	123,7
pH H ₂ O	a	33	5,2	8,2	6	0,6	9,7
pn n ₂ O	b	6	5,4	8,5	7,0	1,4	21,4
pH KCl	a	33	4,3	7,3	5,4	0,7	13,8
рн ксі	b	6	3,6	7,3	5,4	1,5	27,4
Carbono ⁽⁴⁾	a	33	1,9	40,0	15,3	9,2	59,9
Carbono	b	6	1,7	11,1	5,0	3,7	72,5
Cálcio ⁽⁵⁾	a	33	2,4	21,5	8,0	4,5	56,0
Calcio	b	6	3,1	8,2	5,1	2,1	40,1
Magnésio ⁽⁵⁾	a	33	0,4	9,2	3,0	2,3	72,8
Magnesio	b	6	1,1	4,5	2,6	1,2	47,2
Potássio ⁽⁵⁾	a	33	0,07	0,53	0,24	0,1	46,6
Potassio	b	6	0,07	0,29	0,13	0,1	66,0
Alumínio(5)	a	33	0,0	0,1	0,0	0,0	321,1
Alummo	b	6	0,0	1,8	0,3	0,7	216,1
Hidrogênio ⁽⁵⁾	a	33	0,0	7,3	2,6	1,7	65,3
Hidrogenio	b	6	0,0	4,0	1,8	1,7	94,0
Valor S ⁽⁶⁾	a	33	2,9	29,1	11,5	6,4	55,6
valor S	b	6	4,3	10,6	8,0	2,5	31,5
Valor T ⁽⁷⁾	a	33	3,2	29,4	14,2	6,7	47,3
valor 1	b	6	5,3	14,7	10,2	3,3	32,2
Valor m ⁽⁸⁾	a	33	0	1	0	0,3	321,1
v afor m	b	6	0	24	4	10,0	223
Valor V ⁽⁹⁾	a	33	57	100	80	10,3	12,9
valor V	b	6	55	100	80	17,5	21,7

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ cmol $_c$ kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (94)

3.4. Unidade de mapeamento CXve: Associação de CAMBISSOLO HÁPLICO Ta Eutrófico vertissólico, A moderado + CHERNOSSOLO HÁPLICO Órtico vertissólico, ambos lépticos ou não, textura argilosa, moderadamente drenado, fase relevo suave ondulado e ondulado, ligeiramente pedregosa + CAMBISSOLO HÁPLICO Tb Eutrófico típico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo suave ondulado e plano

Essa UM é composta por apenas um delineamente de solo que se situa ao sul do PEMS, distribuindo-se por 346,26 ha, o que corresponde a 3,37% de toda a área mapeada.

A presenca de fragmentos de rocha aflorante (pedregosidadade) ou da rocha de origem (calcário) a poucos centímetros da superfície do solo (solos pouco profundos), associado a relevo ondulado, bem como a ocorrência frequente de horizontes superficiais chernozêmicos, são características exclusivas dessa UM e podem ser utilizadas como critério expedito de campo para identificá-la. O P6 (Anexo I) é o seu perfil representativo. Nele, observa-se o desenvolvimento de horizonte vértico (Biv) iniciando a 80 cm de profundidade, sotoposto a horizonte B incipiente sem caráter vértico. A rocha calcária foi observada a cerca de 100 cm de profundidade. Quando mais próxima a superfície, entre 50 e 100 cm de profundidade, os Cambissolos dessa UM receberam a adjetivação de léptico no quarto nível categórico (EMBRAPA, 2006). Se também apresentam horizonte A chernozêmico foram classificados como Chernossolo Háplico Órtico léptico vertissólico, embora também ocorram aqueles Chernossolos em que a rocha encontra-se abaixo de 100 cm da superfície. Diferente dos anteriores, os Cambissolos Háplicos com argila de atividade baixa nessa UM localizam-se mais próximos as unidades de mapeamento CXbe11 e LVe3 e, em geral, não apresentam pedregosidade.

Chernossolos com horizonte A chernozêmico bastante espessos, de aproximadamente 80 cm, Vertissolos e Cambissolos latossólicos também foram observados nessa UM. Devido às suas pequenas extensões, foram considerados como inclusões.

3.5. Unidade de mapeamento CXbe1: CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura média, A moderado, acentuadamente drenado, fase relevo plano

Essa UM simples localiza-se a oeste do PEMS, distribuindo-se em dois delineamento de solos que ocupam apenas 44,54 ha e 0,43% de toda a área estudada. Seus solos provavelmente se desenvolvem em áreas trancisionais entre os depósitos pelíticos-carbonáticos do Grupo Bambuí e psamíticos do Grupo Urucuia; daí a ocorrência de teores de argila mais elevados em relação aos Latossolos Vermelho-Amarelos (LVAd2, por exemplo; Tabela 16) e Amarelos (LAd; Tabela 11) originários exclusivamente da alteração dos depósitos psamíticos, sobretudo se avaliados em subsuperfície.

A Tabela 4 mostra os resultados analíticos de horizontes superficiais e subsuperficiais selecionados dos solos dessa UM. Observa-se que, dentre os horizontes e solos selecionados e constantes na referida tabela, o teor médio de argila dos horizontes subsuperficiais é de 307 g kg⁻¹ de solo, sendo que o valor médio da capacidade de troca de cátions (CTC) medida a pH (Valor T) é de 6,7 cmol kg-1. Esses valores nos permitem calcular o valor médio da atividade da fração argila dos horizontes subsuperficiais dos solos em questão, que é de 21,8 cmol_a kg⁻¹ de argila. Embora os solos da unidade de mapeamento CXbe1 apresentem morfologia típica de Latossolo, a CTC da fração argila e o índice Ki não satifazem os critérios taxonômicos para enquadrá-lo como tal. O perfil P29 (Anexo I), característico desta UM, evidencia esses fatos. Nele observa-se o valor de Ki de 2,44 para um de seus horizontes diagnósticos B incipiente (Bi1), cujos valores de CTC da fração argila (dados não mostrados) de todos os seus horizontes B (inclusive BA) ultrapassam 18 cmol kg-1 de argila. Embora melhor estruturados que outros solos dessa UM, o P29 foi também classificado como Cambissolo intermediário para Latossolo devido à presença, em um de seus horizontes, de atributos morfológicos (estrutura e consistências seca e úmida) similares a esta última classe de solo (Anexo I).

Os solos dessa UM apresentam cores centradas nos matizes 5 ou 10YR, mantendo-se o mesmo matiz ao longo todo o perfil. Em geral, os horizontes superficiais A e AB apresentam relação valor/croma de 3/2 ou 3/3 e 4/3, respectivamente, com espessura inferir a 30 cm, enquanto os subsuperficiais estão centrados nos matizes 4/6 e 5/6.

Tabela 4. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CXbe1.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	$\mathbf{s}^{(2)}$	CV ⁽³⁾
Argila ⁽⁴⁾	a	8	162	243	220	29,6	13,5
Aigila	b	4	302	324	308	11,0	3,6
Silte ⁽⁴⁾	a	8	124	191	149	22,7	15,2
Sille	b	4	25	126	93	46,4	49,8
Areia fina ⁽⁴⁾	a	8	414	470	444	17,9	4,0
Areia iina	b	4	403	505	439	47,2	10,8
Areia grossa ⁽⁴⁾	a	8	152	241	193	32,0	16,6
Aleia giossa	b	4	146	177	161	13,3	8,3
all II O	a	8	5,5	6,7	6,3	0,4	6,3
pH H_2O	b	4	6,0	6,5	6,3	0,2	3,5
II I/CI	a	8	4,3	5,8	5,3	0,5	9,0
pH KCl	b	4	4,7	5,1	4,9	0,2	3,7
Carbono ⁽⁴⁾	a	8	6,8	20,0	12,9	4,6	35,4
Carbono	b	4	0,9	3,6	2,2	1,2	53,0
Cálcio ⁽⁵⁾	a	8	4,7	8,6	6,1	1,3	21,1
Calcio	b	4	3,2	5,7	4,0	1,2	29,2
Magnésio ⁽⁵⁾	a	8	0,9	1,5	1,3	0,2	16,3
Magnesio	b	4	1,3	1,4	1,3	0,05	3,8
Potássio ⁽⁵⁾	a	8	0,11	0,32	0,23	0,1	32,1
Potassio	b	4	0,03	0,17	0,08	0,1	77,1
Alumínio ⁽⁵⁾	a	8	0,0	0,1	0,0	0,04	282,8
Alullillio	b	4	0,0	0,0	0,0	0,0	0,0
Hidrogênio ⁽⁵⁾	a	8	1,5	3,8	2,4	0,8	35,0
nidrogenio	b	4	1,0	1,7	1,3	0,3	23,4
Valor S ⁽⁶⁾	a	8	6,0	10,4	7,6	1,5	19,5
vaioi 3	b	4	4,5	7,1	5,4	1,2	21,6
Valor T ⁽⁷⁾	a	8	7,7	13,0	10,0	1,7	17,2
v aloi 1	b	4	5,5	8,3	6,7	1,2	18,4
Valor m ⁽⁸⁾	a	8	0	2	0	0,7	282,8
v aloi III	b	4	0	0	0	0,0	-
Valor V ⁽⁹⁾	a	8	61	84	76	7,2	9,5
vaior V	b	4	75	86	81	4,6	5,7

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.6. Unidade de mapeamento CXbe2: CAMBISSOLO HÁPLICO Tb Eutrófico latossólico ou latossólico petroplíntico, textura média, A moderado, acentuadamente drenado, fase relevo plano

Apenas um delineamento de solo compõe essa UM (Anexo I). Localiza-se a nordeste da área estudada e estende-se por 76,67 ha, o que representa apenas 0,72% de toda a área mapeada. Em relação aos solos da UM anterior (CXbe1), diferenciam-se tanto pela presença de petroplintita e mosqueados em alguns de seus perfis como pela posição na paisagem: os Cambissolos com petroplintita e mosqueados localizam-se predominantemente em locais de drenagem seca, cujo regime hidrológico pretérito favoreceu a segregação e a precipitação do ferro ferroso em massa (COELHO, 1988), originando as petroplintitas e alguns solos de coloração pálida, tal como encontramos hoje na paisagem.

Os perfis P25 e P28 são representativos dessa UM (Anexo I). Neles observam-se atributos semelhantes aos solos da unidade de mapeamento CXbe1: valores de Ki acima de 2,2 unidades e CTC da fração argila excedendo 17 cmol_c kg⁻¹ de argila (17,6 e 23,7 cmol_c kg⁻¹ no horizonte – Bi2 – mais profundo dos perfis P25 e P28, respectivamente), cuja morfologia é similar a horizontes Bw, daí seu caráter intermediário para os Latossolos.

Os perfis e horizontes com petroplintita podem ou não apresentarem colorações variegadas a partir de 30 cm de profundidade. Quando apresentam, também manifestam nódulos petroplínticos e, as vezes, plínticos, dentro de 40 cm a partir da superfície do solo, em quantidade pouca a frequente, nunca excedendo 15% por volume do horizonte, de tamanho predominantemente pequenos (0,2 a 0,8 cm); os nódulos petroplínticos são duros, de forma esférica ou irregular e apresentam colorações avermelhadas e amareladas. Quando não apresentam coloração variegada, como é o caso do perfil P25, os nódulos petroplínticos existentes no perfil manifestam-se em quantidade pouca, ocupando em torno de 10% do volume dos horizontes mais profundos do perfil dentro da seção de controle que define a classe.

Foram identificados Cambissolos Háplicos Distróficos petroplínticos nessa

UM, sobretudo nos talvegues secos situados em cotas ligeiramente inferiores em relação da paisagem local. Devido à sua pequena extensão, foram considerados como inclusão.

3.7. Unidade de mapeamento CXbe3: Associação de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico ou não, fase relevo suave ondulado e plano + CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, fase relevo plano + LATOSSOLO VERMELHO Eutrófico típico, fase relevo plano e suave ondulado, todos textura argilosa, A moderado, bem drenados

Os Cambissolos Háplicos e os Latossolos Vermelhos dessa UM ocupam a segunda maior extensão territorial da área, 1.160,51 ha, o que representa 11,33% do PEMS (Tabela 2). Distribuem-se em três delineamentos localizados aproximadamente na sua porção central. Um material comum nesses solos é a petroplintita, cuja presença e quantidade de ocorrência define a adjetivação de "petroplíntico" ao nome da classe no quarto nível categórico dos Cambissolos. Em geral, as petroplintitas manifestam-se como nódulos que estão presentes em todos os horizontes do perfil, desde à sua superfície e em todas as classes desta UM, mesmo nos Latossolos Vermelhos. Nestes, ocupam quantidades inferiores a 5% do volume dos horizontes até 200 cm de profundidade.

As três classes agrupadas como associação de solos nessa UM apresentam estreita relação com a cota altimétrica e o relevo local. Os Cambissolos Háplicos Tb Eutróficos petroplínticos localizam-se nas cotas mais baixas dessa UM, em relevo exclusivamente plano. À medida que há sutil elevação da paisagem e o relevo torna-se suave ondulado, com intercalações de relevo plano, há a predominância de Cambissolos Háplicos que manifestam horizonte B latossólico, com ou sem petroplintita em quantidadade diagnóstica suficiente para a adjetivação de "petroplíntico" à classe. A transição para os Latossolos Vermelhos se dá por uma rampa com elevação da paisagem, ora de relevo suave ondulado e extensa (superior a 600 m de extensão), ora de relevo ondulado e de menor extensão que a anterior (inferior de 600 m de extensão), formando uma colina de topo curto dominada por Latossolos Vermelhos Eutróficos típicos. O padrão de distribuição dos solos nessa UM,

associado à escala de publicação do levantamento e à sua densidade de observação, não possibilitou representá-los separadamente no mapa de solos do PEMS (Anexo II), mas agrupá-los como associação de solos.

A Tabela 5 mostra os dados estatísticos de atributos e horizontes selecionados dos solos desta UM. Observa-se que os valores mínimos de argila, soma de bases (Valor S) e saturação por bases (Valor V) em subsuperfície, respectivamente, 493 g kg⁻¹, 5,9 cmol_c kg⁻¹ e 74%, evidenciam que são solos de elevado conteúdo de argila, férteis e originados de sedimentos pelíticoscarbonáticos. Os Cambissolos dessa UM apresentam atividade de fração argila geralmente superior a 20 cmol kg-1 de argila nos horizontes diagnósticos subsuperficiais, tal como se pode calcular dos dados analíticos dos perfis P15 e P44 (Anexo I), representativos dessa UM. Da observação dos mesmos, nota-se o desenvolvimento de colorações amareladas (matizes 7,5YR e 10YR) ao longo do perfil, embora tonalidades vermelho-amareladas, com matizes centradas em 5YR no horizonte B diagnóstico, também são comuns nos Cambissolos dessa UM. Por outro lado, os Latossolos dessa UM são estritamente vermelhos (matiz 2,5YR e 10R), como pode observar do perfil P31 (Anexo I). Seus dados analíticos (Anexo I) comprovam sua elevada fertilidade natural, típico de ambientes cársticos.

A descrição dos perfis referentes aos Cambissolos Háplicos Tb Eutróficos latossólicos, dotados ou não de petroplintita em quantidade diagnóstica suficiente para receber a designação de "petroplíntico" na classificação do solo, serão apresentados nas unidades de mapeamento CXbe8 e CXbe11. Na presente UM foram identificados com os dados morfológicos e analíticos observados de amostras coletadas em minitrincheiras associadas a tradagens.

Tabela 5. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CXbe3

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	27	287	552	409	58,5	14,3
Aigna	b	14	493	596	551	27,2	4,9
Silte ⁽⁴⁾	a	27	245	470	278	56,4	20,2
Sinc	b	14	170	239	221	21	9
Areia fina ⁽⁴⁾	a	27	142	282	205	46,5	22,7
Aleia IIIIa	b	14	122	189	149	18,9	12,7
Areia grossa ⁽⁴⁾	a	27	89	134	108	16,4	15,1
Aleia giossa	b	14	58	103	80	11,1	13,8
»H H O	a	27	6,2	8,2	6,6	0,5	8,0
pH H ₂ O	b	14	5,7	7,3	6,4	0,5	7,6
pH KCl	a	27	5,2	7,2	5,5	0,6	10,7
рн ксі	b	14	4,3	5,8	4,9	0,4	9,0
Carbono ⁽⁴⁾	a	27	11,5	24,4	16,4	4,5	27,5
Carbono	b	14	1,8	5,1	3,2	1,0	30,6
Cálcio ⁽⁵⁾	a	27	7,2	20,3	8,2	3,6	43,6
Calcio	b	14	3,2	10,6	6,3	2,2	34,1
Magnésio ⁽⁵⁾	a	27	2,3	5,2	2,3	0,9	39,9
Magnesio	b	14	1,6	6,9	3,1	1,5	48,0
Potássio ⁽⁵⁾	a	27	0,18	0,92	0,36	0,2	52,0
Potassio	b	14	0,06	0,19	0,09	0,03	36,3
Alumínio ⁽⁵⁾	a	27	0,0	0,0	0,0	0,0	0,0
Alumino	b	14	0,0	0,1	0,0	0,04	254,20
Hidrogênio ⁽⁵⁾	a	27	2,6	3,7	2,5	1,0	41,5
Hidrogenio	b	14	0,0	2,7	1,6	0,9	57,1
V. 1 G(6)	a	27	10,7	24,7	10,9	4,3	38,9
Valor S ⁽⁶⁾	b	14	5,9	17,7	9,6	3,3	34,3
Valor T ⁽⁷⁾	a	27	13,3	24,7	13,4	3,6	27,0
vaior 1	b	14	8,0	17,7	11,2	2,9	25,7
Valor m ⁽⁸⁾	a	27	0	0	0	0	-
v alor in	b	14	0	2	0	0,7	254,2
V-1 V(9)	a	27	79	100	80	8,6	10,7
Valor V ⁽⁹⁾	b	14	74	100	85	9,7	11,5

⁽¹⁾ n = número de amostras; (2) s = desvio padrão; (3) CV = coeficiente de variação; (4) g kg⁻¹ de solo; (5) cmol_o kg⁻¹ de solo; (6) Valor S = soma de bases (cmol_o kg⁻¹ de solo); (7) Valor T = capacidade de troca de cátions (cmol_o kg⁻¹ de solo); (8) Valor m = saturação por alumínio (%); (9) Valor V = saturação por bases (9%)

3.8. Unidade de mapeamento CXbe4: Associação de CAMBISSOLO **HAPLICO** Tb Eutrófico petroplíntico, textura argilosa/argilosa com cascalho ou cascalhenta + CAMBISSOLO HAPLICO Tb Eutrófico léptico latossólico, argilosa, todos textura Α moderado, moderadamente drenados, fase relevo plano, ligeiramente pedregosa

Apenas um delineamento de solo da unidade de mapeamento CXbe4 pode ser identificado no mapa de solos do PEMS (Anexo II). Localiza-se a noroeste da área de estudo, ocupando apenas 74,11 ha, o que representa 0,72% de toda a área mapeada (Tabela 2). São áreas que circundam afloramentos de rocha calcária com vegetação característica (Caatinga Arbórea Aberta), cuja fitofisionomia recebe regionalmente o nome de "Furado". Os "Furados" encontram-se em depressões, mas os afloramentos de rocha a eles relacionados estão em cota sutilmente superior em relação aos solos circunvizinhos. Cactáceas são abundantes nesse ambiente (Figura 2).

A presença de petroplintita é comum nos solos próximos aos "Furados", certamente devido ao controle hidrológico (acúmulo e oscilação d'água) imposto pelo lajeado de calcário nos solos circunvizinhos, possibilitando o desenvolvimento de condições favoráveis à segregação do ferro ferroso em massa e seu endurecimento na forma de nódulos petroplínticos (COELHO, 1998).

Os Cambissolos Háplicos são únicos nessa UM. A maioria apresenta conteúdo de petroplintita que raramente excede 20% em volume dos horizontes. No entanto, aqueles destituídos de petroplintita também estão presentes, sobretudo, em duas posições da paisagem: (1) ou mais distantes dos Furados dentro da UM em questão; (2) ou próximos a eles, em Cambissolos Háplicos adjetivados de "léptico" devido à presença de contato lítico (contato com a rocha) entre 50 cm e 100 cm da superfície do solo. Quando distantes, manifestam atributos (sobretudo morfológicos) similares aos dos Latossolos; daí a adjetivação de "latossólico" para alguns Cambissolos Háplicos desta UM.

A Tabela 6 mostra os resultados analíticos de horizontes e atributos selecionados da unidade de mapeamento CXbe4. Nota-se que são solos predominantemente argilosos por todo o perfil, embora o conteúdo mínimo de argila em superfície, 305 g kg⁻¹, evidencia a presença de Cambissolos Háplicos de textura média em superfície nesta UM. Os valores médios de cálcio (7,7 e 6,2 cmol_c kg⁻¹ em superfície e subsuperfície, respectivamente) e de pH em água (6,8 e 7,2 em superfície e subsuperfície, respectivamente) (Tabela 6), são elevados devido à proximidade à rocha de origem. Em decorrência, os teores de alumínio extraível são nulos.

Os Cambissolos Háplicos Tb Eutróficos lépticos ou latossólicos desta UM foram identificados por meio de dados morfológicos e analíticos advindos de coleta e observação de amostras em minitrincheiras e tradagens, cujos valores analíticos foram computados na Tabela 6.

Os dados morfológicos e analíticos dos perfis P2 e P27, representativos dessa UM, são mostrados no Anexo I. Ambos são Cambissolos Háplicos Tb Eutróficos petroplínticos que manifestam colorações amareladas (matiz 10YR), amarelo-avermelhadas (matiz 5YR) e horizonte C dentro de 150 cm de profundidade. Esses atributos possivelmente refletem, no caso da cor, as condições hidrológicas em que se formaram; com relação à profundidade do solum (horizontes A + B), sua maior juvenilidade (idade relativa) em relação tanto aos solos descritos anteriormente como a maioria dos perfis do PEMS, que são mais profundos (Anexo I). A observação dos teores de Fe₂O-₃ (superior a 60 g kg⁻¹ nos perfis P2 e P27) corrobora a assertiva da cor sendo influenciada pelos condições hidrológicas a que foram e permanecem submetidos os solos dessa UM: são inferiores (inferior a 60 g kg⁻¹), por exemplo, ao do perfil P1 da unidade de mapeamento LVe3; um Latossolo Vermelho dotado de cores centradas no matiz 10R. Portanto, a maior atividade da água na área deprimida delimitada pela unidade de mapeamento CXbe4 (Anexo II), favoreceu a formação de goethita sobre a hematita (BOERO; SCHWERTMANN, 1989), com consequente desenvolvimento de solos amarelos e vermelho-amarelos nessa porção da paisagem. Comparativa e contrariamente, a formação de hematita preponderou sobre a goethita nos solos de coloração vermelha intensa originados dos sedimentos pelíticos-carbonáticos do Grupo Bambuí (unidade de mapeamento LVe3, por exemplo), possivelmente devido a menor atividade da água durante a sua formação (BOERO; SCHWERTMANN, 1989).

Tabela 6. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CXbe4.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	5	305	410	359	37,9	10,6
Aigila	b	8	365	551	411	68,5	16,7
Silte ⁽⁴⁾	a	5	140	217	179	36,4	20,3
Sinc	b	8	114	179	156	21,6	13,8
Areia fina(4)	a	5	300	329	315	12,1	3,8
Aicia illia	b	8	202	329	296	48,7	16,5
Areia grossa ⁽⁴⁾	a	5	89	171	147	34,6	23,6
Aleia giossa	b	8	123	142	137	6,7	4,9
pH H ₂ O	a	5	6,0	7,4	6,8	0,5	7,8
p1111 ₂ O	b	8	6,7	8,0	7,2	0,4	6,1
pH KCl	a	5	4,8	6,2	5,6	0,5	9,4
рп ксі	b	8	5,0	6,2	5,5	0,4	7,3
Carbono ⁽⁴⁾	a	5	8,1	22,4	14,5	6,3	43,1
Carbono	b	8	1,8	5,4	2,3	1,4	61,8
Cálcio ⁽⁵⁾	a	5	6,2	10,0	7,7	1,7	21,7
Calcio	b	8	5,4	9,2	6,2	1,3	21,6
Magnésio ⁽⁵⁾	a	5	1,1	3,3	1,9	0,9	48,1
Magnesio	b	8	0,4	2,6	0,7	0,9	131,6
Potássio ⁽⁵⁾	a	5	0,04	0,65	0,20	0,3	127,8
Potassio	b	8	0,04	0,24	0,11	0,1	70,2
Alumínio(5)	a	5	0,0	0,0	0,0	0,0	0,0
Alumino	b	8	0,0	0,0	0,0	0,0	0,0
Hidrogênio ⁽⁵⁾	a	5	0,0	4,4	1,2	1,9	162,2
nidiogeillo	b	8	0,0	1,2	0,4	0,6	154,6
Valor S ⁽⁶⁾	a	5	7,4	14,0	9,8	2,8	28,6
valor 5	b	8	5,8	11,7	7,0	2,2	31,2
Valor T ⁽⁷⁾	a	5	7,6	14,0	10,9	2,7	24,6
valor 1	b	8	6,7	12,9	7,3	2,2	29,8
Valor m ⁽⁸⁾	a	5	0	0	0	0,0	-
vaior m	b	8	0	0	0	0	-
Valor V ⁽⁹⁾	a	5	63	100	90	16,1	17,8
vaior v	b	8	86	100	95	6,7	7,1

⁽¹⁾ n = número de amostras; (2) s = desvio padrão; (3) CV = coeficiente de variação; (4) g kg⁻¹ de solo; (5) cmol_c kg⁻¹ de solo; (6) Valor S = soma de bases (cmol_c kg⁻¹ de solo); (7) Valor T = capacidade de troca de cátions (cmol_c kg⁻¹ de solo); (8) Valor m = saturação por alumínio (%); (9) Valor V = saturação por bases (%)

Figura 2. Afloramento de rocha calcária identificada no mapa de solos como TT1 (tipo de terreno) e denominadas regionalmente de "Furado". Está circundado pelos solos da unidade de mapeamento CXbe4.

3.9. Unidade de mapeamento CXbe5: Associação de CAMBISSOLO HAPLICO Tb Eutrófico saprolítico ou típico, textura média/argilosa com cascalho ou cascalhenta ou argilosa/argilosa com cascalho ou cascalhenta, fase relevo suave ondulado e plano + **CAMBISSOLO** HAPLICO Carbonático típico, textura argilosa, fase relemoderadamente VO plano, ambos drenados CAMBISSOLO HAPLICO Ta Eutrófico petroplíntico, textura média/argilosa ou argilosa, fase relevo plano e suave ondulado, imperfeitamente drenado, todos A moderado

Apenas um delineamento de solo compõe essa UM. Localiza-se a nordeste do PEMS, extendendo-se em 169,19 ha, o que representa 1,65% da área (Tabela 2). Uma expressiva extensão dessa UM foi utilizada intensivamente com cultivo irrigado sob pivô central, mesmo após a criação do PEMS. Em consequência, alguns de seus solos manifestam atributos que diferem das demais UMs, sobretudo em superfície e relacionados à química do solo. Os elevados valores máximos de potássio (1,51 cmol_c kg⁻¹) e fósforo (138 g kg⁻¹) nos horizontes superficiais, mostrados na Tabela 7, evidenciam essa assertiva. São os maiores encontrados no PEMS. Pela observação da Tabela 7 também se observa valores elevados de pH em água em subsuperfície, com média de 8,0 unidades. No entanto, tanto esse atributo como a elevada fertilidade química desses solos estão relacionados não somente as adições

de corretivos e fertilizantes agrícolas, mas também à proximidade da rocha calcária à superfície do solo. O perfil P18 (Anexo I) evidencia esse fato: apresenta horizonte CB e horizontes saprolíticos dotados de caráter carbonático dentro de 84 cm a partir da superfície do solo. A rocha sã encontra-se a aproximadamente 2,50 m de profundidade.

A presença de saprolito (rocha parcialmente decomposta) a pequena profundidade a partir da superfície (52 cm) também pode ser observado no perfil P20 (Anexo I). Este, diferente do P18, não manifesta caráter carbonático (apesar dos elevados valores de pH) e, tampouco, argila de atividade alta. Esses atributos (ausência de caráter carbonático, argila de atividade baixa e presença de saprolito dentro de 100 cm da superfície) associados aos morfológicos e analíticos (Anexo I), conduziram a classificar tal perfil como Cambissolo Háplico Tb Eutrófico saprolítico. Solos semelhantes ao perfil P20, porém com o horizonte saprolítico manifestando-se a profundidades superiores a 100 cm a partir da superfície do solo, também são comuns na área. Foram classificados como Cambissolos Háplicos Tb Eutróficos típicos.

A influência da intensa utilização agrícola dessa UM vai além da constatação de elevados teores de potássio e fósforo na Tabela 7. A observação da paisagem e a análise morfológica do perfil P13, um Cambissolo Háplico Ta Eutrófico petroplíntico (Anexo I), sugere que a área foi submetida a processos erosivos com transporte de solo a curta distância e sua deposição na área representada pelo referido perfil. As evidências desse processo são: (a) a presenca de um horizonte superficial vermelho (2,5YR 4/2) e compactado, contrastando e transicionando abruptamente ao horizonte sotoposto, de coloração variegada composta predominantemente de tons amarelados (10YR 4/ 2); e (b) a posição da paisagem em que se encontra o perfil P13. Foi descrito e amostrado no centro de uma depressão circundada por extensas lançantes de relevo predominantemente suave ondulado, favorecendo o transporte do solo por processos erosivos devido ao seu uso intensivo e deposição nas áreas onde se encontra o perfil P13. A presença de colorações variegadas neste perfil, algumas delas com croma abaixo de duas unidades, sugere que permanece inundado durante alguma parte do ano, principalmente nos seus horizontes mais profundos, onde tons acinzentados são mais expressivos em relação aos horizontes sotopostos (perfil P13; Anexo I).

Tabela 7. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CXbe5.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	$\mathbf{s}^{(2)}$	CV ⁽³⁾
Argila ⁽⁴⁾	a	40	260	494	304	43,8	14,4
Aigila	b	11	325	564	439	81,8	18,6
Silte ⁽⁴⁾	a	40	208	324	272	29,1	10,7
Sille	b	11	190	267	234	27,3	11,7
Areia fina(4)	a	40	132	395	301	43,8	14,6
Areia iina	b	11	118	316	220	75,6	34,4
Areia grossa ⁽⁴⁾	a	40	58	160	123	17,6	14,3
Aleia giossa	b	11	54	162	107	31,4	29,3
-II II O	a	40	5,7	8,0	6,9	0,4	6,4
pH H_2O	b	11	7,3	8,4	8,0	0,4	4,5
-H VC1	a	40	4,5	6,9	5,9	0,3	5,9
pH KCl	b	11	5,8	6,9	6,4	0,4	5,9
Carbono ⁽⁴⁾	a	40	7,3	21,2	14,7	2,5	17,0
Carbono	b	11	2,2	12,8	4,5	2,9	65,6
Cálcio ⁽⁵⁾	a	40	4,4	12,5	7,5	1,7	22,7
Calcio	b	11	4,3	16,6	10,3	4,0	39,4
3.5 (: (5)	a	40	1,4	2,9	1,8	0,3	18,0
Magnésio ⁽⁵⁾	b	11	0,8	3,9	1,8	0,9	48,0
D . (. (5)	a	40	0,31	1,51	0,67	0,3	50,3
Potássio ⁽⁵⁾	b	11	0,07	0,75	0,27	1,7 4,0 0,3 0,9 0,3 0,2	91,6
4.1 (: (5)	a	40	0,0	0,1	0,0	81,8 29,1 27,3 43,8 75,6 17,6 31,4 0,4 0,3 0,4 2,5 2,9 1,7 4,0 0,3 0,9 0,3 0,9 0,0 1,0 0,0 42,1 4,6 1,8 4,5 2,0 4,5 0,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0
Alumínio ⁽⁵⁾	b	11	0,0	0,0	0,0	0,0	0,0
(5)	a	40	0.0	5,0	1,3	1.0	76,1
Hidrogênio ⁽⁵⁾	b	11	0,0	0,0	0,0	0,0	0,0
E4 6 (6)	a	40	3	138	23	42,1	186,2
Fósforo ⁽⁶⁾	b	11	1	18	5	4.6	88,8
Valor S ⁽⁷⁾	a	40	6,9	15,3	10,0	1,8	18,1
Valor S	b	11	5,6	19,8	12,4	4,5	36,2
T. 1 (8)	a	40	7,0	16,4	11,2		18,0
Valor T ⁽⁸⁾	b	11	5,6	19,8	12,4		36,2
57.1 (9)	a	40	0	1	0		_
Valor m ⁽⁹⁾	b	11	0	0	0		_
37.1 37 (10)	a	40	69	100	90	7,2	8,0
Valor V ⁽¹⁰⁾	b	11	100	100	100	0,0	0,0

⁽¹⁾ n = número de amostras; (2) s = desvio padrão; (3) CV = coeficiente de variação; (4) g kg·1 de solo; (5) cmol_o kg·1 de TFSA; (6) mg kg·1 de solo; (7) Valor S = soma de bases (cmol_o kg·1 de solo); (8) Valor T = capacidade de troca de cátions (cmol_o kg·1 de solo); (9) Valor m = saturação por alumínio (%); (10) Valor V = saturação por bases (%).

3.10. Unidade de mapeamento CXbe6: Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico ou típico, A moderado, bem drenado + CHERNOSSOLO ARGILÚVICO ou HÁPLICO, ambos Carbonáticos ou órticos, vertissólicos, moderadamente drenados, todos textura média/argilosa ou média/argilosa com cascalho, fase relevo plano e suave ondulado

Localiza-se a oeste do PEMS, ocupando 362,84 ha, o que corresponde a 3,53% de toda a área mapeada. Dois delineamentos de solos compõe essa UM. Embora contrastantes em atributos, as diferentes classes de solos desta UM não foram individualizadas ou agrupadas com solos semelhantes devido à impossibilidade de se obter parâmetros discriminantes para tal, tanto de campo durante os trabalhos de prospecção, como de escritório por meio de sensoriamento remoto (análise de elementos observáveis nas imagens e fotografias aéreas como cor, textura, tonalidade, forma, dimensão) na escala de trabalho adotada. No entanto, observou-se que nas áreas com predominância de Chernossolos há afloramentos de rocha e pedregosidade em superfície na forma de cascalhos e matacões, os quais geralmente estão ausentes naquelas dominadas exclusivamente por Cambissolos. A pequena quantidade dos mesmos não foi suficiente para definir a fase de rochosidade e pedregosidade aos Chernossolos dessa UM.

Os perfis P16 e P38 (Anexo I) são representativos da unidade de mapeamento CXbe6. O primeiro, um Chernossolo, apresenta significativo gradiente textural (1,72) e caráter carbonático dentro de 100 cm da superfície do solo. No entanto, existem aqueles com inexpressivo gradiente textural e ausência de caráter carbonático na profundidade supracitada. Essas variações de atributos definiram o segundo e terceiro níveis categóricos da classe dos Chernossolos na área de estudo. O perfil P38, um Cambissolo Háplico, apresenta conteúdo de petroplintita (5 a 10% em volume) suficiente para identificar o caráter concrecionário dentro de 150 cm de profundidade no perfil, recebendo a adjetivação de petroplíntico em nível de subgrupo taxonônimo, embora foram identificados Cambissolos com menor ou ausente quantidade de petroplintita. Esses foram classificados como Cambissolos Háplicos Tb Eutróficos típicos.

Vertissolos Háplicos Carbonáticos chernossólicos ou típicos e Vertissolos Háplicos Órticos típicos também foram identificados nessa UM. No entanto, foram considerados como inclusão devido à sua pequena extensão territorial.

3.11. Unidade de mapeamento CXbe7: Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa/argilosa com cascalho, moderadamente drenado + GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura argilosa, imperfeitamente drenado, ambos A moderado, fase relevo plano

Apenas um delineamento compõe a unidade de mapeamento CXbe7. Situa-se a sudoeste da área de estudo, extendendo-se por 30,66 ha, o que corresponde a apenas 0,30% de toda a área mapeada (Tabela 2). Relaciona-se a um canal de drenagem em que há depressões fechadas com uma dinâmica hidrológica adequada para desenvolvimento de feições redoximórficas, horizontes B textural e glei. Os locais mais bem drenados, no entanto, dominam nessa UM e são ocupados por Cambissolos Háplicos dotados de nódulos petroplínticos em quantidade suficiente (5 a 10% em volume do horizonte) para identificar o caráter concrecionário e compor o nome da classe em nível de subgrupo taxonônico.

O perfil P42 é representativo do segundo componente dessa associação de solos. Apresenta horizonte glei coincidente com horizonte B textural e elevados teores de Mg que se sobrepõem aos de Ca, com valores de 8,4 e 5,6 cmol_c kg⁻¹ no horizonte Btg1, respectivamente (Anexo I). Além disso, o teor de Al extraível alcança 3,5 cmol_c kg⁻¹ de solo naquele mesmo horizonte. É possível que essa combinação e proporção de elementos esteja relacionada à presença de proporções significativas de minerais 2:1 no perfil, desprendendo o alumínio por hidrólise, uma vez que alguns tipos dessas argilas são instáveis em solos de reação ácida (UEHARA; GILLMAN, 1981), tal como podemos observar no referido horizonte (pH em água de 5,5). Martins (1993) constatou fato semelhante em solos da Formação Solimões no Estado do Acre.

Os Cambissolos Háplicos com nódulos petroplíntitos dessa UM são semelhantes aqueles descritos na unidade de mapeamento CXbe6 (perfil P38; Anexo

I). Geralmente possuem fragmentos de rocha (ocupando menos que 5% em volume do horizonte) bastante alterada a partir de 30 cm da superfície do solo e colorações amareladas, centradas no matiz 10YR.

3.12. Unidade de mapeamento CXbe8: Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico e LATOSSOLO VERMELHO-AMARELO Eutrófico petroplíntico ou típico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano

Esta UM circunda ou está próxima a alguns afloramentos de rocha identificados no mapa como TT1 (Anexo II). Dois delineamentos a compõe: um localizado a sudoeste e outro a noroeste da área de estudo, cujas classes de solos são morfogeneticamente semelhantes entre si; daí a designação da UM como Grupo Indeferenciado. Distribuem-se em 102,51 ha, o que corresponde a 1,00% da área do PEMS (Tabela 2).

O Perfil P43 (Anexo I) é representativo dessa UM. Apresenta características morfológicas semelhantes aos Latossolos. No entanto, a atividade da fração argila e os valor de Ki dos horizontes diagnósticos subsuperficiais são superiores a 17 cmol_c kg ¹ de argila (dado não mostrado) e 2,2 unidades, respectivamente; atributos esses suficientes para enquadrá-lo na classe dos Cambissolos, e não dos Latossolos. São solos de coloração amarelada, centrada nos matizes 7,5YR e 10YR, geralmente manifestando variegado das cores nos perfis em que o horizonte C ou BC encontra-se dentro de 200 cm de profundidade.

Nódulos petroplínticos são comuns nos solos dessa UM em quantidade que geralmente não ultrapassa 20% em volume dos horizontes. No entanto, nos Latossolos Vermelho-Amarelos podem estar ausentes ou em quantidades aquém de 5% do volume dos horizontes. Diferente dos Cambissolos, apresentam os valores de atividade de argila e Ki abaixo dos supracitados, bem como colorações centradas nos matizes 5YR ou ligeiramente mais vermelhas (3 e 4YR), mas sempre mais amarelas que 2,5YR. Devido à semelhança a aos Latossolos da unidade de mapeamento LVAe1, serão descritos naguela UM.

3.13. Unidade de mapeamento CXbe9: Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico e LATOSSOLO VERMELHO-AMARELO ou VERMELHO Eutrófico típico, ambos textura média, A moderado, acentuadamente drenado, fase relevo plano e suave ondulado

Dois delineamentos de solo compõem essa UM. Distribuem-se por 211,74 ha, o que corresponde a apenas 2,06 ha da área estudada. Situados a norte e noroeste do PEMS, os solos dessa UM são constituídos pela combinação de unidades taxonômicas que apresentam semelhanças morfogenéticas entre si; daí sua identificação como grupamento indeferenciado, semelhante ao descrito para a unidade de mapeamento CXbe8.

Os dados da Tabela 8 evidenciam valores elevados de soma de bases (Valor S; considerando-se que os solos são de textura média), com teores médios de 8,8 e 6,4 cmol_c kg⁻¹ de solo para as horizontes superficiais e subsuperficiais, respectivamente. Os valores médios de pH em água também são elevados, com média de 7,3 unidades para os horizontes subsuperficiais, o que condiciona ausência de alumínio extraível, como pode ser verificado na Tabela 8.

O perfil P40 (Anexo I) é representativo desta UM. Seus atributos morfológicos são característicos da classe dos Latossolos, e assim foi classificado em campo. No entanto, os resultados analíticos do perfil indicaram valores de CTC da fração argila e de Ki dos horizontes dignósticos subsuperficiais acima de 17 cmol_c kg⁻¹ de argila e de 2,2, respectivamente, suficientes para seu enquadramento taxonômico na classe dos Cambissolos, segundo o SiBCS (SANTOS, 2006). Solos semelhantes, mas com valores aquém dos supracitados também ocorrem nessa UM, geralmente associados a conteúdos de argila próximos ou acima de 300 g kg⁻¹ de solo. Foram classificados como Latossolos Vermelho-Amarelos ou Latossolos Vermelhos, ambos eutróficos típicos. Seus perfis representativos são semelhantes aqueles descritos para as unidades de mapeamento LVAe2 e LVe2.

As cores dominantes dos Cambissolos dessa UM estão centradas no matiz 5YR por todo o perfil, com valor/croma de 4/2 e 4/3 em superfície e de 4/6 e

4/8 nos horizontes mais profundos do perfil. Os Latossolos, no entanto, podem apresentar tanto cores semelhantes aos dos Cambissolos, como mais vermelhas, centradas no matiz 2,5YR. Esses são os Latossolos Vermelhos que geralmente ocorrem próximos ou as áreas de exposição de rocha calcária (com pedregosidade e rochosidade) nessa UM, ou aos solos relacionados aos sedimentos pelíticos-carbonáticos do Grupo Bambuí.

Tabela 8. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento CXbe9.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	5	203	285	236	31,1	13,1
Aigila	b	4	223	326	254	49,1	19,3
Silte ⁽⁴⁾	a	5	120	181	144	24,4	17,0
Sine	b	4	104	158	131	25,8	19,8
Areia fina ⁽⁴⁾	a	5	382	429	399	17,9	4,5
Areia iina	b	4	371	448	409	39,1	9,6
Areia grossa ⁽⁴⁾	a	5	196	274	221	31,7	14,3
Areia grossa	b	4	162	302	207	64,0	30,9
pH H ₂ O	a	5	6,6	7,2	6,9	0,3	4,4
рп п ₂ О	b	4	6,7	8,1	7,3	0,6	8,0
-H VCl	a	5	5,4	6,4	5,9	0,4	7,4
pH KCl	b	4	5,4	6,6	6,0	0,5	8,2
Carbono ⁽⁴⁾	a	5	4,4	18,5	12,0	5,7	47,9
Carbono	b	4	1,2	4,4	2,8	1,5	55,0
Cálcio ⁽⁵⁾	a	5	5,4	10,0	7,3	1,8	24,7
Calcio	b	4	3,9	5,9	5,0	0,8	16,7
. (5)	a	5	1,1	2,0	1,4	0,4	25,3
Magnésio ⁽⁵⁾	b	4	1,0	1,4	1,3	0,2	13,9
D (4 (5)	a	5	0,04	0,42	0,17	0,2	90,9
Potássio ⁽⁵⁾	b	4	0,04	0,26	0,12	0,1	79,5
Alumínio ⁽⁵⁾	a	5	0,0	0,0	0,0	0,0	_
Aluminio	b	4	0,0	0,0	0,0	0,0	-
Hidrogênio ⁽⁵⁾	a	5	0,0	2,3	0,8	1,1	138,6
Hidrogenio	b	4	0,0	1,5	0,4	0,8	200,0
Valor S ⁽⁶⁾	a	5	6,8	12,4	8,8	2,2	25,2
valor S	b	4	5,2	7,3	6,4	0,9	14,0
17.1 m(7)	a	5	6,8	12,4	9,6	2,0	21,1
Valor T ⁽⁷⁾	b	4	5,2	8,8	6,7	1,5	22,6
37.1 (8)	a	5	Ó	Ó	Ó	Ó	-
Valor m ⁽⁸⁾	b	4	0	0	0	0	-
x 1 x (9)	a	5	78	100	92	11,5	12,6
Valor V ⁽⁹⁾	b	4	83	100	96	8,5	8,9

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.14. Unidade de mapeamento CXbe10: Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico + PLINTOSSOLO PÉTRICO Concrecionário êutrico, ambos textura média/argilosa com cascalho ou cascalhenta, A moderado, epidistrófico ou não, moderadamente drenado, fase relevo plano

Apenas um delineamento de solo compõe essa UM. Localiza-se a oeste do PEMS (Anexo II) em uma área que ocupa 53,92 ha, o que corresponde a 0,52% de toda a área mapeada (Tabela 2). Em termos de relação solo-relevo, essa UM é facilmente identificada na paisagem, sobretudo quando a comparamos aos Latossolos Vermelhos eutróficos da unidade de mapeamento LVe1: há uma acentuada diferença de nível entre ambas. Os Cambissolos e Plintossolos dessa UM localizam-se em uma depressão alongada entre duas vertentes, com inclinação aproximada de 30%, dominadas por Latossolos Vermelhos que se estendem até o planalto de relevo plano e suave onduado, correspondendo as posições mais elevadas da paisagem regional. No entanto, a transição na paisagem dos solos dessa UM para aqueles da unidade de mapeamento CXbe6 se dá por vertentes suaves, com sutil diferença de nível desses para os Cambissolos e Plintossolos da unidade de mapeamento CXbe10, situados nas porção mais deprimida da paisagem local.

Os Cambissolos e Plintossolos dessa UM diferenciam-se predominantemente pelos maiores conteúdos de nódulos petroplínticos no segundo, em que o horizonte concrecionário geralmente se inicia dentro dos primeiros 30 cm da superfície do solo. Os Cambissolos, por sua vez, têm caráter concrecionário, geralmente com nódulos petroplínticos ocupando até 20% do volume de seus horizontes mais superficiais (primeiros 40 cm da superfície do solo), embora existam aqueles com menores conteúdos de nódulos (8% em volume) apenas nos horizontes mais profundos do perfil (horizonte Bic ocorrendo a aproximadamente 150 cm de profundidade).

Devido à similaridade aos Cambissolos descritos e amostrados na unidade de mapeamento CXbe4, os solos desta UM não serão discutidos aqui.

3.15. Unidade de mapeamento CXbe11: Associação de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, bem drenado + CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, moderadamente drenado, ambos textura argilosa ou muito argilosa, A moderado, fase relevo plano e suave ondulado + VERTISSOLO HÁPLICO Órtico típico ou chernossólico, textura muito argilosa ou argilosa, A moderado ou chernozêmico, imperfeitamente drenado, fase relevo plano

Essa UM é complexa, apresentando expressiva variabilidade de solos e ambientes. Distribue-se por 579,31 ha, o que corresponde a 5,63% de toda a área mapeada (Tabela 2). Apenas um delineamento de solo a compõe, situado ao centro-sul do PEMS (Anexo II).

A complexidade ambiental supracitada não possibilitou separar classes de solos muito distintas entre si, como os Cambissolos intermediários para os Latossolos (Cambissolos latossólicos) e os Vertissolos, na escala de trabalho e de publicacão adotadas neste levantamento. No entanto, há uma estreita relação solorelevo com algumas similaridades em relação aquela descrita para os solos da unidade de mapeamento CXbe3 Os Latossolos cambissólicos situam-se nas porções mais elevadas da paisagem local, em topos mais extensos em relação aqueles da unidade de mapeamento CXbe3. Sua transição para os Cambissolos com petroplintita (Cambissolos petroplínticos) e para os Vertissolos se dá por uma rampa descendente de relevo ondulado e, menos frequente, suave ondulado, com uma diferença de nível de aproximadamente 10 m entre os Cambissolos latossólicos e as demais classes. Em geral, a transição mais frequente nessa UM é entre os Cambissolos latossólicos e os petrolínticos; estes últimos, por sua vez, transicionam-se para o Vertissolo por meio de uma rampa de pequena inclinação, situando-se a poucos centímetros abaixo das áreas de ocorrência de Cambissolos petroplínticos.

Os perfis P35 e P36 são representativos dessa UM (Anexo I). Enquanto o primeiro, um Cambissolo petroplíntico, apresenta estrutura poliédrica, de grau moderada a forte nos horizontes diagnósticos subsuperficiais de consistência úmida extremamente firme, o Cambissolo latossólico referente ao

perfil P36 mostra seus horizontes B com estrutura primária de fraco grau de desenvolvimento e consistência úmida qualificada como friável. Também são constrastantes em relação à cor e a seus atributos químicos: o P36 tem matizes avermelhadas, centradas no 2,5 YR e 10R, enquanto o P35 é de cor úmida amarelada, centrada no matiz 10YR; esse último perfil apresenta melhor fertilidade natural, com maiores valores de soma de bases, saturação por bases e CTC da fração argila em relação ao P36.

Os Vertissolos dessa UM são semelhantes aqueles identificados na unidade de mapeamento VXo e, por isso, serão caracterizados quando da sua descrição.

3.16. Unidade de mapeamento CXbe12: CAMBISSOLO HÁPLICO Tb ou Ta Eutrófico vertissólico petroplíntico, textura argilosa ou argilosa/argilosa com cascalho, A moderado, imperfeitamente drenado, fase relevo plano

Essa pequena UM se situa à noroeste da área de estudo e é composta por um apenas delineamento de solo, que se distribui por 21,31 ha, correspondendo a 0,21% da área do PEMS.

O formato subarredondado do delineamento (Anexo II), sua posição na paisagem e os atributos dos solos que a compõe sugerem que essa UM está relacionada a uma dolina entulhada por processos erosivos. Em termos de posição na paisagem, localiza-se em uma depressão fechada que se encontra circundada por Latossolos Vermelhos eutróficos das unidades de mapeamento LVe3 e CXbe3. A transição entre os Latossolos e os Cambissolos se dá por uma rampa de aproximadamente 15% de declive e que não ultrapassa 500 m de extensão. As evidências pedológicas da relação desta UM a uma dolina entulhada podem ser observadas na descrição do perfil P33 (Anexo I): sua morfologia e dados analíticos evidenciam descontinuidade litológica. A transição plana e abrupta entre o horizonte B incipiente (Bic), com estrutura de fraco grau de desenvolvimento, para outro vértico e gleissólico, é a principal evidência da existência de descontinuidade litológica. Provavelmente, o horizonte identificado como 2Bigv (perfil P33) era o piso da dolina, resultado da evolução morfogenética local, havendo posterior transporte, a curta distância, de sedimentos carreados por erosão

hídrica das áreas mais próximas e elevadas, deposicionando acima daquele horizonte e formando o atual horizonte Bic. A descrição morfológica deste último horizonte sugere que os processos pedogenéticos nele atuantes são bastante incipientes, com pequeno desenvolvimento de estrutura, de tal forma que se encontra na transição entre camada e horizonte pedogenético (e taxonômico). Optou-se por identificá-lo como horizonte.

Os atributos químicos também corroboram a descontinuidade litológica (Anexo I): o valor de soma de bases, por exemplo, quase triplica do horizonte Bi (8,5 cmol kg -1) para o Bigv (23,4 cmol kg -1).

A presença de nódulos petroplínticos no horizonte Bic que, muitos deles se desfazem ao manuseio (plintita?), pode sugerir que foram formados em condições diferenciadas das atuais, impondo-os instabilidade estrutural. Assim, podem ter sido formados nas bordas da dolina, em condições pretéritas de mais elevado nível de base local (ou regional) e desenvolvimento de condições favoráveis à segregação, precipitação e endurecimento dos óxidos de ferro na forma de petroplintita na zona de vadosa. O rebaixamento do nível de base, talvez devido a mudanças climáticas globais, favoreceu a erosão, com remoção, transporte e deposição dos horizontes do solo contendo nódulos petroplínticos (e plínticos?) onde atualmente se encontra o perfil P33.

3.17. Unidade de mapeamento MXk: Associação de CHERNOSSOLO HÁPLICO Carbonático vertissólico + VERTISSOLO HÁPLICO Carbonático chernossólico, ambos textura muito argilosa ou argilosa, imperfeitamente drenados, fase relevo suave ondulado e plano, ligeiramente pedregosa

Esta UM é composta de apenas um delineamento de solo que se localiza ao centro-sul do PEMS. Em seus 82,60 ha de extensão (Tabela 2) apresentam solos que se caracterizam pela presença de horizonte A chernozêmico e de atributos que definem o caráter ou o horizonte vértico em alguns de seus horizontes. A Tabela 9 mostra os dados analíticos selecionados dos solos desta UM. Observa-se elevada fertilidade natural, com valores médios de soma de bases (Valor S) de 28,1 e 33,5 cmol gkg⁻¹ de solo em superfície e

subsuperfície, respectivamente. Em geral, os solos são moderada a fortemente alcalinos devido à presença de carbonatos, seja na forma de nódulos que se podem se desfazer ao manuseio, seja pulverulenta, disperso na matriz do horizonte. Fragmentos de rocha carbonática em estádio intermediário de intemperismo também são comuns nos horizontes diagnósticos subsuperficiais, ocupando, em geral, menos que 5% de seu volume. No entanto, há solos que manifestam fragmentos de rocha desde a superfície e em porcentagens acima daquele valor, em volume.

O perfil P34 é representativo desta UM. Trata-se de solo pouco profundo que manifesta um horizonte saprolítico com caráter carbonático (Crk1) a 63 cm de profundidade. Em geral, o horizonte A chernozêmico tem espessura variável entre 25 e 35 cm. Nas áreas de menor cota, com pequena diferença de nível em relação aos Chernossolos dessa UM, ocorrem os Vertissolos que manifestam características semelhantes àquele descrito na unidade de mapeamento VXk. Nesses, o horizonte vértico ocorre imediatamente sotoposto ao horizonte AB, geralmente a uma profundidade próxima a 40 cm a partir da superfície do solo.

Tabela 9. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento MXk.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	8	458	614	532	58,1	10,9
Aigila	b	4	461	678	586	94,9	16,2
Silte ⁽⁴⁾	a	8	271	379	340	34,1	10,0
Sine	b	4	233	329	277	43,1	15,6
Areia fina(4)	a	8	37	96	73	23,9	32,6
Aleia illia	b	4	38	88	59	21,5	36,7
Areia grossa ⁽⁴⁾	a	8	37	84	55	16,1	29,3
Areia grossa	b	4	32	151	79	55,1	69,8
pH H ₂ O	a	8	6,8	7,9	7,2	0,4	5,2
рп п2О	b	4	7,4	8,5	7,9	0,6	7,0
-II VCI	a	8	5,8	6,9	6,2	0,3	5,5
pH KCl	b	4	5,9	7,3	6,6	0,7	11,1
Carbono ⁽⁴⁾	a	8	16,7	41,4	30,0	7,8	25,9
Carbono	b	4	6,4	9,2	7,9	1,2	15,2
Cálcio ⁽⁵⁾	a	8	15,2	28,5	21,4	5,6	26,4
Carcio	b	4	25,2	31,4	27,4	2,9	10,4
Magnésio ⁽⁵⁾	a	8	3,0	7,8	6,2	1,6	26,3
Magnesio	b	4	3,2	8,8	5,8	2,4	40,9
Potássio ⁽⁵⁾	a	8	0,26	0,84	0,51	0,2	36,4
Potassio	b	4	0,08	0,51	0,25	0,2	79,8
Alumínio ⁽⁵⁾	a	8	0,0	0,0	0,0	0,0	-
Aluminio	b	4	0,0	0,0	0,0	0,0	-
Hidrogênio ⁽⁵⁾	a	8	0,0	3,2	1,1	1,3	122,7
Hidrogenio	b	4	0,0	0,0	0,0	0,0	-
Valor S ⁽⁶⁾	a	8	20,4	36,9	28,1	6,3	22,6
valor 5	b	4	29,0	36,8	33,5	3,8	11,5
Valor T ⁽⁷⁾	a	8	23,5	36,9	29,1	5,3	18,3
valor 1	b	4	29,0	36,8	33,5	3,8	11,5
Valor m ⁽⁸⁾	a	8	0	0	0	0	-
vaior m	b	4	0	0	0	0	-
Valor V ⁽⁹⁾	a	8	86	100	96	5,4	5,6
valor v	b	4	100	100	100	0	0

⁽¹⁾ n = número de amostras; (2) s = desvio padrão; (3) CV = coeficiente de variação; (4) g kg·1 de solo; (5) cmol_c kg·1 de solo; (6) Valor S = soma de bases (cmol_c kg·1 de solo); (7) Valor T = capacidade de troca de cátions (cmol_c kg·1 de solo); (8) Valor m = saturação por alumínio (%); (9) Valor V = saturação por bases (%).

3.18. Unidade de mapeamento MXo: Grupo indeferenciado de CHERNOSSOLO HÁPLICO Órtico petroplíntico e CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, A moderado, ambos textura média/média com cascalho ou cascalhenta, moderadamente drenados, fase relevo plano e suave ondulado

Apenas um delineamento de solo compõe essa UM. Localiza-se a oeste do PEMS e distribui-se por 76,61 ha, o que corresponde a 0,76% de sua área (Tabela 2).

Situa-se em uma depressão entre os sedimentos psamíticos relacionados ao Grupo Urucuia que se localizam à oeste dessa UM e os pelíticos-carbonáticos relacionados ao Grupo Bambuí, situados à leste. Em consequência, a granulometria dos solos dessa UM é intermediária entre ambos os sedimentos, predominando aqueles de textura média, bem como é comum a presença de petroplintita nos perfis, denotando (paleo)condições favoráveis à sua formação, como oscilação do lençol freático a poucos metros da superfície (COELHO, 1988).

A Tabela 10 mostra a estatística descritiva dos horizontes superficiais dos solos dessa UM. O máximo teor de argila, 353 g kg⁻¹, evidencia que há ocorrência de solos argilosos nessa UM. No entanto, distribuem-se em pequenas áreas e, por isso, foram considerados como inclusão. Os elevados valores médios de pH em H_2O (7,2), de soma de bases (Valor S = 12,7 cmol₂ kg⁻¹) e de saturação por bases (Valor V = 94%) desses horizontes (Tabela 10), aliados à sua morfologia e espessura (Perfil P7, Anexo I), confirmam a presença de horizontes A chernozêmicos. Quando os horizontes superficiais são menos espessos (inferior a 25 cm) e/ou de maior croma (mais claros) em relação aos A chernozêmicos, sobretudo quando a cor da amostra é avaliada seca e há ausência de fragmentos de calcário finamente moído, tem-se os horizontes A moderados. Esses estão relacionados aos Cambissolos Háplicos Ta Eutróficos petroplínticos nessa UM. Portanto, diferenciam-se dos Chernossolos sobretudo pelo tipo de horizonte diagnóstico superficial; daí a designação de grupo indiferenciado a esta UM por se tratar de um agrupamento de solos que apresentam semelhanças morfogenéticas entre si (EMBRAPA, 1995).

O perfil P7 é característico desta UM (Anexo I). Sua cor é amarelada, centrada no matiz 10YR, com valor e croma de 3/3 ou 3/2 nos horizontes superficiais. Em subsuperfície há predomínio de colorações variegadas, também de tons amarelos, com nódulos petroplínticos que geralmente não ultrapassam 30% do volume dos horizontes. Quando os nódulos ocorrem nos primeiros 40 cm superficiais do solo e ultrapassam 50% do volume do horizonte, formam-se os horizontes concrecionários dos Plintossolos. Esses solos, juntamente com os Cambissolos Háplicos Ta ou Tb Eutróficos típicos de textura média ou argilosa são pouco expressivos nessa UM e, por isso, foram considerados como inclusão. Aqueles de textura argilosa se localizam à leste da UM, mais próximos aos solos originados dos sedimentos pelíticoscarbonáticos do Grupo Bambuí. Os primeiros ocorrem no talvegue dessa UM, os Cambissolos, por sua vez, próximos à sua borda.

Tabela 10. Estatística descritiva de horizontes superficiais (0 a 10 cm ou 0 a 20 cm) e de atributos selecionados dos solos da unidade de mapeamento Mxo

Atributo	n ⁽¹⁾	Mínimo	Máximo	Média	$\mathbf{s}^{(2)}$	CV ⁽³⁾
Argila ⁽⁴⁾	42	180	353	246	49,1	20,0
Silte ⁽⁴⁾	42	134	298	202	39,7	19,7
Areia fina ⁽⁴⁾	42	276	431	367	43,3	11,8
Areia grossa ⁽⁴⁾	42	126	232	186	23,8	12,8
pH H_2O	42	5,9	8,1	7,2	0,5	7,4
pH KCl	42	4,9	7,5	6,4	0,6	10,1
Carbono ⁽⁴⁾	42	9,4	32,5	19,2	5,6	29,1
Cálcio ⁽⁵⁾	42	4,4	17,4	9,7	2,9	29,6
Magnésio ⁽⁵⁾	42	1,4	3,5	2,5	0,6	22,7
Potássio ⁽⁵⁾	42	0,09	0,85	0,47	0,2	43,8
Alumínio ⁽⁵⁾	42	0,0	0,0	0,0	0,0	-
Hidrogênio ⁽⁵⁾	42	0,0	5,2	0,8	1,2	158,0
Valor S ⁽⁶⁾	42	7,2	20,4	12,7	3,1	24,4
Valor T ⁽⁷⁾	42	8,4	20,4	13,4	2,7	20,3
Valor m ⁽⁸⁾	42	0	0	0	0	-
Valor V ⁽⁹⁾	42	64	100	94	9,3	9,9

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ cmol $_c$ kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.19. Unidade de mapeamento GMve: Grupo indiferenciado de GLEISSOLO MELÂNICO Ta Eutrófico luvissólico petroplíntico ou não, A chernozêmico e GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, A moderado, ambos textura média/argilosa, mal drenados, fase relevo plano

Essa UM se localiza à oeste do PEMS e se distribui por apenas 24,63 ha, o que corresponde a 0,24% da área (Tabela 2). Sua ocorrência em uma depressão de cota ligeiramente inferior as UMs vizinhas (inferior a 1 m), associada à baixa permeabilidade dos horizontes inferiores do perfil (estrutura maciça com baixa porosidade nos horizontes Cg), possibilitaram o desenvolvimento de condições redoximórficas, possivelmente relacionadas à presença de lençol suspenso durante alguns meses ao longo dos anos. Em consequência, houve o desenvolvimento de colorações mosqueadas, variegadas e acinzentadas, típicas de horizontes glei, que no presente caso, são coincidentes com os horizontes B texturais. Em tais solos há aqueles que apresentam horizonte A chernozêmico: são os Gleissolos Melânicos. No entanto, há também os solos em que o horizonte A é do tipo moderado, não se enquadrando como chernozêmico, sobretudo pela pequena espessura deste horizonte (menor que 15 cm): são os Gleissolos Háplicos.

Detalhes dos atributos morfológicos e analíticos dos solos dessa UM podem ser observados nos perfis P19 e P41 (Anexo I), os quais foram utilizados na sua identificação.

3.20. Unidade de mapeamento GXve: GLEISSOLO HÁPLICO Ta Eutrófico vertissólico ou não, neofluvissólico, textura argilosa ou muito argilosa ou argilosa/média ou média, A moderado, muito mal drenado, fase relevo plano

Os Gleissolos dessa UM compreendem todos os solos da mesma ordem taxonômica formados nos sedimentos quaternários do rio São Francisco. Distribuem-se por 909,00 ha, o que corresponde a 8,84% de toda a área mapeada (Tabela 2). Em relação aos sedimentos quaternários, ocupam 36,14% de sua extensão, distribuídos em quatro delineamentos de solos (Anexo II).

Devido à dificuldade de acesso a essas áreas, muitas delas permanentemente inundadas, foram poucos os pontos de coleta e observação. No entanto, os existentes (20 pontos, dentre os coletados e observados) estão distribuídos em todos os delineamentos mapeados.

O perfil P11 (Anexo I) é representativo desta UM. Possui horizonte glei iniciando a 18 cm de profundidade (horizonte CAg), imediatamente abaixo de horizonte A do tipo moderado. A presença de slikensides em quantidade pouca, além de fendas verticais e forte estruturação do horizonte Cgv, foram atributos considerados na designação de vertissólico aos Gleissolos dessa UM. No entanto, como é comum em depósitos fluviais, há grande variabilidade lateral de textura. Naqueles de textura média não ocorre o caráter vértico, mas o caráter flúvico foi observado dentro de 100 cm a partir da superfície do solo em todos os pontos coletados e observados nessa UM.

3.21. Unidade de mapeamento LAd: LATOSSOLO AMARELO Distrófico típico, textura média, A moderado, álico ou não, fortemente drenado, fase relevo plano e suave ondulado

Três delineamentos de solos, situados a oeste da área de estudo, foram cartografados como pertencentes à unidade de mapeamento LAd (Anexo II). Distribuem-se por 165,58 ha, o que corresponde a apenas 1,61% de toda a área mapeada (Tabela 2). A Tabela 11 mostra os resultados analíticos de 10 pontos amostrais coletados e descritos na unidade de mapeamento LAd, seja com trado, em minitrincheiras ou em perfil completo (perfil P3; Anexo I). Nota-se que são solos de textura média, com conteúdo máximo de argila de 221 g kg⁻¹ de solo. São naturalmente pobre em nutrientes, com valores médios de soma de bases (Valor S) em subsuperfície de 0,5 cmol kg-1 de solo. Embora os teores de alumínio extraível e os valores de saturação por alumínio (Valor m) são elevados e suficientes para enquadrar a maioria dos solos como álicos, em expressiva parte das amostras de solos coletadas, os teores de alumínio extraível são iguais ou inferiores a 0,5 cmol kg-1 de solo (perfil P3; Anexo I). Esses são os Latossolos Amarelos Distróficos que não recebem a designação de álico nos níveis categóricos inferiores (SANTOS, 2006). Notase, pelos valores relativamente baixos de coeficiente de variação de muitos dados constantes na Tabela 11, que são solos relativamente homogêneos, com pequena variabilidade espacial e lateral de seus atributos.

O perfil P3 (Anexo I) é representativo desta UM. Apresenta a cor do horizonte superficial centrada nos matizes 5YR e dos subsuperficiais, no 7,5YR; seu conteúdo máximo de argila em todo o perfil é de 141 g kg-¹ de solo; a estrutura é pouco desenvolvida nos horizontes B, cuja consistência húmica é muito friável. Apresenta, ainda, baixa soma de bases em todo o perfil e elevada saturação por alumínio em subsuperfície, embora o teor desse elemento seja aquém de 0,5 cmol_c kg-¹ de solo. A maioria desses atributos diferem significativamente dos solos originados tanto dos sedimentos pelíticos-carbonáticos do Grupo Bambuí, como dos fluviais-quaternários recentes relacionados ao rio São Francisco. Desenvolveram-se nas coberturas cretáceas psamíticas possivelmente relacionados aos Grupo Bambuí, e sobre eles ocorre uma vegetação regionalmente denominada de "Carrasco".

3.22. Unidade de mapeamento LVd1: LATOSSOLO VERMELHO Distrófico típico, textura argilosa, A moderado, álico, acentuadamente drenado, fase relevo plano e suave ondulado

Esta UM, composta de apenas um delineamento de solo, localiza-se à oeste do PEMS. Sua extensão é de 67,07 ha, o que corresponde a apenas 0,65% de toda a área mapeada (Tabela 2). Devido à sua posição na paisagem, entre os sedimentos arenoquartzosos e pelíticos-carbonáticos, os solos da unidade de mapeamento LVd1 mostram um conjunto de atributos que podem ser considerados intermediários em relação aqueles desenvolvidos exclusivamente desses sedimentos. A coloração avermelhada associada ao distrofismo e a textura argilosa são os principais atributos que sugerem o caráter intermediário do material de origem desses solos em relação aos circunvizinhos.

O perfil P24 (Anexo I) representa esta UM. Sua cor está centrada no matiz 2,5YR em superficie e 10R em subsuperfície, embora foram registrados solos nesta UM com matizes exclusivamente centradas no 2,5YR por todo o perfil. É de textura média em superfície e argilosa abaixo de 55 cm de profundidade, sendo seu valor máximo de argila de 384 g kg⁻¹ de solo. O valor mínimo de m% no perfil, 56%, evidencia que é um solo álico, embora existam aqueles que manifestam esse caráter apenas em subsuperfície ou não o manifestam. Esses solos são menos expressivos nessa UM e, por isso, foram considerados como inclusão.

Tabela 11. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LAd.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	10	120	161	139	17,7	12,8
Aigila	b	8	140	221	163	36,2	22,2
Silte ⁽⁴⁾	a	10	12	114	54	30,0	56,2
Sine	b	8	40	77	55	15,2	27,8
Areia fina(1)	a	10	444	606	529	49,9	9,4
Aleia IIIIa	b	8	473	594	541	42,4	7,8
A main amagan(4)	a	10	225	321	279	26,5	9,5
Areia grossa ⁽⁴⁾ pH H ₂ O pH KCl Carbono ⁽⁴⁾ Cálcio+Magnésio ⁽⁵⁾	b	8	219	267	241	20,2	8,4
-IIII O	a	10	4,1	6,0	4,8	0,5	10,7
pH H ₂ O	b	8	4,8	5,2	5,0	0,1	2,8
"II VCI	a	10	3,6	5,0	4,0	0,4	9,9
рп ксі	b	8	3,8	4,1	4,0	0,1	2,9
Carbona (4)	a	10	3,4	12,2	6,6	2,6	38,9
Carbono	b	8	1,2	2,2	1,9	0,4	18,9
C41-:- : M4-:- (5)	a	10	0,5	1,4	0,94	0,3	34,8
Calcio+Magnesio	b	8	0,3	0,8	0,5	0,2	43,7
Potássio ⁽⁵⁾	a	10	0,02	0,11	0,06	0,03	50,16
Potassio	b	8	0,01	0,30	0,05	0,1	208,5
Alumínio ⁽⁵⁾	a	10	0,0	1,3	0,6	0,4	67,4
Aluminio	b	8	0,3	1,0	0,6	0,3	48,1
Hidrogênio ⁽⁵⁾	a	10	1,1	3,4	2,3	0,8	32,4
nidiogenio	b	8	0,8	1,6	1,2	0,3	25,2
Valor S ⁽⁶⁾	a	10	0,6	1,5	1,0	0,4	37,2
valor 5	b	8	0,3	0,8	0,5	0,2	39,7
Valor T ⁽⁷⁾	a	10	2,2	5,5	3,9	1,1	27,2
valor 1	b	8	1,5	3,3	2,3	0,7	29,1
Valor m ⁽⁸⁾	a	10	0	68	39	20,3	52,6
v alor m	b	8	27	62	52	12,7	24,7
Valor V ⁽⁹⁾	a	10	14	47	26	10,5	40,9
valor v	b	8	15	40	23	7,8	33,6

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.23. Unidade de mapeamento LVd2: LATOSSOLO VERMELHO Distrófico ou Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano

Com apenas um delineamento de solo, a unidade de mapeamento LVd2 situase no extremo norte do PEMS. Sua extensão é de apenas 67,29 ha, o que representa 0,65% de toda a área mapeada (Tabela 2). Como peculiaridade, os solos desta UM mostram variação do teor de alumínio extraível em profundidade, muitas vezes errática. No entanto, o elemento também pode estar ausente no perfil. Quando isso ocorre, ou se está presente apenas em pequenos conteúdos (0,1 cmol_c kg⁻¹ de solo) ao longo de todo perfil, os Latossolos Vermelhos são predominantemente eutróficos. No entanto, os distróficos predominam na UM, como se pode observar pelos valores médios de saturação por bases (Valor V) dos dados constantes na Tabela 12.

O máximo valor de saturação por alumínio (valor m) em subsuperfície, 55% (Tabela 12), refere-se a apenas um horizonte (BA) do perfil P21, representativo desta UM. Sua descrição morfológica e os dados analíticos são mostradas no Anexo I. Observa-se que o mesmo apresenta baixo conteúdo de soma de bases (Valor S) em subsuperfície, com valor máximo de 1,2 cmol_c kg⁻¹ de solo; valor esse semelhante ao médio do atributo (1,4 cmol_c kg⁻¹ de solo) observado para as camadas subsuperficiais dos pontos descritos e amostrados nesta UM (Tabela 12).

Os solos desta UM apresentam coloração centrada nos matizes 2,5YR e 5YR em superfície, predominando a primeira. Em profundidade, tanto o matiz 2,5YR como 10R ocorrem, sendo as mais vermelhas preponderantes.

Tabela 12. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LVd2.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	$\mathbf{s}^{(2)}$	CV ⁽³⁾
Argila ⁽⁴⁾	a	11	120	181	146	22,3	15,3
Aigila	b	7	181	221	198	13,8	7,0
Silte ⁽⁴⁾	a	11	45	124	99	63,2	63,7
Sine	b	7	63	125	94	19,5	20,9
Areia fina(1)	a	11	459	573	517	42,6	8,2
Altia IIIIa	b	7	493	533	509	12,2	2,4
A raio aragas ⁽⁴⁾	a	11	54	256	238	69,7	29,3
Areia grossa ⁽⁴⁾ pH H ₂ O pH KCl Carbono ⁽⁴⁾ Cálcio+Magnésio ⁽⁵⁾	b	7	151	251	199	32,7	16,4
»II II O	a	11	4,6	6,6	5,6	0,6	11,4
pH H₂O	b	7	5,1	5,9	5,5	0,3	4,6
-H VC1	a	11	3,8	5,6	4,6	0,6	13,5
рн ксі	b	7	3,9	4,8	4,4	0,3	6,4
C1(4)	a	11	4,3	11,8	8,1	2,9	35,4
Carbono	b	7	1,1	5,3	2,4	1,4	58,5
Cálaia Magnásia (5)	a	11	0,6	3,7	2,3	1,2	53,4
Calcio+Magnesio	b	7	0,5	2,5	1,4	0,6	46,3
Potássio ⁽⁵⁾	a	11	0,04	0,18	0,10	0,05	47,4
Potassio	b	7	0,01	0,04	0,03	0,01	37,4
Alumínio ⁽⁵⁾	b 7 a 11 b 7	0,0	0,5	0,2	0,2	122,7	
Aluminio	b	7	181 221 198 13 45 124 99 63 63 125 94 19 459 573 517 42 493 533 509 12 54 256 238 69 151 251 199 32 4,6 6,6 5,6 0 5,1 5,9 5,5 0 3,8 5,6 4,6 0 3,9 4,8 4,4 0 4,3 11,8 8,1 2 1,1 5,3 2,4 1 0,6 3,7 2,3 1 0,5 2,5 1,4 0 0,04 0,18 0,10 0,9 0,0 0,5 0,2 0 0,0 0,5 0,2 0 0,0 0,6 0,2 0 0,0 0,6 0,2 0	0,2	126,5		
Hidrogênio ⁽⁵⁾	a	11	1,6	2,9	2,2	0,4	18,8
Hidrogenio	b	7	7 63 125 94 193 11 459 573 517 42,0 7 493 533 509 12,3 11 54 256 238 69,7 7 151 251 199 32,7 11 4,6 6,6 5,6 0,6 7 5,1 5,9 5,5 0,3 11 3,8 5,6 4,6 0,6 7 3,9 4,8 4,4 0,3 11 4,3 11,8 8,1 2,9 7 1,1 5,3 2,4 1,4 11 0,6 3,7 2,3 1,2 7 0,5 2,5 1,4 0,6 11 0,04 0,18 0,10 0,0 7 0,01 0,04 0,03 0,0 11 0,0 0,5 0,2 0,2 7 0,0 0,6	0,6	44,4		
Valor S ⁽⁶⁾	a	11	0,7	3,9	2,3	1,3	57,5
valor S	b	7	0,5	2,5	1,4	0,6	46,3
37.1 (7)	a	11	3,0	5,7	4,7	1,2	25,1
Valor T ⁽⁷⁾	b	7	2,1	5,1	2,9	1,0	35,8
Valor m ⁽⁸⁾	a	11	0	36	14	17,9	132,1
vaior m	b	7	0	55	13	18,9	146,6
Valor V ⁽⁹⁾	a	11	20	68	46	18,2	39,6
valor V	b	7	18	62	49	15,2	31,3

⁽¹⁾ n = número de amostras; (2) s = desvio padrão; (3) CV = coeficiente de variação; (4) g kg·1 de solo; (5) cmol_c kg·1 de solo; (6) Valor S = soma de bases (cmol_c kg·1 de solo); (7) Valor T = capacidade de troca de cátions (cmol_c kg·1 de solo); (8) Valor m = saturação por alumínio (%); (9) Valor V = saturação por bases (%).

3.24. Unidade de mapeamento LVe1: LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado, epidistrófico ou não, bem drenado, fase relevo plano e suave ondulado

Dois delineamentos de solo compõe essa UM. Localizam-se a oeste do PEMS e se distribuem por 326,43 ha, o que corresponde a 3,17% de toda a área mapeada (Tabela 2). Devido à sua posição na paisagem, situados em uma zona de transição entre os sedimentos psamíticos e os pelíticos, os solos desta UM se mostram de menor fertilidade química em relação àqueles originados exclusivamente dos sedimentos pelíticos (LVe3). A frequência de solos distróficos em superfície, de mais altos conteúdos de alumínio extraível e menores valores de soma de bases em relação aos solos da unidade de mapeamento LVe3, corrobora essa assertiva. Esses valores podem ser visualizados e comparados nas Tabelas 13 e 15, que mostram as variações analíticas de atributos selecionados das unidades de mapeamento LVe1 e LVe3, respectivamente. Em superfície, por exemplo, o valor médio de saturacão por bases (Valor V) é de 54% para os solos da unidade de mapeamento LVe1 (Tabela 13) e de 68% para aqueles da LVe3 (Tabela 15). Em subsuperfície, os teores médios de soma de bases (Valor S) são de 3,2 e 5,3 cmol kg-1 de solo respectivamente para os solos daquelas UMs.

O perfil P9 (Anexo I) é representativo da unidade de mapeamento LVe1. Trata-se de um Latossolo Vermelho Eutrófico típico que apresenta distrofismo nos primeiros 45 cm de profundidade; daí a adjetivação de epidistrófico na sua classificação. As maiores contribuições, em superfície, dos teores alumínio extraível e de hidrogênio ionizável para a capacidade de troca catiônica são os responsáveis por este resultado.

Em termos morfológicos, os solos desta UM manifestam atributos característicos da classe: estrutura com fraco grau de desenvolvimento e consistência úmida friável nos horizontes diagnósticos subsuperficiais, ausência de cerosidade em todo o perfil, bem como ausência de expressivo gradiente textural, geralmente inferior a 1,3 unidades. As cores são centradas nos no matiz 10R em todo o perfil, podendo apresentar-se como 2,5YR nos seus horizontes mais superficiais.

Tabela 13. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LVe1.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	18	304	509	418	54,4	13,0
Aigila	b	10	466	568	508	35,0	6,9
Silte ⁽⁴⁾	a	18	141	309	203	44,7	22,0
Sine	b	10	143	225	176	28,1	16,0
Areia fina ⁽⁴⁾	a	18	189	314	251	32,8	13,1
Aleia Illia	b	10	81	180	217	64,8	29,9
Areia grossa ⁽⁴⁾	a	18	92	180	128	23,2	18,2
Areia grossa	b	10	71	213	100	41,6	41,5
-11110	a	18	4,5	7,0	5,6	0,7	13,3
pH H_2O	b	10	4,8	6,3	5,5	0,5	9,2
II V.C!	a	18	4,0	6,1	4,6	0,7	14,9
pH KCl	b	10	4,1	4,7	4,3	0,2	4,9
C 1 (4)	a	18	4,7	24,4	14,2	5,5	38,9
Carbono ⁽⁴⁾	b	10	1,6	3,9	2,5	0,7	29,1
Cálcio ⁽⁵⁾	a	18	0,5	10,4	3,6	2,8	77,6
Calcio	b	10	0,7	4,1	1,7	1,2	67,3
. (5)	a	18	0,7	2,9	1,5	0,7	46,9
Magnésio ⁽⁵⁾	b	10	1,1	1,9	1,5	0,2	16,7
Potássio ⁽⁵⁾	a	18	0,07	0,55	0,22	0,1	60,8
Potassio	b	10	0,01	0,07	0,04	0,02	46,6
(5)	a	18	0,0	1,3	0,4	35,0 44,7 28,1 32,8 64,8 23,2 41,6 0,7 0,5 0,7 0,2 5,5 0,7 2,8 1,2 0,7 0,2 0,1 0,02 0,4 0,1 1,3 0,2 3,5 1,2 2,4 1,1 14,4 5,1 22,6	103,7
Alumínio ⁽⁵⁾	b	10	0,1	0,4	0,3	0,1	48,7
11:1 ^ (5)	a	18	0,0	5,7	3,3	1,3	39,6
Hidrogênio ⁽⁵⁾	b	10	1,5	2,4	1,8	0,2	13,6
T. 1 (6)	a	18	1,4	13,8	5,3	3,5	65,6
Valor S ⁽⁶⁾	b	10	2.0	5,3	3,2	1,2	35,9
· · · · · · · · · · · · · · · · · · ·	a	18	4,9	14,0	9,0	2.4	26,7
Valor T ⁽⁷⁾	b	10	4,1	7,3	5,3	,	20,1
(8)	a	18	Ó	48	12		119,4
Valor m ⁽⁸⁾	b	10	2	15	9		58,1
57.1 57 (9)	a	18	22	100	54		41,7
Valor V ⁽⁹⁾	b	10	45	74	59	9,2	15,6

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.25. Unidade de mapeamento LVe2: LATOSSOLO VER-MELHO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano e suave ondulado

A unidade de mapeamento LVe2 estende-se por 561,60 ha, correspondendo a 5,46% da área mapeada (Tabela 2). Três delineamentos de solo a compõe. O maior situa-se ao norte da área, enquanto os demais, a oeste.

São solos de textura média e de boa fertilidade natural. Os valores mínimos, máximos e médio de soma de bases (Valor S) e de saturação por bases (Valor V) dos horizontes subsuperficiais referentes aos 23 pontos coletados nessa UM corroboram essa assertiva (Tabela 14). Esses valores são, respectivamente: 1,6; 5,4 e 2,9 cmol_o kg⁻¹ de solo e 49, 100 e 76%.

Três perfis, P14, P17 e P39, foram descritos e amostrados nessa UM. Seus dados morfológicos e analíticos podem ser visualizados no Anexo I. Apresentam valores de argila que variam de 202 a 263 g kg⁻¹ de solo e baixos (valor máximo de 0,2 cmol_c kg⁻¹ de solo) a nulos valores de alumínio extraível ao longo do perfil. Em termos morfológicos, apresentam matizes centrados no 10R nos horizontes B latossólicos. No entanto, os horizontes superficiais podem ter matizes 5YR e 2,5YR. Este último é mais comum nos solos desta UM.

Latossolos Vermelhos Distróficos típicos foram descritos e amostrados nessa UM, mas devido à sua pequena extensão, foram considerados como inclusão.

Tabela 14. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LVe2.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	$\mathbf{s}^{(2)}$	CV ⁽³⁾
Argila ⁽⁴⁾	a	37	161	429	242	55,2	22,8
Aigna	b	23	222	343	273	31,2	11,4
Silte ⁽⁴⁾	a	37	74	250	132	43,4	32,9
Since	b	23	84	228	136	38,4	28,2
Areia fina ⁽⁴⁾	a	37	227	530	443	60,2	13,6
Altia Illia	b	23	379	502	441	33,6	7,6
Areia grossa ⁽⁴⁾	a	37	94	228	183	27,7	15,2
Aleia giossa	b	23	109	190	150	17,7	11,8
»HHO	a	37	5,0	7,1	6,1	0,5	8,5
pH H ₂ O	b	23	5,3	8,1	6,4	0,8	13,0
pH KCl	a	37	4,0	6,1	5,0	0,5	11,0
рп ксі	b	23	4,1	6,8	5,1	0,7	14,5
Carbono ⁽⁴⁾	a	37	3,6	17,1	9,8	3,6	37,1
Carbono	b	23	0,9	4,8	2,2	1,0	44,9
Cálcio ⁽⁵⁾	a	37	1,2	9,1	3,5	1,9	52,7
Calcio	b	23	1,2	4,4	2,1	0,9	40,0
Magnésio ⁽⁵⁾	a	37	0,6	2,0	1,1	0,3	32,5
Magnesio	b	23	0,3	1,1	0,7	0,2	31,6
Potássio ⁽⁵⁾	a	37	0,04	0,56	0,22	0,1	67,1
rotassio	b	23 222 37 74 23 84 37 227 23 379 37 94 23 109 37 5,0 23 5,3 37 4,0 23 4,1 37 3,6 23 0,9 37 1,2 23 1,2 37 0,6 23 0,3	0,14	0,04	0,03	65,9	
Alumínio ⁽⁵⁾	a	37	0,0	0,9	0,1	0,2	230,4
Aluminio	b	23	0,0	0,4	0,1	0,1	176,7
Hidrogênio ⁽⁵⁾	a	37	0,0	4,2	2,4	0,8	34,4
mulogenio	b	23	0,0	2,1	0,8	0,6	73,2
Valor S ⁽⁶⁾	a	37	2,4	11,7	4,8	2,2	45,3
valor 5	b	23	1,6	5,4	2,9	1,0	35,1
Valor T ⁽⁷⁾	a	37	4,3	12,8	7,3	2,0	27,7
valor 1	b	23	2,6	5,4	3,8	0,9	22,6
Valor m ⁽⁸⁾	a	37	0	27	3	5,8	224,4
v afor in	b	23	0	14	3	4,9	167,2
Valor V ⁽⁹⁾	a	37	36	100	64	13,9	21,6
valor v	b	23	49	100	76	17,1	22,5

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.26. Unidade de mapeamento LVe3: LATOSSOLO VERMELHO Eutrófico típico ou chernossólico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo plano e suave ondulado

A unidade de mapeamento LVe3 é a de maior extensão na área mapeada, ocupando 1.903,91 ha, o que representa 18,52% do PEMS (Tabela 2). Distribui-se de norte a sul, sobretudo nas porções centrais da área. Quatro unidades de mapeamento de solo a compõe e nelas foram descritos, coletados e analisados dois perfis de solo completos e aproximadamente 85 amostras extras, observadas e coletadas com trado e/ou em minitrincheiras. Parte dos resultados analíticos podem ser visualizados na Tabela 15. Do exame da mesma, observa-se que os teores de argila em subsuperfície variam de 384 (mínimo) a 619 (máximo) g kg⁻¹ de solo, com valores médios de 498 g kg⁻¹ de solo. Assim, ocorrem Latossolos Vermelhos Eutróficos de textura muito argilosa na área, porém, em pequena extensão; por isso, foram considerados como inclusão.

Os valores máximos de soma de bases (Valor S) em superfície e subsuperfície, respectivamente 15,6 e 9,3 cmol_c kg⁻¹ de solo, e médios nas mesmas camadas, 7,1 e 5,2 cmol_c kg⁻¹, evidenciam que são solos de elevada fertilidade química, já que os elementos cálcio e magnésio são os que mais contribuem para esses valores, com muito pequena participação do sódio (média de 0,01 cmol_c kg⁻¹ de solo em superfície e subsuperfície), bem como do alumínio para a capacidade de troca de cátions do solo (Valor T; média de 0,1 cmol_c kg⁻¹ de solo em superfície e subsuperfície; Tabela 15).

Os perfis P1 e P10 são os representativos dessa UM. Em comum, mostram colorações vermelhas desde a superfície do solo, com matizes centradas no 10R, bem como seus horizontes superficiais apresentam-se com baixos valor e croma, 3/2 e 3/3. Quando essas cores se mantém no perfil, bem como são satisfeitos os demais critérios considerados no SiBCS (SANTOS, 2006) para identificar o horizonte A chernozêmico, os Latossolos dessa UM recebem a adjetivação de chernossólicos no quarto nível categórico, tal como se pode observar no perfil P10. Outra característica de alguns Latossolos dessa área é a estrutura de grau moderado no horizonte BA com desenvolvimento de cerosidade, porém de intensidade fraca. O perfil P1 é um exemplo.

Tabela 15. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LVe3.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
Argila ⁽⁴⁾	a	123	280	572	373	67,5	18,1
Aigna	b	23	384	619	498	65,8	13,2
Silte ⁽⁴⁾	a	123	95	417	190	54,5	28,7
Sine	b	23	118	247	181	36,6	20,2
Areia fina ⁽⁴⁾	a	123	37	396	287	60,7	21,1
Areia iina	b	23	107	348	229	66,4	28,9
Areia grossa ⁽⁴⁾	a	123	45	216	149	38,5	25,8
Aleia giossa	b	23	49	144	92	24,4	26,6
-HHO	a	123	4,6	7,4	6,1	0,7	11,4
pH H_2O	b	23	5,1	7,0	5,8	0,5	8,7
II V.C1	a	123	3,9	6,6	5,2	0,7	13,9
pH KCl	b	23	4,0	5,8	4,7	0,4	9,2
Carbono ⁽⁴⁾	a	123	5,4	31,3	16,0	5,0	31,4
Carbono	b	23	1,8	6,3	3,2	1,2	37,6
Cálcio ⁽⁵⁾	a	123	0,6	12,2	5,2	2,3	44,7
Calcio	b	23	1,7	6,5	3,2	1,1	35,8
Magnésio ⁽⁵⁾	a	123	0,5	3,4	1,6	0,6	38,7
Magnesio	b	23	0,9	4,8	1,9	0,9	46,7
Potássio ⁽⁵⁾	a	123	0,05	1,75	0,29	0,2	77,1
Potassio	b a b a b a b a b	23	0,04	0,12	0,06	0,02	38,0
Alumínio ⁽⁵⁾	a	123	0,0	1,5	0,1	0,3	218,4
Aluminio	b	23	0,0	0,4	0,1	0,1	153,3
Hidrogênio ⁽⁵⁾	a	123	0,0	6,6	2,9	1,3	46,3
Hidrogenio	b	23	1,1	2,4	1,7	0,3	19,2
V 1 G(6)	a	123	1,5	15,6	7,1	2,9	41,1
Valor S ⁽⁶⁾	b	23	3,1	9,3	5,2	1,6	31,1
Valor T ⁽⁷⁾	a	123	4,3	15,6	10,1	2,2	21,6
vaior 1	b	23	4,5	11,7	6,9	1,7	24,1
V-1(8)	a	123	0	50	4	9,8	238,5
Valor m ⁽⁸⁾	b	23	0	11	2	3,0	159,1
37.1 37(9)	a	123	27	100	68	18,4	27,2
Valor V ⁽⁹⁾	b	23	57	86	74	7,0	9,5

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ cmol $_c$ kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.27. Unidade de mapeamento LVe4: Associação de LATOSSOLO VERMELHO Eutrófico típico + CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano e suave ondulado

Esta UM, composta de dois delineamentos de solo, situa-se a noroeste da área de estudo e ocupa 229,85 ha. Sua extensão corresponde a apenas 2,24% do PEMS (Tabela 2).

Duas classes de solos, constrastantes entre si, sobretudo quanto à cor e presença ou ausência de petroplintita, definiram esta UM. A de maior ocorrência assemelha-se, quanto aos atributos, àquela descrita e mapeada na unidade de mapeamento LVe3. Trata-se dos Latossolos Vermelhos Eutróficos típicos, localizados em cota ligeiramente superior em relação à outra classe desta UM. Esta outra, o Cambissolo Háplico Tb Eutrófico, contrasta quanto à cor: enquanto os Latossolos Vermelhos da área têm sua matiz centrada no 2,5YR e 10R, os Cambissolos Háplicos são vermelho-amarelos, com matiz predominantemente 5YR. Situam-se em duas posições específicas na paisagem: ou nas proximidades dos afloramentos de rochas calcária ou, possivelmente, em dolinas entulhadas. Em ambas as situações, os perfis foram sujeitos a condições de maior umidade em relação aos Latossolos Vermelhos circunvizinhos, o que favoreceu o amarelecimento do solo e a formação de nódulos petroplínticos.

O perfil P30 (Anexo I) é representativo dos Cambissolos desta UM. Tanto a presença de nódulos petroplínticos, que ocupam aproximadamente 10% do volume do horizonte Bic1, como a manifestação neste horizonte de características morfológicas similares ao B latossólico, convergiram para classificar o Cambissolo em questão como "latossólico petroplíntico" em nível de subgrupo taxonômico. Nota-se que os horizontes Bic1 e Bic2 têm cores vermelho-amarelas centradas no matiz 5YR.

3.28. Unidade de mapeamento LVAd1: Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, fortemente drenados, fase relevo plano e suave ondulado

Dois delineamentos de solos compõe esta UM. Situam-se à oeste do PEMS e, assim com os solos da unidade de mapeamento LAd, os desta unidade foram originados do intemperismo dos arenitos quartzosos ou das coberturas terciárias psamíticas, possivelmente relacionados ao arenito Urucuia. No entanto, diferenciam-se daqueles basicamente pela maior quantidade de argila, que varia de 221 g kg⁻¹ a 344 g kg⁻¹ em subsuperfície, pela ocorrência e preponderância de colorações centradas no matiz 5YR em todo o perfil e ausência de caráter álico; fatores esses possivelmente relacionados à proximidade dessa UM aos sedimentos pelíticos-carbonáticos do Grupo Bambuí.

Devido à semelhança aos solos de outras UMs (LAd e LVAd2), os perfis representativos desta UM não foram coletados. Foram identificados e classificados com auxílio da observação morfológica de amostras obtidas em tradagens e minitrincheiras, coletando e submetendo-as a análises laboratoriais.

3.29. Unidade de mapeamento LVAd2: Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, álicos ou não, fortemente drenados, fase relevo plano e suave ondulado

Apenas um delineamento de solo compõe a unidade de mapeamento LVAd2. Situa-se a noroeste do PEMS, estendendo-se por 424,33 ha, o que corresponde a 4,13% de toda a área mapeada.

Os solos desta UM são semelhantes aos da unidade de mapeamento LAd, diferindo-se, sobretudo, pelas colorações ligeiramente mais vermelhas que o matiz 7,5YR. No entanto, geralmente são mais amarelos que o matiz 5YR. Os Latossolos Amarelos, com matiz centrado no 7,5YR de todo o perfil, também ocorrem e são expressivos nessa UM.

A Tabela 16 mostra os dados analíticos dos solos descritos e amostrados nesta UM. Observam-se atributos semelhantes aos da unidade de mapeamento LAd: máximo conteúdo de argila em subsuperfície de 201 g kg-1 de solo; baixa fertilidade natural evidenciada pelos baixos valores médios de soma de bases (Valor S) em todo o perfil (0,7 e 0,5 cmol_c kg-1 de solo em superfície e subsuperfície, respectivamente); presença de caráter álico ocorrendo predominantemente em todo o perfil. Também há aqueles que apresentam valores de saturação por alumínio (Valor m) iguais ou superiores a 50%, mas o conteúdo de alumínio extraível é baixo, aquém de 0,5 cmol_c kg-1 de solo. Esses são os Latossolos Vermelho-Amarelos ou Amarelos Distróficos que não recebem a adjetivação de álico nos níveis categóricos inferiores.

O perfil P8 (Anexo I) é representativo desta UM. Nota-se cores centradas no matiz 6YR em todo o perfil, o que lhe confere a designação de Vermelho-Amarelo na subordem taxonômica, segundo o SiBCS (SANTOS, 2006). Embora apresente elevada saturação por alumínio na maioria dos horizontes, os teores de alumínio estão aquém de 0,5 cmol_c kg⁻¹ de solo, não lhe atribuindo o caráter álico. Seu conteúdo máximo de argila em todo o perfil é de 140 g kg⁻¹ de solo; a estrutura é pouco desenvolvida nos horizontes B, cuja consistência úmida é muito friável, atributos esses muito semelhantes ao perfil P3 (Anexo I) da unidade de mapeamento LAd.

Tabela 16. Estatística descritiva de horizontes superficiais (camada a) e subsuperficiais (camada b) referente a atributos selecionados dos solos da unidade de mapeamento LVAd2.

Atributo	Camada	n ⁽¹⁾	Mínimo	Máximo	Média	s ⁽²⁾	CV ⁽³⁾
A 1 (4)	a	19	80	222	127	40,6	32,1
Argila ⁽⁴⁾	b	10	140	201	155	25,3	16,4
Silte ⁽⁴⁾	a	19	16	114	54	24,1	44,6
Silte	b	10	39	97	55	17,2	31,5
Areia fina ⁽¹⁾	a	19	476	614	548	36,1	6,6
Areia iina	b	10	444	582	542	43,8	8,1
A:(4)	a	19	210	349	271	29,4	10,9
Areia grossa ⁽⁴⁾	b	10	227	298	249	22,5	9,0
-II II O	a	19	3,9	4,9	4,5	0,3	6,4
pH H_2O	b	10	4,8	5,0	4,9	0,1	1,4
H KOI	a	19	3,5	4,0	3,8	0,1	3,3
pH KCl	b	10	3,9	4,1	4,0	0,1	1,6
Carbono ⁽⁴⁾	a	19	2,8	9,7	5,9	2,1	35,7
Carbono	b	10	1,0	2,8	1,9	0,6	29,1
C(1 : . M (: (5)	a	19	0,3	1,6	0,9	0,4	50,6
Cálcio+Magnésio (5)	b	10	0,3	1,2	0,7	0,3	51,9
D (4 : (5)	a	19	0,02	0,09	0,05	0,02	45,1
Potássio ⁽⁵⁾	b	10	0,01	0,07	0,02	0,02	97,5
Alumínio ⁽⁵⁾	a	19	0,4	1,1	0,7	0,2	33,6
Aluminio	b	10	0,4	0,9	0,6	0,2	30,2
11:1 ^ (5)	a	19	1,1	4,5	2,3	0,8	36,4
Hidrogênio ⁽⁵⁾	b	10	0,8	1,8	1,2	0,3	27,0
T. 1 (a(6)	a	19	0,3	1,5	0,7	0,4	49,3
Valor S ⁽⁶⁾	b	10	0,3	0,7	0,5	0,1	27,5
T. 1 (7)	a	19	2,0	6,7	3,7	1,2	32,6
Valor T ⁽⁷⁾	b	10	1,6	3,3	2,2	0,6	26,2
57.1 (8)	a	19	25	64	49	12,5	25,3
Valor m ⁽⁸⁾	b	10	44	64	56	4,9	8,7
37.1 37(9)	a	19	9	29	19	5,5	28,7
Valor V ⁽⁹⁾	b	10	17	29	21	3,4	16,5

 $^{^{(1)}}$ n = número de amostras; $^{(2)}$ s = desvio padrão; $^{(3)}$ CV = coeficiente de variação; $^{(4)}$ g kg $^{-1}$ de solo; $^{(5)}$ cmol $_c$ kg $^{-1}$ de solo; $^{(6)}$ Valor S = soma de bases (cmol $_c$ kg $^{-1}$ de solo); $^{(7)}$ Valor T = capacidade de troca de cátions (cmol $_c$ kg $^{-1}$ de solo); $^{(8)}$ Valor m = saturação por alumínio (%); $^{(9)}$ Valor V = saturação por bases (%).

3.30. Unidade de mapeamento LVAe1: LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado, acentuadamente drenado, fase relevo plano

Apenas um delineamento de solo compõe esta UM. Situa-se a nordeste da área estudada e distribui-se por apenas 20,0 ha, o que corresponde a 0,19% de toda a sua extensão (Tabela 2) .

O perfil P12 (Anexo I) é representativo desta UM. Os dados analíticos mostram a presença de alumínio extraível, aumentando em conteúdo com a profundidade do solo. Seu máximo valor é de 1,7 cmol_c kg⁻¹ de solo no horizonte Bw4. Os teores observados de Al no perfil são os principais responsáveis pelos valores de saturação por bases inferiores a 60% nos horizontes diagnósticos subsuperficiais, e mesmo inferior a 50% naquele mais profundo do perfil. Tanto o conteúdo médio de alumínio extraível como o valor de saturação por bases e o teor de argila são inferiores aos perfis descritos e amostrados nas UMs que se distribuem no domínio de Latossolos Vermelhos Eutróficos (LVe1, LVe3 e LVe4) originados do intemperismo das coberturas terciárias relacionadas ao Grupo Bambuí. Isso sugere uma mistura de depósitos que pode ser comum nas áreas transicionais entre diferentes sedimentos, o que parece ser caso ao observamos a posição relativa desta UM no mapa de solos constante no Anexo II.

3.31. Unidade de mapeamento LVAe2: LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano

A unidade de mapeamento LVAe2 localiza-se à oeste do PEMS. Distribui-se por 163,02 ha, o que corresponde a apenas 1,59% de toda a área mapeada (Tabela 2). Esta UM é facilmente delimitada quando da utilização e interpretação de imagens de satélite ou de fotografias aéreas, já que manifesta cor e textura bastante diferenciadas das UMs confrontantes, cujos solos são de textura média e distróficos (LAd e LVAd1). Em termos de textura, sua rugosidade contrasta nitidamente ao aspecto liso observado nas UMs confrontantes, cujos atributos dos solos supracitados sustentam uma vegetação arbustiva muito densa, localmente denominada de "Carrasco"; ao contrário das dos solos desta UM em que as árvores são maiores e de porte heterogêneo, além de apresentar menor densidade populacional.

O perfil P4 (Anexo I) é representativo desta UM. Dentre seus atributos, podese destacar a cor, centrada no matiz 5YR, o conteúdo máximo de argila de 242 g kg⁻¹ de solo, os nulos teores de alumínio extraível em todos os horizontes do perfil e o valor de saturação por bases de 100% naqueles mais profundos.

3.32. Unidade de mapeamento LVAe3: Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO ambos Eutróficos típicos, textura argilosa ou média, A moderado, acentuadamente drenados, fase relevo plano e suave ondulado

Essa UM se situa à nordeste da área de estudo, distribuindo-se por 59,87 ha, o que representa apenas 0,58% de toda a área mapeada (Tabela 2). Apenas um delineamento de solo a compõe. A maioria de sua área foi cultivada sob irrigação por pivô central durante um longo período de tempo antes de criação do PEMS. Em consequência, os teores de fósforo (P) e potássio (K) em superficie (primeiros 20 cm do solo), por exemplo, são elevados naquelas áreas submetidas à irrigação, com valores que podem atingir 227 mg de P por kg⁻¹ de solo e 0,78 cmol de K por kg⁻¹ de solo (perfil P26; Anexo I). Além disso, o excesso de água devido à irrigação possivelmente contribuiu para o amarelecimento dos solos e a manifestação de mosqueados e colorações variegadas em subsuperfície. O perfil P26 (Anexo I), um Latossolo Vermelho-Amarelo, é um provável exemplo dessa assertiva. Seu horizonte mais profundo, o Bw3 (115-150 cm de profundidade), é de coloração variegada, centrada nos matizes 7,5YR e 10YR. No entanto, parte dessa coloração variegada está relacionada à presença de fragmentos de rocha bastante intemperizadas no horizonte, tal como se observou no perfil durante sua descrição em campo. Sua textura é argilosa, mas foram identificados e coletados Latossolos de textura média nessa UM, com teores de argila variando entre 121 e 324 g kg1 de solo.

3.33. Unidade de mapeamento RYq: Complexo de NEOSSOLO FLÚVICO Psamítico típico, excessivamente drenado + CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média ou estratificada, acentuadamente drenado, todos A moderado, fase relevo plano

Em número de nove são os delineamentos que compõem essa UM. Com uma área de 237,63 ha, o que corresponde a apenas 2,31% de toda a área mapeada, os delineamentos distribuem-se de norte a sul nos depósitos quaternários do rio São Francisco.

Tal como é comum em muitos depósitos aluvionares, a variabilidade espacial, tanto vertical como horizontal dos atributos dos solos dessas áreas, dificulta, ou mesma invibializa, o mapeamento de delineamentos simples, ou seja, compreendendo apenas uma classe taxonômica, mesmo em levantamentos mais detalhados que o presente. Em vista disto, duas classes de solos compõe essa UM, bem como apresentam expressiva variabilidade vertical de seus atributos, sobretudo no que diz respeito à classe textural.

O perfil P23 é representativo desta UM (Anexo I). A maioria de seus horizontes apresenta maior conteúdo de silte em relação à argila. Esta última fração, por sua vez, não ultrapassa o valor de 150 g kg-1 de solo até 150 cm de profundidade. Além disso, até esta profundidade há a predominância das classes texturais areia e areia franca, as quais estão intercaladas com camadas de classe textural franco-arenosa. Mais precisamente, dos 150 cm superficiais do solo deste perfil, 88 cm são camadas de textura arenosa (areia ou areia franca). Considerando-se que os demais atributos morfológicos e analíticos mostrados no Anexo I convergem para a classificação do perfil P23 como um Neossolo Flúvico, as considerações acima elencadas e referentes às classes texturais não possibilitam o seu enquadramento taxonômico em nível categórico de grande grupo taxonômico, segundo o SiBCS (SANTOS, 2006). Devido aos baixos conteúdos de argila, optamos por classificá-lo como psamítico neste nível categórico, bem como sugerimos uma nova conceituação para os Neossolos Flúvicos Psamíticos do SiBCS (SANTOS, 2006), já que as variações de atributos aqui elencadas não relativamente comuns nesses ambientes. Abaixo a reproduzimos:

NEOSSOLOS FLÚVICOS Psamíticos

Solos com classe textural areia e/ou areia franca na maioria dos horizontes ou camadas dentro de 120 cm da superfície do solo.

O traçado dos delineamentos de solos desta UM foi facilitado devido aos seus padrões de cor, bastante característicos nas fotografias e imagens de satélite: apresentam-se de tons muito mais claros que seus vizinhos, como se pode observar no Anexo III. Essa diferença de cor possivelmente está relacionada a menor densidade de árvores em função da menor fertilidade e retenção de água dos solos desta UM em relação aos circunvizinhos.

Os solos que apresentam predominância de classes texturais mais finas que areia e areia franca dentro de 120 cm da superfície do solo também ocorrem nessa UM e foram classificados como Cambissolos Flúvicos ou Neossolos Flúvicos Ta Eutróficos, dependendo da manifestação ou não de horizonte B. Quando está presente e é do tipo B incipiente, foram classificados como Cambissolos Flúvicos Ta Eutróficos de textura média, quando essa textura é exclusiva dentro de 100 cm da superfície do solo; ou de textura estratificada quando mais de uma classe textural está presente dentro daquela profundidade. Foram poucos os registros dos Neossolos Flúvicos Ta Eutróficos nessa UM; e, por isso, foram considerados como inclusão.

3.34. Unidade de mapeamento VXk: VERTISSOLO HÁPLICO Carbonático chernossólico ou típico, textura argilosa/muito argilosa ou argilosa, A chernozêmico ou moderado, imperfeitamente drenado, fase relevo plano

Apenas um delineamento de solo compõe essa UM. Localiza-se à sudoeste do PEMS e estende-se por 68,43 ha (Tabela 2), o que representa apenas 0,67% de toda a área mapeada.

Embora os Vertissolos dominem nessa UM, os Chernossolos com características vérticas e carbonáticas também foram identificados na área, ocupando pequenas extensões; e, por isso, foram considerados como inclusões. Estão associados a áreas com pequena espessura do solum, sendo que o horizonte C geralmente se manifesta dentro dos primeiros 80 cm de profundidade do solo. A presença de

fragmentos de rocha desde a superfície do solo também é comum nesses solos. Em geral, os Vertissolos da área também apresentam pequena espessura do solum, geralmente não ultrapassando 120 cm de profundidade.

O Perfil P37 (Anexo I) é representativo desta UM. Trata-se de um Vertissolo intermediário para Chernossolo devido à presença de horizonte A chernozêmico. Quando os solos desta UM manifestam horizonte A do tipo moderado e mantém-se os atributos para enquadrá-lo como Vertissolo, este recebe a denominação de típico no nível categórico de subgrupo taxonômico (SANTOS, 2006). Em geral, tanto os Vertissolos chernossólicos como os típicos apresentam caráter carbonático dentro de 100 cm da superfície do solo.

3.35. Unidade de mapeamento VXo: Associação de VERTISSOLO HÁPLICO Órtico típico ou chernossólico, textura argilosa/muito argilosa ou argilosa, A moderado ou chernozêmico + CHERNOSSOLO HÁPLICO Órtico vertissólico, textura argilosa, ambos imperfeitamente drenados, fase relevo plano

Esta UM se localiza ao norte e é confrontante a unidade de mapeamento VXk, como se pode observar no mapa de solos mostrado no Anexo II. Em termos gerais, as diferenças entre os solos de ambas as UMs baseiam-se na pequena ocorrência de caráter carbonático dentro de 100 cm da superfície na maioria dos solos, bem como na maior ocorrência de Chernossolos, ambos referindo-se à unidade de mapeamento VXo. Sua extensão é de 70,52 ha, o que representa 0,69% da área mapeada (Tabela 2). Os solos de ambas as UMs supracitadas encontram-se em cota ligeiramente inferior em relação aqueles da unidade de mapeamento MXk.

Os Vertissolos com horizonte A moderado predominam nessa UM, embora também ocorram aqueles com horizonte A chernozêmico. O perfil P32 (Anexo I) foi o que definiu o primeiro componente da associação de solos desta UM. Dentre as suas peculiaridades, destaca-se o elevado e maior conteúdo de magnésio (Mg) em relação ao cálcio (Ca), cuja relação Mg/Ca aumenta em profundidade, alcançando o valor de 3,5 unidades no horizonte mais profundo do perfil, bem como o aumento do conteúdo de sódio com a profundidade. A

presença de conteúdos expressivos de clorita, sobretudo nos horizontes mais profundos e próximos à rocha, possivelmente é a responsável por tal resultado. A mineralogia de horizontes selecionados dos perfis P34 e P37 (Anexo I) corrobora sua presença e preponderância dentre os minerais da fração argila.

Os Chernossolos desta UM foram identificados com auxílio de minitrincheiras e tradagens. Apresentam menor profundidade do solum em relação aos Vertissolos, tal como descrito para a unidade de mapeamento VXk. Devido à maior presença de fragmentos de rocha desde a superfície nos Chernossolos, sugerindo estádio mais incipiente de intemperismo em relação aos Vertissolos, há menor expressão de atributos relacionados aos horizontes vérticos, como as superfícies de fricção, as fendas verticais e a estrutura poliédrica. No entanto, manifestam-se em intensidades suficientes para identificar, em campo, o caráter vértico dentro de 120 cm da superfície do solo. Devido a isso, os Chernossolos são intermediários para os Vertissolos, tal como descrito para os solos da unidade de mapeamento MXk.

3.36. Unidades de mapeamento TT1 (Afloramento de Rocha) e TT2 (Afloramento de Rocha + Cascalheira)

A unidadade de mapeamento TT1 refere-se ao um Tipo de Terreno, daí provém sua abreviatura. Distribui-se em 13 delineamentos que estão dispersos em praticamente toda a área (Anexo II). Com uma extensão de 87,04 ha, representa apenas 1,24% de toda a área mapeada (Tabela 2). Dizem respeito a afloramentos de rocha calcária que recebem a designação regional de "Furados" quando localizados em depressões e em cotas similares aos solos circunvizinhos.

A unidade de mapeamento TT2 é composta por apenas um delineamento, que está situado à nordeste da área mapeada (Anexo II). Ocupa 12,96 ha, o que representa apenas 0,18% do PEMS (Tabela 2). Representa um afloramento de rocha calcária que foi explorado, supostamente para retirada de brita para pavimentação de estradas. Em decorrência deste fato, as áreas do entorno apresentam quantidades expressivas de fragmentos de rocha em superfície, de tamanhos cascalhos e calhaus. Essas receberam a denominação de cascalheira nessa UM. Portanto, o Tipo de Terreno aqui identificado

como TT2 engloba tanto o afloramento de rocha calcária remanescente da exploração, como os solos de entorno que manifestam expressivos conteúdos de cascalho e calhaus em superfície.

3.37. Corpos d'água

Referem-se aos lagos perenes e intermitentes que ocorrem nos depósitos quaternários do rio São Francisco (Anexo II). Sua extensão é de 246,71 ha, o que representa 2,40% de toda a área mapeada (Tabela 2).

3.38. Mineralogia da fração argila dos solos do PEMS

A análise mineralógica de horizontes diagnósticos subsuperficiais de perfis selecionados (Anexo I; perfis P1, P3, P5, P6, P7, P8, P11, P15, P22, P34, P37 e P39) indicou que a caulinita sempre ocorre nos perfis e parece ser o mineral predominante nos Latossolos, Cambissolos e Neossolos. No entanto, nos solos que apresentam o caráter carbonático, como os Chernossolos e Vertissolos (perfis P34 e P37, respectivamente), os minerais clorita, esmectita, mica (ilita) e interestratificado clorita-esmectita parecem se sobrepor, em proporção, à caulinita. Calcita também está presente na fração argila desses solos. Por sua vez, nos perfis P6 (Cambissolo Háplico Ta Eutrófico vertissólico) e P7 (Chernossolo Órtico petroplíntico), a predominância de caulinita é duvidosa. Neles, esmectita e mica (ilita) também ocorrem em proporções expressivas. A observação dos difratogramas da amostra total possibilita visualizar estas estimativas de proporção dos argilo-minerais (Anexo I).

Dentre os solos mais representativos e relacionados às rochas pelíticocarbonáticas do Grupo Bambuí, os Latossolos Vermelhos Eutróficos (Perfil P1) e os Cambissolos Háplicos (Perfil P15) possuem conteúdos expressivos de mica (ilita) e esmectita. No caso dos Latossolos, a esmectita é predominantemente interestratificada, com hidróxi-alumínio entrecamadas, bem como a vermiculita. (Figuras 3 e 4; Anexo I).

Com relação à mineralogia dos Latossolos relacionados ao arenito do Grupo Urucuia, aqueles com menor saturação por bases, como os Latossolos Amarelos (Perfi P3) e Vermelho-Amarelos (Perfil P8) distróficos, apresentam traços

de mica (ilita), enquanto os solos eutróficos (Perfil P39; Latossolo Vermelho) diferenciam-se sobretudo pelo maior conteudo desse argilo-mineral.

A goethita foi encontrada em todos os horizontes e perfis analisados, enquanto a hematita, apenas nos mais vermelhos e de cores com matiz 10R (Anexo I). Estes correspondem aos Latossolos Vermelhos de textura argilosa (Perfil P1) ou média (Perfil P39) estudados.

4. Conclusões

Trinta e cinco unidades de mapeamento de solos foram identificadas, descritas e amostradas no PEMS. De maneira geral, os solos a elas relacionadas distribuem-se em três domínios fisiográficos em que o material de origem possivelmente preponderou dentre os demais fatores de formação dos solos, com o relevo exercendo ação modificadora em determinados locais. Foram os seguintes domínios observados:

1) o domínio em que o material de origem dos solos está relacionado ao arenito do Grupo Urucuia localiza-se na chapada do PEMS, em relevo predominantemente plano. Nele foram mapeados Cambissolos Háplicos e Latossolos Amarelos, Vermelho-Amarelos e Vermelhos. A vegetação de Carrasco é típica e exclusiva dos Latossolos Amarelos e Vermelho-Amarelos distróficos de textura média, que são os solos mais dessaturados e localizados nas maiores cotas desse domínio. Os Latossolos Vermelhos e os Cambissolos Háplicos, ambos eutróficos e de textura média, são as principais classes mapeadas em uma situação topográfica intemediária entre os Latossolos Amarelos e Vermelho-Amarelos e os domínios sob influência exclusivamente calcária, havendo, portanto, influência tanto do arenito como dos sedimentos pelíticos-carbonáticos nas suas formações. Em tais solos desenvolveuse predominantemente vegetação de Caatinga Arbórea Densa (de porte médio) e as UMs a eles relacionadas foram agui consideradas e computadas como pertencentes aos arenitos do Grupo Urucuia. Esse domínio distribue-se em 1.902,70 ha, o que corresponde a 18,50% de toda a área de estudo;

2) no domínio relacionado às rochas pelítico-carbonáticas do Grupo Bambuí sob vegetação de Floresta Estacional Decidual de porte alto desenvolveram-se Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos e Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos e Melânicos. São solos predominantemente eutróficos e argilosos que se distribuem por 5.844,62 ha, o que corresponde a 56,85% da área do PEMS;

3) aos depósitos quaternários do rio São Francisco sob vegetação de Floresta Tropical Pluvial Perenifólia estão relacionados Cambissolos Flúvicos e Neossolos Flúvicos em condições de boa drenagem, enquanto os Gleissolos Háplicos desenvolveram-se nas áreas deprimidas, permanente ou temporariamente inundadas. São solos eutróficos e de textura variada, desde arenosa a muito argilosa. Distribuem-se em 2.534,12 ha, o que corresponde a 24,65% de toda a área estudada.

Referências

AB'SABER, A. N. **Os domínios de natureza no Brasil**: potencialidades paisagísticas. São Paulo: Ateliê Editorial, 2003. 153 p.

AGEITEC. **Espécies arbóreas brasileiras**. Disponível em: http://www.agencia.cnptia.embrapa.br/gestor/especies_arboreas_brasileiras/arvore/CONT000g08hphpk02wx5ok026zxpg7c9wrkm.html. Acesso em: 09 jun. 2013.

ALKMIM, F. F.; MARTINS-NETO, M. A. A bacia intracratônica do São Francisco: Arcabouço estrutural e cenários evolutivos. In: PINTO, C. P.; MARTINS-NETO, M. A. (Ed.). **Bacia do São Francisco**: geologia e recursos naturais. Belo Horizonte: SBG-MG, 2001, p. 9-30.

ARAÚJO, F. S. de; SAMPAIO, E. V. S. B.; FIGUEIREDO, M. A.; RODAL, M. J. N.; FERNANDES, A. G. Composição florística da vegetação de Carrasco, Novo Oriente, CE. **Revista Brasileira de Botânica, São Paulo**, v. 21, n. 2, 1998. Disponível em: "> Acesso em: 30 mai. 2013

- ARRUDA, D. M.; FERREIRA-JÚNIOR, W. G.; DUQUE-BRASIL, R.; SCHAEFFER, E. R. Phytogeographical patterns of dry forests *sensu stricto* in northern Minas Gerais State, Brazil. **Anais da Academia Brasileira de Ciências**, v. 85, n. 2, p. 623-634, 2013.
- BELÉM, R. A. Zoneamento ambiental e os desafios da implementação do Parque Estadual Mata Seca, Município de Manga, Norte de Minas Gerais. 2008 170 f. Dissertação (Mestrado em Análise Ambiental) Instituto de Geociências da Universidade Federal de Minas Gerais, Belo Horizonte.
- BERRY, L. G. (Ed). **Joint Committee on Powder Diffraction Standards-JCPDS**: selected powder diffraction data for minerals. Philadelphia, PA: [s.n], 1974. 833 p.
- BOERO, V.; SCHWERTMANN, U. Iron oxide mineralogy of terra rossa and its genetic implications. **Geoderma**, v. 44, p. 319-327, 1989.
- BRANCO, P. M. Dicionário de Mineralogia. 3. ed. Porto Alegre: Sagra, 1987. 362 p.
- BRANDÃO, M. Caatinga. In: MENDONÇA, M.; LINS, L. (Org.). Lista vermelha das espécies ameaçadas de extinção da flora de Minas Gerais. Belo Horizonte: Fundação Biodiversitas, 2000, p. 75-85.
- BRANDÃO, M.; ARAUJO, M. G.; LACA-BUENDIA, J. P. "Furados": um novo ecossistema de grande importância como suporte à fauna local e regional da região de Jaíba, MG. **Daphne**, v. 8, n. 3, p. 51-60, 1998.
- BRANDÃO, M.; NAIME, U. J. Cobertura vegetal original dos Municípios de Jaíba, Manga e Matias Cardoso, MG. **Daphne**, v. 8, n. 2, p. 7-13, 1998.
- BRINDLEY, G. W.; BROWN, G. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society, 1984. 495 p.
- BURINGH, P.; STEUR, G. G. L.; VINK, A. P. A. Some techniques and methods of soil survey in the Netherlands. **The Netherlans Journal of Agricultural Science**, Wageningen, v. 10, p. 157-172, 1962,

CALDERANO, S. B.; DUARTE, M. N.; GREGORIS, G. Análise mineralógica das frações finas do solo por difratometria de raios-X: revisão e atualização da metodologia e critérios usados na Embrapa Solos. Rio de Janeiro: Embrapa Solos. 2009. (Embrapa Solos, Comunicado Técnico, 53).

COELHO, M. R. Caracterização e gênese de ferricretes desenvolvios do arenito Bauru, Formação Adamantina (Ka), no município de Pindorama (SP). 1998. 233 f. Dissertação (Mestrado em Solos e Nutrição de Plantas) — Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba.

DART, R. O.; COELHO, M. R.; MENDONÇA-SANTOS, M. L.; BERBARA, R. L. L.; PARES, J. G. Digital Soil Maping at Parque Estadual da Mata Seca, MG, Brazil: Applying Regression Tree to predict soil classes. In: INTERNATIONAL WORKSHOP ON DIGITAL SOIL MAPPING, 4., 2010, Rome. From Digital Soil Maping to Digital Soil Assessement: identifying key gaps from fields to continents: proceedings. Rome: JRC, 2010.

EMBRAPA. Centro Nacional de Pesquisa em Solos. **Manual de métodos de análise de solo**. 2. ed. Rio de Janeiro: EMBRAPA-CNPS, 1997. 212 p.

EMBRAPA. Centro Nacional de Pesquisa em Solos. **Procedimentos normativos de levantamentos pedológicos**. Brasília: EMBRAPA – SPI, 1995, 101 p.

ESTADOS UNIDOS. United States Department of Agriculture. Natural Resources Conservation Services. **Soil taxonomy**: a basic system of soil classification for making and interpreting soil survey. 2. ed. Washington, 1999. 869 p. (Agricultural Handbook, 436).

FASOLO, P. J. Importância e uso dos levantamentos de solos e suas relações com o planejamento do uso da terra. In: CASTRO FILHO, C. de; MUZZILI, O. (Ed.). **Manejo integrado de solos em microbacias hidrográficas**. Londrina: IAPAR, 1996. p. 61-76.

FONTES, M. P. F. Vermiculita ou Esmectita com hidróxi nas entrecamadas, proposição de nomenclatura. **Boletim Informativo da Sociedade Brasileira de Ciência do Solo**. Campinas, v. 15, n. 1, p. 24 – 28, 1990.

GLÁUCIA M. D.; MARTINS, C. S.; MACHADO, A. B. M.; SEBAIO, F. A.; ANTONINI, Y. (Org.). **Biodiversidade em Minas Gerais**: um atlas para sua conservação. 2. ed. Belo Horizonte: Fundação Biodiversitas, 2005. 222 p.

IEF. **Parque Estadual da Mata Seca**. Belo Horizonte, 2000. Disponível em: ">http://www.ief.mg.gov.br/index.php?option=com_content&task=view&id=204&Itemid=37>. Acesso em: 23 mai. 2013.

IGLESIAS, M.; UHLEIN, A. Estratigrafia do grupo Bambuí e coberturas fanerozóicas no vale do rio São Francisco, norte de Minas Gerais. **Revista Brasileira de Geociências**, v. 39, n. 2, p. 256-266, 2009.

KÄMPF, N.; AZEVEDO, A. C.; COSTA JUNIOR, M. I. Estrutura básica de argilomineral 2:1 com hidróxi-Al entrecamadas em Latossolo Bruno do Rio grande do Sul. **Revista Brasileira de Ciência do Solo**, Campinas, v. 19, n. 2, p. 185-190, 1995.

KOEPPEN, W. Las zonas de clima. In: KOEPPEN, W. Climatologia. México: Fundo de Cultura Econômica, 1948, p. 145-227

LAGACHERIE, P.; MCBRATNEY, A. B. Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping. In: LAGACHERIE, P.; McBRATNEY, A.B.; VOLTZ, M. (Ed.). **Digital Soil Mapping**: an introductory perspective. Amsterdam: Elsevier, 2007. P. 3-24. (Developments in Soil Science, 31).

MARTINS, J. S. Pedogênese de Podzólicos Vermelho-Amarelos do estado do Acre. 1993. 100 f. Dissertação (Mestrado). Faculdade de Ciências Agrárias do Pará, Belém.

McBRATNEY, A. B.; ODEH, I. O. A.; BISHOP, T. F. A.; DUNBAR, M. S.; SHATAR, T. M. An overview of pedometric techniques for use in soil survey. **Geoderma**, Amsterdam, v. 97, p. 293-327, 2000.

McKENZIE, N. J.; RINGROSE-VOASE, A. J.; GRUNDY, M. J. Rationale. In: McKENZIE, N. J.; GRUNDY, M. J.; WEBSTER, R.; RINGROSE-VOASE, A. J. (Ed.). **Guidelines for surveying soil and land resources**. 2. ed. Australia: CSIRO, 2008, p. 1-13.

MERHA, O. P.; JACKSON, M. L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In: NATIONAL CONFERENCE ON CLAYS AND CLAY MINERALS, 7., **Proceedings**. New York: Pergamon Press, 1960. p. 317-327.

MOORE, D. M.; REINOLDS JR.; R. C. X-ray diffraction and the identification and analysis of clay minerals. 2. ed. Oxford: Oxford University Press, 1997. 378 p. 1 v.

PRADO, D. E. As Caatingas da América do Sul. In: LEAL, I. R.; TABARELLI, M.; SILVA, J. M. C. da. (Ed.). **Ecologia e Conservação da Caatinga**. Recife: Editora Universitária da UFPE, 2003. p. 3-74.

SANCHEZ-AZOFEIFA, G. A.; QUESADA, M.; RODRIGUEZ, J. P.; NASSAR, J. M.; STONER, K. E.; CASTILLO, A.; GARVIN, T.; ZENT, E. L.; CALVO-ALVARADO, J. C.; KALACSKA, M. E. R.; FAJARDO, L.; GAMON, J. A.; CUEVAS-REYES, P. Research priorities for neotropical dry forests. **Biotropica**, v. 37, p. 477–485, 2005.

SANTOS, H. G. dos; JACOMINE, P. K. T.; ANJOS, L. H. C. dos; OLIVEIRA, V. A. de; OLIVEIRA, J. B. de; COELHO, M. R.; LUMBRERAS, J. F.; CUNHA, T. J. F. (Ed.). **Sistema brasileiro de classificação de solos**. 2. ed. Rio de Janeiro: Embrapa Solos, 2006.

SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C. **Manual de descrição e coleta de solo no campo**. 5. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2005. 100 p.

SCHOKNECHT, N.; WILSON, P. R.; HEINER, I. Survey specification and planning. In: McKENZIE, N. J.; GRUNDY, M. J.; WEBSTER, R.; RINGROSE-VOASE, A. J. (Ed.). **Guidelines for surveying soil and land resources**. 2 .ed. Australia: CSIRO, 2008. p. 205-223.

THOREZ, J. **Practical identification of clay minerals**. Liege: Liege State University, 1976. 90 p. 1 v.

THORNTHWAITE, C. W.; MATHER, J. R. The water balance. Publications in Climatology. New Jersey: Drexel Institute of Technology, 1955. p. 104.

UEHARA, G.; GILLMAN, G. The mineralogy, chemistry and physics of tropical soils with variable charge clays. Bouler, CO: Westview Press, 1981. 170 p. (Westview Tropical Agriculture, 4).

VETTORI, L. **Métodos de análise de solo**. Rio de Janeiro: Ministério da Agricultura, 1969. 24 p. (Boletim Técnico, 7).

ANEXO I

Perfis representativos do Parque Estadual da Mata Seca

A. DESCRIÇÃO GERAL

PERFIL P1

DATA - 28/08/2009

CLASSIFICAÇÃO – LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - LVe3.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.078 m e Este 610.781 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Topo com 0% a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca. ALTITUDE – 470 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - ausente

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- A1 O-12 cm, vermelho-escuro-acinzentado (10R 3/2, úmido); franco-argilosa; moderada, muito pequena e pequena, granular; friável, plástica e pegajosa; transicão plana e clara.
- A2 12-22 cm, vermelho-escuro-acinzentado (10R 3/3, úmido); argila; fraca, pequena e média, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, friável, plástica e pegajosa; transição plana e clara.
- AB 22-45 cm, vermelho-escuro-acinzentado (10R 3/4, úmido); argila; fraca, média e grande, blocos subangulares; ligeiramente dura, firme, plástica e pegajosa; transição plana e difusa.
- BA 45-75 cm, vermelho-acinzentado (10R 4/4, úmido); argila; moderada, média e grande, blocos subangulares; cerosidade pouca e fraca; dura, friável a firme, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw1 75-132 cm, vermelho-escuro (10R 3/6, úmido); argila; fraca a moderada, média e grande, blocos subangulares; dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 132-200 cm, vermelho (10R 4/8, úmido); argila; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, plástica e ligeiramente pegajosa.

RAÍZES – Muitas muito finas e finas, comuns médias e poucas grossas no horizonte A1; comuns, finas e muito finas, poucas médias no A2; poucas finas, muito finas e médias no horizonte AB e poucas finas e muito finas nos demais horizontes.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de fragmentos de rocha de coloração negra ocupando menos que 1% dos horizontes Bw1 e Bw2;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte A1; muitos muito pequenos, comuns pequenos e poucos médios e grandes nos horizontes A2 e AB; muitos muito pequenos e comuns pequenos no BA; muitos muito pequenos e pequenos no Bw1; comuns muito pequenos e pequenos no Bw2.

C. RESULTADOS ANALÍTICOS

Perfil P1 Amostras de Laboratório: 09.1383-1388

Solo: LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado

a Comp	osicão ar	نهٔ صمانیمه															
amostra Composição granulométrica da terra fina g/kg					Grau de	Relação	Densidade g/cm ³										
grossa 2 2-0,20	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	dispersa em água g/kg	flocu- lação %	Silte/ Argila		Partículas	Porosidade cm ³ /100cm ³								
96 139	233	240	388	327	16	0,62		2,49									
96 114	234	204	448	367	18	0,46		2,58									
92	206	171	531	0	100	0,32		2,60									
90	210	191	509	0	100	0,38		2,60									
95 89	230	193	488	0	100	0,40		2,60									
95 84	226	221	469	0	100	0,47		2,65									
I.	Compl	exo Sorti	vo				1	3+									
	CI	mol _c /kg						100.Al ³⁺	P assimilável								
j ²⁺ K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T			% AI	mg/kg								
6 0,36	0,02	9,9	0	2,7	12,6	79)	0	4								
5 0,15	0,01	7,2	0	3,1	10,3	70		70		70		70		0	2		
4 0,07	0,01	6,4	0,1	2,2	8,7	74		74		74		74		74		2	1
9 0,06	0,01	5,8	0,1	1,6	7,5	77		2	1								
5 0,04	0,01	5,7	0,1	1,6	7,4	77		2	1								
9 0,04	0,02	6,2	0,1	1,6	7,9	78	}	2	2								
)		Relaçõ	es Moleci	ulares	Fe ₂ O ₃	Equivalente								
O ₂ Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		0.02/		livre g/kg	de CaCO₃ g/kg								
64 144	55	4,7			1,94	1,56	4,11										
66 146	58	5,0			1,93	1,54	3,95										
•	. ;			•		•	Const		cas								
		CHOIGH	_				Umida		Água								
Mg ²⁺	K ⁺	Na [⁺]	HCO ₃	Cl	SO ₄ ²⁻				disponível máxima								
	1																
								1									
	na grossa 2-0,20 mm 2-0,20 mm 36 139 114 37 92 96 90 95 89 84 32+ K ⁺ K ⁺ K,66 0,36 0,15 0,07 99 0,06 0,04 99 0,04 O2 Al ₂ O ₃	Areia Areia Grossa Areia Grossa Gross	Areia grossa fina 0,05- 0,002 mm mm 0,05- 0,005 mm mm 36 139 233 240 36 114 234 204 37 92 206 171 36 90 210 191 37 89 230 193 38 84 226 221 Complexo Sorticmole/kg 32+ K+ Na+ Valor S (soma) 36 0,36 0,02 9,9 37 90,04 0,01 5,7 39 0,04 0,01 5,7 39 0,04 0,01 5,7 39 0,04 0,01 5,7 39 0,04 0,02 6,2 Ataque sulfúrico g/kg O2 Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ Sais solúr cmole/kg	Areia Grossa Areia Grossa Gros	Areia grossa fina grossa 2-0,20 mm mm mm dispersa em água grossa 2-0,20 mm mm mm dispersa em água grkg dispersa em água grkg mm dispersa em água grkg dispersa em água em água grkg dispersa em água grkg dispersa em água grkg dispersa em água em água grkg dispersa em água em água grkg dispersa em água em água em água grkg dispersa em água em água grkg dispersa em água em águ	Areia fina 0,05 dispersa em água 2-0,20 mm 0,002 mm mm em água 2-0,20 mm 0,005 mm mm em água g/kg mm 666 1144 234 204 448 367 18 367 92 206 171 531 0 100 36 89 230 193 488 0 100 365 84 226 221 469 0 100 Complexo Sortivo cmole/kg 324 0,01 7,2 0 3,1 10,3 44 0,07 0,01 6,4 0,1 2,2 8,7 9,9 0,06 0,01 5,8 0,1 1,6 7,5 5 0,04 0,01 5,7 0,1 1,6 7,4 9,9 0,04 0,02 6,2 0,1 1,6 7,9 Ataque sulfúrico g/kg 324 144 55 4,7 0,1 1,6 7,9 Ataque sulfúrico g/kg 325 326 326 326 326 326 326 326 326 326 326	Areia Areia Areia Gispersa Gispers	Areia Areia Grossa Fina Grossa Gross	Areia Areia Areia Grossa 2 2 - 0,20 0,20 - 0 0,005 0,000 0,000 0								

D. MINERALOGIA DA FRAÇÃO ARGILA

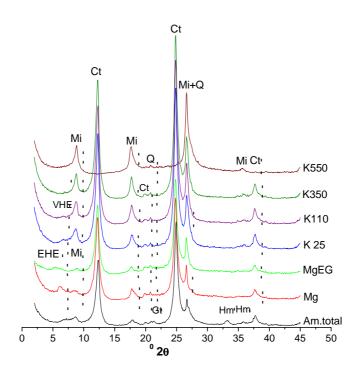


Figura 3. Difratogramas de raios-X da fração argila desferrificada do horizonte Bw1 do perfil P1. Minerais identificados: EHE + VHE - Esmectita e Vermiculita com hidróxi-Al entrecamadas; Mi-Mica; Ct - Caulinita; Gt - Goethita; Q - Quartzo: Hm - Hematita. Tratamentos: K550 - amostra saturada com potássio e aquecida a 550 °C; K350 - amostra saturada com potássio e aquecida a 350 °C; K110 - amostra saturada com potássio e aquecida a 110 °C; MgEG - amostra saturada com magnésio e solvatada com etileno glicol; Mg - amostra saturada com magnésio; Am.total - amostra analisada na condição natural, sem tratamento

- **Observação:** A expansão parcial apresentada pela reflexão na região de 6° (2θ) na amostra saturada com magnésio após tratamento com etileno glicol (MgEG) permite considerar também a presença de Esmectita com hidróxi-Al entrecamadas, além da vermiculita com hidróxi-Al entrecamadas.

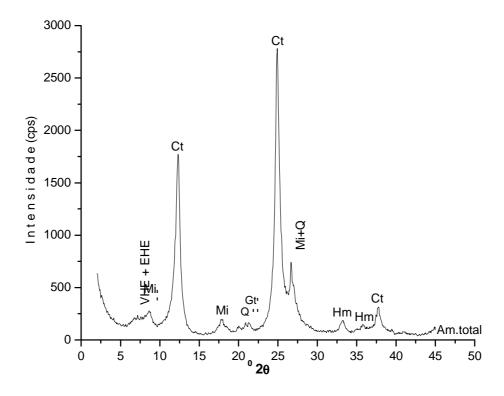


Figura 4. Difratogramas de raios-X da fração argila do horizonte Bw1 do perfil P01 referente à amostra total, sem tratamento (Am.total). Minerais identificados: EHE + VHE - Esmectita e Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct - Caulinita; Gt - Goethita; Q - Quartzo; Hm - Hematita

- Estimativa de predominância: Caulinita, Mica, EHE + VHE, Hematita, Goethita, e Quartzo.

A. DESCRIÇÃO GERAL

PERFIL P2

DATA - 30/08/2009

CLASSIFICAÇÃO - CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe4.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, Município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.874 m e Este 609.179 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço inferior da encosta com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

ALTITUDE - 450 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - ausente

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, c lassificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

A 0-13 cm, bruno muito escuro (10YR 2/2, úmido); franco-argilo-arenosa; forte, pequena e média, blocos subangulares e forte, muito pequena e pequena, granular; ligeiramente dura, firme, muito plástica e pegajosa; transição plana e difusa.

AB 13-30 cm, bruno-acinzentado-escuro (10YR 4/2 úmido); argila; forte, média e grande, blocos subangulares; dura, firme, muito plástica e pegajosa; transição plana e gradual.

BA 30-48 cm, coloração variegada, composta de bruno-amarelado (10YR 5/6, úmido), bruno (10YR 5/3, úmido) e bruno-amarelado (10YR 5/8, úmido); argila; forte, grande, blocos subangulares e angulares; nódulos petroplínticos de tamanho cascalho ocupando menos que 5%, em volume, do horizonte; muito dura, firme, plástica e pegajosa; transição plana e clara.

Bic 48-84 cm, coloração variegada, composta de bruno-oliváceo-claro (2,5Y 5/6, úmido) e bruno-amarelado (10YR 5/4; úmido); argila; forte, média e grande, blocos subangulares e angulares; nódulos petroplínticos pouco (ocupam aproximadamente 10% em volume do horizonte), pequenos (diâmetro média de 1 cm), duros, irregulares, vermelhos, ferruginosos; extremamente dura, firme, plástica e pegajosa; transição plana e clara.

Cc 84-135 cm, coloração variegada, composta de bruno-claro-acinzentado (10YR 6/3, úmido) e bruno-amarelado (10YR 5/6, úmido); argila pouco cascalhenta; maciça; nódulos petroplínticos frequentes (ocupam aproximadamente 30% em volume do horizonte) pequenos e médios (diâmetro varia de 0,5 a 1,5 cm), duros, irregular, vermelhos, ferruginosos; dura e localmente extremamente dura, firme e localmente muito firme e extremamente firme, plástica e pegajosa.

RAÍZES – Comuns, muito finas e finas, raras grossas no horizonte A; poucas, muito finas, finas e médias no AB; poucas muito finas no BA; raras muito finas nos horizontes Bic e Cc.

OBSERVAÇÕES - Perfil descrito seco;

- Os nódulos petroplínticos do horizonte Cc variam de 0,1 até 5 cm de diâmetro;
- No horizonte Bic os nódulos são menores, apresentando diâmetros que variam de 1 a 10 mm;
- No horizonte BA ocupam menos de 5% em volume do horizonte;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A e AB; muitos muito pequenos, comuns pequenos e médios e poucos grandes no BA; comuns muito pequenos e pequenos no horizonte Bic; comuns muito pequenos no horizonte Cc.

C. RESULTADOS ANALÍTICOS

Perfil P2 Amostras de Laboratório: 09.1389-1393

Solo: CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa. A moderado

Solo: CAN	MBISSOL	O HAPL	ICO TE	o Eutro	tico peti	roplintic	o, textur	a argilos	sa, A mod	derado										
Horize	onte	Fraçõe	s da am total g/kg	nostra	Compo	terra	anulomét a fina kg	rica da	Argila dispersa	Grau de	Relação		nsidade g/cm³	Porosidade						
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³						
Α	0-13	0	6	994	165	316	172	347	265	24	0,50		2,50							
AB	-30	0	6	994	140	300	150	410	349	15	0,37		2,57							
BA	-48	0	15	985	125	249	174	452	390	14	0,38		2,59							
Bic	-84	0	21	979	123	240	166	471	389	17	0,35		2,61							
Сс	-135	108	127	765	154	228	146	472	0	100	0,31		2,67							
Horizonte	pH (1	:2,5)					exo Sorti nol _° /kg	VO			Valo		100.Al ³⁺ S + Al ³⁺	P						
Horizonile	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por bases)		S + Al	assimilável mg/kg						
Α	7,1	6,2	10,0	3,3	0,65	0,03	14,0	0	0	14,0	100		0	27						
AB	6,7	5,5	8,8	2,2	0,11	0,02	11,1	0	1,5	12,6	88		88		88		88		0	5
BA	6,9	5,5	9,2	2,4	0,07	0,02	11,7	0	1,2	12,9	91		0	3						
Bic	7,1	5,6	8,1	2,6	0,05	0,02	10,8	0	0	10,8	100		0	3						
Сс	7,0	5,6	7,5	2,5	0,05	0,02	10,1	0	0	10,1	10	100		3						
	С						Ataque sulfúrico g/kg			Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente de						
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)		Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg						
Α	22,4	2,4	9																	
AB	8,1	1,1	7																	
BA	5,4	0,9	6	162	141	64	5,0			1,95	1,51	3,46								
Bic	2,6	0,5	5	173	79	67	4,9			3,72	2,41	1,85								
Сс	1,3	0,4	3																	
		Pasta sa	turada		l.		Sais solúv	/eis				Const	antes hídri	cas						
	100.Na⁺	C.E. do					cmol _c /k	9		1			g/100g							
Horizonte	T	extrato	Água	٥.	0.			HCO ₃		2		Umida	de	Água						
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	CO ₃ ²⁻	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima						
Α	<1																			
AB	<1																			
ВА	<1																			
Bic	<1																			
Сс	<1																			

A. DESCRIÇÃO GERAL

PERFIL P3

DATA - 28/08/2009

CLASSIFICAÇÃO - LATOSSOLO AMARELO Distrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LAd.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, Município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.357.137 m e Este 601.006 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapadão com 0 a 3% de declive. Perfil descrito sob vegetação de Carrasco.

ALTITUDE - 480 m

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA - Grupo Urucuia.

CRONOLOGIA - Cretáceo.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os arenitos do Grupo Urucuia.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Carrasco.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- A 0-12 cm, bruno-avermalhado (5YR 4/3, úmido); areia franca; fraca, muito pequena, blocos subangulares e fraca, muito pequena e pequena, granular; macia, muito friável, não plástica e ligeiramente pegajosa; plana e clara.
- AB 12-35 cm, bruno (7,5YR 5/4, úmido); areia franca; fraca, pequena e média, blocos subangulares; macia, friável, não plástica e ligeiramente pegajosa; plana e gradual.
- BA 35-61 cm, bruno-forte (7,5YR 5/6, úmido); franco-arenosa; fraca, pequena e média, blocos subangulares; macia, friável, não plástica e ligeiramente pegajosa; plana e difusa.
- Bw1 61-110 cm, bruno-forte (7,5YR 5/8, úmido); franco-arenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, não plástica e não pegajosa; plana e difusa.
- Bw2 110-200 cm, amarelo-avermelhado (7,5YR 6/8, úmido); franco-arenosa; maciça; ligeiramente dura, muito friável, não plástica e não pegajosa.

RAÍZES – muitas muito finas e finas, poucas médias no horizonte A; comuns muito finas e finas, poucas médias no AB; poucas muito finas e finas, raras médias nos horizontes BA e Bw1; poucas muito finas e finas no Bw2.

OBSERVAÇÕES - Perfil descrito seco;

– Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte A; muitos muito pequenos, comuns pequenos e médios, poucos grandes no horizonte AB; comuns muito pequenos, poucos pequenos e médios no BA; comuns muito pequenos e poucos pequenos nos horizontes Bw1 e Bw2.

C. RESULTADOS ANALÍTICOS

Perfil P3 Amostras de Laboratório: 09.1394-1398

Solo: LATOSSOLO AMARELO Distrófico típico, textura média. A moderado

Solo: LATO	OSSOLO	AMARE	LO Dis	strofico	tipico, i	textura r	nėdia, A	moder	ado	ı	1	-1		1				
Horizo	onte	Fraçõe	s da am total g/kg	nostra	Compo	terra	anulomét a fina ^l kg	rica da	Argila dispersa	Grau de	Relaçã		nsidade g/cm³	Porosidade				
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³				
Α	0-12	0	0	1000	279	549	51	121	80	34	0,42		2,60					
AB	-35	0	0	1000	297	544	39	120	100	17	0,32		2,64					
BA	-61	0	0	1000	255	564	40	141	100	29	0,28		2,64					
Bw1	-110	0	0	1000	267	551	41	141	0	100	0,29		2,61					
Bw2	-200	0	0	1000	253	554	52	141	0	100	0,37		2,62					
Horizonto	pH (1	:2,5)					exo Sortiv nol₀/kg	VO				or V	100.Al ³⁺	P				
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T		r bases) %	S + Al ³⁺ %	assimilável mg/kg				
Α	6,0	5,0	1,0	0,4	0,05	0,01	1,5	0	1,7	3,2	47		0	2				
AB	5,0	4,2	0	,7	0,02	0,01	0,7	0,4	1,1	2,2	32		32		32		36	1
BA	4,9	4,1	0	,3	0,01	0,01	0,3	0,5	1,2	2,0	15		62	<1				
Bw1	5,0	4,1	0	,3	0,01	0,01	0,3	0,4	0,9	1,6	19		57	<1				
Bw2	4,8	4,1	0	,3	0,01	0,01	0,3	0,4	0,8	1,5	20		57	<1				
	С	C			Ataque sulfúrico g/kg						Relaçõ	Relações Moleculares			Equivalente			
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)		Al ₂ O ₃ / Fe ₂ O ₃	Fe ₂ O ₃ livre g/kg	de CaCO₃ g/kg				
Α	5,9	0,9	7															
AB	3,4	0,4	8															
BA	2,2	0,4	5															
Bw1	1,5	0,2	7	44	45	12	3,0			1,66	1,42	5,89						
Bw2	1,2	0,2	6	49	49	13	3,1			1,70	1,45	5,92						
		Pasta sa	iturada		l.		Sais solúv	/eis				Const	antes hídri	cas				
	100.Na⁺	C.E. do					cmol _c /k	g					g/100g					
Horizonte		extrato	Água					HCO ₃				Umida	de	Água				
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	CO ₃ ²⁻	Cl	SO ₄ ²	0,033	MPa	1,5 MPa disponível máxima					
А	<1																	
AB	<1																	
ВА	<1																	
Bw1	<1																	
Bw2	<1																	

D. MINERALOGIA DA FRAÇÃO ARGILA

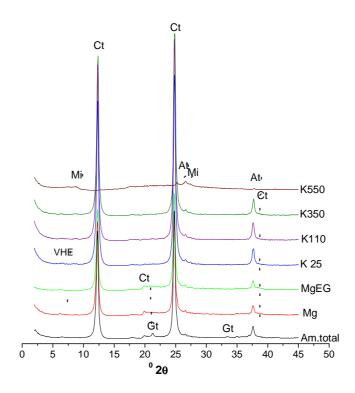


Figura 5. Difratogramas de raios-X da fração argila desferrificada do horizonte Bw1 do perfil P3. Minerais identificados: VHE – Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct – Caulinita; Gt – Goethita; At – Anatásio. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 °C; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

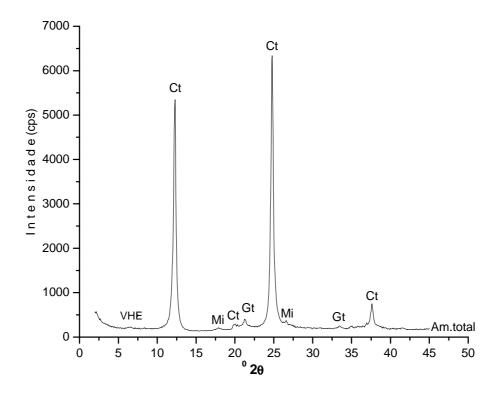


Figura 6. Difratogramas de raios-X da fração argila do horizonte Bw1 do perfil P03 referente à amostra total, sem tratamento (Am.total). Minerais identificados: VHE – Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct – Caulinita; Gt – Goethita.

- **Estimativa de predominância:** Caulinita, Goethita, Mica, VHE e Anatásio. Presença de traços desses três últimos minerais.

A. DESCRIÇÃO GERAL

PERFIL P4

DATA - 28/08/2009

CLASSIFICAÇÃO - LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVAe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.143 m e Este 601.730 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapadão com 0 a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 480 m

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos psamíticos do Grupo Urucuia e os sedimentos pelíticos-carbonáticos do Grupo Bambuí.

CRONOLOGIA - Cretáceo.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - ausente

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- A1 0-3 cm, cinzento muito escuro (5YR 3/1, úmido); franco-arenosa; fraca, muito pequena, granular e grãos simples; macia, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e abrupta.
- A2 3-30 cm, bruno-avermelhado-escuro (5YR 3/3, úmido); franco-argiloarenosa; fraca, muito pequena e pequena, granular; macia, friável, ligeiramente plástica e ligeiramente pegaiosa; transicão plana e clara.
- AB 30-53 cm, bruno-avermelhado-escuro (5YR 3/4, úmido); franco-argiloarenosa; fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- BA 53-74 cm, bruno-avermelhado-escuro (5YR 3/4, úmido); franco-argiloarenosa; fraca, média e pequena, blocos subangulares; dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw1 74-101 cm, vermelho-amarelado (5YR 4/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 101-128 cm, vermelho-amarelado (5YR 5/6, úmido); franco-argiloarenosa; fraca, média, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 128-159 cm, vermelho-amarelado (5YR 5/8, úmido); franco-argiloarenosa; fraca, média, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw4 159-200 cm, vermelho-amarelado (5YR 5/8, úmido); franco-argiloarenosa; fraca, média, blocos subangulares que se desfaz em moderada, muito pequena, granular e grãos simples; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – Muitas muito finas e comuns finas no horizonte A1, muitas muito finas e poucas médias no horizonte A2; comuns muito finas, raras médias e grossas no AB; muitas muito finas, comuns finas e raras médias no horizonte BA; poucas muito finas e raras finas e médias no horizonte Bw1; poucas muito finas e finas, raras médias nos horizontes horizonte Bw2 e Bw3; poucas muito finas e finas no Bw4. OBSERVAÇÕES – Perfil descrito seco;

- Sutil diferença de cores entre Bw3 e Bw4, observada apenas visualmente;
- Abundante atividade de cupim desde o horizonte A1 até o BA;
- Poros: muitos muito pequenos e médios, poucos grandes nos horizontes A1 e A2; muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes AB e BA; muitos muito pequenos, comuns médios e poucos grandes no Bw1; muitos muito pequenos e poucos médios nos demais horizontes.

C. RESULTADOS ANALÍTICOS

Perfil P4 Amostras de Laboratório: 09.1399-1406

Solo: LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura média. A moderado

Solo: LAT	OSSOLO								dia, A mo	derado	1			1
Horiz	onte	Fraçõe	s da am total g/kg	nostra	Comp	terra	anulomét a fina ^{/kg}	trica da	Argila dispersa	Grau de	Relaç	ão	ensidade g/cm³	-Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi	la	Partículas	cm ³ /100cm ³
A1	0-3	0	0	1000	237	526	75	162	101	38	0,4	6	2,57	
A2	-30	0	0	1000	238	515	45	202	141	30	0,2	2	2,57	
AB	-53	0	0	1000	220	498	60	222	202	9	0,2	7	2,59	
ВА	-74	0	0	1000	206	504	68	222	222	0	0,3	1	2,58	
Bw1	-101	0	0	1000	206	502	70	222	182	18	0,3	2	2,67	
Bw2	-128	0	0	1000	196	498	64	242	182	25	0,2	6	2,58	
Bw3	-159	0	0	1000	194	502	62	242	181	25	0,2	6	2,62	
Bw4	-200	0	0	1000	187	518	53	242	181	25	0,2	2	2,61	
Horizonte	pH (1	:2,5)					exo Sorti nol₀/kg	vo				alor V	100.Al ³⁺	P
HOHZOHLE	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. p	oor bases %	S + Al ³⁺ %	assimiláve mg/kg
A1	6,7	6,1	4,2	1,3	0,40	0,01	5,9	0	1,8	7,7		77	0	7
A2	6,4	6,2	2,9	0,8	0,15	0,01	3,9	0	1,5	5,4		72	0	1
AB	6,5	5,4	3,1	0,4	0,08	0,01	3,6	0	1,2	4,8		75	0	1
BA	6,7	5,5	2,6	0,5	0,07	0,01	3,2	0	0,8	4,0		80	0	1
Bw1	6,9	5,7	2,4	0,3	0,05	0,01	2,8	0	0,7	3,5		80	0	1
Bw2	7,3	6,0	2,2	0,7	0,04	0,01	2,9	0	0	2,9		100	0	1
Bw3	7,5	6,1	2,0	0,7	0,05	0,01	2,8	0	0	2,8		100	0	1
Bw4	7,3	6,0	1,8	0,6	0,03	0,01	2,4	0	0	2,4		100	0	<1
	С						sulfúrico g/kg)		Relaçõ	es Mol	eculares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
A1	13,4	1,5	9											
A2	6,7	0,9	7											
AB	4,4	0,7	6											
ВА	3,2	0,6	5											
Bw1	2,3	0,4	6	75	69	20	3,6			1,85	1,56	5,42		
Bw2	1,8	0,3	6	82	76	22	3,8			1,83	1,55	5,42		
Bw3	1,8	0,3	6	86	75	22	3,9			1,95	1,64	5,35		
Bw4	1,5	0,3	5	85	76	19	3,1			1,90	1,64	6,28		

A. DESCRIÇÃO GERAL

PERFIL P5

DATA - 29/08/2009

CLASSIFICAÇÃO - NEOSSOLO FLÚVICO Ta Eutrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - CYve2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.351.488 m e Este 612.444 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – perfil descrito nos depósitos quaternários do Rio São Francisco, sob vegetação de Floresta Tropical Pluvial Perenifólia e declives que não ultrapassam 3%.

ALTITUDE - 435 m

LITOLOGIA - Sedimentos fluviais areno-argilosos.

FORMAÇÃO GEOLÓGICA - Sedimentos Quaternários.

CRONOLOGIA - Quaternário.

MATERIAL ORIGINÁRIO - Produto de alteração da litologia supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Tropical Pluvial Perenifólia

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- O-11 cm, bruno-acinzentado muito escuro (10YR 3/2, úmido); franca; moderada, pequena e média, blocos subangulares e forte, muito pequena e pequena, granular; dura, firme, plástica e pegajosa; transição plana e clara.
- A2 11-22 cm, bruno-escuro (10YR 3/3, úmido); franca; moderada, média e grande, blocos subangulares; dura, firme, plástica e pegajosa; transição plana e clara.
- CA 22-51 cm, bruno-amarelado-escuro (10YR 3/4, úmido); franco-argiloarenosa; moderada, média e grande, blocos subangulares e angulares; muito dura, muito firme, plástica e ligeiramente pegajosa; transição plana e difusa.
- 51-95 cm, bruno-amarelado-escuro (10YR 4/4, úmido); franco-arenosa; maciça que se desfaz em moderada, grande, blocos subangulares e angulares; muito dura, firme, plástica e ligeiramente pegajosa; transição plana e clara.
- 3C2 95-140 cm, bruno-amarelado (10YR 5/6, úmido); franco-arenosa; maciça; dura, firme, plástica e ligeiramente pegajosa.
- RAÍZES Abundantes muito finas, comuns finas, poucas médias e grossas no horizonte A1; comuns muito finas e finas no A2; poucas muito finas, finas, médias e grossas no horizonte CA; poucas muito finas nos horizontes 2C1 e 3C2.

OBSERVAÇÕES - Perfil descrito seco;

 Poros: muitos muito pequenos e pequenos, comuns médios no horizonte A1; muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A2, CA e 2C1; comuns muito pequenos e poucos pequenos no horizonte 3C2.

C. RESULTADOS ANALÍTICOS

Perfil P5

Amostras de Laboratório: 09.1407-1411

Solo: NEOSSSOLO FLÚVICO Ta Eutrófico típico, textura média, A moderado

Solo: NEO	J2220F	J FLUVI	CO Ta	Eutron	co tipic	o, textur	a media	, A mod	ierado	1	1			1
Horiz	Horizonte Fra		s da am total g/kg	nostra	Composição granulométrica da terra fina g/kg				Argila dispersa	Grau de	Relaç		ensidade g/cm³	Danasidada
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi	а	Partículas	Porosidade cm ³ /100cm ³
A1	0-11	0	0	1000	57	394	325	224	184	18	1,4	5	2,45	
A2	-22	0	0	1000	49	426	302	223	203	9	1,3	5	2,56	
CA	-51	0	0	1000	61	472	244	223	182	18	1,0	9	2,57	
2C1	-95	0	0	1000	26	564	228	182	162	11	1,2	5	2,60	
3C2	-140	0	0	1000	38	739	102	121	81	33	0,8	1	2,60	
Horizonte	pH (1	:2,5)					exo Sorti nol₀/kg	VO				alor V	100.Al ³⁺	P assimilável
Tionzonie	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(Sal. p	%	S + Al ³⁺ %	mg/kg
A1	6,7	6,0	7,6	3,1	0,46	0,02	11,2	0	2,1	13,3		84	0	15
A2	6,7	5,6	4,9	1,6	0,30	0,01	6,8	0	1,7	8,5		80	0	6
CA	6,8	5,6	3,8	1,7	0,26	0,01	5,8	0	1,2	7,0		83	0	4
2C1	6,9	5,5	3,2	1,3	0,11	0,01	4,6	0	0,3	4,9		94	0	3
3C2	6,4	5,0	1,8	1,3	0,07	0,01	3,2	0	0,7	3,9		82	0	3
	С						sulfúrico g/kg)		Relaçõ	ies Mol	eculares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
A1	24,4	2,8	9											
A2	11,4	1,4	8											
CA	5,4	0,8	7	86	67	36	3,7			2,18	1,62	2,92		
2C1	2,0	0,4	5	77	53	32	3,2			2,47	1,78	2,60		
3C2	1,0	0,2	5	48	34	22	3,7			2,40	1,70	2,43		

D. MINERALOGIA DA FRAÇÃO ARGILA

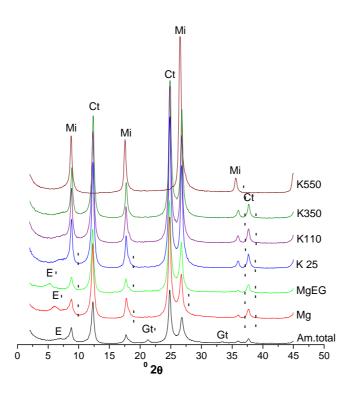


Figura 7. Difratogramas de raios-X da fração argila desferrificada do horizonte 2C1 do perfil P5. Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Gt – Goethita.. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

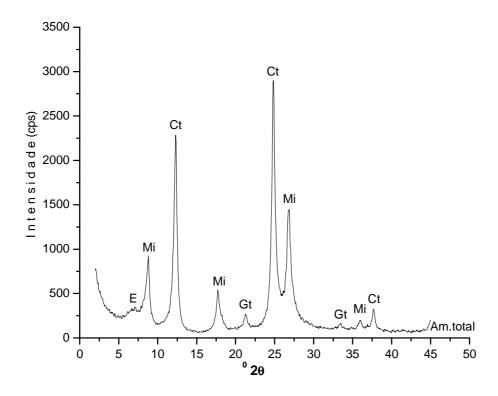


Figura 8. Difratogramas de raios-X da fração argila do horizonte 2C1 do perfil P05 referente à amostra total, sem tratamento (Am.total). Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Gt – Goethita

- Estimativa de predominância: Caulinita, Mica, Esmectita e Goethita.

PERFIL P6

DATA - 29/08/2009

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO Ta Eutrófico vertissólico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXve.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.350.932 m e Este 608.929 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço médio da encosta com 10% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 452 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena.

CRONOLOGIA - Neoproterozoico

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - ligeiramente pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - ondulado.

RELEVO REGIONAL - suave ondulado e ondulado.

EROSÃO - ausente

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A1 0-14 cm, bruno-escuro (7,5YR 3/4, úmido); argila; forte, pequena, blocos subangulares e forte; pequena e média, granular; ligeiramente dura, firme, plástica e muito pegajosa; transicão plana e gradual.
- A2 14-30 cm, bruno-avermelhado-escuro (2,5YR 2,5/4, úmido); argila; forte, pequena, blocos subangulares e forte, pequena e média, granular; dura, firme, plástica e muito pegajosa; transição plana e clara.
- Bi1 30-65 cm, bruno-avermalhado-escuro (2,5YR 3/4, úmido); argila; forte, média e grande, blocos angulares e subangulares; superfícies de compressão moderada e comum; dura e localmente muito dura, firme e localmente muito firme, plástica e muito pegajosa; transição plana e clara.
- Bi2 65-80 cm, coloração variegada, composta de vermelho-escuro (2,5YR 3/6, úmido) e bruno-forte (7,5YR 4/6; úmido); argila; forte, grande, blocos subangulares; superfícies de compressão moderada e comum; dura, firme, plástica e muito pegajosa; transição plana e clara.
- Biv 80-100 cm, bruno-oliváceo (2,5Y 4/4, úmido); argila; forte, pequena e média, prismática e forte, grande, blocos angulares; slickensides abundantes; extremamente dura, extremamente firme, plástica e muito pegajosa.

RAÍZES – Muitas muito finas e finas, comuns médias e grossas no horizonte A1; comuns muito finas, finas e médias nos horizontes A2 e Bi1; poucas finas e médias nos horizontes Bi2e Biv.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de nódulos petroplínticos subarredondados (chumbinho de caça) no horizonte Biv ocupando menos que 1% do horizonte, em volume;
- Presença de muitas fendas verticais no horizonte Bi2 com largura que varia de 0,5 à 1cm;
- Presença de fragmentos de rocha em todo o perfil, ocupando menos que 5% de seu volume e de rocha calcária não alterada (reage ao HCl) a partir de 1 metro de profundidade;

- Poros: muitos muito pequenos e comuns pequenos nos horizontes A1 e A2; comuns muito pequenos nos horizontes Bi1 e Bi2; poucos muito pequenos no horizonte Biv.

C. RESULTADOS ANALÍTICOS

Perfil P6 Amostras de Laboratório: 09.1412-1416

Solo: CAM	IBISSOL	O HAPLI	CO Ta	Eutrof	ico verti	issólico,	textura	argilosa	, A mode	rado	1			1
Horiz	onte	Fraçõe	s da am total g/kg	nostra	Compo	terra	anulomét a fina kg	trica da	Argila dispersa	Grau de	Relação		nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
A1	0-14	0	2	998	99	161	286	454	330	27	0,63		2,50	
A2	-30	0	0	1000	97	146	263	494	370	25	0,53		2,55	
Bi1	-65	0	5	995	85	134	224	557	83	85	0,40		2,60	
Bi2	-80	0	15	985	73	111	232	584	83	86	0,40		2,64	
Biv	-100	0	14	986	61	90	263	586	503	14	0,45		2,61	
l la sina sta	pH (1	:2,5)					exo Sorti	vo			Valo		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na [⁺]	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por base		S + Al ³⁺ %	assimilável mg/kg
A1	6,9	6,0	12,4	3,9	0,59	0,01	16,9	0	2,1	19,0	89		0	6
A2	6,6	5,3	11,1	3,1	0,17	0,02	14,4	0	2,9	17,3	83		0	3
Bi1	6,7	5,1	10,6	4,0	0,12	0,02	14,7	0	2,1	16,8	87		0	3
Bi2	6,7	4,9	13,7	4,4	0,13	0,04	18,3	0	1,6	19,9	92		0	2
Biv	7,0	5,1	18,1	4,8	0,20	0,06	23,2	0	0	23,2	100		0	6
	С	_				sulfúrico g/kg)		Relaçõ	es Moleci	ulares	Fe ₂ O ₃	Equivalente	
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			N ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
A1	24,1	3,1	8											
A2	13,3	1,9	7											
Bi1	6,4	1,1	6	259	128	73	3,1			3,44	2,52	2,75		
Bi2	3,8	0,8	5											
Biv	2,8	0,5	6											
		Pasta sa	iturada		I		Sais solúv	/eis		I		Const	antes hídri	cas
	100.Na⁺	C.E. do			r		cmol _c /k	9	1				g/100g	
Horizonte	T	extrato	Água	2.	2.			HCO ₃		2		Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K⁺	Na ⁺	CO ₃ ²⁻	Cl	SO ₄ ²	0,033 MPa		1,5 MPa	disponível máxima
A1	<1													
A2	<1													
Bi1	<1													
Bi2	<1													
Biv	<1													

D. MINERALOGIA

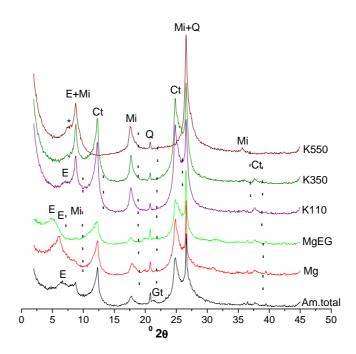


Figura 9. Difratogramas de raios-X da fração argila desferrificada do horizonte Biv do perfil P6. Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

- Observação: a reflexão mal formada (assinalada com *) que permanece após aquecimento da amostra K-saturada a 550°C (K 550), é indício da presença de interestratificado clorita-esmectita.

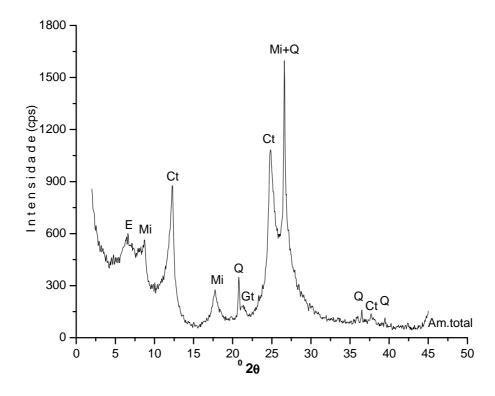


Figura 10. Difratogramas de raios-X da fração argila do horizonte Biv do perfil P6 referente à amostra total, sem tratamento (Am.total). Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita

- Estimativa de predominância: Caulinita, Esmectita, Mica, Quartzo e Goethita.

PERFIL P7

DATA - 30/08/2009

CLASSIFICAÇÃO – CHERNOSSOLO HÁPLICO Órtico petroplíntico, textura média. UNIDADE DE MAPEAMENTO – MXo.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, mMunicípio de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.022m e Este 606.799m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço inferior da encosta com 1% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 455 m

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não predregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- O-12 cm, bruno-acinzentado muito escuro (10YR 3/2, úmido); francoargilo-arenosa; forte, pequena e média, blocos subangulares e forte, pequena e muito pequena granular; muito dura e localmente dura, firme, ligeiramente plástica e pegajosa; transição plana e gradual.
- A2 12-32 cm, bruno-escuro (10YR 3/3, úmido); franco-argilo-arenosa; forte, média e pequena, blocos subangulares; muito dura, firme, ligeiramente plástica e pegajosa; transicão plana e clara.
- BAc 32-48 cm, coloração variegada, composta de bruno (10YR 4/3, úmido), bruno-oliváceo-claro (2,5Y 5/4, úmido), mosqueado pequeno, comum, distinto, bruno-amarelado (10YR 5/6; úmido); franco-argilo-arenosa; forte, grande e média, blocos subangulares; extremamente dura, firme, plástica e pegajosa; transição plana e clara.
- Bic 48-105 cm, coloração variegada, composta de bruno-amarelado (10YR (10YR 5/8, úmido), bruno-amarelado, úmido), bruno-claroacinzentado (10YR 6/3, úmido) e vermelho-escuro-acinzentado (2,5YR 3/2; úmido); franco-argilo-arenosa; macica que se desfaz em forte, média e grande, blocos subangulares e angulares; nódulos petroplínticos (0,5)1,0 frequentes, pequenos а cm de diâmetro), duros, subarredondados, vermelhos, ferruginosos; extremamente dura, extremamente firme, plástica e pegajosa; transição plana e clara.
- Cc 105-115 cm, coloração variegada, composta de vermelho (2,5YR 5/8, úmido), cinzento (5Y 6/1, úmido) e vermelho-escuro-acinzentado (2,5YR 3/2, úmido); franco-argilo-arenosa; maciça; nódulos petroplínticos poucos, pequenos (0,5 a 1,0 cm de diâmetro), duros, subarredondados, vermelhos, ferruginosos; extremamente dura, extremamente firme, plástica e pegajosa.

RAÍZES – Muitas muito finas e finas no horizonte A1; comuns muito finas e poucas finas no A2; poucas muito finas e finas no horizonte BAc; raras muito finas no horizonte Bic; ausente no Cc.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de grande quantidade de casulos com minhocas nos horizontes A1 e A2, bem como de coprólitos em superfície;
- Nódulos petroplínticos (chumbinhos de caça) milimétricos aparecem desde a superfície do solo. Nos horizontes A1 e A2 ocupam proporções inferiores a 5%, em volume;
- Presença de fragmentos de rocha nos horizontes BAc, Bic e Cc ocupando menos de 5% dos horizontes;
- Poros: poucos muito pequenos e pequenos, comuns médios e grandes no horizonte A1; poucos muito pequenos, comuns médios e grandes no horizonte A2; poucos muito pequenos, pequenos e médios no BAc; poucos muito pequenos e pequenos no horizonte Bic; poucos muito pequenos no horizonte Cc.

C. RESULTADOS ANALÍTICOS

Perfil P7 Amostras de Laboratório: 09.1417-1421

Solo: CHERNOSSOLO HÁPLICO Órtico petroplíntico, textura média

Solo: CHE	ERNOSSO	DLO HAP	LICO C	Ortico pe	etroplint	ico, tex	tura mé	dia		1	_			
Horiz	onte	Fraçõe	s da am total g/kg	ostra	Compos	terra	anulomé a fina kg	trica da	Argila dispersa	Grau de	Relação		ensidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
A1	0-12	0	2	998	212	397	167	224	183	18	0,75		2,51	
A2	-32	0	1	999	185	417	134	264	183	31	0,51		2,57	
BAc	-48	0	58	942	202	381	111	306	265	13	0,36		2,58	
Bic	-105	0	35	965	210	345	139	306	20	93	0,45		2,63	
Сс	-115	0	27	973	181	353	138	328	287	12	0,42		2,60	
	pH (1:2,5)		Complexo Sortivo cmol _e /kg							Valo	r V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por bases		S + Al ³⁺ %	assimilável mg/kg
A1	7,4	6,5	7,0	3,4	0,31	0,02	10,7	0	0	10,7	100		0	9
A2	7,2	6,0	5,9	2,4	0,09	0,01	8,4	0	0	8,4	100		0	2
BAc	7,1	5,4	5,6	2,9	0,07	0,01	8,6	0	0	8,6	100		0	1
Bic	6,9	5,2	5,5	5,5	0,08	0,02	11,1	0	0,8	11,9	93		0	<1
Сс	7,1	5,1	6,5	8,5	0,09	0,04	15,1	0	0	15,1	10	100		<1
	С						sulfúric g/kg	0		Relaçõ	ies Moleci	ılares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			N ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
A1	18,5	1,9	10											
A2	9,4	1,3	7											
BAc	3,2	0,6	5	84	54	52	1,9			2,64	1,64	1,63		
Bic	1,5	0,4	4											
Сс	1,0	0,2	5	103	68	54	2,1			2,58	1,71	1,98		
	400 N. †	Pasta sa	turada			,	Sais solú cmol _c /l					Cons	stantes hídric g/100g	as
Horizonte	100.Na ⁺ T	C.E. do extrato	Água	2.	2.			HCO ₃		2		Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	CO ₃ ²⁻	Cl¯	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
A1	<1													
A2	<1													
BAc	<1													
Bic	<1													
Сс	<1													

D. MINERALOGIA

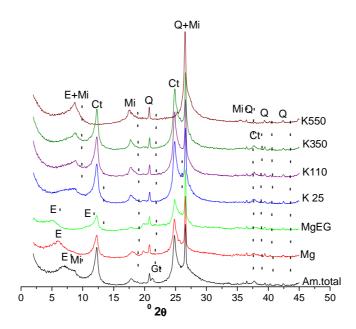


Figura 11. Difratogramas de raios-X da fração argila desferrificada do horizonte Bic do perfil P7. Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 °C; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

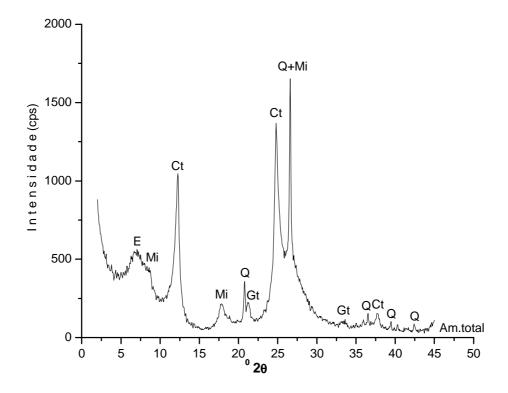


Figura 12. Difratogramas de raios-X da fração argila do horizonte Cf1 do perfil P7 referente à amostra total, sem tratamento (Am.total). Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita

- Estimativa de predominância: Caulinita, Esmectita, Mica, Quartzo e Goethita.

PERFIL P8

DATA - 29/08/2009

CLASSIFICAÇÃO – LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVAd2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.361.024 m e Este 607.725 m. SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapada com 0 a 3% de declive. Perfil descrito sob vegetação de Carrasco.

ALTITUDE - 469 m

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA - Grupo Urucuia.

CRONOLOGIA - Cretáceo

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os arenitos do Grupo Urucuia.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente

DRENAGEM - fortemente drenado.

VEGETAÇÃO PRIMÁRIA - Carrasco.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-20 cm, bruno-escuro (7,5YR 3/4, úmido); areia franca; fraca, muito pequena e pequena, granular e grãos simples; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e clara.
- AB 20-34 cm, bruno (7,5YR 5/4, úmido); franco-arenosa; fraca, pequena e média, blocos subangulares e fraca, muito pequena e pequena, granular; ligeiramente dura, muito friável, não plástica e ligeiramente pegajosa; transicão plana e gradual.
- BA 34-64 cm, vermelho-amarelado (6YR 5/8, úmido); franco-arenosa; fraca, pequena, blocos subangulares; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e difusa.
- Bw1 64-98 cm, vermelho-amarelado (6YR 5/8, úmido); franco-arenosa; maciça que se desfaz em fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e difusa.
- Bw2 98-170 cm, vermelho-amarelado (6YR 5/6, úmido); franco-arenosa; macica; macia, muito friável, não plástica e não pegajosa.

RAÍZES – Muitas muito finas e finas, comuns médias e poucas grossas no horizonte A; muitas muito finas, comuns finas e poucas médias no AB; muitas muito finas e finas, poucas médias no horizonte BA; poucas muito finas e finas nos horizontes Bw1 e Bw2.

OBSERVAÇÕES - Perfil descrito seco;

 Poros: muitos muito pequenos, comuns pequenos e médios nos horizontes A e AB; muitos muito pequenos, comuns pequenos e poucos grandes no BA; muitos muito pequenos e comuns pequenos no horizonte Bw1; muitos muito pequenos no Bw2.

C. RESULTADOS ANALÍTICOS

Perfil P8 Amostras de Laboratório: 09.1422-1426

Solo: LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, A moderado

5010: LAT	Solo: LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, A moderado													
Horiz	onte	Frações	s da am total g/kg	ostra	Compos	sição gra terra g/	fina	trica da	Argila dispersa	Grau de	Relaçã	io	ensidade g/cm³	Danasidada
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila		Partículas	Porosidade cm ³ /100cm ³
Α	0-20	0	0	1000	259	562	59	120	80	33	0,49		2,61	
AB	-34	0	0	1000	257	562	41	140	80	43	0,29		2,62	
BA	-64	0	0	1000	257	560	43	140	100	29	0,31		2,63	
Bw1	-98	0	0	1000	241	574	45	140	20	86	0,32		2,61	
Bw2	-170	0	0	1000	239	582	39	140	0	100	0,28		2,65	
	pH (1	:2,5)					exo Sor mol _c /kg	tivo				lor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T		or bases) %	S + Al ³⁺ %	assimilável mg/kg
Α	4,9	3,8	0	,5	0,03	0,01	0,5	0,4	2,1	3,0		17	44	2
AB	4,7	4,0	0	,3	0,02	0,01	0,3	0,4	1,3	2,0	15		57	1
BA	4,8	4,0	0	,3	0,01	0,01	0,3	0,4	1,1	1,8	17		57	1
Bw1	4,8	4,1	0	,3	0,01	0,01	0,3	0,4	0,9	1,6	19		57	<1
Bw2	4,9	4,1	0	,5	0,01	0,01	0,5	0,4	0,8	1,7	2	29	44	<1
	С				Ataque sulfúrico Relaçõe						es Mole	culares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	5,5	0,6	9											
AB	3,0	0,6	5											
BA	2,1	0,3	7											
Bw1	1,4	0,2	7	41	42	15	2,7			1,66	1,35	4,40		
Bw2	1,0	0,2	5	44	39	17	2,8			1,92	1,50	3,60		
	100 No ⁺	Pasta sa	turada			;	Sais solu					Cons	stantes hídric g/100g	as
Horizonte	100.Na ⁺ T	C.E. do extrato	Água									Umida	ıde	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	HCO ₃ CO ₃	Cl	SO ₄ ²⁻	0,03	3 MPa	1,5 MPa	disponível máxima
Α	<1													
AB	<1													
BA	<1													
Bw1	<1													
Bw2	<1													

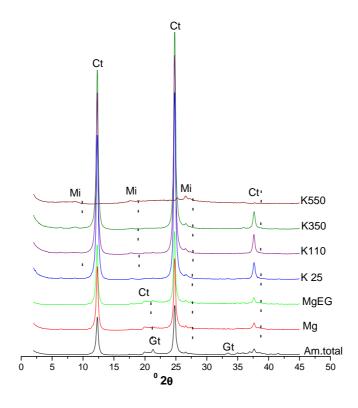


Figura 13. Difratogramas de raios-X da fração argila desferrificada do horizonte Bw2 do perfil P8. Minerais identificados: Mi - Mica; Ct - Caulinita; Gt - Goethita. Tratamentos: K550 - amostra saturada com potássio e aquecida a 550 oC; K350 - amostra saturada com potássio e aquecida a 350 °C; K110 - amostra saturada com potássio e aquecida a 110 °C; MgEG - amostra saturada com magnésio e solvatada com etileno glicol; Mg - amostra saturada com magnésio; Am.total - amostra analisada na condição natural, sem tratamento

Observação: há indícios da presença de VHE. Porém, pela alta intensidade dos difratogramas da amostra desferrificada, sua reflexão quase não aparece. Seu conteúdo pode ser considerada desprezível. Pequena reflexão é observada no DRX da amostra total (Figura 14).

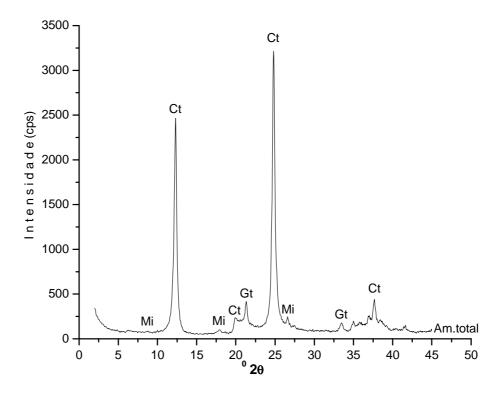


Figura 14. Difratogramas de raios-X da fração argila do horizonte Bw2 do perfil P8 referente à amostra total, sem tratamento (Am.total). Minerais identificados: Mi - Mica; Ct - Caulinita; Gt - Goethita

- Estimativa de predominância: Caulinita, Goethita, Mica.

PERFIL P9

DATA - 30/08/2009

CLASSIFICAÇÃO – LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado, epidistrófico.

UNIDADE DE MAPEAMENTO - LVe1.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.354.884 m e Este 605.305 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Área plana com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 481 m

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-14 cm, vermelho muito escuro-acinzentado (2,5YR 2,5/2, úmido); argilo-arenosa; fraca, pequena e muito pequena, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 14-27 cm, bruno-avermelhado-escuro (2,5YR 2,5/4, úmido); argila; fraca, pequena e muito pequena, blocos subangulares e moderada, pequena e muito pequena, granular; macia, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 27-45 cm, vermelho-escuro-acinzentado (10R 3/4, úmido); argila; fraca, média e pequena, blocos subangulares; ligeiramente dura e localmente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw1 45-92 cm, vermelho-escuro (10R 3/6, úmido); argila; fraca, pequena e média, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transicão plana e difusa.
- Bw2 92-143 cm, vermelho-escuro (10R 3/6, úmido); argila; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 143-200 cm, vermelho-escuro (10R 3/6, úmido); argila; maciça que se desfaz em fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas, poucas médias e grossas no horizonte A; comuns muito finas e finas, poucas médias no horizonte AB; comuns muito finas, finas e médias, poucas grossas no horizonte BA; muitas muito finas e poucas finas no horizonte Bw1; poucas muito finas, finas e médias nos horizontes Bw2 e Bw3.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de nódulos petroplínticos (chumbinhos de caça).
 Quantidade: muito pouco; tamanho: pequenos (aproximadamente
 0,3 cm de diâmetro); dureza: duros; forma: subarredondados; cor: avermelhados; natureza: ferruginosos;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A, AB e BA; muitos muito pequenos, comuns pequenos e poucos médios no horizonte Bw1; muitos muito pequenos, comuns pequenos, poucos médios e grandes no horizonte Bw2; muitos muito pequenos e comuns pequenos no horizonte Bw3.

C. RESULTADOS ANALÍTICOS

Perfil P9 Amostras de Laboratório: 09.1427-1432

Solo: LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado, epidistrófico.

Solo: LA	FOSSOLC) VERME	LHO E	utrófico	o típico,	textura	argilos	a, A mo	derado, e	epidistró	fico.			
Horiz	onte	Frações	s da am total g/kg	ostra	Compos		anulomé i fina kg	etrica da	Argila dispersa	Grau de	Relaçã		ensidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila		Partículas	Porosidade cm ³ /100cm ³
Α	0-14	0	1	999	145	314	154	387	244	37	0,40		2,49	
AB	-27	0	1	999	116	284	153	447	0	100	0,34		2,58	
BA	-45	0	1	999	110	276	147	467	0	100	0,31		2,61	
Bw1	-92	0	1	999	110	280	143	467	0	100	0,31		2,62	
Bw2	-143	0	1	999	95	280	159	466	0	100	0,34		2,63	
Bw3	-200	0	1	999	93	272	169	466	0	100	0,36		2,63	
	pH (1	:2,5)			•		exo Sor	tivo			Va	lor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por bases		S + Al ³⁺ %	assimilável mg/kg
Α	5,1	4,1	2,1	1,3	0,21	0,01	3,6	0,5	5,7	9,8	;	37	12	3
AB	5,0	4,0	1,3	0,9	0,07	0,01	2,3	0,8	3,4	6,5	35		26	1
BA	5,2	4,1	1,3	1,3	0,04	0,01	2,6	0,5	2,3	5,4	48		16	1
Bw1	5,2	4,1	1,2	1,3	0,03	0,01	2,5	0,4	1,7	4,6	54		14	1
Bw2	5,3	4,2	1,2	1,4	0,02	0,01	2,6	0,3	1,5	4,4	59		10	1
Bw3	5,1	4,1	1,0	1,8	0,03	0,01	2,8	0,4	1,6	4,8	58		12	<1
	-,	,	,-	,-		<u> </u>	sulfúrio		,-		1			
	С						g/kg			Relações Mole			Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	19,5	2,3	8											
AB	8,3	1,4	6											
BA	4,6	0,9	5											
Bw1	2,2	0,6	4											
Bw2	1,7	0,6	3											
Bw3	1,6	0,5	3	179	145	56	4,1			2,10	1,68	4,07		
		Pasta sa	turada		I		Sais sol		<u>I</u>	1		Cons	tantes hídric	as
	<u>100.Na</u> ⁺	C.E. do			T	1	cmol _c /	kg	1	T			g/100g	
Horizonte	T	extrato	Água	2.	2.			HCO ₃		2		Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K⁺	Na⁺	CO ₃ ²⁻	Cl	SO ₄ ²⁻	0,03	3 МРа	1,5 MPa	disponível máxima
Α	<1													
AB	<1													
BA	<1													
Bw1	<1													
Bw2	<1													
Bw3	<1													

PERFIL P10

DATA - 30/08/2009

CLASSIFICAÇÃO – LATOSSOLO VERMELHO Eutrófico chernossólico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - LVe3

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.350.276 m e Este 607.506 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Planalto com 0% a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 470 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - ausente

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-14 cm, vermelho-escuro-acinzentado (10R 3/2, úmido); argila; fraca, pequena e muito pequena, blocos subangulares e moderada, pequena e muito pequena, granular; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e clara.
- AB 14-33 cm, vermelho-escuro-acinzentado (10R 3/3, úmido); argila; fraca, média e pequena, blocos subangulares e moderada pequena e muito pequena, granular; ligeiramente dura, friável, plástica e pegajosa; transição plana e gradual.
- BA 33-64 cm, vermelho-escuro-acinzentado (10R 3/3, úmido); argila; fraca, média e grande, blocos subangulares; dura, friável, plástica e pegajosa; transição plana e difusa.
- Bw1 64-97 cm, vermelho-escuro-acinzentado (10R 3/4, úmido); argila; fraca, grande e média, blocos subangulares; cerosidade pouca e fraca; dura, friável, plástica e pegajosa; transição plana e difusa.
- Bw2 97-142 cm, vermelho-escuro (10R 3/6, úmido); argila; fraca, pequena e média, blocos subangulares; cerosidade pouca e fraca; ligeiramente dura, friável, plástica e pegajosa; transição plana e difusa.
- Bw3 142-170 cm, vermelho-escuro (10R 3/6, úmido); argila; maciça; ligeiramente dura, muito friável, plástica e pegajosa.

RAÍZES – muitas muito finas e finas, poucas médias e raras grossas no horizonte A; comuns muito finas e finas, poucas médias e raras grossas nos horizontes AB e BA; poucas muito finas e finas, raras médias nos demais horizontes.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de nódulos petroplínticos (chumbinhos de caça) distribuídos em todo os horizontes. Quantidade: muito poucos; tamanho: pequenos (aproximadamente 0,3 cm de diâmetro); dureza: duros; forma: subarredondados; cor: avermelhados; natureza: ferruginosos;
- Atividade expressiva de cupins nos horizontes A e AB;
- Poros: muitos muito pequenos, comuns pequenos, poucos médios e grandes nos horizontes A, AB e BA; muitos muito pequenos, comuns pequenos e médios no Bw1; muitos muito pequenos e comuns pequenos nos horizontes Bw2 e Bw3.

C. RESULTADOS ANALÍTICOS

Perfil P10 Amostras de Laboratório: 09.1433-1438

Horizonte Frações da amostra Composição granulometrica de julgo Section Sec	Solo: LAT	OSSOLO	VERME	_H0 Eu	ıtrófico	chernos	sólico,	textura	argilos	a.					
Simbolo Profun- Calhaus Calh	Horiz	onte	Frações	total	ostra	Compos	terra	fina	trica da			Relaçã			
AB	Símbolo	didade	> 20	calho 20-2	fina < 2	grossa 2-0,20	fina 0,20- 0,05	0,05- 0,002	< 0,002	em água	flocu- lação	Silte/	ı	Partículas	
BA G-64 O C S S S S S S S S S	Α	0-14	0	8	992	114	234	244	408	326	20	0,60		2,46	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AB	-33	0	2	998	89	211	192	508	406	20	0,38		2,57	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BA	-64	0	2	998	91	213	188	508	61	88	0,37		2,60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bw1	-97	0	2	998	85	219	127	569	528	7	0,22		2,64	
Horizonte Hori	Bw2	-142	0	3	997	87	215	190	508	0	100	0,37		2,64	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Bw3	-170	0	3	997	83	226	183	508	0	100	0,36		2,64	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		pH (1	:2,5)						tivo			Va	or V	100.Al ³⁺	Р
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	S	Al ³⁺	H ⁺				S + Al ³⁺	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Α	6,6	5,9	8,9	3,4	0,44	0,01	12,7	0	1,8	14,5	88		0	6
Bw1 5,9 4,7 3,6 1,5 0,04 0,01 5,1 0 1,5 6,6 77 0 1	AB	5,9	4,7	4,2	1,9	0,10	0,01	6,2	0	2,3	8,5	73		0	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BA	5,8	4,6	3,9	1,6	0,06	0,01	5,6	0	2,1	7,7	73		0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bw1	5,9	4,7	3,6	1,5	0,04	0,01	5,1	0	1,5	6,6	1	77	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bw2	5,8	4,7	2,3	2,7	0,04	0,01	5,0	0	1,5	6,5			0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bw3	5,7	4,7	2,8	1,9	0,05	0,01	4,8	0	1,5	6,3	76		0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C							0		Relaçõ	ies Mole	culares	Fe ₂ O ₂	
AB	Horizonte	(orgânico)		C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	Al_2O_3	R_2O_3		livre	CaCO₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	24,0	3,1	8											
Bw1 2,8 0,7 3 192 155 66 5,4	AB	6,3	1,1	6											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BA	4,8	1,0	5											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bw1	2,8	0,7	4	197	153	72	5,4			2,19	1,68	3,34		
Horizonte Horiz	Bw2	1,8	0,7	3	192	155	66	5,4			2,11	1,65	3,69		
Horizonte Horizonte Horizonte $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bw3	1,8	0,7	3	190	142	73	5,3			2,27	1,71	3,05		
Horizonte T				turada			;			1			Cons		as
Mg/m	Horizonte			λ				20/	3				Umida		Águs
AB <1 BA <1 BW1 <1 BW2 <1	Tionzonie		mS/cm		Ca ²⁺	Ca ²⁺ Mg ²⁺		Na⁺		Cl	SO ₄ ²⁻	0,03			disponível
AB <1 BA <1 BW1 <1 BW2 <1	A	<1												<u> </u>	
BA <1 Bw1 <1 Bw2 <1															
Bw1 <1 Bw2 <1															
Bw2 <1															

PERFIL P11

DATA - 02/09/2009

CLASSIFICAÇÃO – GLEISSOLO HÁPLICO Ta Eutrófico vertissólico neofluvissólico, textura muito argilosa, A moderado.

UNIDADE DE MAPEAMENTO - GXve1.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.202 m e Este 612.920 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Planície aluvionar com 0 a 2% de declive. Perfil descrito sob Floresta Tropical Pluvial Perenifólia.

ALTITUDE - 430 m.

LITOLOGIA - Sedimentos aluvionares.

FORMAÇÃO GEOLÓGICA - Sedimentos Quaternários

CRONOLOGIA - Quaternário.

MATERIAL ORIGINÁRIO - Sedimentos aluvionares.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ausente.

DRENAGEM - muito mal drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Tropical Pluvial Perenifólia.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

A 0-18 cm, cinzento-escuro (5YR 4/1, úmido); muito argilosa; forte, pequena, blocos subangulares e forte, média e pequena, granular; ligeiramente dura, firme, muito plástica e muito pegajosa; transição plana e abrupta.

CAg 18-33 cm, cinzento-escuro (N4/, úmido), mosqueados comuns, proeminentes, pequenos, médios, de coloração bruno-amarelado (10YR 5/6, úmido); muito argilosa; forte, grande, blocos angulares e blocos subangulares; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e gradual.

Cgv 33-76 cm, coloração variegada, composta de cinzento-escuro (2,5Y 4/0, úmido) e amarelo-oliváceo (2,5Y 6/6, úmido); muito argilosa; forte, média, prismática e forte, grande e muito grande, blocos angulares; slickensides poucas; superfícies de compressão forte e abundante; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e difusa.

2Cg 76-125 + cm, coloração variegada, composta de cinzento-escuro (2,5Y 4/0, úmido), amarelo-oliváceo (2,5Y 6/6, úmido) e cinzento muito escuro (2,5Y 3/0, úmido); muito argilosa; maciça que se desfaz em forte, grande, blocos angulares; extremamente dura, extremamente firme, muito plástica e muito pegajosa.

RAÍZES – muitas muito finas e finas, comuns médias e poucas grossas no horizonte A; comuns muito finas, finas e médias no horizonte CAg; comuns muito finas e finas no horizonte Cgv; raras finas e muito finas no horizonte 2Cg.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de fendas verticais no horizonte Cg1 de espessura média de 1cm;
- Poros: muitos muito pequenos e pequenos, comuns pequenos e médios e poucos grandes no horizonte A; muitos muito pequenos, comuns pequenos e médios e poucos grandes no CAg; comuns muito pequenos e poucos pequenos e médios no horizonte Cgv; comuns muito pequenos no 2Cg.

C. RESULTADOS ANALÍTICOS

Perfil P11

Amostras de Laboratório: 09.1439-1442

Solo: GLEISSOLO HÁPLICO Ta Eutrófico vertissólico neofluvissólico, textura muito argilosa, A moderado.

Solo: GLE	EISSOLO	HAPLIC	O Ta E	Eutrófic	o vertis	sólico n	eofluviss	sólico, te	extura mu	ito argi	losa, A r	nodera	ado.	Т
Horiz	onte	Fraçõe	s da am total g/kg	nostra	Compo		anulomé a fina kg	trica da	Argila dispersa	Grau de	Relação		nsidade g/cm ³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-18	0	0	1000	4	45	292	659	617	6	0,44		2,56	
CAg	-33	0	0	1000	4	68	269	659	618	6	0,41		2,59	
Cgv	-76	0	0	1000	4	54	280	662	662	0	0,42		2,63	
2Cg	-125	0	36	964	29	132	181	658	0	100	0,28		2,70	
Horizonte	pH (1	:2,5)		Complexo Sortivo cmol₀/kg							Valo		100.Al ³⁺ S + Al ³⁺	P assimilável
Honzonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por bases %		S + Al	mg/kg
Α	6,0	4,7	11,9	3,3	0,30	0,09	15,6	0	3,4	19,0	82		0	3
CAg	6,3	4,8	12,4	3,8	0,21	0,10	16,5	0	2,5	19,0	87	87		2
Cgv	6,2	4,5	16,6	4,7	0,13	0,27	21,7	0	2,7	24,4	89		0	1
2Cg	7,3	5,7	15,1	3,4	0,08	0,34	18,9	0	0	18,9	100		0	1
	С	C N orgânico) g/kg					sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico)		C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			N ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	15,2	2,2	7											
CAg	9,5	2,0	5											
Cgv	7,0	1,6	4	392	203	82	4,1			3,28	2,61	3,89		
2Cg	2,7	0,8	3	280	168	84	4,1			2,83	2,15	3,14		
	400 No. †	Pasta sa	aturada			5	Sais solú cmol _c /k			•		Const	antes hídri g/100g	cas
Horizonte	100.Na ⁺ T %	C.E. do extrato	Água	2±	24	_		HCO ₃	_	2-		Umida	de	Água
	/0	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	CO ₃ ²⁻	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
Α	<1													
CAg	<1													
Cgv	1													
2Cg	2													

D. MINERALOGIA

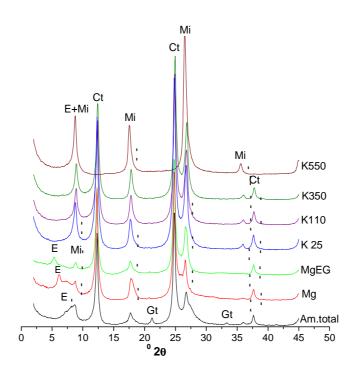


Figura 15. Difratogramas de raios-X da fração argila desferrificada do horizonte 2Cg do perfil P11. Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Gt – Goethita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

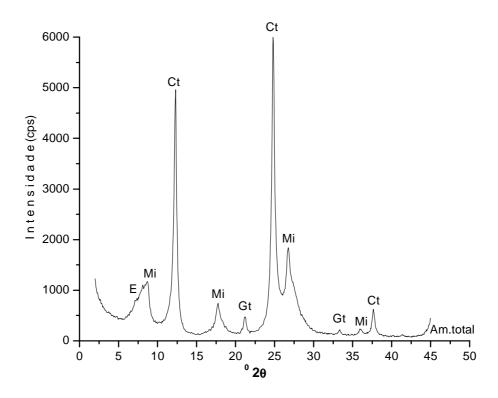


Figura 16. Difratogramas de raios-X da fração argila do horizonte 2Cg do perfil P11 referente à amostra total, sem tratamento (Am.total). Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Gt – Goethita

- Estimativa de predominância: Caulinita, Mica, Esmectita e Goethita.

PERFIL P12

DATA - 05/05/2010

CLASSIFICAÇÃO – LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - LVAe1.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.040 m e Este 613.667 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Área plana com com 0 a 3% de declive. Perfil descrito em área desmatada próxima à Sede do Parque Estadual da Mata Seca.

ALTITUDE - 438 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos pelíticos-carbonáticos da Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- Ap 0-14 cm, bruno-avermelhado (5YR 4/3, úmido); franco-argilo-arenosa; moderada, média e pequena, blocos subangulares; muito dura, firme, plástica e pegajosa; transicão plana e clara.
- AB 14-31 cm, bruno-forte (7,5YR 4/6, úmido); argila; moderada, média e grande, blocos subanglares; ligeiramente dura, friável, plástica e pegajosa; transição plana e gradual.
- Bw1 31-69 cm, vermelho-amarelado (6YR 4/6, úmido); argila; fraca, média e pequena, blocos subangulares; cerosidade fraca e pouca; ligeiramente dura, friável, plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw2 69-108 cm, vermelho-amarelado (5YR 5/6, úmido); argila; fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 108-146 cm, vermelho-amarelado (5YR 5/7, úmido); franco-argilosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw4 146-180 + cm, vermelho-amarelado (5YR 5/8, úmido); argila; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, plástica e ligeiramente pegajosa.

RAÍZES – comuns muito finas no horizonte Ap; comuns muito finas, finas e poucas médias nos horizontes AB e Bw1; poucas muito finas e finas no Bw2; raras muito finas no Bw3 e ausentes no Bw4.

OBSERVAÇÕES - Perfil descrito seco;

- Atividade biológica intensa (cupins e minhocas) desde a superfície do solo até o horizonte Bw1;
- Presença de fragmentos de rocha por todo o perfil ocupando menos que 1% dos horizontes;
- Poros: comuns muito pequenos, pequenos e grandes, poucos médios no horizonte Ap; muitos muito pequenos e comuns pequenos e médios no AB; muitos muito pequenos e pequenos, poucos médios no horizonte Bw1 e Bw2; muitos muito pequenos e comuns pequenos nos horizontes Bw3 e Bw4.

C. RESULTADOS ANALÍTICOS

Perfil P12

Amostras de Laboratório: 10.0406-0411

Solo: LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado

Solo: Horiz		Frações			ı	sição gra	anulomé ı fina		Argila	Grau				ensidade g/cm ³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	dispersa em água g/kg	de flocu- lação %	Relaç Silte Argi	e/ la	Solo	Partículas	Porosidade cm³/100cm³
А	0-14	0	4	996	152	348	196	304	243	20	0,6	4			
AB	-31	0	5	995	116	282	196	406	0	100	0,48	8			
Bw1	-69	0	5	995	106	281	186	427	0	100	0,4	4			
Bw2	-108	0	5	995	102	293	178	427	0	100	0,42	2			
Bw3	-146	0	10	990	96	301	217	386	0	100	0,50	6			
Bw4	-180	0	10	990	90	289	214	407	0	100	0,5	3			
	pH (1	1:2 5)			•		exo Sor	tivo		•				21	
Horizonto	pi i (i	.2,0)				CI	mol _c /kg					alor \		100.Al ³⁺	P
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H [⁺]	Valor T	(Sat. p	(sat. por bases) %		S + Al ³⁺ %	assimilável mg/kg
Α	6,2	4,7	3,2	1,1	0,24	0,01	4,5	0	2,5	7,0	64			0	3
AB	5,6	4,3	3,6	0,9	0,08	0,01	4,6	0,1	2,5	7,2	64			2	2
Bw1	5,3	4,0	2,9	0,7	0,05	0,01	3,7	0,4	2,1	6,2		60		10	2
Bw2	5,1	3,8	1,9	1,0	0,07	0,01	3,0	1,1	1,5	5,6	54			27	2
Bw3	5,1	3,8	2,2	1,0	0,07	0,01	3,3	1,1	1,7	6,1	54		25	2	
Bw4	5,0	3,7	1,9	0,9	0,08	0,01	2,9	1,7	1,8	6,4		45		37	2
	С						e sulfúrio g/kg	0		Relaçõ	ões Mol	ecula	ares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ Fe ₂	O ₃ / ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	8,6	1,1	8												
AB	4,8	0,9	5												
Bw1	2,6	0,7	4												
Bw2	1,8	0,6	3	170	135	69	5,7			2,14	1,61	3,0	07		
Bw3	1,7	0,6	3	166	133	67	5,8			2,12	1,60	3,	12		
Bw4	1,2	0,5	2												
		Pasta sa	turada		•		Sais solu						Cons	tantes hídric	as
l la sima ata	<u>100.Na</u> ⁺	C.E. do	,				cmol _c /	kg I					l:-l	g/100g	
Horizonte	T %	extrato mS/cm	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃	CI ⁻	SO ₄ ²⁻		U	Jmida	ae	Água disponível
		25°C	70	Ca	ivig		INA	CO ₃ ²⁻	Ci	304	0,0	0,033 MPa		1,5 MPa	máxima
Α	<1														
AB	<1														
Bw1	<1														
Bw2	<1														
Bw3	<1														
Bw4	<1														

PERFIL

DATA - 07/05/2010

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, textura média/argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe5.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.357.872 m e Este 612.946 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão fechada com aproximadamente 1% de declive. Perfil descrito sob vegetação de gramíneas.

ALTITUDE - 435 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual.

USO ATUAL – gramíneas em área anterior e intensivamente cultivada sob pivô central.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

A 0-(36-47) cm, vermelho-acinzentado (2,5YR 4/2, úmido), mosqueado abundante, pequeno, distinto, cinzento muito escuro (2,5YR 3/0, úmido); franco-argilosa; moderada, grande e média, prismática; extremamente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição ondulada e clara.

ABb (36-47)-(54-70) cm, coloração variegada composta de cinzento-escuro (2,5YR 4/0, úmido) e cinzento-avermelhado-escuro (5YR 4/2, úmido); franco-argilosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição ondulada e clara.

Bibc (54-70)-(95-127) cm, coloração variegada composta de bruno-amarelado-escuro (10YR 4/6, úmido), bruno-amarelado-claro (10YR 6/4, úmido) e preto-avermelhado (10R 2,5/1, úmido); franco-argilosa; fraca, média e pequena, blocos subangulares; nódulos petroplínticos poucos, pequenos, duros, esféricos (chumbinho de caça), vermelhos e amarelos, ferruginosos; dura; friável, plástica e pegajosa; transição ondulada e gradual.

Cbgc1 (95-127)-147 cm, coloração variegada composta de cinzento-claro (2,5Y 7/0, úmido), bruno-oliváceo-claro (2,5Y 5/6, úmido) e preto-avermelhado (10R 2,5/1, úmido); franco-argilosa; maciça; nódulos petroplínticos poucos, pequenos, duros, esféricos (chumbinho de caça), vermelhos e amarelos, ferruginosos; muito dura; firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.

Cbgc2 147-180 + cm, coloração variegada composta de amarelo-brunado (10YR 6/6, úmido), branco (2,5Y 8/0, úmido) e preto-avermelhado (10R 2,5/1, úmido); franco-argilosa; maciça; nódulos petroplínticos frequentes, pequenos, duros, esféricos (chumbinho de caça), vermelhos e amarelos, ferruginosos; muito dura; firme, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – comuns muito finas e finas nos horizontes A e ABb; poucas muito finas no horizonte Bibc e raras muito finas nos demais horizontes.

- OBSERVAÇÕES Perfil descrito úmido e localizado em uma depressão fechada que permanece inundada durante maior parte do período chuvoso;
 - Os horizontes A e ABb são coluvionares e apresentam-se compactados devido ao uso intensivo com elevada umidade sob pivô central;
 - Poros: comuns muito pequenos, poucos pequenos, médios e grandes no horizonte A; muitos muito pequenos, comuns pequenos e poucos médios no ABb; comuns muito pequenos e pequenos no horizonte Bigc; poucos muito pequenos nos demais horizontes.

Perfil P13

Amostras de Laboratório: 10.0412-0416

Solo: CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, textura média/argilosa, A moderado

Solo:	CAMBISSOLO HAPLICO Ta Eutrófico petroplíntico, textura média/argilosa, A moderado													
Horiz	onte	Frações	s da am total g/kg	ostra	Compos		anulomé ı fina kg	etrica da	Argila dispersa	Grau de	Relaçã		ensidade g/cm³	Barritata
Símbolo	Profundidade	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
Α	0-47	0	6	994	102	334	258	306	285	7	0,84			
ABb	-70	0	2	998	116	312	266	306	265	13	0,87			
Bibc	-127	0	5	995	102	279	250	369	369	0	0,68			
Cbgc1	-147	0	21	979	91	274	244	391	370	5	0,62			
Cbgc2	-180	0	40	960	124	249	236	391	371	5	0,60			
	pH (1	:2,5)					exo Sor	tivo			Val	or V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T		r bases) %	S + Al ³⁺ %	assimilável mg/kg
Α	7,2	5,7	7,0	1,6	0,31	0,01	8,9	0	0	8,9	1	00	0	52
ABb	7,4	5,8	7,2	1,4	0,45	0,01	9,1	0	0	9,1	10	00	0	18
Bibc	7,6	5,8	7,9	2,1	0,25	0,01	10,3	0	0	10,3	10	00	0	5
Cbgc1	7,4	5,5	9,3	3,8	0,10	0,01	13,2	0	0	13,2	10	00	0	1
Cbgc2	7,1	5,1	9,6	3,4	0,09	0,24	13,3	0	0	13,3	10	00	0	2
							sulfúrio	ю		Relaçõ	es Molec	ulares		Equivalente
Horizonte	C (orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	g/kg TiO ₂	P ₂ O ₅	MnO	SiO ₂ /		Al ₂ O ₃ / Fe ₂ O ₃	Fe ₂ O ₃ livre g/kg	de CaCO ₃ g/kg
А	9,5	1,3	7											
ABb	7,3	1,1	7											
Bibc	2,1	0,5	4	162	117	54	5,0			2,35	1,82	3,40		
Cbgc1	0,7	0,3	2	174	110	67	4,8			2,69	1,93	2,58		
Cbgc2	0,5	0,3	2											
		Pasta sa	turada			;	Sais sol					Cons	tantes hídric	as
l	<u>100.Na</u> ⁺	C.E. do		cmol _c /kg						ı			g/100g	
Horizonte	Т %	extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃ CO ₃	Cl	SO ₄ ²⁻	Umida 0,033 MPa		1,5 MPa	Água disponível máxima
А	<1													
ABb	<1													
Bibc	<1													
Cbgc1	<1													
Cbgc2	2													

PERFIL P14

DATA - 10/05/2010

CLASSIFICAÇÃO - LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.360.161 m e Este 613.653 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapada com 0% a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 456 m

LITOLOGIA - Arenito

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e do Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - fortemente drenado.

VEGETAÇÃO PRIMÁRIA – Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-11 cm, vermelho-acinzentado (2,5YR 4/2, úmido); franco-argilo-arenosa; moderada, pequena e muito pequena, granular; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 11-29 cm, vermelho-escuro-acinzentado (10R 3/4, úmido); franco-argiloarenosa; moderada, média e pequena, blocos subangulares; cerosidade fraca e pouca; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transicão plana e clara.
- Bw1 29-74 cm, vermelho (10R 4/6, úmido); franco-argilo-arenosa; fraca, grande e média, blocos subangulares; cerosidade fraca e pouca; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 74-119 cm vermelho (10R 4/8, úmido); franco-argilo-arenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 119-170 + cm, vermelho (10R 5/6, úmido); franco-argilo-arenosa; maciça; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – comuns muito finas e finas nos horizontes A e BA; poucas muito finas e finas nos horizontes Bw1 e Bw2 e raras muito finas e finas no horizonte Bw3.

- Atividade biológica intensa (cupim) desde a superfície do solo até o horizonte Bw1;
- Poros: muitos muito pequenos e comuns médios e grandes nos horizontes A e BA; muitos muito pequenos e pequenos, comuns médios e poucos grandes no Bw1; muitos muito pequenos, comuns pequenos e poucos médios no Bw2; abundantes muito pequenos, poucos pequenos e médios no Bw3.

Perfil P14

Amostras de Laboratório: 10.0417-0421

Solo:	LATOSS	OLO VERMELHO Eutrófico típico, textura média, A moderado												
Horiz	onte	Frações	s da am total g/kg	ostra	Compos		anulomé ı fina kg	trica da	Argila dispersa	Grau de	Relaçã		ensidade g/cm³	Danaida da
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte, Argila		Partículas	Porosidade cm ³ /100cm ³
Α	0-11	0	1	999	176	433	189	202	182	10	0,94			
BA	-29	0	1	999	155	444	159	242	222	8	0,66	;		
Bw1	-74	0	1	999	141	426	171	262	0	100	0,65	;		
Bw2	-119	0	1	999	129	427	182	262	0	100	0,69)		
Bw3	-170	0	1	999	125	436	177	262	0	100	0,68	1		
	pH (1	1:2,5)		Complexo Sortivo cmol₀/kg							Va	ılor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Volor						or bases) %	S + Al ³⁺ %	assimilável mg/kg		
Α	6,8	5,5	4,2	1,1	0,42	0,01	5,7	0	1,5	7,2		79	0	5
BA	6,2	4,7	2,2	0,6	0,10	0,01	2,9	0	1,5	4,4		66	0	1
Bw1	6,6	5,2	1,6	0,8	0,04	0,01	2,4	0	0,7	3,1		77	0	1
Bw2	5,7	4,6	1,5	0,5	0,02	0,01	2,0	0,1	0,9	3,0		67	5	1
Bw3	5,6	4,3	1,3	0,3	0,03	0,01	1,6	0,1	0,9	2,6		62	6	1
	С						sulfúrio g/kg	0		Relaçõ	es Mole	culares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	14,2	1,6	9											
BA	4,8	0,8	6											
Bw1	2,2	0,5	4											
Bw2	1,2	0,4	3	117	99	47	5,1			2,01	1,54	3,31		
Bw3	2,1	0,4	5	117	100	44	5,0			1,99	1,55	3,57		
	400 N. +	Pasta sa	turada			:	Sais solu cmol _c /					Cons	stantes hídric g/100g	as
Horizonte	100.Na ⁺ T	C.E. do	Água								+	Umida		Água
	%	extrato mS/cm 25°C	%	HCO2						1,5 MPa	disponível máxima			
А	<1										İ			
BA	<1													
Bw1	<1													
Bw2	<1													
Bw3	<1													

PERFIL P15

DATA - 11/05/2010

CLASSIFICAÇÃO - CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe3

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.357.298 m e Este 611.182 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Sopé da vertente com aproximadamente 1% de declive. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

ALTITUDE - 455 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-14 cm, bruno-escuro (7,5YR 4/2, úmido); franco-argilosa; forte, pequena e muito pequena, granular; ligeiramente dura, firme, plástica e pegajosa; transicão plana e clara.
- AB 14-29 cm, bruno-avermelhado (5YR 4/3, úmido); argila; forte, média e pequena, blocos subangulares; dura, firme, plástica e pegajosa; transição plana e clara.
- BA 29-60 cm, bruno-forte (7,5YR 4/6, úmido); argila; forte, média e pequena, blocos subangulares; extremamente dura, firme, plástica e pegajosa; transição plana e difusa.
- Bic1 60-106 cm, coloração variegada composta de bruno-amarelado (10YR 5/6, úmido) e bruno-amarelado-escuro (10YR 4/6, úmido); argila; forte, média e grande, blocos subangulares; nódulos petroplínticos poucos, pequenos, duros, esféricos (chumbinhos de caça), vermelhos, ferruginosos; extremamente dura, firme, ligeiramente plástica e pegajosa; transição plana e difusa.
- Bic2 106-150 + cm, coloração variegada composta de bruno-amarelado (10YR 5/6, úmido) e bruno-claro-acinzentado (10YR 6/3, úmido); argila; forte, grande e média, blocos subangulares; nódulos petroplínticos poucos, pequenos, duros, esféricos (chumbinhos de caça), vermelhos, ferruginosos; extremamente dura, firme, ligeiramente plástica e pegajosa.

RAÍZES – comuns muito finas e finas e poucas médias no horizonte A; poucas muito finas, finas e médias nos horizontes AB e BA; raras muito finas e finas nos horizontes Bic1 e Bic2.

- Fragmentos de rocha ocupando menos de 1% dos horizontes
 Bic1 e Bic2;
- Poros: muitos muito pequenos, comuns pequenos e médios e poucos grandes nos horizontes A e AB; comuns muito pequenos e pequenos e poucos médios no horizonte BA; comuns muito pequenos e poucos pequenos e médios nos horizontes Bic1 e Bic2.

Perfil P15

Amostras de Laboratório: 10.0422-0426

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa, A moderado.

Solo:	CAMBISSOLO HAPLICO To Eutrófico petroplíntico, textura argilosa, A moderado.													
Horiz	onte	Frações	s da am total g/kg	ostra	Compos	terra		etrica da	Argila dispersa	Grau de	Relaçã		ensidade g/cm³	D la la
Símbolo	Profundidade	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
Α	0-14	0	4	996	115	229	267	389	328	16	0,69			
AB	-29	0	5	995	99	203	226	472	390	17	0,48			
BA	-60	0	17	983	89	163	212	536	21	96	0,40			
Bic1	-106	0	21	979	85	149	228	538	21	96	0,42			
Bic2	-150	0	15	985	77	159	226	538	21	96	0,42			
	pH (1	1:2,5)					exo Sor mol _c /kg	tivo			Val	or V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Volor						r bases) %	S + Al ³⁺ %	assimilável mg/kg		
Α	6,5	5,2	8,9	2,0	0,40	0,01	11,3	0	2,9	14,2	8	0	0	4
AB	6,8	5,2	8,3	2,2	0,08	0,01	10,6	0	2,1	12,7	8	3	0	2
ВА	6,8	5,2	7,9	2,6	0,07	0,01	10,6	0	1,5	12,1	8	8	0	2
Bic1	6,1	4,5	6,9	4,7	0,08	0,01	11,7	0	1,9	13,6	8	6	0	1
Bic2	6,2	4,3	6,9	5,4	0,08	0,01	12,4	0	1,9	14,3	8	7	0	<1
	_						sulfúrio g/kg	Ю		Relaçõ	es Molec	ulares	- 0	Equivalente
Horizonte	C (orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / Fe ₂ O ₃	Fe ₂ O ₃ livre g/kg	de CaCO₃ g/kg
Α	17,6	2,4	7											
AB	8,1	1,2	7											
BA	3,5	0,7	5											
Bic1	2,6	0,6	4	218	147	103	4,1			2,52	1,74	2,24		
Bic2	1,9	0,5	4	212	151	87	3,5			2,39	1,74	2,72		
		Pasta sa	turada			;	Sais sol					Cons	tantes hídric	as
Horizonte	100.Na ⁺ T	C.E. do	Á .	cmol _c /kg							Llmida		Á	
11011201110	%	extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃ CO ₃ ²⁻	Cl	SO ₄ ²⁻	Umidad 0,033 MPa		1,5 MPa	Água disponível máxima
Α	<1													
AB	<1													
ВА	<1													
Bic1	<1													
Bic2	<1													

D. MINERALOGIA

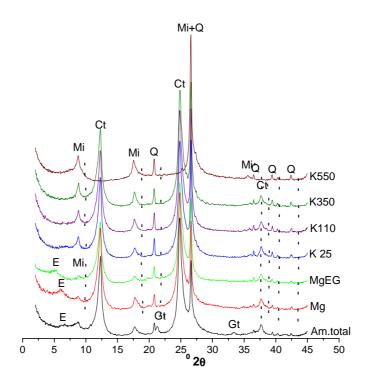


Figura 17. Difratogramas de raios-X da fração argila desferrificada do horizonte Bic1 do perfil P15. Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

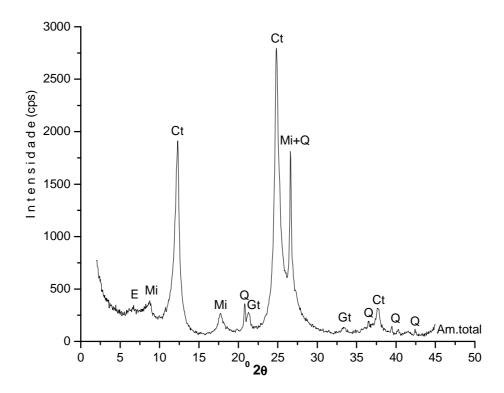


Figura 18. Difratogramas de raios-X da fração argila do horizonte Bic1 do perfil P15 referente à amostra total, sem tratamento (Am.total). Minerais identificados: E – Esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Gt – Goethita

- Estimativa de predominância: Caulinita, Mica, Esmectita, Quartzo e Goethita.

PERFIL P16

DATA - 11/05/2010

CLASSIFICAÇÃO – CHERNOSSOLO ARGILÚVICO Carbonático vertissólico, textura média/muito argilosa.

UNIDADE DE MAPEAMENTO - CXbe6.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.699 m e Este 605.896 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – perfil descrito sob Floresta Estacional Decidual Densa em área plana (declive inferior a 3%) que sucede aquela dominada por Latossolos Vermelhos Eutróficos situados nas cotas mais elevadas da paisagem.

ALTITUDE - 465 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - ligeiramente pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - mal drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-27 cm, cinzento muito escuro (5YR 3/1, úmido); franco-argilosa; forte, média e pequena, blocos subangulares; muito dura, muito firme, plástica e muito pegajosa; transição plana e clara.
- BA 27-40 cm, bruno-oliváceo (2,5Y 4/4, úmido); argilo-arenosa pouco cascalhenta; forte, média e pequena, prismática; slickenside moderada e pouca; extremamente dura, extremamente firme, plástica e pegajosa; transição plana e clara.
- Btv1 40-55 cm, bruno-oliváceo-claro (2,5Y 5/6, úmido); argila; forte, pequena e média, prismática e forte, grande, blocos angulares; slickenside forte e comum; extremamente dura, extremamente firme, plástica e pegajosa; transição plana e clara.
- Btv2 55-(73-87) cm, coloração variegada composta de bruno-oliváceo-claro (2,5Y 5/4, úmido) e bruno-acinzentado (2,5Y 5/2, úmido); muito argilosa; forte, grande e muito grande, blocos angulares; slickenside forte e abundante; extremamente dura, extremamente firme, plástica e pegajosa; transição ondulada e clara.
- Cr (73-87)-(106-121) cm, coloração variegada composta de bruno-oliváceoclaro (2,5Y 5/4, úmido), cinzento-claro (2,5Y 7/2, úmido) e amarelooliváceo (2,5Y 6/6, úmido); argila pouco cascalhenta; maciça; dura, firme, ligeiramente plástica e pegajosa; plana e abrupta.
- R (106-121) + cm, estrutura original da rocha.

RAÍZES – muitas muito finas e finas e comuns médias no horizonte A; comuns muito finas e finas nos horizontes BA e Btv1; poucas finas e médias no horizonte Biv2; poucas muito finas, finas e médias no horizonte Cr.

- Presença de fendas verticais de 0,2 cm a 0,6 cm nos horizontes
 BA e Bitv1;
- Presença de fendas verticais de milimétricas a centimétrica no horizonte Bitv2;
- Os horizontes BA e Btv1 apresentam chumbinhos de caça e fragmentos de rocha que ocupam (em volume) cerca de 5 e 20% dos horizontes, respectivamente;
- Poros: comuns muito pequenos e pequenos e poucos médios no horizonte A; comuns muito pequenos e pequenos nos horizontes
 BA e Bitv1; comuns muito pequenos e poucos pequenos no horizonte Btv2; comuns muito pequenos e pequenos no horizonte
 Cr.

Perfil P16

Amostras de Laboratório: 10.0427-0431

Solo: CHERNOSSOLO ARGILÚVICO Carbonático vertissólico, textura média/muito argilosa

Solo:	CHERN	OSSOLO) ARGI	LÚVIC	O Carb	onático	vertissó	lico, tex	tura médi	a/muito	argilos	a		
Horiz	onte	Fraçõe	s da am total g/kg	nostra	Compo		anulomé a fina ⁄kg	trica da	Argila dispersa	Grau de	Relação		nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-27	0	21	979	198	243	252	307	225	27	0,82			
ВА	-40	24	124	852	208	343	57	392	351	10	0,15			
Btv1	-55	0	33	967	92	130	192	586	544	7	0,33			
Btv2	-87	11	22	967	59	101	229	611	590	3	0,37			
Cr	-121	31	86	883	113	56	287	544	0	100	0,53			
Llavizanta	pH (1	:2,5)		Complexo Sortivo cmol _c /kg							Valo		100.Al ³⁺	P
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	sat. por		S + Al ³⁺ %	assimilável mg/kg
Α	6,5	5,0	8,9	2,7	0,13	0,01	11,7	0	3,4	15,1	7	7	0	2
ВА	7,0	5,1	10,9	4,2	0,12	0,01	15,2	0	0	15,2	10	00	0	1
Btv1	7,3	5,3	16,6	10,7	0,16	0,01	27,5	0	0	27,5	10	00	0	4
Btv2	7,6	5,5	19,4	10,8	0,15	0,01	30,4	0	0	30,4	10	00	0	7
Cr	8,4	6,7	16,1	8,5	0,10	0,38	25,1	0	0	25,1	10	00	0	3
	С					Ataque	sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / =e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	15,5	1,8	9											
ВА	4,0	0,7	6											
Btv1	4,0	0,5	8	237	141	84	2,7			2,86	2,07	2,64		
Btv2	2,7	0,5	5	252	142	85	2,9			3,02	2,18	2,62		
Cr	3,5	0,5	7											153
		Pasta sa	turada		I		Sais solú		l .	l		Const	antes hídrio g/100g	cas
11	<u>100.Na</u> ⁺	C.E. do			I	1	cmol _c /k	g	1		1			
Horizonte	T %	extrato mS/cm	Água %	gua 2+ 1-2+ 1-1+ HCO3 2- 2-						Umida	de I	Água disponível		
		25°C	70	Ca	ivig	N	INd	CO ₃ ²⁻	Ci	5 04	0,033	MPa	1,5 MPa	máxima
Α	<1													
ВА	<1													
Btv1	<1													
Btv2	<1													
Cr	2													

PERFIL P17

DATA - 11/05/2010

CLASSIFICAÇÃO - LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.360.296 m e Este 612.795 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Topo com 0% a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 455 m.

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e do Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - sulcos ligeira.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-12 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido); franco-argiloarenosa; fraca, muito pequena e pequena, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 12-28 cm, vermelho-escuro (2,5YR 3/6, úmido); franco-argilo-arenosa; moderada, média e pequena, blocos subangulares; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 28-58 cm, vermelho-escuro (10R 3/6, úmido); franco-argilo-arenosa; fraca, grande e média, blocos subangulares; cerosidade fraca e pouco; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw1 58-107 cm, vermelho (10R 4/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 107-156 cm, vermelho (10R 4/8, úmido); franco-argilo-arenosa; maciça que se desfaz em fraca, grande e média, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 156-180 + cm, vermelho (10R 4/8, úmido); franco-argilo-arenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – comuns muito finas e finas nos horizontes A e AB; comuns muito finas e finas e raras médias no BA; poucas muito finas e finas e raras médias no Bw1; raras muito finas nos horizontes Bw2 e Bw3.

- Intensa atividade de cupins nos horizontes A, AB e BA;
- Poros: abundantes muito pequenos e comuns médios e grandes nos horizontes A, AB e BA; abundante muito pequenos, comuns pequenos e médios e raros grandes nos horizontes Bw1 e Bw2; abundantes muito pequenos e comuns pequenos no horizonte Bw3.

Perfil P17

Amostras de Laboratório: 10.0432-0437

Solo: LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado

Horizonta	Solo:	LATOSS	OLO VE	RMELI	HO Eut	rófico tí	pico, tex	xtura mé	dia, A n	noderado					
Simbolo Profundicidade Cash Terra Areisa Areisa Sile O.5 O.020 O.	Horiz	onte	Fraçõe	total	nostra	Comp	terra	a fina	trica da					nsidade g/cm³	Porosidada
AB	Símbolo	didade	> 20	calho 20-2	fina < 2	grossa 2-0,20	fina 0,20-	0,05- 0,002	< 0,002	em água	lação		Solo	Partículas	
BA	Α	0-12	0	0	1000	184	484	110	222	182	18	0,50			
Bw1	AB	-28	0	0	1000	174	465	119	242	182	25	0,49			
Bw2	ВА	-58	0	1	999	160	465	112	263	222	16	0,43			
Bw3	Bw1	-107	0	0	1000	154	481	102	263	0	100	0,39			
Horizonte Hori	Bw2	-156	0	1	999	146	457	134	263	0	100	0,51			
Horizonte Hori	Bw3	-180	0	0	1000	151	459	127	263	0	100	0,48			
A		pH (1	:2,5)											100.Al ³⁺	
AB	Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺		Al ³⁺	H [⁺]		(sat. por	bases)		
BA	Α	6,5	5,0	2,4	0,8	0,21	0,01	3,4	0	1,8	5,2	65	5	0	6
Bw1	AB	6,1	4,6	2,0	0,7	0,05	0,01	2,8	0	1,5	4,3	65	5	0	2
Bw2 6,2 bw3 5,4 bw3 2,1 bw3 0,5 bw3 0,02 bw3 0,01 bw3 2,6 bw3 0 bw3 0,7 bw3 3,3 bw3 79 bw3 0 bw3 1	BA	6,6	5,3	2,2	0,9	0,03	0,01	3,1	0	1,0	4,1	76	3	0	1
Bw3	Bw1	6,7	5,5	1,9	0,5	0,03	0,01	2,4	0	0,2	2,6	92	2	0	1
Horizonte C Orgánico Orgá	Bw2	6,2	5,4	2,1	0,5	0,02	0,01	2,6	0	0,7	3,3	79)	0	1
Horizonte C Corgánico g/kg C/N SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ P ₂ O ₅ MnO SiO ₂ Resolve SiO ₂ Al ₂ O ₃ Recolve Fe	Bw3	6,5	5,4	2,0	0,5	0,02	0,01	2,5	0	0,7	3,2	78	3	0	1
Horizonte Corgânico Gregatico Greg		С)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
AB	Horizonte	(orgânico)		C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	Al_2O_3	R_2O_3		livre	CaCO₃
BA 3,5 0,6 6 6 Bw1 1,7 0,4 4 Bw2 1,2 0,4 3 123 95 61 5,2 2,20 1,56 2,45 Horizonte 100.Na	А	6,9	0,9	8	98	75	44	4,3			2,22	1,61	2,68		
Bw1	AB	5,4	0,7	8	115	94	38	4,5			2,08	1,65	3,88		
Bw2 1,2 0,4 3 3 123 95 61 5,2	BA	3,5	0,6	6											
Bw3 0,9 0,3 3	Bw1	1,7	0,4	4											
Horizonte Hori	Bw2	1,2	0,4	3	123	95	61	5,2			2,20	1,56	2,45		
Horizonte Horizonte T	Bw3	0,9	0,3	3											
Horizonte Horizonte T			Pasta sa	turada		•				•	•		Const		cas
A <1 AB <1 BW1 <1 BW2 <1	Horizonte	T		Água				CITIOIC/K	_				Umida		Água
AB <1 BA <1 Bw1 <1 Bw2 <1		%	mS/cm	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	CO ₃	Cl¯	SO ₄ ²	0,033	MPa	1,5 MPa	disponível
AB <1 BA <1 Bw1 <1 Bw2 <1	А	<1													
BA <1 Bw1 <1 Bw2 <1															
Bw1 <1 Bw2 <1															
Bw2 <1															
	Bw3														

PERFIL P18

DATA - 13/05/2010

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO Carbonático típico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe5.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.357.134 m e Este 612.268 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Topo de vertente com 0% a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 451 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-10 cm, bruno-avermelhado-escuro (5YR 3/2, úmido); argila; forte, média e pequena, granular; muito dura, firme, plástica e muito pegajosa; transição plana e clara.
- BA 10-27 cm, coloração variegada composta de bruno-avermelhado-escuro (2,5YR 3/4, úmido) e vermelho-escuro-acinzentado (2,5YR 3/2, úmido); argila; forte, média e pequena, blocos subangulares; dura, firme, plástica e muito pegajosa; transição plana e clara.
- Bi1 27-63 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido); argila; forte, média e pequena, blocos angulares; superfícies de compressão moderada e comum; dura, firme, plástica e muito pegajosa; transição plana e clara.
- Bi2 63-81 cm, vermelho-amarelado (5YR 5/6, úmido); argila; forte, grande e média, blocos angulares; superfícies de compressão forte e comum; muito dura, muito firme, plástica e muito pegajosa; transição plana e clara.
- Bik (81-84)-103 cm, vermelho-amarelado (5YR 5/6, úmido), mosqueados pequenos, abundantes, distintos, bruno-amarelado (10YR 5/6, úmido); argila; moderada, média e grande, blocos angulares e subangulares; dura, firme, plástica e pegajosa; transição descontínua e clara.
- CBk (84-103)-120 cm, bruno-amarelado (10YR 5/6, úmido); argila pouco cascalhenta; maciça que se desfaz em fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição descontínua e clara.
- Crk1 120-131 cm, coloração variegada, composta de cinzento-claro (10YR 7/2, úmido), branco (10YR 8/2, úmido) e amarelo-avermelhado (7,5YR 6/8, úmido); rocha bastante decomposta; transição plana e clara.
- Crk2 131-150 cm, coloração variegada, composta de cinzento-claro (2,5Y 7/2, úmido) e amarelo-claro-acinzentado (2,5Y 7/4, úmido); rocha bastante decomposta.

RAÍZES – muitas muito finas e finas e comuns médias no horizonte A; muitas muito finas e comuns finas, médias e grossas no horizonte BA; poucas muito finas, finas e médias no horizonte Bi1; poucas muito finas e finas nos horizontes Bi2, Bik e CBk.

- Presença de fragmentos de rocha em avançado estádio de decomposição em todos os horizontes. Ocupam menos que 5% do horizonte A até o Bi3. No horizonte CB ocupam aproximadamente 40% de seu volume e são exclusivos nos horizontes Cr1 e Cr2;
- Poros: comuns muito pequenos e pequenos e poucos médios no horizonte A; comuns muito pequenos, pequenos e médios no horizonte BA; comuns muito pequenos e pequenos e poucos médios no horizonte Bi1; comuns muito pequenos e poucos pequenos nos horizontes Bi2, Bi3 e CB.

Perfil P18

Amostras de Laboratório: 10.0438-0445

Solo: CAMBISSOLO HÁPLICO Carbonático típico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO H	APLIC	O Carb	onático	típico, t	extura a	rgilosa,	A moder	ado				
Horiz	onte	Fraçõe	s da am total g/kg	nostra	Compo	terra	anulomét a fina ⁄kg	trica da	Argila dispersa	Grau de	Relaç	io	ensidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte. Argila	a	Partículas	cm ³ /100cm ³
Α	0-10	0	1	999	89	169	287	455	393	14	0,63			
ВА	-27	0	1	999	78	165	263	494	453	8	0,53			
Bi1	-63	0	9	991	70	155	258	517	497	4	0,50			
Bi2	-81	0	13	987	54	127	255	564	459	19	0,45			
Bik	-84	0	57	943	96	118	267	519	0	100	0,51			
CBk	-120	0	117	883	160	129	296	415	0	100	0,71			
Crk1	-131	0	105	895	303	136	293	268	103	62	1,09			
Crk2	-150	0	87	913	431	118	370	81	0	100	4,57			
	pH (1	:2,5)					exo Sorti nol _c /kg	vo				lor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. p	or bases) %	S + Al ³⁺ %	assimilável mg/kg
А	7,9	6,4	12,5	2,0	0,82	0,01	15,3	0	0	15,3	1	00	0	15
ВА	8,0	6,4	11,3	2,1	0,72	0,01	14,1	0	0	14,1	1	00	0	6
Bi1	8,2	6,4	12,3	1,9	0,25	0,01	14,5	0	0	14,5	1	00	0	2
Bi2	8,3	6,5	16,6	1,9	0,11	0,01	18,6	0	0	18,6	1	00	0	6
Bik	8,4	6,8	15,5	3,9	0,07	0,34	19,8	0	0	19,8	1	00	0	1
CBk	8,4	6,9	14,6	2,6	0,07	0,38	17,6	0	0	17,6	1	00	0	1
Crk1	8,4	7,1	11,9	2,3	0,06	0,35	14,6	0	0	14,6	1	00	0	1
Crk2	9,0	7,4	8,3	1,0	0,05	0,35	9,7	0	0	9,7	1	00	0	3
	С						e sulfúrico g/kg)		Relaçõ	es Mole	culares	Fe₂O₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
А	19,6	2,6	8											18
BA	12,8	1,7	8											16
Bi1	5,7	1,1	5											17
Bi2	3,7	0,8	5	248	171	94	4,2			2,47	1,82	2,86		19
Bik	2,9	0,6	5											104
CBk	2,8	0,6	5											310
Crk1	3,7	0,6	6											761
Crk2	1,8	0,3	6											471

PERFIL P19

DATA - 14/05/2010

CLASSIFICAÇÃO – GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura média/argilosa, A moderado.

UNIDADE DE MAPEAMENTO - GMve.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.486 m e Este 603.842 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão fechada com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 468 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - ligeira em sulcos.

DRENAGEM - mal drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-14 cm, cinzento-escuro (5YR 4/1, úmido); franco-arenosa; forte, média e pequena, granular; muito dura, muito firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BAg 14-26 cm, coloração variegada, composta de cinzento (5YR 5/1, úmido) e cinzento-escuro (5YR 4/1, úmido), mosqueado abundante, proeminente, pequeno e médio, amarelo-avermelhado (5YR 6/8, úmido); argilo-arenosa; forte, média e grande, blocos angulares; extremamente dura, muito firme, plástica e pegajosa; transição plana e clara.
- Btg 26-(75-86) cm, cinzento-claro (5YR 7/1, úmido), mosqueado abundante, médio e pequeno, proeminente, vermelho-amarelado (5YR 5/6, úmido) e vermelho (2,5YR 4/8, úmido); argila; forte, grande, blocos angulares; extremamente dura, firme, plástica e pegajosa; transição descontínua e clara para o horizonte Cg1 e ondulada e abrupta para o horizonte Cg2.
- Cg1 42-68 cm, cinzento-claro (5YR 7/1, úmido), mosqueado abundante, proeminente, grande e médio, vermelho-amarelado (5YR 5/8, úmido); argila; maciça; ligeiramente dura, firme, plástica e pegajosa; transição descontínua e gradual.
- Cg2 (75-86)-105 cm, coloração variegada, composta de cinzento-claro (5Y 7/1, úmido), amarelo-oliváceo (2,5Y 6/6, úmido); argila; maciça; extremamente dura, muito firme, plástica e pegajosa; transição plana e clara.
- Cg3 105-150 + cm, coloração variegada, composta de cinzento-brunado-claro (2,5Y 6/2, úmido) e bruno-oliváceo-claro (2,5Y 5/4, úmido); argila; maciça; extremamente dura, muito firme, plástica e pegajosa.

RAÍZES – muitas muito finas e finas e poucas médias nos horizontes A e BAg; poucas muito finas e finas nos horizontes Btg e Cg1; ausentes nos demais horizontes.

- Presença de fragmentos de rocha bastante alterada ocupando menos de 5% (em volume) do horizonte Cg3;
- Presença de nódulos manganíferos nos horizontes Cg1 e Cg2.
 Quantidade: muito pouco; tamanho: pequeno (média de 0,3 cm de diâmetro); dureza: duro; e forma: esférico;
- Poros: muitos muito pequenos e comuns pequenos e médios no horizonte A; comuns muito pequenos e pequenos no horizonte
 BAg; comuns muito pequenos e poucos pequenos no horizonte
 Btg1; muitos muito pequenos e comuns pequenos no horizonte
 Cg1; poucos muito pequenos nos horizontes Cg2 e Cg3.

Perfil P19

Amostras de Laboratório: 10.0446-0451

Solo: GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura média/argilosa, A moderado

Solo:	GLEISSC	OLO HAF	PLICO	Ta Eut	rófico lu	ıvissólic	o, textur	a média	/argilosa	, A mod	lerado			
Horiz	onte	Fraçõe	s da an total g/kg	nostra	Comp		anulomé a fina ⁄kg	trica da	Argila	Grau de	Relação		nsidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	dispersa em água g/kg	flocu- lação %	Silte/ Argila		Partículas	Porosidade cm ³ /100cm ³
Α	0-14	0	1	999	216	495	127	162	142	12	0,79			
BAg	-26	0	0	1000	161	345	126	368	286	22	0,34			
Btg	-42	0	3	997	131	299	140	430	0	100	0,33			
Cg1	-68	0	1	999	125	321	145	409	0	100	0,35			
Cg2	-105	0	0	1000	114	275	157	454	0	100	0,35			
Cg3	-150	0	15	985	108	268	188	436	124	72	0,43			
	pH (1	:2,5)			•		exo Sorti mol _c /kg	vo	•		Valo	or V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T	(sat. por	bases)	S + Al ³⁺ %	assimilável mg/kg
Α	6,4	5,3	4,4	10,0	0,18	0,01	14,6	0	2,0	16,6	88	3	0	2
BAg	5,6	3,8	6,2	0,7	0,06	0,01	7,0	0,4	2,7	10,1	69	9	5	1
Btg	5,7	3,6	4,9	1,2	0,05	0,01	6,2	1,9	2,5	10,6	58	3	23	1
Cg1	6,0	3,9	7,2	0,5	0,05	0,01	7,8	0,6	2,2	10,6	7-	4	7	1
Cg2	6,2	3,9	11,5	0,6	0,06	0,02	12,2	0,4	2,0	14,6	84	4	3	<1
Cg3	8,5	6,5	15,3	3,5	0,04	0,24	19,1	0	0	19,1	10	0	0	1
	С						sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / =e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	8,1	0,9	9											
BAg	4,5	0,5	9											
Btg	1,8	0,4	4											
Cg1	2,6	0,4	6	193	146	49	5,8			2,25	1,85	4,68		
Cg2	1,5	0,3	5	207	154	50	5,5			2,29	1,89	4,84		
Cg3	1,1	0,2	5											58
3		Pasta sa	turada			,	Sais solú		l.	11		Const	antes hídri	cas
Horizonte	<u>100.Na</u> ⁺ T	C.E. do extrato	Água				cmol _c /k					Umida	g/100g de	Água
	%	mS/cm 25°C	% %	Ca ²⁺	Mg ²⁺	K ⁺	Na [⁺]	HCO ₃	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
Α	<1													
BAg	<1													
Btg	<1													
Cg1	<1													
Cg2	<1													
Cg3	1												1	

PERFIL P20

DATA - 15/05/2010

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico saprolítico, textura média/argilosa cascalhenta, A moderado.

UNIDADE DE MAPEAMENTO - CXbe5.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.357.464 m e Este 612.920 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço médio da vertente com aproximadamente 6% de declive. Perfil descrito em área anterior e intensivamente cultivada sob pivô central. Gramíneas preponderam, mas há exemplares de vegetação local em estágio inicial de crescimento.

ALTITUDE - 438 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - suave ondulado.

RELEVO REGIONAL - suave ondulado.

EROSÃO - sulcos e laminar ligeiras

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - área anteriormente cultivada com pivô central e atualmente sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- Ap 0-15 cm, vermelho-acinzentado (2,5YR 4/2, úmido); franco-argilo-arenosa; moderada, grande, blocos angulares; extremamente dura, muito firme, ligeiramente plástica e pegajosa; transição plana e abrupta.
- BA 15-29 cm, bruno-avermelhado (2,5YR 4/4, úmido); argila; forte, grande e média, blocos subangulares; extremamente dura, firme, ligeiramente plástica e pegajosa; transição plana e clara.
- Bi 29-(52-64) cm, cinzento-escuro (10R 4/4, úmido); argila; forte, média e grande, blocos subangulares; extremamente dura, firme, ligeiramente plástica e pegajosa; transição ondulada e abrupta.
- Cr (52-64)-80 + cm, vermelho-acinzentado (10R 4/4, úmido); argila cascalhenta; fragmentos de rocha em estágio avançado de decomposição.

RAÍZES – poucas muito finas e finas no horizonte Ap; raras muito finas nos horizontes BA e Bi.

- Horizonte Ap compactado pelo uso intensivo;
- Presença de fragmentos de rocha ocupando menos de 5% (em volume) dos horizontes Ap e BA;
- Presença de fragmentos de rocha ocupando aproximadamente
 10% (em volume) do horizonte Bi;
- Presença de chumbinhos de caça milimétricos ocupando menos de 5% (em volume) do horizonte Bi;
- Poros: comuns muito pequenos e pequenos e poucos médios no horizonte Ap; comuns muito pequenos e poucos pequenos e médios nos horizontes BA e Bi.

Perfil P20

Amostras de Laboratório: 10.0452-0455

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico saprolítico, textura média/argilosa cascalhenta, A moderado

Solo:	CAMBISSOLO HAPLICO To Eutrófico saprolítico, textura média/argilosa cascalhenta, A moderado													
Horiz	onte	Frações	s da am total g/kg	ostra	Compos	terra	anulomé a fina kg	etrica da	Argila dispersa	Grau de	Relaç		ensidade g/cm³	Dorosidada
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi		Partículas	Porosidade cm ³ /100cm ³
Ар	0-15	23	17	960	148	318	250	284	264	7	0,88	8		
BA	-29	0	15	985	104	261	228	407	387	5	0,56	6		
Bi	-64	0	33	967	108	247	237	408	388	5	0,58	8		
Cr	-80	158	350	492	102	192	256	450	450	0	0,5	7		
	pH (1	1:2,5)		•	Complexo Sortivo cmol _c /kg						V	alor V	100.Al ³⁺	Р
Horizonte				l			Valor			T		or bases)	S + Al ³⁺	assimilável
	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	S (soma)	Al ³⁺	H ⁺	Valor T		%	%	mg/kg
Ар	7,6	6,0	5,4	1,8	0,91	0,01	8,1	0	0	8,1		100	0	86
BA	8,0	6,1	6,4	1,0	0,75	0,01	8,2	0	0	8,2		100	0	18
Bi	8,1	6,2	6,8	1,3	0,43	0,01	8,5	0	0	8,5			0	4
Cr	8,1	6,3	8,5	1,4	0,39	0,01	10,3	0	0	10,3		100	0	3
							sulfúrio g/kg	ю		Relaçõ	ões Mol	eculares	F. 0	Equivalente
Horizonte	C (orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	_ Fe₂O₃ livre g/kg	de CaCO ₃ g/kg
Ар	8,7	1,3	7											
BA	4,2	1,0	4											
Bi	3,6	0,9	4	187	124	79	4,4			2,56	1,82	2,46		
Cr	3,4	0,8	4											
		Pasta sa	turada		l .	;	Sais solu		l.			Con	stantes hídrio	cas
11.2	<u>100.Na</u> ⁺	C.E. do	,	cmol _c /kg						1		11		Ι,
Horizonte	T %	extrato mS/cm 25°C	Água %					Umida 33 MPa	1,5 MPa	Água disponível máxima				
Ар	<1													
BA	<1													
Bi	<1													

PERFIL P21

DATA - 13/05/2010

CLASSIFICAÇÃO - LATOSSOLO VERMELHO Distrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVd2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.361.276 m e Este 612.902 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapada com 0% a 3% de declive. Perfil descrito sob vegetação de Carrasco.

ALTITUDE - 455 m.

LITOLOGIA - Arenito do Grupo Urucuia.

CRONOLOGIA - Cretáceo.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - fortemente drenado.

VEGETAÇÃO PRIMÁRIA - Carrasco.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-15 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido); franco-arenosa; fraca, pequena e muito pequena, granular; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e clara.
- AB 15-35 cm, vermelho-escuro-acinzentado (10R 3/4, úmido); francoarenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 35-75 cm, vermelho-acinzentado (10R 4/4, úmido); franco-arenosa; fraca, média e grande, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw1 75-126 cm, vermelho (10R 4/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 126-200 + cm, vermelho (10R 4/8, úmido); franco-argilo-arenosa; fraca, média, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas e poucas médias nos horizontes A e AB; comuns muito finas e finas e poucas médias no BA; comuns muito finas e poucas finas e médias no horizonte Bw1; poucas muito finas no horizonte Bw2.

- Atividade intensa de cupins nos horizontes A, AB e BA;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A, AB e BA; muitos muito pequenos e pequenos e comuns médios no Bw1; muitos muito pequenos e comuns pequenos e médios no horizonte Bw2.

Perfil P21

Amostras de Laboratório: 10.0456-0460

Solo: LATOSSOLO VERMELHO Distrófico típico, textura média, A moderado

Horizonte	Solo:	LATOSS	OLO VE	KMELI	HO DIS	trofico t	ipico, te	xtura me	edia, A i	moderado)				
Calibaty	Horiz	onte				Compo	terra	a fina	rica da						Dorosidada
AB -35 0 0 0 1000 235 533 91 141 121 14 0,65 BA -75 0 0 0 1000 223 513 83 181 181 0 0,46 BW1 -126 0 0 0 1000 187 509 103 201 0 100 0,51 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 151 503 125 221 0 100 0,57 BW2 -200 0 0 0 1000 157 BW2 -200 0 0 0 1000 157 BW2 -200 0 0 0,05 0,01 0,05 0,05 0,05 0,05 0,0	Símbolo	didade	> 20	calho 20-2	fina < 2	grossa 2-0,20	fina 0,20-	0,05- 0,002	< 0,002	em água	lação		Solo	Partículas	
BA	Α	0-15	0	0	1000	238	550	91	121	101	17	0,75			
Bw1	AB	-35	0	0	1000	235	533	91	141	121	14	0,65			
Bw2	ВА	-75	0	0	1000	223	513	83	181	181	0	0,46			
Horizonte Hori	Bw1	-126	0	0	1000	187	509	103	201	0	100	0,51			
Horizonte Hori	Bw2	-200	0	0	1000	151	503	125	221	0	100	0,57			
Agua		pH (1	:2,5)						vo					100.Al ³⁺	
AB 5,2 3,9 0,6 0,05 0,01 0,7 0,5 2,3 3,5 20 42 1 BA 5,1 3,9 0,5 0,03 0,01 0,5 0,6 1,7 2,8 18 55 <1 BW1 5,5 4,2 0,9 0,03 0,01 0,9 0,1 1,2 2,2 41 10 <10 <1 BW2 5,7 4,4 0,7 0,5 0,02 0,01 1,2 0,1 0,9 2,2 55 8 <1 C (orgânico) g/kg 9/kg 9/kg SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ P ₂ O ₅ MnO Al ₂ O ₃ R ₂ O	Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺		Al ³⁺	H ⁺					
BA	Α	5,8	4,8	1,9	0,7	0,13	0,01	2,7	0	2,6	5,3	5	1	0	3
Bw1 5,5 4,2 0,9 0,03 0,01 0,9 0,1 1,2 2,2 41 10 <1	AB	5,2	3,9	0	,6	0,05	0,01	0,7	0,5	2,3	3,5	2	0	42	1
Bw2 5,7	BA	5,1	3,9	0	,5	0,03	0,01	0,5	0,6	1,7	2,8	1	8	55	<1
Horizonte Corgánico g/kg Relações Moleculares Fe ₂ O ₃ Equivalente de CaCO ₃ g/kg Relações Moleculares Fe ₂ O ₃ Relações	Bw1	5,5	4,2	0	,9	0,03	0,01	0,9	0,1	1,2	2,2	4	1	10	<1
Horizonte C (orgânico) g/kg Rejações Noteculares Fe2O3 Equivalente Fe2O3 Rejações Noteculares Fe2O3 Rejações	Bw2	5,7	4,4	0,7	0,5	0,02	0,01	1,2	0,1	0,9	2,2	5	5	8	<1
Horizonte Granico Gr		С)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	
AB	Horizonte	(orgânico)		C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	Al_2O_3	R_2O_3		livre	CaCO ₃
BA 2,3 0,4 6 99 81 35 4,9 2,08 1,63 3,63 2,13 1,71 4,10	Α	11,0	1,3	8											
Bw1	AB	4,3	0,6	7											
Bw2	ВА	2,3	0,4	6											
Horizonte T Pasta saturada Sais solúveis Constantes hídricas g/100g	Bw1	1,3	0,3	4	99	81	35	4,9			2,08	1,63	3,63		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bw2	1,1	0,3	4	118	94	36	5,1			2,13	1,71	4,10		
Horizonte			Pasta sa	turada		•		Sais solú	/eis				Const	antes hídri	cas
Horizonte T		100.Na⁺	C E do					cmol _c /k	9		1			g/100g	
A <1 AB <1 BW1 <1	Horizonte	T		Água	0.	0.			HCO°.		•		Umida	de	Água
AB <1 BA <1 Bw1 <1		%		%	Ca ²⁺	Mg ²⁺	K [†]	Na ⁺	CO ₃ ²⁻	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	
BA <1 Bw1 <1	А	<1													
Bw1 <1	AB	<1													
	ВА	<1													
Bw2 <1	Bw1	<1													
	Bw2	<1													

PERFIL P22

DATA - 12/05/2010

CLASSIFICAÇÃO – CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura argilosa/média, A moderado.

UNIDADE DE MAPEAMENTO - CYve2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.349.768 m e Este 609.382 m. SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – perfil descrito nos depósitos quaternários do Rio São Francisco, sob vegetação de Floresta Tropical Pluvial Perenifólia e declives que não ultrapassam 3%.

ALTITUDE - 431 m.

LITOLOGIA - Sedimentos fluviais areno-argilosos.

FORMAÇÃO GEOLÓGICA - Sedimentos Quaternários.

CRONOLOGIA - Quaternário.

MATERIAL ORIGINÁRIO - Produto de alteração da litologia supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Tropical Pluvial Perenifólia.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-16 cm, preto (5YR 2,5/1, úmido); argilo-siltosa; forte, muito pequena e pequena, granular; ligeiramente dura, firme, plástica e pegajosa; transição plana e abrupta.
- AB 16-48 cm, cinzento-escuro (5YR 4/1, úmido); argila; forte, média e grande, blocos angulares; extremamente dura, muito firme, plástica e pegajosa; transição plana e clara.
- 48-64 cm, coloração variegada, composta de bruno-amarelado (10YR 5/4, úmido) e bruno-amarelado (10YR 5/6, úmido); franco-argilosa; forte, média e pequena, blocos angulares; extremamente dura, extremamente firme, plástica e pegajosa; transição plana e clara.
- 3Bi 64-100+ cm, coloração variegada, composta de bruno-amarelado (10YR 5/4, úmido), bruno (10YR 4/3, úmido) e bruno-amarelado (10YR 5/6, úmido); franco-argilosa; forte, grande e média, blocos angulares; extremamente dura, extremamente firme, plástica e pegajosa.

RAÍZES – muitas muito finas, finas e médias e poucas grossas no horizonte A; comuns muito finas, finas e médias no horizonte AB; poucas muito finas e finas e raras médias no horizonte 2BA; raras muito finas e finas no horizonte 3Bi.

- Presença de fragmentos de rocha em estágio avançado de decomposição ocupando aproximadamente 10% e 20% (em volume) dos horizontes 2BA e 3Bi, respectivamente;
- Poros: muitos muito pequenos e pequenos e poucos médios e grandes no horizonte A; comuns muito pequenos e pequenos nos horizontes AB, 2BA e 3Bi.

Perfil P22

Amostras de Laboratório: 10.0461-0464

Solo: CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura argilosa/média, A moderado

Solo: CAM	IBISSOLO	3 FLUVI	CO Ta	Eutrófi	co típic	o, textur	a argilos	sa/médi	a, A mod	erado		1		
Horiz	onte		s da am otal g/kg		Compo		anulomé a fina ⁄kg	trica da	Argila dispersa	Grau de	Relação		nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-16	0	0	1000	10	175	403	412	329	20	0,98			
AB	-48	0	0	1000	25	240	284	451	410	9	0,63			
2BA	-64	0	19	981	47	304	282	367	0	100	0,77			
3Bi	-100	0	27	973	45	370	301	284	0	100	1,06			
Horizonte	pH (1	:2,5)					exo Sorti nol _c /kg	vo			Valo		100.Al ³⁺	P
Horizonie	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T	(sat. por		S + Al ³⁺ %	assimilável mg/kg
Α	5,9	5,0	11,7	3,7	0,29	0,01	15,7	0	7,3	23,0	68	3	0	5
AB	7,1	5,4	6,9	6,6	0,13	0,18	13,8	0	0	13,8	10	0	0	1
2BA	8,4	7,1	5,3	4,5	0,09	0,42	10,3	0	0	10,3	100		0	1
3Bi	8,5	7,3	3,9	3,6	0,07	0,44	8,0	0	0	8,0	10	0	0	1
	С						e sulfúrico g/kg	0		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			N ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
А	40,2	5,8	7											
AB	7,1	1,1	6											
2BA	2,6	0,6	4											65
3Bi	1,7	0,4	4	152	121	57	5,5			2,14	1,64	3,33		68
	100.Na ⁺	Pasta sa	turada			Ş	Sais solú cmol _c /k			•		Const	antes hídri g/100g	cas
Horizonte	Т	C.E. do extrato	Água									Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃ ² CO ₃ ²	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
А	<1													
AB	1													
2BA	4													
3Bi	5													

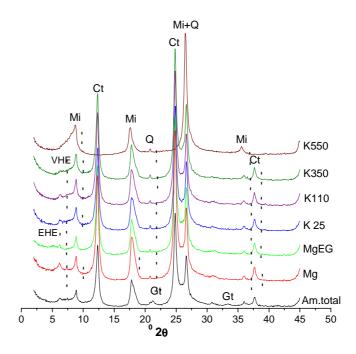


Figura 19. Difratogramas de raios-X da fração argila desferrificada do horizonte 3Bi do perfil P22. Minerais identificados: EHE + VHE - Esmectita e Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct - Caulinita; Gt - Goethita; Q - Quartzo. Tratamentos: K550 - amostra saturada com potássio e aquecida a 550 oC; K350 - amostra saturada com potássio e aquecida a 350 °C; K110 - amostra saturada com potássio e aquecida a 110 °C; MgEG - amostra saturada com magnésio e solvatada com etileno glicol; Mg - amostra saturada com magnésio; Am.total - amostra analisada na condição natural, sem tratamento

- **Observação:** a expansão parcial apresentada pela reflexão na região de 6°(2θ) na amostra MG-saturada após tratamento com etileno glicol (MgEG) permite considerar a presença de Esmectita com hidróxi-Al entrecamadas, além da vermiculita com hidróxi-Al entrecamadas.

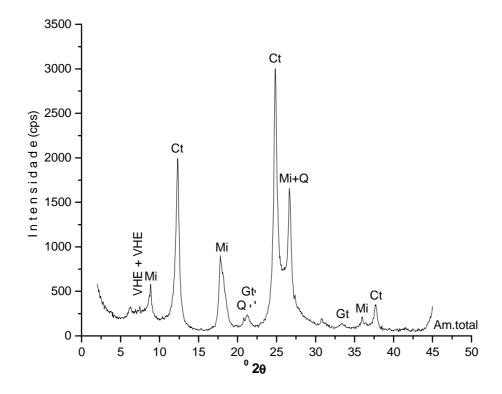


Figura 20. Difratogramas de raios-X da fração argila do horizonte 3Bi do perfil P22 referente à amostra total, sem tratamento (Am.total). Minerais identificados: EHE + VHE - Esmectita e Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct - Caulinita; Gt - Goethita; Q - Quartzo

- Estimativa de predominância: Caulinita, Mica, EHE + VHE, Quartzo e Goethita.

PERFIL P23

DATA - 12/05/2010

CLASSIFICAÇÃO - NEOSSOLO FLÚVICO Psamítico típico, A moderado.

UNIDADE DE MAPEAMENTO - NYq.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.349.540 m e Este 610.930 m.

STUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Perfil descrito nos depósitos quaternários do Rio São Francisco, sob vegetação de Floresta Tropical Pluvial Perenifólia e declives que não ultrapassam 3%.

ALTITUDE - 435 m.

LITOLOGIA - Sedimentos fluviais areno-argilosos.

FORMAÇÃO GEOLÓGICA - Sedimentos Quaternários.

CRONOLOGIA - Quaternário.

MATERIAL ORIGINÁRIO - Produto de alteração da litologia supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - sulco e laminar moderada.

DRENAGEM - excessivamente drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Tropical Pluvial Perenifólia.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-(9-18) cm, coloração variegada, composta de cinzento-avermelhadoescuro (5YR 4/2, úmido) e cinzento muito escuro (5YR 3/1, úmido); franco-arenosa; fraca, muito pequena e pequena, granular; macia; muito friável, ligeiramente plástica e ligeiramente pegajosa; transição clara e descontínua para os horizontes C1 e C2.
- C1 (9-18)-19 cm, coloração variegada, composta de amarelo-brunado (10YR 6/6, úmido) e amarelo-brunado (10YR 6/8, úmido); areia; grãos simples; macia, muito friável, não plástica e não pegajosa; transição plana e abrupta.
- C2 (18-19)-52 cm, bruno-amarelado (10YR 5/4, úmido); areia franca; maciça que se desfaz em grãos simples; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e clara.
- 52-70 cm, bruno-amarelado-escuro (10YR 4/4, úmido); franco-arenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares e grãos simples; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e clara.
- 3C4 70-99 cm, bruno-amarelado (10YR 5/6, úmido); areia franca; maciça que se desfaz em fraca, grande e média, blocos subangulares e grãos simples; ligeiramente dura, friável, não plástica e não pegajosa; transição plana e clara.
- 99-115 cm, coloração variegada, composta de bruno-amarelado (10YR 5/4, úmido) e bruno-amarelado (10YR 5/8, úmido); areia franca; maciça que se desfaz em grãos simples; ligeiramente dura, muito friável, não plástica e não pegajosa; transição plana e clara.
- 5C6 115-150 + cm, coloração variegada, composta de bruno-amarelado (10YR 5/4, úmido) e bruno-forte (7,5YR 5/8, úmido); franco-arenosa; maciça que se desfaz em fraca, grande e média, blocos subangulares e grãos simples; ligeiramente dura, muito friável, não plástica e não pegajosa.

RAÍZES – muitas muito finas e finas e comuns médias nas camadas A e C1; muitas muito finas e finas e poucas médias e grossas na camada C2; comuns muito finas e finas e poucas médias e grossas na camada 2C3; poucas muito finas, finas e médias na camada 3C4; poucas muito finas e finas nas camadas 4C5 e 5C6.

- Presença de mica visualizada a olho nu no horizonte 5C6;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A e C1; comuns pequenos e muito pequenos e poucos médios e grandes no horizonte C2; comuns muito pequenos e pequenos e poucos médios nos horizontes 2C3, 3C4, 4C5 e 5C6.

Perfil P23

Amostras de Laboratório: 10.0465-0472

Solo: CAMBISSOLO FLÚVICO Psamítico típico, A moderado

Solo:	CAMBIS	SOLO FI		J Psar	nitico ti	pico, A i	moderac	do	ı		T	-		1
Horiz	onte		s da am otal g/kg		Compo	terra	anulomét a fina ⁄kg	trica da	Argila dispersa	Grau de	Relaçã	О	nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila		Partículas	cm ³ /100cm ³
Α	0-9	0	0	1000	12	645	222	121	61	50	1,83			
C1	-18	0	0	1000	14	901	45	40	20	50	1,13			
C2	-52	0	0	1000	14	786	140	60	0	100	2,33			
2C3	-70	0	0	1000	68	701	151	80	60	25	1,89			
3C4	-99	0	0	1000	16	815	89	80	60	25	1,11			
4C5	-115	0	0	1000	8	841	71	80	60	25	0,89			
5C6	-150	0	0	1000	42	726	152	80	60	25	1,90			
6C7*	180-200	0	0	1000	32	340	426	202	202	0	2,11			
	pH (1	:25)					exo Sorti	VO					400 413+	Б
Horizonte	Pi i (i	.2,0)		Т	П	cr	mol _c /kg	1	1			or V r bases)	$\frac{100.Al^{3+}}{S + Al^{3+}}$	P assimilável
	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T		%	%	mg/kg
Α	5,4	4,7	3,9	1,5	0,22	0,01	5,6	0	4,4	10,0	5	6	0	8
C1	5,7	4,3	0,9	0,6	0,05	0,01	1,6	0,1	1,2	2,9	5	5	6	3
C2	6,0	4,4	1,2	0,8	0,06	0,01	2,1	0	1,0	3,1	6	8	0	3
2C3	5,8	4,2	1,2	0,6	0,06	0,01	1,9	0,1	1,1	3,1	6	51	5	3
3C4	6,3	4,6	1,2	0,5	0,06	0,01	1,8	0	0,6	2,4	7	5	0	2
4C5	6,4	4,8	1,4	0,4	0,06	0,01	1,9	0	0,6	2,5	7	6	0	2
5C6	6,8	5,0	1,3	0,6	0,06	0,01	2,0	0	0,6	2,6	7	7	0	2
6C7*	6,6	4,9	3,3	1,8	0,14	0,01	5,2	0	1,0	6,2	8	4	0	2
	С						e sulfúrico g/kg	0		Relaçõ	es Mole	culares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)		Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO ₃ g/kg
Α	14,6	1,8	8											
C1	1,9	0,3	6	33	17	17	3,1			3,30	2,01	1,57		
C2	2,6	0,4	6	53	30	26	4,0			3,00	1,93	1,81		
2C3	3,4	0,5	7											
3C4	1,2	0,2	6	51	29	32	4,5			2,99	1,75	1,42		
4C5	1,3	0,2	6											
5C6	1,5	0,3	5											
6C7*	3,3	0,6	5											

^{*} Amostra colotada com trado.

PERFIL P24

DATA - 14/05/2010

CLASSIFICAÇÃO – LATOSSOLO VERMELHO Distrófico típico, textura argilosa, A moderado, álico.

UNIDADE DE MAPEAMENTO - LVd1.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.354.484 m e Este 602.953 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapada com 0 a 3% de declive. Perfil descrito sob vegetação de Carrasco.

ALTITUDE - 479 m.

LITOLOGIA - mistura de sedimentos psamíticos e pelíticos.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e os do Grupo Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Carrasco.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

- A 0-10 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido); franco-argiloarenosa; fraca, muito pequena e pequena, granular; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 10-25 cm, vermelho-escuro (2,5YR 3/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares e grãos simples; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 25-55 cm, vermelho-escuro (2,5YR 3/6, úmido); franco-argilo-arenosa; fraca, média e grande, blocos subangulares; cerosidade fraca e pouco; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bw1 55-96 cm, vermelho (10R 4/6, úmido); argilo-arenosa; fraca, média e grande, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 96-170+ cm, vermelho (10R 4/8, úmido); argilo-arenosa; maciça que se desfaz em fraca, pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas e comuns médias nos horizontes A e AB; comuns muito finas e finas e poucas médias e grossas no horizonte BA; comuns muito finas e finas no horizonte Bw1; poucas finas e muito finas no horizonte Bw2.

- Presença de fragmentos de carvão desde a superfície do solo até o horizonte Bw1;
- Poros: muitos muito pequenos, comuns pequenos e médios e poucos grandes nos horizontes A e AB; muitos muito pequenos e comuns pequenos e médios nos horizontes BA, Bw1 e Bw2.

Perfil P24

Amostras de Laboratório: 10.0473-0477

Solo: LATOSSOLO VERMELHO Distrófico típico, textura argilosa, A moderado, álico

Solo:	LATOSS	OLO VE	RMELI	HO Dis	trófico t	ípico, te	xtura ar	gilosa, <i>P</i>	A modera	do, álico)			
Horiz	onte	,	s da an otal g/kg		Compo		anulomét a fina ⁄kg	trica da	Argila dispersa	Grau de	Relaçã		nsidade g/cm³	Porosidade
Símbolo	Profundidade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-10	0	1	999	276	397	105	222	141	36	0,47			
AB	-25	0	1	999	220	383	114	283	202	29	0,40			
BA	-55	0	1	999	172	345	140	343	0	100	0,41			
Bw1	-96	0	1	999	145	349	143	363	0	100	0,39			
Bw2	-170	0	1	999	131	333	152	384	0	100	0,40			
Horizonte	pH (1	:2,5)					exo Sorti nol _c /kg	vo			Valo		100.Al ³⁺	P
Tionzonie	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	sat. poi		S + Al ³⁺ %	assimilável mg/kg
Α	4,4	3,7	0	,7	0,09	0,01	0,8	1,0	2,0	3,8	2	1	56	1
AB	4,6	3,8	0	,4	0,04	0,01	0,4	1,2	1,6	3,2	1.	2	75	1
BA	4,8	3,8	0	,2	0,02	0,01	0,2	1,4	0,9	2,5	8	3	87	<1
Bw1	4,9	3,8	0	,2	0,02	0,01	0,2	1,2	0,8	2,2	9)	86	<1
Bw2	5,0	3,9	0	,3	0,01	0,01	0,3	1,1	0,8	2,2	1	4	79	<1
	С						sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	- 1	0.02/	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	8,9	1,1	8											
AB	6,6	0,8	8											
ВА	4,1	0,7	6											
Bw1	2,7	0,5	5	149	152	56	5,5			1,67	1,35	4,26		
Bw2	1,8	0,5	4	187	151	79	6,3			2,11	1,58	3,00		
		Pasta sa	turada				Sais solúv cmol _c /k		•			Const	antes hídri	cas
Llorizonto	<u>100.Na</u> ⁺	C.E. do	,		I	1	CITIOI _C /K	9	l			11		,
Horizonte	Т %	extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na [⁺]	HCO ₃ CO ₃ ²⁻	CI	SO ₄ ²⁻	0,033	Umida MPa	1,5 MPa	Água disponível máxima
A	<1													
AB	<1													
BA	<1													
Bw1	<1													
Bw1	<1													
1 000	`'	I	ı	ı	ı	l	i	l	l	l	1			

PERFIL P25

DATA - 15/05/2010

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO Tb eutrófico latossólico petroplíntico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - CXbe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.360.519 m e Este 613.343 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço inferior da encostra com 0 a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 435 m.

LITOLOGIA – sedimentos areno-argilosos.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e os do Grupo Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

- A 0-22 cm, bruno-avermelhado-escuro (5YR 3/3, úmido); franco-argilosa; moderada, média e pequena, granular; dura, firme, plástica e pegajosa; transicão plana e clara.
- AB 22-51 cm, bruno-avermelhado-escuro (5YR 3/4, úmido); franco-argiloarenosa; moderada, média e grande, blocos subangulares; dura, firme, ligeiramente plástica e pegajosa; transição plana e gradual.
- BA 51-89 cm, vermelho-amarelado (5YR 4/6, úmido); franco-argilosa; fraca, grande e média, blocos subangulares; cerosidade fraca e pouca; ligeiramente dura, friável, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bi 89-125 cm, vermelho-amarelado (5YR 4/6, úmido), mosqueados poucos, pequenos, distintos, amarelo-avermelhado (7,5YR 7/8, úmido); franco-argilo-arenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, friável, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bic 125-170+ cm, coloração variegada, composta de bruno-forte (7,5YR 5/8, úmido) e amarelo-avermelhado (7,5YR 7/8, úmido); franco-argilo-arenosa; maciça; nódulo petroplíntico pouco, pequeno, duro, esférico, vermelho; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas e comuns médias no horizonte A; comuns muito finas e finas e poucas médias nos horizontes AB e BA; poucas muito finas e finas no horizonte Bi1; raras muito finas no horizonte Bi2.

- Intensa atividade de cupim no horizonte A;
- Presença de chumbinhos de caça (nódulos petroplínticos) ocupando menos de 5% (em volume) dos horizonte BA e Bi, e aproximadamente 10% (em volume) do horizonte Bic;
- Poros: muitos muito pequenos e pequenos e comuns médios e grandes no horizonte A; muitos muito pequenos e pequenos, comuns médios e poucos grandes no AB; muitos muito pequenos e comuns pequenos e médios no horizonte BA; muitos muito pequenos e comuns pequenos no horizonte Bi; muitos muito pequenos e comuns pequenos e poucos médios no horizonte Bic.

Perfil P25

Amostras de Laboratório: 10.0478-0482

Solo: CAMBISSOLO HÁPLICO Tb eutrófico latossólico petroplíntico, textura média, A moderado

Horizonte Frações da amostra total g/kg Composição granulométrica da terra fina gordo gord	5010:	CAMBIS	SOLO H	APLIC	JIDE	atronco	เลเบรรษ	ico petro	эринисс	, textura	media,	A mode	iauu		
Calibady	Horiz	onte	,			Compo	terra	a fina	trica da		de				Porosidado
AB	Símbolo	didade	> 20	calho 20-2	fina < 2	grossa 2-0,20	fina 0,20-	0,05- 0,002	< 0,002	em água	lação		Solo	Partículas	
AB	Α	0-22	0	1	999	85	339	271	305	224	27	0,89			
Bi			0	1	999	128	391	157	324	304	6	0,48			
Bic -170 0 6 994 110 377 189 324 101 69 0,58	ВА	-89	0	3	997	11	386	278	325	264	19	0,86			
Horizonte Hori	Bi	-125	0	6	994	118	402	156	324	0	100	0,48			
Horizonte Hori	Bic	-170	0	6	994	110	377	189	324	101	69	0,58			
Horizonte Horizonte Agua		pH (1	:2,5)						vo			Valo	or V	100.Al ³⁺	Р
AB 6,8 5,2 4,0 1,2 0,29 0,01 5,5 0 1,1 6,6 83 0 4 BA 6,7 5,0 3,6 1,0 0,21 0,01 4,8 0 1,0 5,8 83 0 2 Bic 6,6 5,0 3,3 1,4 0,09 0,01 4,8 0 0,8 5,6 86 0 3 Bic 6,6 5,0 3,3 1,5 0,07 0,01 4,9 0 0,8 5,7 86 0 2 C (orgânico) g/kg C/N SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ P ₂ O ₅ MnO SiO ₂ /R ₂ O ₃ R ₂ O ₃ R ₂ O ₃ R ₂ O ₃ R ₃ O ₃ R ₄ O ₄ R ₄ O ₄ 3 156 113 58 6,2 2 2,35 1,77 3,06 A 14,6 1,8 8 0,8 6 0,8 6 0,8 6 0,9 R ₂ O ₃ R ₃ O ₃ R ₄ O ₃ R ₄ O ₄	Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	1	Valor S	Al ³⁺	H ⁺				S + Al ³⁺	
AB 6,8 5,2 4,0 1,2 0,29 0,01 5,5 0 1,1 6,6 83 0 4 BA 6,7 5,0 3,6 1,0 0,21 0,01 4,8 0 1,0 5,8 83 0 2 Bic 6,6 5,0 3,3 1,4 0,09 0,01 4,8 0 0,8 5,6 86 0 3 Bic 6,6 5,0 3,3 1,5 0,07 0,01 4,9 0 0,8 5,7 86 0 2 C (orgânico) g/kg / SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ TiO ₂ P ₂ O ₅ MnO Al ₂ O ₃ R ₂ O ₃ Fe ₂ O ₃ g/kg A 14,6 1,8 8 AB 4,9 0,8 6 BA 2,6 0,6 4 Bi 1,6 0,5 3 149 107 52 5,9 2 2,37 1,81 3,23 2,35 1,77 3,06 Horizonte Horizonte T AB SIO ₂ Al ₂ O ₃ Al ₂ O ₃ Al ₂ O ₃ SiO ₂ Al ₂ O ₃ Al ₂	Α	6,6	5,4	5,2	1,6	0,49	0,01	7,3	0	1,4	8,7	8	4	0	6
BA 6,7 5,0 3,6 1,0 0,21 0,01 4,8 0 1,0 5,8 83 0 2		6,8	5,2	4,0	1,2	0,29	0,01	5,5	0	1,1	6,6	8	3	0	4
Bi 6,6 5,0 3,3 1,4 0,09 0,01 4,8 0 0,8 5,6 86 0 3 Bic 6,6 5,0 3,3 1,5 0,07 0,01 4,9 0 0,8 5,6 86 0 2 A Corgánico og/g/kg Cr/N Ataque sulfúrico g/kg Relações Moleculares Fe2O3 Fe2O3 Equivalente A 14,6 1,8 8 Al2O3 Fe2O3 TiO2 P2O5 MnO SiO₂/R2O3 Al2O3/R2O3 Equivalente BA 4,9 0,8 6 Al2O3 Fe2O3 TiO2 P2O5 MnO Al2O3/R2O3 Al2O3/R2O3 Equivalente BBA 2,6 0,6 4 Al2O3 Fe2O3 TiO2 P2O5 MnO Al2O3/R2O3 Al2O3/R2O3 R2O3/R2O3 Al2O3/R2O3 R2O3/R2O3 R2O3/R2O3 R2O3/R2O3 R2O3/R2O3 R2O3/R2O3 R2O3/R2O3		6,7	5,0	3,6	1,0	0,21	0,01	4,8	0	1,0	5,8	8	3	0	2
Bic 6,6 5,0 3,3 1,5 0,07 0,01 4,9 0 0,8 5,7 86 0 2 A Corgánico g/kg N g/kg C/N SiO₂ Ala₂O₃ Fe₂O₃ TiO₂ P₂O₅ MnO SiO₂/Al₂O₃ SiO₂/Be₂O₃ Al₂O₃/Be₂O₃ Equivalente de CaCO₃ g/kg A 14,6 1,8 8 4,9 0,8 6 4 4,9 0,8 6 4,9 0,8 6 4,9 0,8 6 4,9 0,8 6 4,0 4,0 4,0 1,4 0,4 3 156 113 58 6,2 2,37 1,81 3,23 3,23 4 <t< td=""><td></td><td>6,6</td><td>5,0</td><td>3,3</td><td>1,4</td><td>0,09</td><td>0,01</td><td>4,8</td><td>0</td><td>0,8</td><td>5,6</td><td>8</td><td>6</td><td>0</td><td>3</td></t<>		6,6	5,0	3,3	1,4	0,09	0,01	4,8	0	0,8	5,6	8	6	0	3
Ataque sulfúrico g/kg		6,6	5,0	3,3	1,5	0,07	0,01	4,9	0	0,8	5,7	8	6	0	2
Constant		С)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	
AB		(orgânico)		C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	Al_2O_3	R ₂ O ₃		livre	CaCO₃
BA 2,6 0,6 4 149 107 52 5,9 2,37 1,81 3,23 2,35 1,77 3,06 Horizonte Horizonte Horizonte A	Α	14,6	1,8	8											
Horizonte 1,6 0,5 3 149 107 52 5,9 2,37 1,81 3,23 3,06	AB	4,9	0,8	6											
Bic 1,4 0,4 3 156 113 58 6,2 2,35 1,77 3,06	BA	2,6	0,6	4											
Horizonte Hori	Bi	1,6	0,5	3	149	107	52	5,9			2,37	1,81	3,23		
Horizonte Horizo	Bic	1,4	0,4	3	156	113	58	6,2			2,35	1,77	3,06		
Horizonte			Pasta sa	iturada		l .							Const		cas
Horizonte		100.Na⁺	C.E. do			1	1	cmol _c /k	g	ı				g/100g	
A <1 AB <1 Bi <1	Horizonte		extrato		2.	2.			HCO ₂		2		Umida	de	
AB <1 BA <1 Bi <1		70		%	Ca ²	Mg ²⁺	Κ ^τ	Na [™]		Cl	SO ₄ ²	0,033	MPa	1,5 MPa	
AB <1 BA <1 Bi <1	А	<1													
BA <1 Bi <1		<1													
Bi <1		<1													
		<1													
	Bic	<1													

PERFIL P26

DATA - 15/05/2010

CLASSIFICAÇÃO – LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - LVAe3.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.675 m e Este 613.842 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço médio da vertente com 0 a 6% de declive. Perfil descrito em área anterior e intensivamente explorada com culturais anuais sob pivô central. Atualmente há dominância de gramíneas e espécies nativas em estádio inicial de crescimento.

ALTITUDE - 433 m.

LITOLOGIA - mistura de sedimentos psamíticos e pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e os do Grupo Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL – gramíneas e espécies nativas em estágio inicial de crescimento. Área anterior e intensivamente cultivada com culturas anuais sob pivô central.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

- Ap 0-20 cm, bruno-avermelhado-escuro (5YR 3/3, úmido); franco-argilosa; moderada, grande e muito grande, blocos angulares; dura, firme, ligeiramente plástica e ligeiramente pegajosa; transicão plana e abrupta.
- BA 20-44 cm, bruno (7,5YR 4/4, úmido); argila; moderada, grande e média, blocos subangulares; ligeiramente dura, firme, ligeiramente plástica e pegajosa; transição plana e clara.
- Bw1 44-83 cm, vermelho-amarelado (5YR 4/6, úmido); argila; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 83-115 cm, bruno-forte (7,5YR 5/6, úmido), mosqueados comuns, médios, distintos, amarelo-brunado (10YR 6/8, úmido); argila; maciça que se desfaz em fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw3 115-150+ cm, coloração variegada, composta de bruno-forte (7,5YR 5/6, úmido) e amarelo-brunado (10YR 6/8, úmido); argila; maciça que se desfaz em fraca, média e pequena, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – comuns muito finas e finas no horizonte Ap; raras muito finas nos demais horizontes.

- O mosqueamento (horizonte Bw2) e a coloração variegada (horizonte Bw3)
 possivelmente é devido tanto à presença de rocha bastante alterada no perfil como o excesso hídrico decorrente de irrigação por pivô central;
- Presença de fragmentos milimétricos de carvão em todos os horizontes do perfil;
- Horizonte A compactado devido ao uso;
- Poros: comuns muito pequenos e pequenos e poucos médios no horizonte Ap; muitos muito pequenos, comuns pequenos e poucos médios no BA; muitos muito pequenos e pequenos e comuns médios no horizonte Bw1, Bw2 e Bw3.

Perfil P26

Amostras de Laboratório: 10.0483-0487

Solo: LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa. A moderado

Solo:	LATOSS	OLO VE	RMEL	HO-AM	ARELO	Eutrófi	co típico	, textura	a argilosa	, A mod	derado			
Horiz	onte	,	s da am otal g/kg		Compo	terra	anulomé a fina ^{(kg}	trica da	Argila	Grau de	Relaçã	.0	nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	dispersa em água g/kg	flocu- lação %	Silte/ Argila		Partículas	cm ³ /100cm ³
Ар	0-20	0	9	991	156	282	258	304	284	7	0,85			
BA	-44	0	8	992	124	242	207	427	427	0	0,48			
Bw1	-83	0	8	992	110	242	221	427	0	100	0,52			
Bw2	-115	0	13	987	110	258	205	427	0	100	0,48			
Bw3	-150	0	16	984	101	262	211	426	0	100	0,50			
l la sina sta	pH (1	:2,5)					exo Sorti nol _c /kg	vo				or V	100.Al ³⁺	P
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H [⁺]	Valor T		r bases) %	S + Al ³⁺ %	assimilável mg/kg
Ар	6,5	5,4	4,7	1,2	0,78	0,01	6,7	0	1,6	8,3	8	31	0	227
BA	7,4	5,7	4,4	1,2	0,55	0,01	6,2	0	0	6,2	1	00	0	5
Bw1	7,3	5,8	4,6	0,8	0,17	0,01	5,6	0	0	5,6	1	00	0	2
Bw2	6,6	5,2	4,2	1,1	0,05	0,01	5,4	0	0,7	6,1	8	89	0	1
Bw3	5,7	4,5	4,2	1,1	0,03	0,01	5,3	0	1,2	6,5	8	32	0	1
	С					Ataque	sulfúrico g/kg)		Relaçõ	es Mole	culares	Fo 0	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / Fe ₂ O ₃	Fe₂O₃ livre g/kg	de CaCO ₃ g/kg
Ар	9,7	1,3	7											
BA	3,8	0,8	5											NEGAT
Bw1	1,8	0,6	3											NEGAT
Bw2	1,8	0,5	4	192	153	67	6,5			2,13	1,67	3,59		
Bw3	1,6	0,5	3	187	143	75	6,6			2,22	1,66	2,99		
		Pasta sa	iturada		I		Sais solúv cmol _c /k		I.	1		Const	antes hídri g/100g	cas
I I a ni a a nata	<u>100.Na</u> ⁺	C.E. do			I	I	CITIOI _C /K	y	l					
Horizonte	T %	extrato mS/cm	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃	Cl	SO ₄ ²⁻		Umida	de I	Água disponível
		25°C	70	Ca	ivig	, ,	INA	CO ₃ ²⁻	CI	3O ₄	0,033	3 MPa	1,5 MPa	máxima
Ар	<1													
BA	<1													
Bw1	<1													
Bw2	<1													
Bw3	<1													

PERFIL P27

DATA - 17/05/2010

CLASSIFICAÇÃO - CAMBISSOLO HÁPLICO Tb eutrófico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe4.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, Município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.631m e Este 608.752m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço inferior da encosta com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

ALTITUDE - 458 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - suave ondulado.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - moderdamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

- A 0-16 cm, bruno-avermelhado (5YR 4/3, úmido); franco-argilo-arenosa; moderada, pequena e muito pequena, granular; ligeiramente dura, friável, plástica e pegajosa; transição plana e clara.
- BA 16-41 cm, bruno-avermelhado (5YR 4/4, úmido); argilo-arenosa; moderada, grande e média, blocos subangulares; ligeiramente dura, firme, plástica e pegajosa; transição plana e gradual.
- Bi 41-73 cm, vermelho-amarelado (5YR 4/6, úmido); argilo-arenosa; moderada, grande e média, blocos subangulares; ligeiramente dura, firme, plástica e ligeiramente pegajosa; transição plana e difusa.
- Bic1 73-112 cm, vermelho-amarelado (5YR 4/6, úmido); argilo-arenosa; moderada, média e grande, blocos subangulares; nódulos petroplínticos poucos (5% do volume do horizonte), pequenos (menores que 0,5 cm), duros, esféricos, vermelhos, ferruginosos; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bic2 112-144 cm, coloração variegada, composta de bruno-forte (7,5YR 5/6, úmido), bruno-forte (7,5YR 5/8, úmido) e amarelo (10YR 7/6, úmido); argilo-arenosa; maciça que se desfaz em moderada, média e grande, blocos subangulares; nódulos petroplínticos frequentes (15% do volume do horizonte), pequenos (menores que 0,5 cm), duros, esféricos, vermelhos, ferruginosos; dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição ondulada e clara.
- Cc 144-160 + cm, coloração variegada, composta de amarelo-brunado (10YR 6/8, úmido) e bruno-forte (7,5YR 5/8, úmido); franco-argilo-arenosa cascalhenta; maciça; nódulos petroplínticos muito frequentes (40% do volume do horizonte), pequenos e grandes (iguais ou menores que 1,0 cm), duros, esféricos, vermelhos, ferruginosos; dura, firme e localmente muito firme, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas e poucas médias e grossas no horizonte A; comuns muito finas, finas e médias e poucas grossas no horizonte BA; comuns muito finas e finas e poucas médias no horizonte Bi; poucas muito finas e finas nos horizontes Bic1 e Bic2; ausentes no horizonte Cc.

- Nódulos petroplínticos aumentam de tamanho com a profundidade, são sub-arredondados medindo de 0,3 cm à 1cm de diâmetro;
- Nódulos petroplínticos milimétricos e esféricos ocupam aproximadamente 1% do horizonte Bi;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte A; muitos muito pequenos e comuns pequenos e médios nos horizontes BA, Bi e Bic1; comuns muito pequenos e pequenos e poucos médios no horizonte Bic2; comuns muito pequenos e pequenos no horizonte Cc.

Perfil P27

Amostras de Laboratório: 10.0488-0493

Solo: CAMBISSOLO HÁPLICO Tb eutrófico petroplíntico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO H	APLIC	O Tb e	utrófico	petroplí	ntico, te	xtura ar	gilosa, A	modera	ado			
Horiz	onte		s da am otal g/kg		Compo	terra	anulomé a fina ^{(kg}	rica da	Argila dispersa	Grau de	Relaçã		nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-16	0	11	989	171	307	217	305	285	7	0,71			
ВА	-41	0	15	985	138	323	173	366	325	11	0,47			
Bi	-73	0	17	983	142	323	170	365	122	67	0,47			
Bic1	-112	0	22	978	136	329	170	365	0	100	0,47			
Bic2	-144	0	48	952	138	317	179	366	345	6	0,49			
Сс	-160	36	214	750	177	300	217	306	286	7	0,71			
	pH (1	:2,5)					exo Sorti	vo	•		Valo		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. po	bases)	S + Al ³⁺ %	assimilável mg/kg
Α	7,0	5,6	6,9	1,6	0,15	0,01	8,7	0	0	8,7	10	00	0	2
BA	6,8	5,1	5,7	0,8	0,04	0,01	6,5	0	1,1	7,6	8	6	0	1
Bi	6,8	5,1	5,4	0,4	0,04	0,01	5,8	0	0,9	6,7	8	7	0	1
Bic1	6,7	5,0	5,4	0,5	0,04	0,01	5,9	0	0,9	6,8	8	7	0	1
Bic2	7,1	5,3	7,0	0,5	0,05	0,05	7,6	0	0	7,6	10	00	0	2
Сс	7,6	5,9	9,2	0,9	0,22	0,41	10,7	0	0	10,7	10	00	0	9
	С						sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / =e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
А	13,3	1,8	7											
ВА	5,3	0,9	6											
Bi	2,8	0,7	4	173	134	67	5,4			2,19	1,66	3,14		
Bic1	1,8	0,5	4	177	141	63	6,0			2,13	1,66	3,51		
Bic2	2,1	0,5	4	177	133	65	5,0			2,26	1,72	3,21		
Сс	0,8	0,3	3											
		Pasta sa	turada			,	Sais solú		ľ			Const	antes hídrio	cas
Horizonte	<u>100.Na</u> [†] T	C.E. do extrato	Água				cmol _c /k					Umida		Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	HCO ₃ CO ₃ CO ₃	CI	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
Α	<1													
BA	<1													
Bi	<1													
Bic1	<1													
Bic2	<1													
Сс	4													

PERFIL P28

DATA - 18/05/2010

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - CXbe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, Município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.360.965m e Este 612.975m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço inferior da encostra com 0 a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

LTITUDE - 437 m.

LITOLOGIA - arenito.

FORMAÇÃO GEOLÓGICA – Área transicional entre os sedimentos do Grupo Urucuia e do Grupo Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram o arenito supracitado.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - sulcos moderada, muito frequente, rasa

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA – Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

- A 0-15 cm, bruno-avermelhado-escuro (5YR 3/3, úmido); franco-arenosa; fraca, muito pequena e pequena, granular e grãos simples; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 15-38 cm, bruno-avermelhado (5YR 4/3, úmido); franco-arenosa; fraca, pequena e muito pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- BA 38-68 cm, bruno-avermelhado (5YR 4/4, úmido); franco-arenosa; moderada, média e grande, blocos subangulares; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bi1 68-98 cm, vermelho-amarelado (5YR 4/6, úmido); franco-arenosa; moderada, grande e média, blocos subangulares; ligeiramente dura e localmente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bi2 98-150+ cm, vermelho-amarelado (5YR 5/6, úmido); franco-arenosa; maciça que se desfaz em fraca, grande e média, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas e poucas médias no horizonte A; muitas muito finas e finas e comuns médias e grandes no horizonte AB; comuns muito finas e finas e poucas médias e grossas no horizonte BA; comuns muito finas e poucas finas, médias e grossas no Bi1; comuns muito finas e poucas finas e médias no Bi2.

OBSERVAÇÕES – Perfil descrito seco em área plana situada imediatamente após um vertente curta (aproximadamente 200 m) com aproximadamente 45% de declive. Em consequência da posição na paisagem da área do perfil, houve a ação de processos erosivos com formação de sulcos e microrrelevos;

- Presença de raízes apodrecidas de barriguda no horizonte AB, com diâmetros que variam de 5 a 10 cm;
- Presença de uma raíz apodrecida de barriguda de 10 cm de diâmetro no horizonte
 BA;
- Presença de uma raíz apodrecida de barriguda de 5 cm de diâmetro na base do horizonte Bi1;
- Poros: muitos muito pequenos, comuns pequenos e médios e poucos grandes nos horizontes A e AB; muitos muito pequenos e pequenos e poucos médios e grandes no BA; muitos muito pequenos, comuns pequenos e poucos médios no Bi1 e Bi2.

Perfil P28

Amostras de Laboratório: 10.0494-0498

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, textura média, A moderado

Solo:	CAMBIS	SOLO H	ÁPLIC	O Tb E	utrófico	latossó	lico, text	ura mé	dia, A mo	derado				
Horiz	onte		s da an otal g/kg		Compo	terra	anulomé a fina ⁄kg	trica da	Argila dispersa	Grau de	Relação		nsidade g/cm³	Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³
Α	0-15	0	1	999	194	531	134	141	101	28	0,95			
AB	-38	0	0	1000	204	520	115	161	121	25	0,71			
ВА	-68	0	0	1000	198	520	101	181	161	11	0,56			
Bi1	-98	0	1	999	177	526	116	181	181	0	0,64			
Bi2	-150	0	1	999	181	520	118	181	161	11	0,65			
	pH (1	:2,5)					exo Sorti nol _c /kg	vo			Valo		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na [⁺]	Valor S (soma)	Al ³⁺	H ⁺	Valor T	sat. por %		S + Al ³⁺ %	assimilável mg/kg
Α	6,4	5,3	4,2	0,9	0,11	0,01	5,2	0	1,6	6,8	7	6	0	5
AB	6,2	4,8	2,8	0,7	0,11	0,01	3,6	0	1,4	5,0	7:	2	0	1
BA	6,1	4,6	2,4	1,2	0,14	0,01	3,7	0	1,1	4,8	7	7	0	1
Bi1	6,2	4,7	2,5	0,8	0,08	0,01	3,4	0	0,9	4,3	7	9	0	1
Bi2	7,0	5,4	2,5	0,9	0,19	0,01	3,6	0	0	3,6	10	00	0	2
	С						sulfúrico g/kg)		Relaçõ	es Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		0102/	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	14,9	1,7	9											
AB	5,7	0,8	7											
BA	3,2	0,6	5											
Bi1	2,3	0,4	6	94	65	35	3,7			2,46	1,83	2,92		
Bi2	1,5	0,3	5	88	63	36	3,8			2,37	1,74	2,75		NEGAT
		Pasta sa	turada				Sais solú cmol _c /k		·		•	Const	antes hídrio	cas
11. 2	<u>100.Na</u> ⁺	C.E. do			1	1	CITIOI _C /K	g	I					
Horizonte	T %	extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃ CO ₃ ²⁻	CI	SO ₄ ²⁻	0,033	Umida MPa	1,5 MPa	Água disponível máxima
А	<1													
AB	<1													
ВА	<1													
Bi1	<1													
Bi2	<1													

PERFIL P29

DATA - 19/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - CXbe1

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.355.991 m e Este 604.404 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço médio da vertente com 0% a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

Altitude- 470 m.

LITOLOGIA - mistura de sedimentos psamíticos e pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e os do Grupo Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Tropical Caducifólia.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ronaldo Pereira de Oliveira.

- A 0-14 cm, bruno-avermelho-escuro (5YR 3/2, úmido); franco-argiloarenosa; moderada, pequena e muito pequena, granular; dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 15-28 cm, bruno-avermelhado (5YR 4/3, úmido); franco-argilo-arenosa; moderada, média e grande, blocos subangulares, dura, firme, plástica e pegajosa; transição plana e gradual.
- BA 28-60 cm, bruno-avermelhado (5YR 4/4, úmido); franco-argilo-arenosa; moderada, grande e média, blocos subangulares, muito dura, firme, plástica e pegajosa; transição plana e gradual.
- Bi1 60-117 cm, vermelho-amarelado (5YR 5/6, úmido); franco-argilo-arenosa; moderada a forte, média e pequena, blocos subangulares; dura, friável, plástica e pegajosa; transição plana e difusa.
- Bi2 117-180 + cm, vermelho-amarelado (5YR 5/8, úmido); franco-argiloarenosa; moderada, média e grande, blocos subangulares; dura, friável, plástica e pegajosa.

RAÍZES – muitas muito finas no horizonte A; comuns muito finas e finas no horizonte AB; comuns muito finas no horizonte BA; poucas muito finas, finas e médias no horizonte Bi1; raras muito finas e finas no horizonte Bi2.

OBSERVAÇÕES - Perfil descrito seco;

Poros: muitos muito pequenos, comuns pequenos e médios e poucos grandes no horizonte A; muitos muito pequenos, comuns pequenos, médios e grandes no horizonte AB; comuns muito pequenos e pequenos, poucos médios e grandes no horizonte BA; muitos muito pequenos e comuns pequenos e médios nos horizontes Bi1 e Bi2.

Perfil P29

Amostras de Laboratório: 11.0315-0319

Solo: CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura média, A moderado

Símbolo Profundidade cm Calhaus > 20 mm Cascalho 20-2 mm Terra fina calho 20-2 mm Areia fina 20-20-2 mm Silte do (0,20-0,002 mm) mm Argila cm day mm Argila day mm Solo Partículas Partículas A 0-14 0 3 997 204 452 142 202 182 10 0,70 2,44 AB -28 0 1 999 184 434 140 242 242 0 0,58 2,47 BA -60 0 2 998 177 403 118 302 302 0 0,39 2,53 Bi1 -117 0 4 996 165 407 126 302 0 100 0,42 2,49 Bi2 -180 0 4 996 155 439 104 302 0 100 0,34 2,53	
AB	rosidade ³ /100cm ³
AB	
BA	
Bi1 -117 0 4 996 165 407 126 302 0 100 0,42 2,49 Bi2 -180 0 4 996 155 439 104 302 0 100 0,34 2,53 Complexo Sortivo cmol _o /kg Valor V (sat por bases) 100.Al ³⁺ S + Al ³⁺ ass	
Bi2 -180 0 4 996 155 439 104 302 0 100 0,34 2,53 Complexo Sortivo cmol _o /kg Horizonte Notice N	
Horizonte $\frac{p \cap (1:2,5)}{c \mod_c/kg}$ $\frac{100.Al^{3+}}{s + l^{3+}}$ ass	
Horizonte $\frac{p \cap (1:2,5)}{c \mod_c/kg}$ $\frac{100.Al^{3+}}{s + l^{3+}}$ ass	
Horizonte $ Valor S+AI^{JT} $ ass	Р
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	similável mg/kg
A 6,7 5,8 6,3 1,4 0,32 0,01 8,0 0 1,5 9,5 84 0	2
AB 6,6 5,3 4,7 1,1 0,21 0,01 6,0 0 1,7 7,7 78 0	1
BA 6,2 4,7 3,6 1,4 0,17 0,01 5,2 0 1,7 6,9 75 0	<1
Bi1 6,0 4,8 3,4 1,3 0,06 0,01 4,8 0 1,2 6,0 80 0	<1
Bi2 6,4 5,1 3,2 1,3 0,03 0,01 4,5 0 1,0 5,5 82 0	<1
Ataque sulfúrico Relações Moleculares Fou	uivalente
Horizonte (granico) N C/N I gran ALO/ Bivre	de CaCO₃ g/kg
A 15,0 1,7 9	
AB 6,8 1,1 6	
BA 3,6 0,7 5	
Bi1 1,7 0,6 3 132 92 30 3,6 2,44 2,02 4,81	
Bi2 0,9 0,4 2	
Pasta saturada Sais solúveis Constantes hídricas	
100.Na ⁺ C.E. do / C.E. do /	,
$\frac{\text{mS/cm}}{\text{mS/cm}} = \frac{\text{Mg}^{2+}}{\text{Mg}^{2+}} = \frac{\text{K}^{+}}{\text{Na}^{+}} = \frac{\text{Na}^{+}}{\text{CO}_{3}^{2-}} = \frac{\text{Cl}^{-}}{\text{SO}_{4}^{2-}} = \frac{\text{Cl}^{-}}{\text{CO}_{3}^{2-}} = \frac{\text{NB}_{3}}{\text{Cl}^{-}} = $	Água sponível náxima
A <1	
AB	
NB	
Bi1 <1	
Bi2 <1	

PERFIL P30

DATA - 19/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - LVe4.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.358.452 m e Este 610.293 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Área plana com declividades inferiores a 3%. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

Altitude - 466 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ronaldo Pereira de Oliveira.

- A1 0-8 cm, bruno-avermelhado-escuro (4YR 3/3, úmido); franco-argilosa; moderada, muito pequena e pequena, granular; ligeiramente dura, firme, plástica e pegajosa; transição plana e clara.
- A2 8-23 cm, bruno-avermelhado (4YR 4/4, úmido); argila; moderada, média e pequena, blocos subangulares; ligeiramente dura, firme, plástica e pegajosa; transição plana e clara.
- BA 23-68 cm, vermelho-amarelado (4YR 4/6, úmido); argila; moderada, média e grande, blocos subangulares; dura, firme, plástica e pegajosa; transição plana e gradual.
- Bic1 68-115 cm, vermelho-amarelado (5YR 4/6, úmido); argila; fraca, média e grande, blocos subangulares; nódulos petroplínticos poucos (10% em volume do horizonte), pequenos (menores que 1,0 cm), duros, irregulares, vermelhos, ferruginosos; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bic2 115-139 cm, vermelho-amarelado (5YR 5/8,úmido); argila; fraca, média e grande, blocos subangulares; nódulos petroplínticos poucos (10% em volume do horizonte), pequenos (menores que 1,0 cm), duros, irregulares, vermelhos, ferruginosos; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- CBc 139-170+ cm, coloração variegada, composta de bruno-amarelado (10YR 5/6, úmido) e amarelo-brunado (10YR 6/8, úmido); argila; maciça; nódulos petroplínticos poucos (5% em volume do horizonte), pequenos (menores que 1,0 cm), duros, irregulares, vermelhos, ferruginosos; dura, firme, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – Muitas muito finas e finas e comuns médias no horizonte A1; comuns muito finas e finas e poucas médias nos horizontes A2 e BA; poucas muito finas e finas nos horizontes Bic1 e Bic2 e raras muito finas no horizonte CBc.

- Presença de fragmentos de rocha nos horizontes Bic1, Bic2 e
 BC. Nos dois primeiros ocupa menos que 5% do horizonte. No BC ocupa porcentagens ligeiramente acima desse valor;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte A1; muitos muito pequenos, comuns pequenos e médios e poucos grandes no horizonte A2; comuns muito pequenos e pequenos e poucos médios no horizonte BA; muitos muito pequenos e pequenos e comuns médios nos horizontes Bic1 e Bic2; comuns muito pequenos e pequenos no horizonte CBc.

Perfil P30

Amostras de Laboratório: 11.0320-0325

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO HA	APLIC) Tb E	utrófico	latossó	lico pet	troplintic	co, textura	a argilos	a, A m	oderac	do	
Horizo	onte	Frações to	s da am tal g/kg	ostra	Compos	sição gra terra g/l	fina	etrica da	Argila dispersa	Grau de	Relaç		Densidade g/cm³	Dorocidodo
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi		olo Partículas	Porosidade cm ³ /100cm ³
A1	0-8	0	20	980	138	268	229	365	365	0	0,6	3	2,41	
A2	-23	0	13	987	124	226	183	467	427	9	0,3	9	2,47	
BA	-68	0	18	982	100	193	199	508	0	100	0,3	9	2,49	
Bic1	-115	0	33	967	102	215	172	511	0	100	0,3	4	2,45	
Bic2	-139	0	41	959	98	217	214	471	0	100	0,4	5	2,48	
CBc	-170	0	73	927	98	222	208	472	0	100	0,4	4	2,48	
	pH (1	1:2,5)		I.	•		lexo Sor mol₀/kg	tivo			V	alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T		oor base %		assimilável mg/kg
A1	6,5	5,5	8,1	2,9	0,36	0,01	11,4	0	3,0	14,4		79	0	4
A2	6,5	5,1	7,4	2,2	0,09	0,01	9,7	0	2,5	12,2		80	0	2
ВА	6,5	5,1	6,3	2,8	0,06	0,01	9,2	0	1,7	10,9		84	0	1
Bic1	5,8	4,3	5,8	1,8	0,04	0,01	7,6	0,1	1,9	9,6		79	1	2
Bic2	5,9	4,5	6,1	2,6	0,04	0,01	8,7	0,1	1,7	10,5		83	1	2
CBc	6,2	4,8	6,7	2,2	0,05	0,01	9,0	0	1,7	10,7		84	0	2
- 020	0,2	.,0	0,.	,_	0,00	,	e sulfúrio	_	.,.					_
	С						g/kg	,0		Relaçõ	es Mol	eculare	s Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ Fe ₂ O ₃	/ livre	de CaCO ₃ g/kg
A1	18,0	2,3	8											
A2	7,9	1,3	6											
BA	3,4	0,9	4											
Bic1	1,9	0,6	3											
Bic2	1,8	0,6	3	206	151	63	4,3			2,32	1,83	3,76		
CBc	1,0	0,6	2											
		Pasta sa	turada		I.		Sais sol		l.			Co	onstantes hídric	as
l lori	<u>100.Na</u> ⁺	C.E. do	,		1		cmol _c /	ry I	I			11.	g/100g	,
Horizonte	T %	extrato	Água %	Ca ²⁺	NA - 2+	K ⁺	Na ⁺	HCO ₃	CI ⁻	SO ₄ ²⁻		Umi	idade	Água disponível
	70	mS/cm 25°C	%	Ca	Mg ²⁺	K	Na	CO ₃ ²⁻	Ci	SO ₄	0,0	33 MPa	1,5 MPa	máxima
A1	<1													
A2	<1													
BA	<1													
Bic1	<1													
Bic2	<1													
CBc	<1													

PERFIL P31

DATA - 19/05/2011

CLASSIFICAÇÃO – LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe3.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.355.806 m e Este 608.287 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço médio da vertente com aproximadamente 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

Altitude - 470 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ronaldo Pereira de Oliveira.

- A 0-10 cm, bruno-avermelhado-escuro (2,5YR 3/3, úmido); argila; moderada, pequena e muito pequena, granular; fraea, ligeiramente dura, friável, ligeiramente plástica e pegajosa; transicão plana e clara.
- AB 10-30 cm, vermelho-acinzentado (10R 4/4, úmido); argila; fraca, média e pequena, blocos subangulares que se desfaz em moderada, muito pequena e pequena, granular; ligeiramente dura, firme, ligeiramente plástica e pegajosa; transição plana e clara.
- BA 30-76 cm, vermelho (10R 4/5, úmido); argila; moderada, grande e média, blocos subangulares; dura, firme, ligeiramente plástica e pegajosa; transição plana e difusa.
- Bw1 76-118 cm, vermelho (10R 4/6, úmido); argila; fraca, grande e média, blocos subangulares que se desfaz em moderada, muito pequena e pequena, granular; dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 118-160 + cm, vermelho (10R 4/6, úmido); argila; maciça que se desfaz em fraca, média e pequena, blocos subangulares e moderada, muito pequena, granular; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAIZES – muito muito finas e finas e poucas médias no horizonte A; muitas muito finas, comuns finas e médias e poucas grossas no horizonte AB; comuns muito finas e finas e poucas médias no horizonte BA; comuns muito finas e finas no horizonte Bw1; poucas muito finas e finas no horizonte Bw2.

- Presença de nódulos petroplínticos (chumbinho de caça) em todos os horizontes. Quantidade: muito poucos (menos de 5% do volume dos horizontes); tamanho: pequenos (menor que 0,5 cm de diâmetro); dureza: duros; forma: esféricos; cor: vermelhos; natureza: ferruginosos;
- Poros: muitos muito pequenos e pequenos e comuns médios e grandes nos horizonte A e AB; muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte BA; muitos muito pequenos e pequenos e poucos médios nos horizonte Bw1 e Bw2.

Perfil P31

Amostras de Laboratório: 11.0326-0330

Solo: LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado

Solo:	LATOSS	OLO VEI	RMELF	HO Eut	rófico tip	oico, te	xtura a	rgilosa,	A modera	ado				
Horiz	onte	Frações to	da am tal g/kg	ostra	Compos	terra	anulomé a fina kg	etrica da	Argila dispersa	Grau de	Relação		ensidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
Α	0-10	0	5	995	112	173	287	428	366	14	0,67		2,45	
AB	-30	0	4	996	82	129	237	552	511	7	0,43		2,47	
BA	-76	0	5	995	78	133	216	573	0	100	0,38		2,38	
Bw1	-118	0	4	996	82	153	235	530	0	100	0,44		2,47	
Bw2	-160	0	11	989	84	155	231	530	0	100	0,44		2,50	
	pH (1	1:2,5)					lexo Sor	tivo			Valo	or V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. poi		S + Al ³⁺ %	assimilável mg/kg
Α	6,4	5,3	6,6	2,2	0,52	0,01	9,3	0	3,4	12,7	7	3	0	1
AB	5,9	4,5	5,6	1,9	0,18	0,01	7,7	0	3,2	10,9	7	1	0	<1
BA	6,0	4,6	4,9	2,5	0,10	0,01	7,5	0	2,4	9,9	7	6	0	1
Bw1	5,8	4,5	4,2	2,0	0,06	0,01	6,3	0,1	2,0	8,4	7	5	2	<1
Bw2	5,7	4,4	4,2	1,8	0,06	0,01	6,1	0,1	1,9	8,1	7	5	2	1
	С						e sulfúrio g/kg	co		Relaçõ	ses Molec	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		0102/	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	14,3	2,0	7											
AB	7,7	1,4	5											
BA	3,5	0,9	4											
Bw1	1,8	0,8	2											
Bw2	1,8	0,8	2											
	400 N=+	Pasta sa	turada				Sais sol					Cons	tantes hídric g/100g	as
Horizonte	<u>100.Na</u> [†] T	C.E. do extrato	Água					1				Umida		Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	HCO ₃ ² CO ₃ ²	CI	SO ₄ ²⁻	0,033		1,5 MPa	disponível máxima
Α	<1													
AB	<1													
BA	<1													
Bw1	<1													
Bw2	<1													

PERFIL P32

DATA - 25/05/2011

CLASSIFICAÇÃO – VERTISSOLO HÁPLICO Órtico típico, textura argilosa/muito argilosa, A moderado.

UNIDADE DE MAPEAMENTO - VXo.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.353.183 m e Este 608.833 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão (dolina?) com aproximadamente 1% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

Altitude - 460 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Formação Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO – não aparente.

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho.

- A 0-14 cm, bruno-acinzentado muito escuro (10 YR 3/2, úmido); argila; forte, pequena e muito pequena, blocos subangulares; dura, firme, muito plástica e muito pegajosa; transicão plana e clara.
- AB 14-28 cm, bruno (10 YR 4/3, úmido); argila; forte, média e pequena, blocos angulares e subangulares; muito dura, firme, muito plástica e muito pegajosa; transição descontínua e gradual.
- BAv 28-60 cm, bruno-acinzentado (2Y 5/3, úmido); mosqueado comum, médio e grande, distinto, bruno-oliváceo (2Y 4/6, úmido); argila; grande e muito grande, blocos angulares; superfície de compressão forte e comum; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição descontínua e clara.
- Biv1 28-60 cm, bruno-oliváceo-claro (2Y 5/4, úmido); argila, forte, grande e muito grande, blocos angulares; superfície de compressão forte e abundante; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e difusa.
- Biv2 60-100 cm, bruno-amarelado-claro (2Y 6/4, úmido); muito argilosa; forte, grande e muito grande, blocos angulares; superfície de compressão forte e abundante e slickenside moderada e pouca; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e difusa.
- Biv3 100-110 + cm, amarelo-oliváceo (2Y 6/6, úmido), mosqueado pouco, grande, proeminente, branco (10YR 8/1, úmido); muito argilosa; forte, muito grande e grande, blocos angulares e média e pequena, prismática; superfície de compressão forte e abundante e slickenside moderada e comum; extremamente dura, extremamente firme, muito plástica e muito pegajosa.

RAÍZES – muitas muito finas, finas e médias e poucas grossas no horizonte A; comuns muito finas e finas e poucas médias no horizonte AB; poucas muito finas e finas no horizonte BAv; raras muito finas e finas nos demais horizontes.

- Presença de fendas verticais de aproximadamente 1,0 cm de largura que se iniciam a 35 cm da superfície do solo e estendem-se até 78 cm de profundidade;
- Presença de fragmentos de rocha e de nódulos petroplínticos esféricos e milimétricos (chumbinhos de caça). Ocupam menos que 5%, em volume, de todos os horizontes B do perfil (inclusive BA);
- Poros: comuns muito pequenos, pequenos, poucos médios e grandes no horizonte A; comuns muito pequenos e pequenos e poucos médios no horizonte AB; poucos muito pequenos nos demais horizontes.

Perfil P32

Amostras de Laboratório: 11.0331-0336

Solo:	VERTIS	SOLO H	ÁPLIC	O Órtic	o típico,	textura	a argilos	sa /muit	o argilosa	a, A mod	derado			
Horizo	onte	Frações to	da am tal g/kg	ostra	Compos	sição gra terra g/		trica da	Argila dispersa	Grau de	Relaç		Densidade g/cm³	Dorosidodo
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argil		Partículas	Porosidade cm ³ /100cm ³
Α	0-14	0	6	994	54	144	349	453	371	18	0,77	7	2,50	
AB	-28	0	14	986	62	112	346	480	456	18	0,48	3	2,63	
BAv	28-60	0	14	986	52	94	374	480	480	0	0,78	3		
Biv1	28-60	0	26	974	60	95	348	497	0	100	0,70)	2,56	
Biv2	-100	0	29	971	55	94	243	608	0	100	0,40)	2,50	
Biv3	-110	0	25	975	50	94	227	629	0	100	0,36	6		
	pH (1	1:2,5)					lexo Sor mol₀/kg	tivo			Va	alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. p	or bases %	S + Al ³⁺ %	assimilável mg/kg
Α	6,5	5,4	14,1	6,4	0,33	0,01	20,8	0	3,7	24,5		85	0	2
AB	6,8	5,3	10,5	11,0	0,16	0,08	21,7	0	2,2	23,9		91	0	1
BAv	7,3	5,5	9,2	18,2	0,16	0,29	27,8	0	0	27,8		100	0	2
Biv1	7,1	5,4	8,0	18,4	0,17	0,32	26,9	0	0	26,9		100	0	<1
Biv2	7,8	6,8	7,0	23,8	0,14	0,80	31,7	0	0	31,7		100	0	1
Biv3	8,1	7,4	6,9	24,3	0,15	0,93	32,3	0	0	32,3		100	0	1
					•	Ataque	sulfúrio	0	•	Poloci	šos Mole	eculares		
	С	N					g/kg			Kelaçı	Jes Mole		Fe ₂ O ₃	Equivalente de
Horizonte	(orgânico) g/kg	g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	CaCO ₃
Α	23,1	2,8	8											
AB	7,8	1,1	7											
BAv	3,1	0,6	5											
Biv1	2,4	0,5	5											
Biv2	1,8	0,3	6	215	115	64	2,9			3,18	2,34	2,82		11
Biv3	0,8	0,3	3											17
		Pasta sa	turada				Sais solu		•			Cor	nstantes hídric g/100g	as
Horizonte	<u>100.Na</u> ⁺ T	C.E. do	Á					3			1	Umic		Á
Tionzonic	%	extrato mS/cm	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO3	CI ⁻	SO ₄ ²⁻				Água disponível
		25°C	,,,	Ou	Wig		110	CO ₃ ²⁻	Oi	004	0,03	33 MPa	1,5 MPa	máxima
Α	<1													
AB	<1													
BAv	1													
Biv1	1													
Biv2	3	2,07	56			0,01	0,36							
Biv3	3	2,65	56			0,01	0,53							

PERFIL P33

DATA - 26/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO Tb eutrófico petroplíntico vertissólico, textura argilosa.

UNIDADE DE MAPEAMENTO - CXbe12.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.353.080 m e Este 607.255 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão fechada possivelmente relacionada a uma dolina entulhada. Declive de aproximadamente 1%. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

Altitude - 490 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho.

- A 0-9 cm, bruno-acinzentado muito escuro (2,5Y 3/2, úmido); argila; moderada, pequena, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, friável, plástica e pegajosa; transição plana e clara.
- AB 9-34 cm, coloração variegada, composta de bruno-oliváceo-claro (2,5 Y 5/4, úmido) e bruno-amarelado-escuro (10YR 3/6); argila; fraca, pequena e média, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e gradual.
- Bic 34-84 cm; coloração variegada composta, de bruno-oliváceo-claro (2,5Y 5/6, úmido), bruno-oliváceo (2,5Y 4/4, úmido) e bruno-amarelado-escuro (10YR 4/6, úmido); argila; maciça que se desfaz em fraca, muito pequena e pequena, blocos subangulares; nódulos petroplínticos frequentes (15% do volume do horizonte), pequenos (menores que 0,5 cm), duros e, predominantemente, macios; irregulares, vermelhos e amarelos; ferruginosos; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e abrupta.
- 2Bigv 84-130+ cm; coloração variegada, composta de cinzento-brunado-claro (2,5Y 6/2, úmido), cinzento-claro (2,5Y 6/1, úmido) e bruno-amarelado-claro (2,5Y 6/4, úmido; mosqueados comuns, pequenos e médios, proeminentes, pretos (N 2/), relacionados à segregação de manganês; argila; maciça; superfície de compressão moderada e comum e de fricção fraca e pouca; extremamente dura, extremamente firme, muito plástica e muito pegajosa.

RAIZES – muitas muito finas, comuns finas e poucas médias no horizonte A; muitas muito finas e poucas médias no horizonte AB; comuns muito finas e finas no horizonte Bic; raras muito finas no horizonte 2Bigv.

OBSERVAÇÕES - Perfil descrito úmido;

- Muitos nódulos ferruginosos do horizonte Bic se desfazem ao manuseio, sem se deformar, mas podem ser facilmente individualizados da matrix do solo. Aparentam nódulos petroplínticos em estádio de desmantelamento;

- Presença de fragmentos de rocha ocupando menos que 5%, em volume, dos horizontes Bic e 2Bigv;
- Poros: muitos muito pequenos e pequenos e comuns médios nos horizontes A, AB e Bic; poucos muito pequenos no horizonte 2Bigv.

Perfil P33

Amostras de Laboratório: 11.0337-0340

Solo: CAMBISSOLO HÁPLICO To Eutrófico petroplíntico vertissólico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO H	APLIC	OIbE	utrofico	petrop	lintico v	/ertissó	lico, textu	ra argilo	osa, A i	moder	ado	
Horizo	onte	Frações to	da am tal g/kg	ostra	Compo	terra	anulomé a fina kg	trica da	Argila dispersa	Grau de	Relaç		Densidade g/cm ³	- Porosidade
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi	la	olo Partículas	cm ³ /100cm ³
А	0-9	0	15	985	98	143	310	449	327	27	0,6	9		
AB	-34	0	43	957	86	131	273	510	0	100	0,5	4		
Bic	-84	0	62	938	72	129	247	552	0	100	0,4	5		
2Bigv	-130	0	17	983	38	77	364	521	521	0	0,7	0		
	pH (1	1:2,5)					lexo Sor mol _c /kg	tivo				alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H [⁺]	Valor T	(sat. p	oor base %	S + Al ³⁺ %	assimilável mg/kg
А	5,9	4,9	6,8	3,4	0,53	0,01	10,7	0	5,2	15,9		67	0	2
AB	5,5	4,1	3,4	3,4	0,07	0,01	6,9	0,6	4,1	11,6		59	8	1
Bic	5,5	4,0	3,4	5,0	0,05	0,01	8,5	0,7	2,9	12,1		70	8	2
2Bigv	5,6	4,1	9,9	13,1	0,17	0,23	23,4	0,3	2,8	26,5		88	1	<1
	С						e sulfúrio g/kg	ю		Relaç	ões Mol	eculare	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ Fe ₂ O	/ livre	de CaCO₃ g/kg
Α	21,7	2,7	8											
AB	6,0	1,1	5											
Bic	2,2	0,7	3											
2Bigv	2,0	0,6	3	265	151	74	3,0			2,98	2,27	3,20	ı	
		Pasta sa	turada				Sais sol					C	onstantes hídri	cas
	<u>100.Na</u> ⁺	C.E. do					cmol _c /	kg					g/100g	.
Horizonte	T %	extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃ CO ₃ 2-	CI¯	SO ₄ ²⁻	0,0	Um 33 MPa	idade 1,5 MPa	Água disponível máxima
Α	<1													
AB	<1													
Bic	<1													
2Bigv	<1													

PERFIL P34

DATA - 26/05/2011

CLASSIFICAÇÃO – CHERNOSSOLO HÁPLICO Carbonático vertissólico, textura muito argilosa.

UNIDADE DE MAPEAMENTO - MXk.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.352.841 m e Este 608.033 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Área plana (aproximadamente 1% de declive) situada no sopé de uma vertente dominada por Latossolos Vermelhos eutróficos. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

Altitude - 470 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - ligeiramente rochosa

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado

EROSÃO - não aparente.

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Wenceslau Guedes Teixeira.

- O-13 cm, bruno muito escuro (7,5 YR 2,5/1, úmido), cinzento muito escuro (7,5 YR 3/1, seco); argila; forte, média e grande, blocos subangulares; dura, firme, muito plástica e muito pegajosa; transição plana e clara.
- A2 13-25 cm, bruno-escuro (7,5 YR 3/2, úmido e seco); muito argilosa; forte, média e grande, blocos subangulares; dura, firma, muito plástica e muito pegajosa; transição plana e clara.
- Biv 25-48 cm, bruno-avermelhado (5YR 4/4, úmido); muito argilosa; forte, média e grande, blocos angulares; superfície de compressão forte e abundante e de fricção fraca e pouca; extremamente dura, muito firme, muito plástica e muito pegajosa; transição plana e abrupta.
- BCk 48-63 cm, bruno-avermelhado (7,5 YR 5/4, úmido); argila pouco cascalhenta; moderada, média e pequena, blocos angulares; superfície de compressão moderada e pouca; nódulos poucos (10% do volume do horizonte), pequenos (menores que 1 cm), duros, irregulares, brancos, carbonato de cálcio; dura, firme, plástica e pegajosa; transição descontínua e clara.
- CBk 63-110 cm, bruno-amarelado (10YR 5/4, úmido), argila pouco cascalhenta; moderada, média e pequena, blocos angulares; superfície de compressão moderada e pouca; nódulos frequentes (20% do volume do horizonte); pequenos (menores que 1 cm), duros, irregulares, brancos, carbonato de cálcio; dura, firme, ligeiramente plástica e pegajosa; transição descontínua e clara.
- Crk1 63-117 cm, fragmentos de rocha parcialmente decomposta; transição descontínua e clara.
- Crk2 (100-117)-120 cm; fragmentos de rocha parcialmente decomposta.

RAIZES – muitas muito finas e finas, comuns médias no horizonte A1; muitas muito finas, finas e médias no horizonte A2; comuns muito finas e finas, poucas médias no horizonte Biv; poucas muito finas nos horizontes BCk e CBk; ausente nos demais horizontes.

OBSERVAÇÕES - Perfil descrito úmido;

- Presença de muitas fendas verticais com dimensão média de 0,3 cm em todo o horizonte Biv;
- Presença de fragmentos de rocha ocupando menos que 5%,
 em volume, do horizonte Biv;
- Poros: muitos muito pequenos e comuns pequenos e médios no horizonte A1; muitos muito pequenos e comuns pequenos no horizonte A2; poucos muito pequenos nos horizonte Biv, BCk e CBk.

Perfil P34

Amostras de Laboratório: 11.0341-0347

Solo: CHERNOSSOLO HÁPLICO Carbonático vertissólico, textura muito argilosa

Horizo	onte	Frações to	da am tal g/kg	ostra			ranulom erra fina kg	etrica	Argila dispersa	Grau de	Relaç		Densidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argil	/	o Partículas	Porosidade cm ³ /100cm ³
A1	0-13	0	5	995	44	69	340	547	462	16	0,62	2	2,35	
A2	-25	0	6	994	47	68	271	614	551	10	0,44	ļ	2,25	
Biv	-48	0	8	992	32	38	293	637	573	10	0,46	6	2,27	
BCk	-63	0	97	903	151	59	329	461	105	77	0,71			
CBk	63-110	0	117	883	133	54	354	459	83	82	0,77	7		
Crk1	63-100	0	38	962	101	50	498	351	41	88	1,42	2		
Crk2	-120	61	130	809	149	45	516	290	41	86	1,78	3		
	pH (1	1:2.5)				Comp	lexo Sor	tivo				·	2.	
l la sima sata	pi i (i	1.2,5)				С	mol _c /kg				-	alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. p	or bases %	S + Al ³⁺ %	assimilável mg/kg
A1	7,5	6,4	28,3	7,8	0,84	0,01	36,9	0	0	36,9		100	0	29
A2	7,4	6,1	28,5	7,8	0,51	0,01	36,8	0	0	36,8		100	0	33
Biv	7,5	6,0	31,4	4,9	0,28	0,01	36,6	0	0	36,6		100	0	91
BCk	8,5	7,3	25,2	6,2	0,12	0,10	31,6	0	0	31,6		100	0	1
CBk	8,6	7,4	21,4	7,8	0,11	0,10	29,4	0	0	29,4		100	0	1
Crk1	8,7	7,4	16,8	7,1	0,11	0,10	24,1	0	0	24,1		100	0	<1
Crk2	8,7	7,4	17,0	8,1	0,12	0,10	25,3	0	0	25,3		100	0	<1
	С						sulfúrio g/kg	:0		Relaç	ões Mole	eculares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre	de CaCO₃ g/kg
A1	32,5	3,8	9								İ			27
A2	16,7	2,0	8											S/CARB*
Biv	9,2	1,4	7	272	133	71	301			3,48	2,59	2,94		S/CARB*
BCk	6,4	1,0	6											293
CBk	5,0	0,7	7											388
Crk1	1,8	0,3	6											470
Crk2	1,2	0,3	4											368

^{*} S/CARB = sem carbonato.

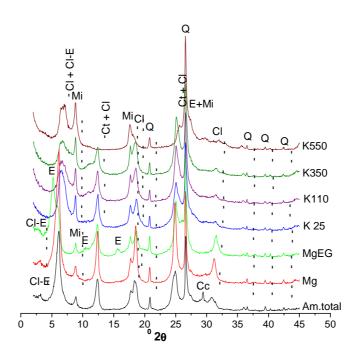


Figura 21. Difratogramas de raios-X da fração argila desferrificada do horizonte BCk do perfil P34. Minerais identificados: CI-E – Interestratificado Clorita-Esmectita; E – esmectita; CI - Clorita; Mi-Mica; Ct – Caulinita; Q – Quartzo; Cc – Calcita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

- Observações:

- Devido à dificuldade e precisão na separação dos espécimes minerais, é considerada, para efeito de análise, a presença de esmectita e clorita, além do interestratificado composto por estes dois argilominerais;
- 2) Para melhor visualização dos minerais desta amostra é apresentada uma montagem com os difratogramas da amostra saturada com magnésio antes e após o tratamento com etileno glicol (Figura 22), bem como da amostra total (Figuras 22 e 23).

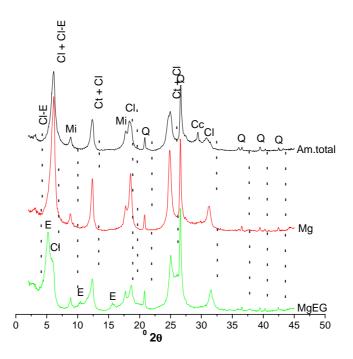


Figura 22. Difratogramas de raios-X da fração argila do horizonte BCk do perfil P34 referente à amostra total (Am.total), saturada com magnésio (Mg) e saturada com magnésio e glicolada (MgEG). Minerais identificados: CI-E – Interestratificado Clorita-Esmectita; E – esmectita; CI - Clorita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Cc – Calcita

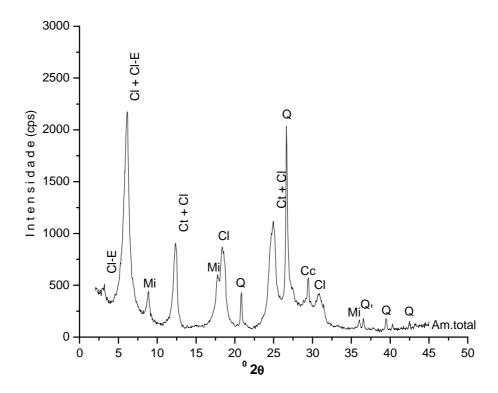


Figura 23. Difratogramas de raios-X da fração argila do horizonte BCk do perfil P34 referente à amostra total, sem tratamento (Am.total). Minerais identificados: CI-E – Interestratificado Clorita-Esmectita; E – esmectita; CI - Clorita ; Mi - Mica; Ct – Caulinita; Q – Quartzo; Cc – Calcita

- Estimativa de predominância: CI-E - Interestratificado Clorita-Esmectita; CI - Clorita; E - esmectita; Mi - Mica; Ct - Caulinita; Q - Quartzo; Cc - Calcita.

PERFIL P35

DATA - 28/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe11.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.351.648 m e Este 607.869 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Área plana (inferior a 3% de declive) que se intercala a áreas de maiores cotas dominadas por Cambissolos Háplicos latossólicos. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

Altitude - 470 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - ligeiramente rochosa

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente

DRENAGEM - moderadamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

A 0-13 cm, bruno-acinzentado muito escuro (10YR 3/2, úmido); argila; fraca, pequena e muito pequena, blocos subangulares que se desfaz em moderada, muito pequena e pequena, granular; dura, firme, plástica e pegajosa; transição plana e gradual.

AB 13-32 cm, bruno-escuro (10YR 3/3, úmido); argila; fraca, média e pequena, blocos subangulares que se desfaz em moderada, muito pequena e pequena, granular; dura, firme, ligeiramente plástica e pegajosa; transição plana e gradual.

Bic 32-60 cm, bruno-amarelado (10YR 5/6, úmido), mosqueado comum, proeminente, pequeno e médio, bruno-avermelhado (5YR 4/4, úmido); argila; moderada, média e pequena, blocos subangulares; nódulos petroplínticos poucos (10% do volume do horizonte), pequenos, macios e duros, esféricos; vermelhos e amarelos, ferruginosos; dura, firme, plástica e pegajosa; transição plana e clara.

Bi 60-90 + cm, coloração variegada composta de bruno-amarelado (10YR 5/8, úmido), bruno-amarelado-claro (10YR 6/4, úmido) e bruno-avermelhado (5YR 4/4, úmido); argila; maciça que se desfaz em forte, grande, blocos subangulares; extremamente dura, extremamente firme, plástica e pegajosa.

RAÍZES – muitas muito finas, finas e médias, poucas grossas no horizonte A; comuns muito finas, finas e médias, poucas grossas no horizonte AB; poucas muito finas, finas e médias no horizonte Bic; poucas muito finas e finas no horizonte Bi.

OBSERVAÇÕES – Perfil descrito seco;

- Presença de nódulos petroplínticos ocupando menos que 5%, em volume,
 dos horizontes A, AB e Bi;
- Parte dos nódulos petroplínticos do perfil se desmantelam ao manuseio,
 rompendo-se abruptamente quando pressionados entre o polegar o indicador;
- Poros: muitos muito pequenos, comuns pequenos, poucos médios e grandes no horizonte A; muitos muito pequenos, comuns pequenos e poucos médios no horizonte AB; comuns muito pequenos e pequenos no horizonte Bic; comuns muito pequenos e poucos pequenos no horizonte Bi.

Perfil P35

Amostras de Laboratório: 11.0348-0351

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO HA	APLIC	ם מו כ	utrofico	petropi	intico, t	extura a	argilosa, <i>I</i>	1 mode	rado				
Horizo	onte	Frações to	s da am tal g/kg	ostra	Compos		anulomé a fina kg	trica da	Argila dispersa	Grau de	Relaç	ção		ensidade g/cm³	Darasidada
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi	la	Solo	Partículas	Porosidade cm ³ /100cm ³
А	0-13	12	7	981	73	151	348	428	326	24	0,8	1		2,86	
AB	-32	0	7	993	69	143	297	491	409	17	0,6	0		2,56	
Bic	-60	13	41	946	70	129	268	533	205	62	0,5	0			
Bi	-90	0	28	972	57	114	278	551	0	100	0,5	0			
	pH (1	:2,5)		•			lexo Sor	tivo			V	alor V	,	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T		por bas %		S + Al ³⁺ %	assimilável mg/kg
A	6,1	5,0	8,4	2,9	0,22	0,01	11,5	0	4,6	16,1		71		0	2
AB	6,2	4,7	7,6	3,0	0,06	0,01	10,7	0	3,5	14,2		75		0	1
Bic	6,4	4,9	7,5	4,0	0,06	0,01	11,6	0	2,2	13,8		84		0	2
Bi	7,1	5,7	7,3	6,5	0,06	0,01	13,9	0	0	13,9		100		0	1
	_						e sulfúrio g/kg	ю		Relaç	ões Mol	ecular	res	F. 0	Equivalente
Horizonte	C (orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ C Fe ₂ (Fe₂O₃ livre g/kg	de CaCO₃ g/kg
А	16,0	2,2	7												
AB	5,6	1,1	5												
Bic	3,0	0,7	4												
Bi	1,9	0,5	4	189	125	61	3,0			2,57	1,96	3,2	22		
	100 No ⁺	Pasta sa	turada				Sais solu					(Cons	tantes hídric g/100g	as
Horizonte	100.Na ⁺ T %	C.E. do extrato mS/cm	Água %	Ca ²⁺	Mg ²⁺	K⁺	Na ⁺	HCO ₃ CO ₃ ²⁻	CI	SO ₄ ²⁻	0.0	Ur 33 MF	mida	de 1,5 MPa	Água disponível
		25°C						UU3			0,0	JJ IVIF	a	i,o ivipa	máxima
Α	<1														
AB	<1														
Bic	<1														
Bi	<1														

PERFIL P36

DATA - 28/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura muito argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe11.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.351.396 m e Este 607.844 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Terço superior da vertente, com aproximadamente 8% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

Altitude - 470 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - ligeiramente rochosa

RELEVO LOCAL - plano.

RELEVO REGIONAL - suave ondulado.

EROSÃO - não aparente

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-12 cm, bruno-avermelhado-escuro (2,5YR 3/3, úmido); argila; moderada, muito pequena e pequena, granular; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e clara.
- BA 12-37 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido); argila; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e gradual.
- Bi1 37-79 cm, vermelho (2,5YR 4/6, úmido), muito argilosa; fraca, pequena, blocos subangulares e moderada, muito pequena e pequena, granular; cerosidade pouca e fraca; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e difusa.
- Bi2 79-110+ cm; vermelho (10R 4/6, úmido); muito argilosa; fraca, pequena, blocos subangulares e moderada, muito pequena e pequena, granular; dura, friável, ligeiramente plástica e pegajosa.

RAÍZES – muitas muito finas e finas no horizonte A; comuns muito finas e finas, poucas médias e grossas no horizonte BA; comuns muito finas e finas, poucas médias no horizonte Bi1; poucas muito finas e finas no horizonte Bi2.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de cascalhos e calhaus (sílex?) em todos os horizontes do perfil ocupando menos que 5% em volume;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A e BA; muitos muito pequenos e pequenos, poucos médios e grandes no horizonte Bi1; muitos muito pequenos e pequenos, poucos médios no horizonte Bi2.

Perfil P36

Amostras de Laboratório: 11.0352-0355

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, textura muito argilosa, A moderado

5010:	CAMIDIO	SOLO H	APLIC	ו או ער	atronico i	a10550	iico, iex	dura mu	lito argilos	sa, A III	Juerauc)		
Horiz	onte	Frações to	s da am tal g/kg	ostra	Compos	sição gra terra g/	fina	etrica da	Argila dispersa	Grau de	Relaç		ensidade g/cm³	B i la la
Símbolo	Profundidade	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argil		Partículas	Porosidade cm ³ /100cm ³
Α	0-12	0	32	968	98	194	300	408	306	25	0,74	ļ	2,53	
BA	-37	0	12	988	78	151	220	551	470	15	0,40)	2,63	
Bi1	-79	0	13	987	55	129	203	613	0	100	0,33	3	2,60	
Bi2	-110	0	34	966	51	131	206	612	0	100	0,34		2,67	
5.2	pH (1	1:2,5)					exo Sor	tivo		I	<u> </u>			
Horizonte		, - , I				CI	mol _c /kg	Т	П	Т	-	alor V or bases)	100.Al ³⁺ S + Al ³⁺	P assimilável
Tionzonic	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(Sat. p	%	%	mg/kg
Α	6,9	6,0	11,2	2,0	0,56	0,01	13,8	0	2,3	16,1		86	0	3
BA	6,6	5,3	7,9	1,7	0,29	0,01	9,9	0	2,7	12,6		79	0	2
Bi1	6,5	5,0	7,1	1,4	0,10	0,01	8,6	0	1,8	10,4		83	0	2
Bi2	6,6	5,2	6,8	1,7	0,08	0,01	8,6	0	1,5	10,1		85	0	2
							sulfúrio	ю	l	Relaci	es Mole	eculares		Equivalente
I I a nima nata	C	N	O/NI				g/kg	ı	ı	Í			Fe ₂ O ₃	de
Horizonte	(orgânico) g/kg	g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	CaCO₃ g/kg
А	21,1	2,9	7											
BA	8,5	1,5	6											
Bi1	3,7	0,9	4											
Bi2	2,3	0,9	3	241	177	71	4,1			2,31	1,84	3,91		
		Pasta sa	turada			;	Sais solu		I	<u> </u>		Cons	stantes hídric	as
	<u>100.Na</u> ⁺	C.E. do					cmol _c /	kg I	ı	ı			g/100g	
Horizonte	T %	extrato	Água	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃	OI-	SO ₄ ²⁻		Umida	ide	Água
	70	mS/cm 25°C	%	Ca	IVIG	K	Na	CO ₃ ²⁻	CI	SO ₄	0,03	3 MPa	1,5 MPa	disponível máxima
А	<1													
BA	<1													
Bi1	<1													
Bi2	<1													

PERFIL P37

DATA - 28/05/2011

CLASSIFICAÇÃO - VERTISSOLO HÁPLICO Carbonático chernossólico, textura argilosa/muito argilosa, A chernozêmico.

UNIDADE DE MAPEAMENTO - VXk.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.352.916 m e Este 608.826 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão alongada relacionada a uma drenagem seca com declives que não ultrapassam 3%. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

Altitude - 460 m.

LITOLOGIA - sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram os sedimentos supracitados.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

A 0-25 cm, coloração variegada, composta de bruno-acinzentado muito escuro (10YR 3/2, úmido) e bruno-avermelhado (5 YR 5/4, seco); argila; moderada, pequena e média, blocos subangulares e forte, muito pequena e pequena, granular; ligeiramente dura, firme, muito plástica e pegajosa; transição plana e clara.

BA 25-37 cm, bruno (10YR 4/3, úmido); argila; forte, média e grande, blocos subangulares; muito dura, muito firme, muito plástica e muito pegajosa; transição plana e clara.

Biv 37-74 cm, bruno-oliváceo-claro (2,5Y 5/4 úmido); argila; maciça que se desfaz em forte, grande, blocos angulares; forte e abundante superfície de compressão e moderada e comum de fricção; nódulos muito poucos, pequenos (menores que 0,5 cm), duros, esféricos, vermelhos, ferruginosos; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e clara.

Bivk 74-87 cm, cinzento-oliváceo (5Y 5/2, úmido); muito argilosa; forte, média e grande, blocos angulares; superfície de compressão forte e comum; nódulos muito poucos, grandes (3 cm de diâmetro), duros, irregulares, brancos, carbonato de cálcio; muito dura, muito firme, plástica e pegajosa; transição plana e clara.

Ck 87-100+ cm, cinzento-oliváceo-claro (5Y 6/2, úmido); muito argilosa; maciça; dura, firme, plástica e pegajosa.

RAÍZES – muitas muito finas e finas, comuns médias no horizonte A; comuns muito finas e finas no horizonte BA; poucas muito finas e finas no horizonte Biv; raras muito finas no horizonte Bivk.

OBSERVAÇÕES - Perfil descrito úmido;

- Presença de fendas verticais no horizonte Biv com dimensões que variam de 0,1 a 1,0 cm;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte A; comuns muito pequenos e pequenos, poucos médios no horizonte BA; poucos muito pequenos nos demais horizonte.

Perfil P37

Amostras de Laboratório: 11.0356-0360

Solo: VERTISSOLO HÁPLICO Carbonático chernossólico, textura argilosa/muito argilosa, A chernozêmico

Horizonte Frações da amotivo de la composição granulamentica da la composição granulamenta de la composição granulamenta da la composição granulamenta de la composição de la co	3010.	VLIVIIO	JOLO III	IF LIGC	Calb	Jilatico	CHEIIIO	ssolico,	lexiula	aryiiosa/i	Hullo al	giiosa,	A CITCH	IOZETTIICO	
Profundidade	Horizo	onte			ostra	Compos	terra	a fina	etrica da			Relac			
BA	Símbolo	didade	> 20	calho 20-2	fina < 2	grossa 2-0,20	fina 0,20- 0,05	0,05- 0,002	0,002	em água	flocu- lação	Silte	e/ a	Partículas	
Biv Bivk Bivk Ck -74 -87 -100 0 11 10 989 990 52 29 55 55 56 266 266 266 266 266 266 266 266 266 267 266 267 267 267 267 268 18 100 100 100 100 100 100 100 100 100 	Α	0-25	0	1	999	66	119	385	430	307	29	0,90)	2,50	
Bivk -87	BA	-37	0	4	996	54	107	302	537	475	12	0,56	6	2,60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Biv	-74	0	11	989	52	92	294	562	458	18	0,52	2	2,53	
Horizonte Hori	Bivk	-87	0	10	990	29	55	266	650	0	100	0,41	1	2,70	
Horizonte Hori	Ck	-100	0	9	991	33	41	289	637	0	100	0,45	5	2,70	
Agua KCI N Ca ²⁺ Mg ²⁺ K ⁺ Na ⁺ S S Ma ²⁺ H ⁺ T Wall N Wall N Wall N Na ⁺ Mg ²⁺	pH (1	:2,5)						tivo					100.Al ³⁺		
BA 6,9 5,4 8,5 10,3 0,19 0,01 19,0 0 2,1 21,1 90 0 <1	Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	S	Al ³⁺	H ⁺		(sat. p		S + Al ³⁺ %	
Biv 7,0 5,3 9,8 11,3 0,20 0,02 21,3 0 0 21,3 100 0 <1 Bivk 8,3 7,0 16,8 16,6 0,19 0,15 33,7 0 0 33,7 100 0 <1	Α	6,7	5,6	9,6	6,8	0,26	0,01	16,7	0	3,1	19,8		84	0	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BA	6,9	5,4	8,5	10,3	0,19	0,01	19,0	0	2,1	21,1		90	0	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Biv	7,0	5,3	9,8	11,3	0,20	0,02	21,3	0	0	21,3		100	0	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bivk	8,3	7,0	16,8	16,6	0,19	0,15	33,7	0	0	33,7		100	0	<1
Horizonte C Orgánico g/kg Pasta saturada Horizonte Horizonte Horizonte C Orgánico g/kg Pasta saturada Horizonte Ho	Ck	8,7	7,6	7,3	12,0	0,17	0,24	19,7	0	0	19,7		100	0	1
Horizonte Horizonte Horizonte Horizonte Granico Granic		C							ю		Relaçõ	šes Mole	eculares	Fe ₂ O ₂	
BA 6,5 1,1 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Horizonte	(orgânico)	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	Al_2O_3	R_2O_3		livre	CaCO₃
Bivk 3,0 0,6 5 230 111 61 2,2	Α	17,6	2,4	7											
Bivk 3,0 0,6 5 230 111 61 2,2 3,52 2,61 2,86 111 577	BA	6,5	1,1	6											
Ck 2,0 0,4 5 Image: state of the contraction of the limit	Biv	4,7	0,8	6											S/CARB*
Horizonte Horizonte T	Bivk	3,0	0,6	5	230	111	61	2,2			3,52	2,61	2,86		111
Horizonte Horizonte $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ck	2,0	0,4	5											577
Horizonte		400 No. †		turada			•						Con		as
Mg ²⁺ K ⁺ Na ⁺ HCO ₃ Cl ⁻ SO ₄ ²⁻ 0,033 MPa 1,5 MPa disponível máxima A <1 Biv <1 Bivk <1 Bivk <1 Bivk <1 Cl ⁻ Na ⁺ HCO ₃ Cl ⁻ SO ₄ ²⁻ O,033 MPa 1,5 MPa disponível máxima Na ⁺ Na ⁺ HCO ₃ Cl ⁻ SO ₄ ²⁻ O,033 MPa 1,5 MPa O,033 MPa	Horizonte			Áaua				Ι					Umid	ade	Água
BA <1 Biv <1 Bivk <1	. 1011201110		mS/cm		Ca ²⁺	Mg ²⁺	K ⁺	Na⁺		CI	SO ₄ ²⁻	0,03			disponível
Biv <1 Bivk <1	Α	<1													
Bivk <1	BA	<1													
	Biv	<1													
Ck 1	Bivk	<1													
	Ck	1													

^{*}S/CARB = sem carbonato

D. MINERALOGIA

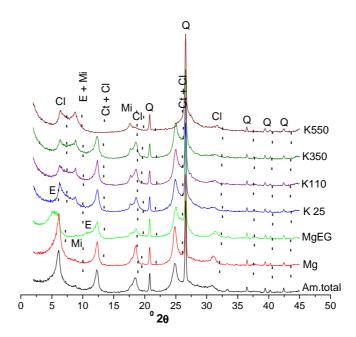


Figura 24. Difratogramas de raios-X da fração argila desferrificada do horizonte Bivk do perfil P37. Minerais identificados: E – esmectita; Cl - Clorita ; Mi - Mica; Ct – Caulinita; Q – Quartzo. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

- **Observação:** A expansão parcial observada na amostra saturada com magnésio após o tratamento com etileno glicol e o colapso parcial observado na amostra saturada com potássio após o aquecimento a 550 C, sugere também a presença de Interestratificado Clorita-Esmectita.

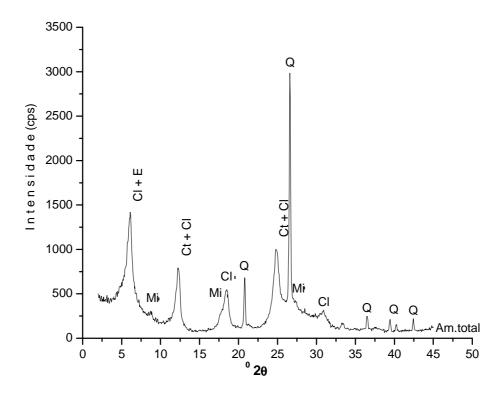


Figura 25. Difratogramas de raios-X da fração argila do horizonte Bivk do perfil P37 referente à amostra total, sem tratamento (Am.total). Minerais identificados: CI+E – Interestratificado Clorita-Esmectita; CI - Clorita; E – esmectita; Mi - Mica; Ct – Caulinita; Q – Quartzo; Cc – Calcita

- **Estimativa de predominância:** Interestratificado Clorita-Esmectita, Clorita, Esmectita, Mica, Caulinita, Quartzo e Calcita.

PERFIL P38

DATA - 28/05/2011

CLASSIFICAÇÃO - CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura média/argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe6.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.160 m e Este 605.756 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Perfil descrito sob Floresta Tropical Caducifólia em área plana (declive inferior a 3%) que sucede aquela dominada por Latossolos Vermelhos Eutróficos situados nas cotas mais elevadas da paisagem.

ALTITUDE - 465 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO – não aparente.

DRENAGEM - mal drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

A 0-12 cm, bruno-acinzentado muito escuro (10YR 3/2, úmido); francoargilo-arenosa; moderada, pequena e média, blocos subangulares e moderada, pequena e muito pequena, granular; dura, firme, plástica e pegajosa; transição plana e clara.

AB 12-22 cm, bruno-amarelado-escuro (10YR 4/4, úmido); franco-argiloarenosa; moderada, pequena e média, blocos subangulares; ligeiramente dura, firme, plástica e pegajosa, transição plana e clara.

Bic1 22-61 cm, bruno-amarelado (10YR 5/6, úmido), mosqueado comum, pequeno e médio, proeminente, bruno-avermelhado (5YR 4/4, úmido); franco-argilosa; moderada, grande, blocos subangulares; nódulos petroplínticos poucos (5% em volume do horizonte), pequenos (menores que 0,5 cm), macios e duros, esféricos, vermelhos, ferruginosos; muito dura, firme, plástica e pegajosa; transição plana e difusa.

Bic2 61-100 cm, bruno-amarelado (10YR 5/8, úmido), mosqueado abundante, pequeno e médio, difuso, amarelo-avermelhado (7,5YR 6/8, úmido) e proeminente, vermelho (2,5YR 4/6, úmido); franco-argilosa; moderada, média e grande, blocos subangulares; nódulos petroplínticos poucos (10% em volume do horizonte), pequenos (menores que 0,5 cm), macios e duros, esféricos, vermelhos, ferruginosos; dura, friável, plástica e pegajosa.

RAÍZES – muitas muito finas e finas, raras médias no horizonte A; comuns muito finas e finas, poucas médias no horizonte AB; comuns muito finas e finas, poucas médias no horizonte Bic1; raras muito finas e finas no horizonte Bic2

OBSERVAÇÕES - Perfil descrito seco;

- Parte dos nódulos petroplínticos dos horizontes Bic1 e Bic2 se desfazem ao manuseio;
- Poros: muitos muito pequenos, comuns pequenos e poucos médios e grandes no horizonte A; muitos muito pequenos, comuns pequenos e médios no horizonte AB; muitos muito pequenos e pequenos, comuns médios e poucos grandes no horizonte Bic1; muitos muito pequenos, comuns pequenos e poucos médios no horizonte Bic2.

Perfil P38

Amostras de Laboratório: 11.0361-0364

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura média/argilosa, A moderado

3010.	0,	002011		,	41101100	Poti opi		omana i	neula/ary	1100a, 7 t	111000	uuu		
Horizo	onte	Frações to	s da am tal g/kg	ostra	Compos	sição gra terra g/		etrica da	Argila dispersa	Grau de	Relac		Densidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi	e/	lo Partículas	Porosidade cm ³ /100cm ³
Α	0-12	0	4	996	158	298	240	304	264	13	0,7	9	2,60	
AB	-22	0	7	993	156	302	217	325	284	13	0,6	7	2,67	
Bic1	-61	0	23	977	134	304	197	365	304	17	0,5	4	2,60	
Bic2	-100	0	54	946	120	295	219	366	345	6	0,6	0	2,60	
	pH (1	1:2,5)					lexo Sor	tivo			V	alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T	(sat.	por bases %		assimilável mg/kg
А	6,7	5,7	8,4	2,7	0,80	0,01	11,9	0	2,5	14,4		83	0	14
AB	7,0	5,6	5,5	3,0	0,71	0,01	9,2	0	0	9,2		100	0	3
Bic1	7,2	5,6	4,1	3,0	1,10	0,01	8,2	0	0	8,2		100	0	1
Bic2	7,1	5,6	4,0	3,6	1,00	0,01	8,6	0	0	8,6		100	0	1
	С					Ataque	sulfúrio g/kg	ю		Relaç	ões Mol	eculares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre	de CaCO₃ g/kg
Α	16,6	2,4	7											
AB	7,2	1,2	6											S/CARB*
Bic1	3,3	0,7	5											S/CARB*
Bic2	1,9	0,6	3	141	100	42	2,9			2,40	1,89	3,74		S/CARB*
	100.Na⁺	Pasta sa	turada				Sais solo					Co	nstantes hídrid g/100g	cas
Horizonte	T %	C.E. do extrato mS/cm 25°C	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃	Cl	SO ₄ ²⁻	0,0	Umi 33 MPa	dade 1,5 MPa	Água disponível máxima
Α	<1													
AB	<1													
Bic1	<1	1,87	30			0,02	0,01							
Bic2	<1	1,82	34			0,02	0,01							

^{*}S/CARB = sem carbonato.

PERFIL P39

DATA - 29/05/2011

CLASSIFICAÇÃO - LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - LVe2.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.359.731m e Este 609.562 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Topo com 0% a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 468 m.

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA – Provável área transicional entre os sedimentos do Grupo Urucuia e do Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - sulcos ligeira.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA - Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-11 cm, bruno-avermelhado-escuro (5YR 3/2, úmido); franco-argiloarenosa; moderada, pequena e muito pequena, granular; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e clara.
- AB 11-30 cm, bruno-avermelho (2,5YR 4/3, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transicão plana e gradual.
- BA 30-57 cm, vermelho-acinzentado (10R 4/4, úmido); franco-argilo-arenosa; fraca, grande e média, blocos subangulares; dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw1 57-97 cm, vermelho (10R 4/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares e moderada, muito pequena, granular; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bw2 97-140+ cm, vermelho (10R 4/8, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares e moderada, muito pequena, granular; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas, comuns médias e poucas grossas nos horizontes A e AB; comuns muito finas, finas e médias no horizonte BA; poucas muito finas, finas e médias no horizonte Bw1; raras muito finas, finas e médias no horizonte Bw2.

OBSERVAÇÕES - Perfil descrito seco;

 Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A, AB e BA; muitos muito pequenos e pequenos, comuns médios nos demais horizontes.

Perfil P39

Amostras de Laboratório: 11.0365-0369

Solo: LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado.

Horizonte		Frações to	s da am tal g/kg	ostra	Compos	sição gra terra g/	fina	etrica da	Argila dispersa	Grau de	Relação	De	ensidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
Α	0-11	0	0	1000	222	449	127	202	142	30	0,63		2,67	
AB	-30	0	0	1000	174	454	130	242	202	17	0,54		2,70	
BA	-57	0	2	998	167	454	137	242	20	92	0,57		2,74	
Bw1	-97	0	2	998	155	476	127	242	0	100	0,52		2,78	
Bw2	-140	0	0	1000	165	448	125	262	0	100	0,48		2,70	
	pH (1:2,5)					exo Sort nol₀/kg	tivo			Valo		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por	bases)	S + Al ³⁺ %	assimilável mg/kg
Α	6,1	5,2	3,8	0,9	0,12	0,01	4,8	0	3,0	7,8	62		0	2
AB	5,7	4,4	2,1	0,7	0,04	0,01	2,8	0,2	2,4	5,4	52		7	1
BA	5,4	4,3	1,7	0,5	0,02	0,01	2,2	0,2	1,9	4,3	51		8	<1
Bw1	5,5	4,4	1,2	0,7	0,02	0,01	1,9	0,2	1,3	3,4	56		10	<1
Bw2	5,3	4,2	1,3	0,6	0,03	0,01	1,9	0,2	1,3	3,4	56		10	<1
	С						sulfúrio g/kg	00		Relaçõ	ões Moleci	ulares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			l ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	13,1	1,6	8											
AB	6,0	0,9	7											
BA	3,1	0,6	5											
Bw1	1,7	0,5	3											
Bw2	1,6	0,4	4	122	97	31	2,9			2,14	1,78	4,91		
		Pasta sa	turada				Sais solú	iveis	I	I		Cons	tantes hídric	as
	100.Na⁺	C.E. do					cmol _c /l	kg	1				g/100g	
Horizonte	T	extrato	Água	٥.	2.			HCO ₃		0		Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	CO ₃ ²⁻	Cl	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
Α	<1													
AB	<1													
BA	<1													
Bw1	<1													
Bw2	<1													

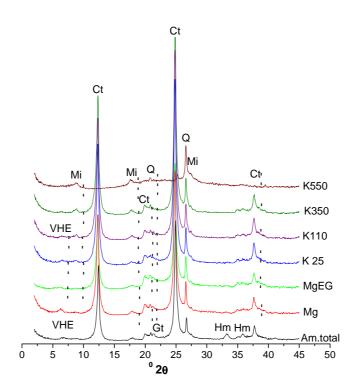


Figura 26. Difratogramas de raios-X da fração argila desferrificada do horizonte Bw2 do perfil P39. Minerais identificados: VHE – Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct – Caulinita; Gt – Goethita; Q – Quartzo; Hm - Hematita. Tratamentos: K550 – amostra saturada com potássio e aquecida a 550 oC; K350 – amostra saturada com potássio e aquecida a 350 °C; K110 – amostra saturada com potássio e aquecida a 110 °C; MgEG – amostra saturada com magnésio e solvatada com etileno glicol; Mg – amostra saturada com magnésio; Am.total – amostra analisada na condição natural, sem tratamento

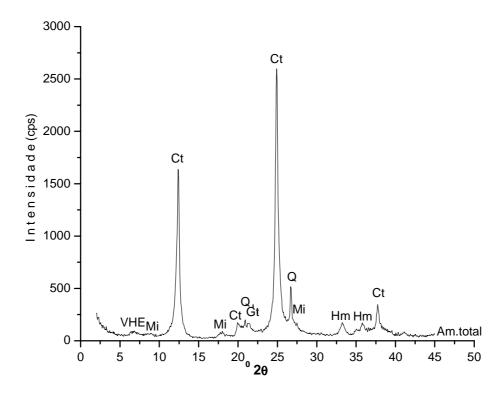


Figura 27. Difratogramas de raios-X da fração argila do horizonte Bw2 do perfil P39 referente à amostra total, sem tratamento (Am.total). Minerais identificados: VHE – Vermiculita com hidróxi-Al entrecamadas; Mi - Mica; Ct – Caulinita; Gt – Goethita; Q – Quartzo; Hm - Hematita

- **Estimativa de predominância:** Caulinita, Hematita, Goethita, Vermiculita com hidróxi-Al entrecamadas, Mica e Quartzo.

PERFIL P40

DATA - 29/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico, textura média, A moderado.

UNIDADE DE MAPEAMENTO - CXbe9.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.359.681 m e Este 608.772 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Chapada com 0% a 3% de declive. Perfil descrito sob Caatinga Arbórea Densa ou Mata Seca.

ALTITUDE - 455 m.

LITOLOGIA - Arenito.

FORMAÇÃO GEOLÓGICA – provável área transicional entre os sedimentos do Grupo Urucuia e do Bambuí.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a rocha supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado.

EROSÃO - não aparente.

DRENAGEM - acentuadamente drenado.

VEGETAÇÃO PRIMÁRIA – Caatinga Arbórea Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0-18 cm, cinzento-avermelhado-escuro (5YR 4/2, úmido); franco-argiloarenosa; moderada, média e pequena, blocos subangulares e moderada, muito pequena e pequena, granular; ligeiramente dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- BA 18-50 cm, bruno-avermelhado (5YR 4/4, úmido); franco-argilo-arenosa; moderada, grande e média, blocos subangulares; dura, firme, ligeiramente plástica e ligeiramente pegajosa; transição plana e gradual.
- Bi1 50-92 cm, vermelho-amarelado (5YR 5/6, úmido); franco-argilo-arenosa; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e ligeiramente pegajosa; transição plana e difusa.
- Bi2 92-130+ cm, vermelho-amarelado (5YR 4/8, úmido); franco-argiloarenosa; maciça que se desfaz em fraca, média e grande, blocos subangulares; ligeiramente dura, muito friável, ligeiramente plástica e ligeiramente pegajosa.

RAIZES – muitas muito finas e finas, poucas médias no horizonte A; comuns muito finas e finas, poucas médias e grossas no horizonte BA; poucas muito finas, finas e médias no horizonte Bi1; poucas muito finas e finas no horizonte Bi2.

OBSERVAÇÕES - Perfil descrito seco;

- Presença de nódulos petroplínticos (chumbinho de caça) muito poucos, pequenos (menores que 0,5 cm), duros, esféricos, vermelhos e ferruginosos em todos os horizontes do perfil;
- Poros: muitos muito pequenos, comuns pequenos e médios, poucos grandes no horizonte A; muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes BA e Bi1; muitos muito pequenos, comuns pequenos e poucos médios no horizonte Bi2.

Perfil:P40

Amostras de Laboratório: 11.0370-0373

Solo:

5010:														
Horizo	onte	Frações to	s da am tal g/kg	ostra	Compos	sição gra terra g/		trica da	Argila dispersa	Grau de	Relac		Densidade g/cm³	D i la la
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte Argi		Partículas	Porosidade cm ³ /100cm ³
А	0-18	0	0	1000	197	439	120	244	183	25	0,4	9	2,67	
BA	-50	0	0	1000	185	400	151	264	224	15	0,5	7	2,63	
Bi1	-92	0	8	992	181	416	139	264	223	16	0,5	3	2,70	
Bi2	-130	0	7	993	189	416	131	264	162	39	0,5	0	2,67	
	pH (1	1:2,5)					lexo Sor mol₀/kg	tivo		•	V	alor V	100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K⁺	Na ⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T	(sat.	por bases %		assimilável mg/kg
А	6,6	5,5	6,9	1,1	0,10	0,01	8,1	0	2,3	10,4		78	0	24
BA	6,6	5,4	6,1	1,2	0,07	0,01	7,4	0	1,8	9,2		80	0	35
Bi1	7,2	5,9	5,2	1,4	0,07	0,01	6,7	0	0	6,7		100	0	24
Bi2	7,2	6,0	4,9	1,3	0,04	0,01	6,2	0	0	6,2		100	0	21
	С						e sulfúrio g/kg	0		Relaç	ões Mol	eculares	Fe ₂ O ₃	Equivalente
Horizonte	(orgânico) g/kg	N g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO	SiO ₂ / Al ₂ O ₃ (Ki)	SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
А	9,4	1,3	7											
BA	4,4	0,7	6											
Bi1	1,8	0,6	3											S/CARB*
Bi2	1,2	0,5	2	115	80	33	3,0			2,44	1,93	3,81		S/CARB*
		Pasta sa	turada		I.		Sais sol		I.	<u> </u>		Coi	stantes hídrid	as
	<u>100.Na</u> ⁺	C.E. do			1		cmol _c /	kg	1				g/100g	T
Horizonte	T %	extrato mS/cm	Água %	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	HCO ₃	Cl	SO ₄ ²⁻		Umic		Água disponível
		25°C						CO ₃ ²⁻			0,0	33 MPa	1,5 MPa	máxima
А	<1													
BA	<1													
Bi1	<1													
Bi2	<1													

^{*}S/CARB = sem carbonato.

PERFIL P41

DATA - 31/05/2011

CLASSIFICAÇÃO -

UNIDADE DE MAPEAMENTO - GMve.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.356.283 m e Este 604.926 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão fechada e alongada com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 460 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - mal drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - Sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A1 0-17 cm, preto (7,5 2,5/1, úmido), cinzento-escuro (7,5YR 4/1, seco); franco-argilo-arenosa; forte, pequena e média, blocos subangulares; ligeiramente dura, firme, plástica e pegajosa; transicão plana e clara.
- A2 17-24 cm, bruno-escuro (7,5 YR 3/2, úmido e 7,5YR 4/2, seco); franco-argilo-arenosa; forte, grande e média, blocos subangulares; dura, firme, muito plástica e muito pegajosa; transição plana e clara.
- BAg 24-44 cm, coloração variegada, composta de bruno-escuro (7,5YR 4/2, úmido) e bruno (7,5YR 4/4, úmido); franco-argilosa; forte, grande e média, blocos angulares; extremamente dura, muito firme, muito plástica e muito pegajosa; transição plana e gradual.
- Btg 44-71 cm, coloração variegada, composta de bruno-acinzentado (10YR 5/2, úmido) e bruno-amarelado (10YR 5/4 e 10YR 5/8, úmido); argila; forte, grande, blocos angulares; superfície de compressão forte e comum; extremamente dura, extremamente firme, plástica e pegajosa; transição plana e gradual.
- Cg 71-90 + cm, coloração variegada, composta de cinzento-brunado-claro (2,5Y 6/2, úmido), bruno-amarelado-claro (2,5Y 6/4, úmido) e amarelo-brunado (10YR 6/8, úmido); argila; maciça; superfície de compressão forte e comum; extremamente dura, extremamente firme, plástica e pegajosa.

RAIZES – muitas muito finas e finas, poucas médias no horizonte A1; comuns muito finas, finas e médias, poucas grossas no horizonte A2; poucas muito finas, finas e médias nos horizontes BAg e Btg; raras muito finas no horizonte Cg.

OBSERVAÇÕES - Perfil descrito úmido;

- Presença de seixos rolados na base do horizonte Btg;
- Presença de fragmentos de rocha de tamanho cascalho distribuídos por todo o perfil e ocupando menos que 5% em volume dos horizontes;
- Presença de laje de sílex (?) ocupando metade da base do perfil;

Poros: muitos muito pequenos, comuns pequenos e poucos médios nos horizontes A1 e A2; comuns muito pequenos e poucos pequenos no horizonte BAg; poucos muito pequenos nos horizontes Btg e Cg.

Perfil P41

Amostras de Laboratório: 11.0374-0378

Solo: GLEISSOLO MÉLÂNICO Ta Eutrófico luvissólico, textura média/argilsa, A chernozêmico

3010.	OLLIGO	OLO ME		O IGE	ationoo	10 11000	moo, to	Atara III	odia/digit	Ju, 71 OII	OTTIOZOTI	1100		
Horizo	onte	Frações to	da am tal g/kg	ostra	Compo	terra	anulomé a fina _{kg}	trica da	Argila dispersa	Grau de	Relaçã		ensidade g/cm³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³
A1	0-17	0	0	1000	153	366	256	225	184	18	1,14		2,60	
A2	-29	0	1	999	145	355	235	265	245	8	0,89		2,70	
BAg	-44	0	1	999	125	322	205	348	307	12	0,59		2,67	
Btg	-71	5	16	979	119	299	129	453	350	23	0,28		2,70	
Cg	-90	0	19	981	118	279	128	475	393	17	0,27			
	pH (1	:2,5)					lexo Sor mol _c /kg	tivo			Val		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T		r bases) %	S + Al ³⁺ %	assimilável mg/kg
A1	6,7	5,7	10,1	1,9	0,60	0,01	12,6	0	2,6	15,2	8	3	0	5
A2	6,8	5,5	9,9	1,6	0,18	0,01	11,7	0	2,0	13,7	8	5	0	1
BAg	7,0	5,5	10,6	2,2	0,15	0,01	13,0	0	0	13,0	10	00	0	<1
Btg	7,3	5,8	11,4	2,9	0,12	0,01	14,4	0	0	14,4	10	00	0	<1
Cg	7,5	5,9	13,5	4,0	0,13	0,07	17,7	0	0	17,7	10	00	0	<1
							e sulfúrio	ю		Relaçõ	es Molec	ulares		Carrii valanta
	С	N				1	g/kg		ı	rolayo			Fe ₂ O ₃	Equivalente de
Horizonte	(orgânico) g/kg	g/kg	C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	CaCO₃ g/kg
A1	21,0	2,4	9											
A2	8,6	1,2	7											
BAg	5,3	0,9	6											S/CARB*
Btg	2,7	0,5	5	171	106	45	3,3			2,74	2,16	3,70		S/CARB*
Cg	1,8	0,3	6											S/CARB*
		Pasta sa	turada			•	Sais sol	úveis		•		Cons	tantes hídric	as
	<u>100.Na</u> ⁺	C.E. do					cmol _c /	kg					g/100g	
Horizonte	T	extrato	Água	٥.	2.			HCO ₃		2		Umida	de	Água
	%	mS/cm 25°C	%	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	CO ₃ ²⁻	CI	SO ₄ ²⁻	0,033	MPa	1,5 MPa	disponível máxima
A1	<1													
A2	<1													
BAg	<1													
Btg	<1													
Cg	<1													

^{*}S/CARB = sem carbonato.

PERFIL P42

DATA - 31/05/2011

CLASSIFICAÇÃO – GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura argilosa, A moderado

UNIDADE DE MAPEAMENTO - CXve7.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.353.873 m e Este 605.016 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Depressão fechada com 0 a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca.

ALTITUDE - 475 m.

LITOLOGIA - Sedimentos pelítico-carbonáticos

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - imperfeitamente drenado.

VEGETAÇÃO PRIMÁRIA - Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

- A 0 16 cm, bruno (10YR 4/3, úmido); argila; moderada, média e pequena, blocos subangulares e forte, muito pequena, granular; ligeiramente dura, firme, muito plástica e muito pegajosa; transição plana e clara.
- AE 16 32 cm, coloração variegada, composta de bruno (10YR 5/3, úmido), cinzento-brunado-claro (10YR 6/2, úmido) e bruno-amarelado-escuro (10YR 4/4, úmido), mosqueado abundante, médio, proemimente, preto (5YR 2,5/1, úmido); argila; fraca, média e pequena, blocos subangulares e moderada, muito pequena, granular; ligeiramente dura, friável, muito plástica e muito pegajosa; transição plana e clara.
- Eg 32 52 cm, cinzento-brunado-claro (10YR 6/2, úmido), mosqueado comum, pequeno, distinto, bruno-amarelado (10YR 5/8, úmido); argila; maciça que se desfaz em fraca, pequena, blocos subangulares; ligeiramente dura, friável, plástica e muito pegajosa; transição plana e abrupta.
- Btg1 52 72 cm, cinzento-claro (2,5Y 7/2, úmido), mosqueado abundante, pequeno e médio, proeminente, bruno-amarelado (10YR 5/8, úmido); argila; forte, grande e média, prismática que se desfaz em forte, grande, blocos angulares; superfície de compressão moderada e comum; extremamente dura, extremamente firme, muito plástica e muito pegajosa; transição plana e gradual.
- Btg2 72 125 + cm, cinzento-claro (7N, úmido), mosqueado abundante, grande, proeminente, bruno-amarelado (10YR 5/8, úmido); argila; maciça que se desfaz em forte, grande e média, prismática e forte, grande, blocos angulares; superfície de compressão forte e abundante; extremamente dura, extremamente firme, muito plástica e muito pegajosa.

RAIZES – muitas muito finas e finas, comuns médias no horizonte A; comuns muito finas e finas, poucas médias no horizonte AE; poucas muito finas, finas e médias no horizonte Eg; raras muito finas no horizonte Btg1.

OBSERVAÇÕES - Perfil descrito úmido;

- Presença de poucos e esparsos cascalhos subarredondados na base do horizonte Eg;
- Presença de nódulos petroplínticos nos horizontes Btg1 e Btg2: muito poucos (menos que 1% do volume dos horizontes), pequenos (menores que 0,5 cm), duros, esféricos, vermelhos e ferruginosos;
- Presença de fendas verticais nos horizontes Btg1 e Btg2 de larguras inferiores a 1, 0 cm;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A e AE; muitos muito pequenos e pequenos, comuns médios no horizonte Eg; poucos muito pequenos nos horizontes Btg1 e Btg2.

C. RESULTADOS ANALÍTICOS

Perfil P42

Amostras de Laboratório: 11.0379-0383

Solo:

Solo:															
Horizo	Horizonte		Frações da amostra total g/kg			Composição granulométrica da terra fina g/kg				Grau de	Relação		ensidade g/cm³		
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	dispersa em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	Porosidade cm ³ /100cm ³	
Α	0-16	82	5	913	60	129	400	411	349	15	0,97		2,50		
AE	-32	0	10	990	70	146	374	410	164	60	0,91		2,56		
Eg	-52	0	33	967	72	136	361	431	0	100	0,84		2,56		
Btg1	-72	0	14	986	58	106	295	541	0	100	0,55				
Btg2	-125	0	21	979	59	115	283	543	0	100	0,52				
	pH (1	1:2,5)		Complexo Sortivo cmol _c /kg							Valor V		100.Al ³⁺	Р	
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T		r bases) %	S + Al ³⁺ %	assimilável mg/kg	
Α	5,8	4,6	5,2	4,3	0,36	0,01	9,9	0,1	4,1	14,1	70		1	1	
AE	5,4	3,8	3,6	3,4	0,06	0,01	7,1	1,0	3,2	11,3	63		12	<1	
Eg	5,3	3,6	3,4	4,3	0,05	0,01	7,8	2,1	2,6	12,5	62		21	<1	
Btg1	5,5	3,4	5,6	8,4	0,07	0,09	14,2	3,5	2,8	20,5	69		20	<1	
Btg2	5,9	3,7	8,4	8,9	0,08	0,26	17,6	1,6	2,6	21,8	8	31	8	<1	
		nico) IN		Ataque sulfúrico g/kg Relaçõ							es Moleculares		Fe ₂ O ₃	Equivalente	
Horizonte	C (orgânico) g/kg			C/N	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO ₃ g/kg
Α	18,8	2,2	9												
AE	4,9	0,7	7												
Eg	2,9	0,6	5												
Btg1	2,3	0,4	6												
Btg2	2,0	0,3	7	222	129	54	3,3			2,93	2,31	3,75			
	400 N. +	Pasta sa	turada	Sais solúveis cmol₀/kg								Constantes hídricas g/100g			
Horizonte	100.Na ⁺ T %	C.E. do	Áarra				Na ⁺	I				Umida		Água	
7 IONZONIE			mS/cm %	Ca ²⁺	Mg ²⁺	K ⁺		HCO ₃	Cl¯	SO ₄ ²⁻	0,033 MPa		1,5 MPa	disponível máxima	
Α	<1														
AE	<1														
Eg	<1														
Btg1	<1														
Btg2	1														

A. DESCRIÇÃO GERAL

PERFIL P43

DATA - 28/05/2011

CLASSIFICAÇÃO – CAMBISSOLO HÁPLICO To Eutrófico latossólico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe8.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.354.268 m e Este 605.126 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Topo com 0% a 3% de declive. Perfil descrito sob Floresta Estacional Decidual Densa ou Mata Seca. Altitude – 475 m.

LITOLOGIA – sedimentos pelíticos-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano.

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual Densa ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- A 0-8 cm, bruno-acinzentado-escuro (10YR 4/2, úmido); franca; moderada, pequena e muito pequena, blocos subangulares; ligeiramente dura, friável, plástica e pegajosa; transicão plana e abrupta.
- AB 8-23 cm, bruno (7,5YR 4/4, úmido); franco-argilosa; moderada, pequena e muito pequena, blocos subangulares; dura, firme, plástica e muito pegajosa; transição plana e clara.
- Bi1 23-69 cm, vermelho-amarelado (5YR 4/6, úmido); argila; moderada, média e grande, blocos subangulares; dura, friável, plástica e pegajosa; transição plana e gradual.
- Bi2 69-100 cm, coloração variegada, composta de vermelho-amarelado (5YR 5/6, úmido) e vermelho-amarelado (10YR 5/6, úmido); argila; fraca, média e pequena, blocos subangulares; ligeiramente dura, friável, ligeiramente plástica e pegajosa; transição plana e gradual.
- BCc 100-150 cm+, coloração variegada, composta de bruno-amarelado-escuro (10YR 4/6, úmido) e bruno-amarelado-claro (10YR 6/4, úmido), mosqueado comum, médio, proeminente, vermelho (2,5YR 4/6, úmido) e preto (2,5YR 2,5/1, úmido); nódulos petroplínticos poucos (10% do volume do horizonte), pequenos, duros, esféricos, vermelhos e pretos, ferruginosos e manganosos; argila; maciça que se desfaz em fraca, pequena, blocos subangulares; dura, firme, ligeiramente plástica e ligeiramente pegajosa.

RAÍZES – muitas muito finas e finas, comuns médias nos horizontes A e AB; comuns muito finas, poucas finas e médias no horizonte Bi1; poucas muito finas, finas e médias no horizonte Bi2; raras muito finas e finas no horizonte BCc.

OBSERVAÇÕES - Perfil descrito úmido;

- Presença de fragmentos de rocha e nódulos petroplínticos milimétricos ocupando, juntos, menos que 5% do volume dos horizontes A, AB, Bi1 e Bi2;
- Poros: muitos muito pequenos e pequenos, comuns médios e poucos grandes nos horizontes A, AB e Bi1; muitos muito pequenos, comuns pequenos e médios no horizonte Bi2; comuns muito pequenos e pequenos, comuns médios no horizonte BCc.

C. RESULTADOS ANALÍTICOS

Perfil P43

Amostras de Laboratório: 11.0384-0388

Solo: CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico, textura argilosa, A moderado

3010.		Frações da amostra total g/kg			Composição granulométrica da terra fina g/kg				, toxtara	Grau de	1		ensidade	
Horiz	onte								Argila dispersa		Relaç		g/cm ³	
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silté/ Argila	/	Partículas	Porosidade cm ³ /100cm ³
Α	0-8	0	5	995	123	240	288	349	267	23	0,83		2,53	
AB	-23	0	2	998	104	180	286	430	348	19	0,67		2,56	
Bi1	-69	0	16	984	62	168	195	575	534	7	0,34		2,67	
Bi2	-100	0	14	986	55	162	209	574	0	100	0,36	;	2,70	
BCc	-150	0	48	952	63	141	264	532	0	100			2,67	
	pH (1	:2,5)		Complexo Sortivo cmol _c /kg							Valor V		100.Al ³⁺	Р
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	Valor S (soma)	Al ³⁺	H ⁺	Valor T	(sat. por bases) %		S + Al ³⁺ %	assimilável mg/kg
Α	7,6	6,9	10,8	3,0	0,31	0,01	14,1	0	0	14,1	100		0	3
AB	7,9	7,0	8,2	2,5	0,24	0,01	10,9	0	0	10,9	100		0	2
Bi1	7,7	6,4	5,9	4,4	0,24	0,01	10,5	0	0	10,5	100		0	4
Bi2	5,1	4,0	4,5	1,8	0,12	0,01	6,4	0,8	2,3	9,5	67		11	3
BCc	4,9	3,9	3,8	2,4	0,06	0,01	6,3	1,0	2,1	9,4		67	14	3
	C (orgânico) g/kg	N g/kg	C/N	Ataque sulfúrico Relaçõ						es Moleculares		Fe ₂ O ₃	Equivalente	
Horizonte				SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO		SiO ₂ / R ₂ O ₃ (Kr)	Al ₂ O ₃ / Fe ₂ O ₃	livre g/kg	de CaCO₃ g/kg
Α	20,9	2,5	8											5
AB	10,4	1,5	7											S/CARB*
Bi1	4,0	0,9	4											S/CARB*
Bi2	2,4	0,7	3	208	146	54	4,1			2,42	1,96	4,24		
BCc	2,4	0,7	3											
	100.Na ⁺ T %	Pasta sa	turada		Sais solúveis						Constantes hídricas g/100g			
Horizonte		C.E. do	,		I		cmol _c /kg	ng 	1		1111-			6
rionzonte			mS/cm % (Ca ²⁺ Mg ²⁺		K ⁺	Na [⁺]	HCO ₃ CO ₃ ²	CI	SO ₄ ²⁻	0,033 MPa		1,5 MPa	Água disponível máxima
Α	<1													
AB	<1													
Bi1	<1													
Bi2	<1													
BCc	<1													

^{*}S/CARB = sem carbonato.

A. DESCRIÇÃO GERAL

PERFIL P44

DATA - 03/06/2011

CLASSIFICAÇÃO - CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa, A moderado.

UNIDADE DE MAPEAMENTO - CXbe3.

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Parque Estadual da Mata Seca, município de Manga, Estado de Minas Gerais. Fuso 23 com meridiano central de longitude 45° Oeste e coordenadas UTM Norte 8.354.268 m e Este 605.126 m.

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Sopé da vertente com aproximadamente 1% de declive. Perfil descrito sob Floresta Estacional Decidual ou Mata Seca.

ALTITUDE - 460 m

LITOLOGIA - Sedimentos pelítico-carbonáticos.

FORMAÇÃO GEOLÓGICA - Serra de Santa Helena, Grupo Bambuí.

CRONOLOGIA - Neoproterozóico.

MATERIAL ORIGINÁRIO – Coberturas terciárias provenientes dos intensos processos erosivos que afetaram a Formação supracitada.

PEDREGOSIDADE - não pedregosa.

ROCHOSIDADE - não rochosa.

RELEVO LOCAL - plano.

RELEVO REGIONAL - plano e suave ondulado

EROSÃO - não aparente.

DRENAGEM - bem drenado.

VEGETAÇÃO PRIMÁRIA – Floresta Estacional Decidual ou Mata Seca.

USO ATUAL - sem uso.

CLIMA - Semi-árido, classificado como transicional entre as tipologias Aw e BSw.

DESCRITO E COLETADO POR - Maurício Rizzato Coelho e Ricardo de Oliveira Dart.

B. DESCRIÇÃO MORFOLÓGICA

- A1 0-6 cm, bruno (10YR 5/3, úmido); franco-argilosa; moderada, pequena, blocos subangulares e moderada, muito pequena, granular; ligeiramente dura, firme, plástica e pegajosa; transição plana e clara.
- A2 6-22 cm, coloração variegada, composta de bruno-claro-acinzentado (10YR 6/3, úmido) e vermelho-amarelado (5YR 4/6, úmido); franco-argilosa; moderada, média e pequena, blocos subangulares; ligeiramente dura, firme, muito plástica e pegajosa; transicão plana e clara.
- Bic1 22-69 cm, coloração variegada, composta de bruno-amarelado-claro (10YR 6/4, úmido), amarelo-brunado (10YR 6/6, úmido) e bruno-forte (7,5YR 5/6, úmido); argila; forte a moderada, grande e média, blocos subangulares; nódulos petroplínticos poucos (5% do volume do horizonte), pequenos, duros, irregulares e esféricos, vermelhos, ferruginosos; muito dura, firme, plástica e pegajosa; transição plana e difusa.
- Bic2 69-120+ cm, coloração variegada, composta de amarelo-brunado (10YR 6/6, úmido), bruno-claro-acinzentado (10YR 6/3, úmido) e bruno-forte (7,5YR 5/6, úmido); argila; moderada a forte, média e pequena, blocos subangulares; nódulos petroplínticos poucos (10% do volume do horizonte), pequenos (menores que 0,5 cm) e grandes (diâmetro médio de 1,5 cm), duros, irregulares, vermelhos, ferruginosos; muito dura, firme, muito plástica e pegajosa.

RAÍZES – comuns muito finas e finas nos horizontes A1 e A2; comuns muito finas, finas e médias no horizonte Bic1; raras muito finas, finas e médias no horizontes Bic2.

OBSERVAÇÕES - Perfil descrito seco;

- Poros: muitos muito pequenos, comuns pequenos e médios e poucos grandes nos horizontes A1 e A2; comuns muito pequenos e poucos pequenos no horizonte Bic1; poucos muito pequenos e pequenos no horizonte Bic2.

C. RESULTADOS ANALÍTICOS

Perfil P44

Amostras de Laboratório: 12.0841-0844

Solo: CAMBISSOLO HÁPLICO To Eutrófico petroplíntico, textura argilosa, A moderado

Solo:	CAMBIS	SOLO H	APLIC	O Tb E	utrófico	petropli	ntico, te	xtura ar	gilosa, A	modera	ado					
Horizonte		Frações da amostra total g/kg			Compo		anulomé a fina ⁄kg	trica da	Argila dispersa	Grau de	Relação	Densidade g/cm ³		- Porosidade		
Símbolo	Profun- didade cm	Calhaus > 20 mm	Cas- calho 20-2 mm	Terra fina < 2 mm	Areia grossa 2-0,20 mm	Areia fina 0,20- 0,05 mm	Silte 0,05- 0,002 mm	Argila < 0,002 mm	em água g/kg	flocu- lação %	Silte/ Argila	Solo	Partículas	cm ³ /100cm ³		
A1	0-6	0	10	990	79	259	336	326	244	25	1,03					
A2	-22	0	14	986	71	252	291	386	345	11	0,75					
Bic1	-69	0	43	957	60	269	137	534	0	100	0,26					
Bic2	-120	0	70	930	53	234	179	534	0	100	0,34					
11. 2	pH (1:2,5)						exo Sorti nol _c /kg	vo	,		Valor V		100.Al ³⁺	Р		
Horizonte	Água	KCI 1N	Ca ²⁺	Mg ²⁺	K ⁺	Na⁺	Valor S (soma)	Al ³⁺	H⁺	Valor T	(sat. por bases)		S + Al ³⁺ %	assimilável mg/kg		
A1	5,9	4,9	6,5	2,0	0,24	0,01	8,7	0,1	3,5	12,3	71		1	2		
A2	5,4	4,3	4,5	1,9	0,17	0,01	6,6	0,1	2,9	9,6	69		1	1		
Bic1	5,8	4,6	6,0	2,4	0,13	0,01	8,5	0,1	2,3	10,9	78		1	2		
Bic2	5,9	4,8	6,2	2,7	0,09	0,01	9,0	0	2,1	11,1	81		0	3		
	C (orgânico) g/kg	N g/kg	C/N	Ataque sulfúrico g/kg Relaçõe							es Moleculares		Fe ₂ O ₃	Equivalente		
Horizonte				SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	MnO			l ₂ O ₃ / e ₂ O ₃	livre g/kg	de CaCO₃ g/kg		
A1	17,4	1,9	9													
A2	7,1	1,1	6													
Bic1	3,3	0,9	4	228	139	62	3,6			2,79	2,17	3,52				
Bic2	2,3	0,7	3	183	136	66	3,6			2,29	1,75	3,24				
	100 No [†]		Pasta saturada		Sais solúveis cmol₀/kg								Constantes hídricas g/100g			
Horizonte	100.Na ⁺ T %	T extrato Ág	extrato Água mS/cm %								Umida		de	Água		
				Ca ²⁺	Ca^{2+} Mg^{2+} K^{+} Na^{+} $\operatorname{HCO_3}^{-}$ $\operatorname{CO_3}^{2-}$ CI^{-}		SO ₄ ²⁻	0,033 MPa 1,5 MPa		disponível						
A1	<1															
A2	<1															
Bic1	<1															
Bic2	<1															

ANEXO II

Mapa semidetalhado de solos (1:30.000) do Parque Estadual da Mata Seca, município de Manga – MG

Mapa semidetalhado de Solos (1:30.000) do Parque Estadual da Mata Seca, município de Manga - MG Emorapa Agricultura, Pecuária e Abastecimento LVAd2 CXbe6 Convenções Mina a céu aberto - Abandonada Limites PEMS Sede Rio São Francisco ✓ Estradas 500 250 0 500 1.000 1.500 2.000 m ESCALA - 1:30.000 Sistema de Coordenadas: Universal Transverse de Mercator - UTM Zona: 23 Sul Datum: World Geodetic System (WGS), 1984 Localização da área estudo CXve LVe3

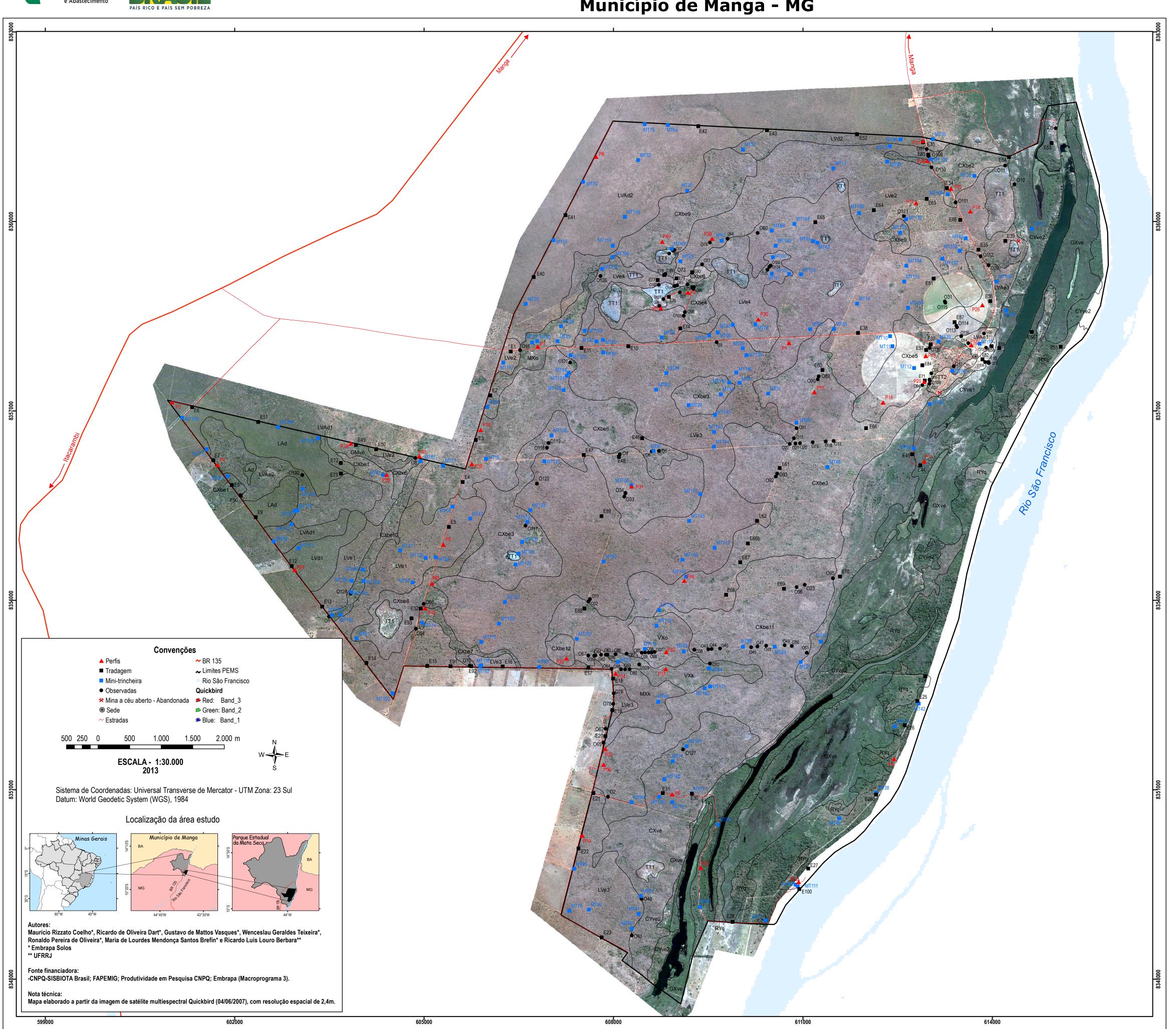
Maurício Rizzato Coelho*, Ricardo de Oliveira Dart*, Gustavo de Mattos Vasques*, Wenceslau Geraldes Teixeira*,

Ronaldo Pereira de Oliveira*, Maria de Lourdes Mendonça Santos Brefin* e Ricardo Luis Louro Berbara**

-CNPQ-SISBIOTA Brasil; FAPEMIG; Produtividade em Pesquisa CNPQ; Embrapa (Macroprograma 3).

* Embrapa Solos

** UFRRJ


ANEXO III

Carta-imagem com as unidades de mapeamento de solos do Parque Estadual da Mata Seca, município de Manga - MG

Ministério da icultura, Pecuária Abastecimento

Carta-imagem com as unidades de mapeamento de solo do Parque Estadual da Mata Seca Município de Manga - MG

Legenda

CAMBISSOLOS FLÚVICOS

Associação de CAMBISSOLO FLÚVICO Ta ou Tb Eutrófico típico, textura média, A moderado, bem drenado, fase relevo plano + TIPO DE TERRENO

Complexo de CAMBISSOLO FLÚVICO Ta Eutrófico típico, textura média ou argilosa ou estratificada, com carbonato ou não - NEOSSOLO FLÚVICO Ta Eutrófico típico, textura média ou média/arenosa, ambos A moderado, bem drenados, fase relevo plano

CAMBISSOLOS HÁPLICOS

Associação de CAMBISSOLO HÁPLICO Ta Eutrófico vertissólico, A moderado + CHERNOSSOLO HÁPLICO Órtico vertissólico, ambos lépticos ou não, textura argilosa, moderadamente drenados, fase relevo suave ondulado e ondulado, ligeiramente pedregosa + CAMBISSOLO HÁPLICO Tb Eutrófico típico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo suave ondulado e plano

CXbe1 - CAMBISSOLO HÁPLICO Tb Eutrófico latossólico, textura média, A moderado, acentuadamente drenado, fase relevo plano

CAMBISSOLO HÁPLICO Tb Eutrófico latossólico ou latossólico petroplíntico, textura média, A moderado, acentuadamente drenado, fase relevo plano e suave ondulado

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico ou não, fase relevo suave ondulado e plano + CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, fase relevo plano + LATOSSOLO VERMELHO Eutrófico típico, fase relevo plano e suave ondulado, todos textura argilosa, A moderado, bem drenados

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa/argilosa com cascalho ou cascalhenta + CAMBISSOLO HÁPLICO Tb Eutrófico léptico ou latossólico, textura argilosa, todos A moderado, moderadamente drenados, fase relevo plano, ligeiramente pedregosa

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico saprolítico ou típico, textura média/argilosa com cascalho ou cascalhenta ou argilosa/argilosa com cascalho ou cascalhenta, fase relevo suave ondulado e plano + CAMBISSOLO HÁPLICO Carbonático típico, textura argilosa, fase relevo plano, ambos moderadamente drenados +

CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, textura média/argilosa ou argilosa, fase relevo plano e suave ondulado, imperfeitamente drenado, todos A moderado

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico ou típico, A moderado, bem drenado +

CXbe6 - CHERNOSSOLO ARGILÚVICO ou HÁPLICO, ambos Carbonáticos ou órticos, vertissólicos, moderadamente drenados todos textura média/argilosa ou média/argilosa com cascalho, fase relevo plano e suave ondulado

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico, textura argilosa/argilosa com cascalho, moderadamente drenado + GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, textura argilosa, imperfeitamente drenado, ambos A moderado, fase relevo plano

Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico e LATOSSOLO VERMELHO-AMARELO Eutrófico petroplíntico ou típico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano

Grupo indiferenciado de CAMBISSOLO HÁPLICO Tb Eutrófico latossólico e LATOSSOLO VERMELHO-AMARELO

CXbe9 - ou VERMELHO Eutrófico típico, ambos textura média, A moderado, acentuadamente drenados, fase relevo plano

Associação de CAMBISSOLO HÁPLICO Tb Eutrófico petroplíntico + PLINTOSSOLO PÉTRICO Concrecionário CXbe10 - êutrico, ambos textura média/argilosa com cascalho ou cascalhenta, A moderado, epidistrófico ou não,

Associação de CAMBISSOLO HÁPLICO To Eutrófico latossólico, bem drenado + CAMBISSOLO HÁPLICO
To Eutrófico petroplíntico, moderadamente drenado, ambos textura argilosa ou muito argilosa, A moderado,
to entre de la companio del companio de la companio del companio de la companio del companio de la companio de la companio de la companio del companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio del compani

CAMBISSOLO HÁPLICO Tb ou Ta Eutrófico vertissólico petroplíntico, textura argilosa ou argilosa/argilosa com CXbe12 - cascalho, A moderado, imperfeitamente drenado, fase relevo plano

ou argilosa, A moderado ou chernozêmico, imperfeitamente drenado, fase relevo plano

CHERNOSSOLOS HÁPLICOS

Associação de CHERNOSSOLO HÁPLICO Carbonático vertissólico + VERTISSOLO HÁPLICO Carbonático chernossólico, ambos textura muito argilosa ou argilosa, imperfeitamente drenados, fase relevo suave ondulado e plano, ligeiramente pedregosa

Grupo indeferenciado de CHERNOSSOLO HÁPLICO Órtico petroplíntico e CAMBISSOLO HÁPLICO Ta Eutrófico petroplíntico, A moderado, ambos textura média/média com cascalho ou cascalhenta, moderadamente drenados, fase relevo plano e suave ondulado

GLEISSOLOS HÁPLICOS

GLEISSOLO HÁPLICO Ta Eutrófico vertissólico ou não, neofluvissólico, textura argilosa ou muito argilosa ou argilosa/média ou média, A moderado, muito mal drenado, fase relevo plano

angliocal module, / timedeficies, maile mai diomade, face folovo plane

Grupo indiferenciado de GLEISSOLO MELÂNICO Ta Eutrófico luvissólico petroplíntico ou não, A chernozêmico

moderadamente drenados, fase relevo plano

GMve - e GLEISSOLO HÁPLICO Ta Eutrófico luvissólico, A moderado, ambos textura média/argilosa, mal drenados, fase relevo plano

LATOSSOLOS AMARELOS

LATOSSOLOS VERMELHOS

LATOSSOLO AMARELO Distrófico típico, textura média, A moderado, álico ou não, fortemente drenado, fase relevo plano e suave ondulado

LATOSSOLO VERMELHO Distrófico típico, textura argilosa, A moderado, álico, acentuadamente drenado, fase relevo plano e suave ondulado

LATOSSOLO VERMELHO Distrófico ou Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo

√d2 - plano

LATOSSOLO VERMELHO Eutrófico típico, textura argilosa, A moderado, epidistrófico ou não, bem drenado, fase

ve1 - relevo plano e suave ondulado

LATOSSOLO VERMELHO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano e

suave ondulado

LATOSSOLO VERMELHO Eutrófico típico ou chernossólico, textura argilosa, A moderado ou chernozêmico, bem drenado, fase relevo plano e suave ondulado

Associação de LATOSSOLO VERMELHO Eutrófico típico + CAMBISSOLO HÁPLICO Tb Eutrófico latossólico petroplíntico, ambos textura argilosa, A moderado, bem drenados, fase relevo plano e suave ondulado

TOSSOLOS VERMELHO-AMARELOS

Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, fortemente drenados, fase relevo plano e suave ondulado

Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO ambos Distróficos típicos, textura média, A moderado, álicos ou não, fortemente drenados, fase relevo plano e suave ondulado

LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura argilosa, A moderado, acentuadamente drenado,

LATOSSOLO VERMELHO-AMARELO Eutrófico típico, textura média, A moderado, fortemente drenado, fase relevo plano

Grupo indiferenciado de LATOSSOLO VERMELHO-AMARELO e LATOSSOLO AMARELO, ambos Eutróficos típicos,

LVAe3 - textura argilosa ou média, A moderado, acentuadamente drenados, fase relevo plano e suave ondulado

NEOSSOLOS FLÚVICOS

RYq - Complexo de NEOSSOLO FLÚVICO Psamítico típico, excessivamente drenado + CAMBISSOLO FLÚVICO
Ta Eutrófico típico, textura média ou estratificada, acentuadamente drenado, todos A moderado, fase relevo plano

VERTISSOLOS HÁPLICOS

VERTISSOLO HÁPLICO Carbonático chernossólico ou típico, textura argilosa/muito argilosa ou argilosa, VXK - A chernozêmico ou moderado, imperfeitamente drenado, fase relevo plano

Associação de VERTISSOLO HÁPLICO Órtico típico ou chernossólico, textura argilosa/muito argilosa ou argilosa,
A moderado ou chernozêmico + CHERNOSSOLO HÁPLICO Órtico vertissólico, textura argilosa, ambos
imperfeitamente drenados, fase relevo plano

TIPOS DE TERRENO

TT1 - AFLORAMENTO DE ROCHA

TT2 - AFLORAMENTO DE ROCHA + CASCALHEIRA

ÁGUA

Água - CORPOS D'ÁGUA

