Comunicado 13 Técnico ISSN 16 Sobral, Cl Novembr ISSN 1676-7675

Sobral, CE Novembro, 2013

Agropecuário On line

Processamento de Leite Caprino Fermentado Probiótico com Suco de

Karina Maria Olbrich dos Santos¹ Isabel Cristina de Oliveira² Joicy Mara Ribeiro Linhares³ Samuel Carneiro de Barcelos4 Lívia Bordalo Tonucci⁵ Lourdes Maria Cabral⁶

Introdução

O consumo de alimentos para promoção de saúde e bem-estar é considerado uma das principais tendências da alimentação em nível mundial, e tem impulsionado a pesquisa e o desenvolvimento de produtos que, além de saborosos e práticos, veiculem componentes benéficos à saúde.

O consumo regular de produtos lácteos fermentados tem sido historicamente associado a efeitos benéficos sobre a saúde humana. Durante o processo de fermentação por bactérias láticas, há produção de ácidos orgânicos que reduzem o pH intestinal e auxiliam no combate a patógenos, reduzindo a ocorrência de desordens intestinais. Ao mesmo tempo, numerosos compostos biologicamente ativos são gerados a partir das proteínas do leite, como peptídeos com ação imunomoduladora e antihipertensiva, entre outros (HAYES et al., 2007). Produtos lácteos fermentados produzidos a partir

de leite de cabra oferecem vantagens adicionais do ponto de vista nutricional e funcional, por sua digestibilidade elevada, hipoalergenicidade e conteúdo de oligossacarídeos com propriedades prebióticas.

A inclusão de bactérias com ação probiótica agrega valor funcional a esses produtos. Por definição, os microrganismos probióticos promovem benefícios à saúde do hospedeiro quando ingeridos regularmente e em quantidades adequadas (FAO, 2001). Segundo a Agência Nacional de Vigilância Sanitária (2008), um produto deve conter entre 108 e 109 células viáveis do microrganismo probiótico por porção de consumo diário para ser considerado um alimento funcional. A viabilidade das bactérias deve ser mantida até o final da vida de prateleira do produto e, nesse sentido, os parâmetros de processamento e estocagem são fatores importantes a serem considerados (SANTOS et al., 2008).

Eng. Química, D. Sc., Pesquisadora da Embrapa Agroindústria de Alimentos. E-mail: lourdes.cabral@embrapa.br

¹Eng. Alimentos, D. Sc., Pesquisadora da Embrapa Caprinos e Ovinos, Fazenda Três Lagoas, Estrada Sobral - Groaíras, Km 04, Caixa Postal 145, CEP-62010-970, Sobral/CE. E-mail: karina.dos-santos@embrapa.br

²Graduanda em Tecnologia de Alimentos - IFCE, estagiária da Embrapa Caprinos e Ovinos.

³Técn. de Alimentos - IFCE, estagiária da Embrapa Caprinos e Ovinos.

⁴Graduando em Tecnología de Alimentos - IFCE, estagiário da Embrapa Caprinos e Ovinos,

⁵Nutricionista, Doutoranda em Ciência da Nutrição, Universidade Federal de Viçosa.

De acordo com a legislação brasileira vigente, Leites Fermentados são produtos obtidos por coagulação e redução do pH do leite resultante de fermentação pela ação de bactérias ácido-láticas (BRASIL, 2007). O leite fermentado pode ser adicionado de outros ingredientes lácteos e também é permitida a adição de outras substâncias alimentícias, como polpa e suco de frutas, no limite de 30% do produto final (BRASIL, 2007). A adição de polpa e/ou suco concentrado de frutas contribui para o sabor, a aparência e a textura do produto final, além de possibilitar a incorporação de propriedades benéficas à saúde do consumidor.

A utilização de suco integral de uva como ingrediente na formulação de leite fermentado probiótico foi avaliada experimentalmente e demonstrou ser uma alternativa promissora para conferir sabor, aroma e cor ao produto. Além disso, o suco de uva agrega valor funcional ao leite fermentado, por ser fonte de compostos fenólicos que apresentam atividade antioxidante e têm sido associados à redução do risco de doenças cardiovasculares, entre outros benefícios (CROWE; MURRAY 2008).

O presente trabalho descreve o processo de produção de leite caprino fermentado com bactérias probióticas e suco de uva desenvolvido em pesquisa que envolveu a Embrapa Caprinos e Ovinos, a Embrapa Agroindústria de Alimentos e a Embrapa Uva e Vinho.

Etapas do processo de fabricação

O processamento de leite caprino fermentado com bactérias probióticas e suco de uva, inicia-se pela produção de uma base láctea fermentada, constituída pela mistura de leite, açúcar e culturas láticas, seguida pela adição do suco, conforme o fluxograma apresentado na Figura 1.

A produção da bebida pode ser realizada em escala artesanal, pressupondo-se que o leite seja obtido por meio de ordenha higiênica e que o processamento seja realizado de acordo com as Boas Práticas de Fabricação (BPF), para garantir a qualidade microbiológica e sensorial do produto final (BENEVIDES; EGITO, 2007).

Os equipamentos e utensílios que entrem em contato com os ingredientes e produtos devem ser de material adequado e de fácil higienização, como aço inoxidável. Além de garantir que o produto final seja seguro para o consumidor, o atendimento às BPFs é imprescindível para reduzir o risco de contaminação por microrganismos deterioradores e manter a viabilidade da cultura probiótica durante o armazenamento do produto (SANTOS et al., 2010).

Diferentes culturas probióticas comercialmente disponíveis foram avaliadas e podem ser utilizadas na produção do leite caprino fermentado com suco de uva. Foi constatado o desempenho adequado de culturas probióticas de *Lactobacillus rhamnosus, Lactobacillus acidophilus* e *Bifidobacterium animalis* subsp. *lactis,* sempre em co-cultura com o fermento iniciador constituído de *Streptococcus thermophilus*. Todas essas culturas mantiveram-se viáveis em concentração superior à exigida pela legislação brasileira durante o período de 28 dias de armazenamento refrigerado do leite fermentado com suco de uva.

Figura 1. Fluxograma do processamento de leite fermentado probiótico com suco de uva.

Principais etapas do processo de fabricação

Tratamento térmico da mistura leite e acúcar

O leite de cabra utilizado como matéria-prima deve ser proveniente de ordenha higiênica e mantido congelado ou sob refrigeração a 4 °C até o momento do processamento. A primeira etapa consiste em realizar a mistura do açúcar ao leite em proporção de 50-70 g por litro de leite. Após a completa solubilização do açúcar, a mistura deve ser submetida à pasteurização, sendo mantida a 90 °C por 15 minutos e imediatamente resfriada até 37 °C (± 2 °C).

Este tratamento térmico tem por objetivo eliminar os microrganismos patogênicos e reduzir o número de bactérias láticas naturalmente presentes no leite, favorecendo o crescimento dos microrganismos adicionados e garantindo a qualidade do produto final.

Produção da base láctea fermentada

Para a produção da base láctea fermentada, a mistura leite-sacarose a 37±2 °C é inoculada com a cultura iniciadora de *S. thermophilus* e a cultura probiótica selecionada, na proporção de 0,03 g e 0,2 g por litro de leite, respectivamente. Em seguida, a mistura é incubada na mesma temperatura, em estufa ou banho maria, até atingir pH entre 4,8 e 5,0. O tempo de fermentação necessário para atingir essa faixa de pH varia em função da combinação de bactérias utilizadas, podendo ter uma duração de 2 a 5 horas (Figura 2).

Figura 2. Fermentação da base láctea em estufa a 37 °C.

Uma vez atingido o pH desejado, a temperatura da base láctea deve ser reduzida até 4 °C para interrupção do processo de fermentação. O resfriamento deve ser realizado em repouso por aproximadamente 12-18 horas para que o coágulo formado se estabilize, etapa importante para obtenção da consistência adequada do produto final.

Mistura do suco integral de uva

O suco integral de uva é adicionado à base láctea na proporção de 17% a 20%, misturado suave e continuamente para a adequada quebra do coágulo até a obtenção de um produto final uniforme, sem presença de grumos (Figura 3). A mistura pode ser realizada manualmente, com o auxílio de utensílios adequados ou por meio de agitadores mecânicos.

A legislação brasileira limita a 30% a adição de substâncias não lácteas ao produto classificado como leite fermentado (BRASIL, 2007).

Figura 3. Etapa de mistura da base láctea fermentada com o suco integral de uva.

Embalagem e armazenamento

Após a mistura, o produto final pode ser acondicionado em garrafas de polietileno de alta densidade (PEAD) com tampa com lacre, previamente higienizadas em água clorada (1,5% de hipoclorito de sódio) e secas em estufa a 60 °C. A vedação da tampa é importante para evitar a contaminação do leite fermentado após o processamento (Figura 4).

Armazenamento refrigerado

O leite fermentado probiótico com suco de uva deve ser armazenado a $4\pm2~^{\circ}\text{C}$ por um período de até 28 dias.

Figura 4. Produto final embalado e armazenado sob refrigeração.

Considerações finais

Nas condições de processamento e armazenamento descritas, o leite fermentado fabricado com as culturas probióticas selecionadas manteve suas características sensoriais e a concentração de células viáveis exigida pela legislação brasileira durante 28 dias de armazenamento refrigerado a 4±2 °C. O produto apresentou consistência fluida e cor levemente arroxeada que remete à adição do suco de uva, tendo obtido elevada aceitação em avaliação sensorial realizada entre consumidores potenciais durante o período armazenado. O produto caracteriza-se como um alimento funcional que congrega o valor nutricional do leite caprino e os benefícios à saúde atribuídos às bactérias probióticas e ao suco de uva, com potencial para comercialização no mercado de produtos lácteos funcionais.

Agradecimentos

Os autores agradecem a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) pelo apoio financeiro, aos laboratoristas José dos Santos Tabosa e João Batista Paula Ibiapina, do Laboratório de Ciência e Tecnologia de Alimentos (LCTA) da Embrapa Caprinos e Ovinos, e à estudante Ana Josymara Lira Silva, do Instituto Federal de Ciência, Tecnologia e Educação (IFCE) pela colaboração na fabricação das bebidas, bem como a Liana Maria Ferreira pelo apoio técnico nas análises microbiológicas.

Referências

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (Brasil). Comissões e Grupos de Trabalho. Comissão Tecnocientífica de Assessoramento em Alimen-

tos Funcionais e Novos Alimentos. Alimentos com alegações de propriedades funcionais e ou de saúde, novos alimentos/ingredientes, substâncias bioativas e probióticos. IX. Lista das alegações aprovadas. Atualizado em Julho de 2008. Disponível em: http://www.anvisa.gov.br/alimentos/comissoes/tecno_lista_alega.htm. Acesso em: 14 out. 2013.

BENEVIDES, S. D; EGITO, A. S. Orientações sobre Boas Práticas de Fabricação (BPF) para Unidades Processadoras de Leite de Cabra. Sobral: Embrapa Caprinos, 2007. 4 p. (Embrapa Caprinos. Comunicado Técnico, 76).

BRASIL. Agência Nacional de Vigilância Sanitária. Portaria nº 46, de 23 de outubro de 2007. Dispõe sobre o Regulamento Técnico de Identidade e Qualidade (RTQI) de Leites Fermentados. **Diário Oficial [da] República Federativa do Brasil**, Brasília, DF, n. 205, Seção 1, p. 4, 24 out. 2007.

CROWE, K. M.; MURRAY, E. Deconstructing a fruit serving: comparing the antioxidant density of select whole fruit and 100% fruit juices. **Journal of the Academy of Nutrition and Dietetics**, v. 113, n.10, p.1354-1358, Oct., 2013.

FAO. Health and Nutritional Properties of
Probiotics in Food including Powder Milk with
Live Lactic Acid Bacteria. [Rome]: FAO: World
Health Organization, 2001. 34f. Report of a Joint FAO/
WHO Expert Consultation Córdoba, Argentina, 1-4
October, 2001. Disponível em:< http://www.who.int/
foodsafety/publications/fs_management/en/
probiotics.pdf>. Acesso em: 14 nov.2013.

HAYES, M.; ROSS, R.P.; FITZGERALD, G.F.; STANTON, C. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview. **Biotechnology Journal**, v. 2, n. 4, p. 426-34, 2007.

SANTOS, K. M. O. dos; EGITO, A. S. do; BOMFIM, M. A. D.; BENEVIDES, S. D. **Produção de queijo probiótico para agregação de valor ao leite de cabra**, Sobral: Embrapa Caprinos e Ovinos, 2008. 19 p. (Embrapa Caprinos e Ovinos. Comunicado Técnico, 83). Disponível em: < http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPC-2010/21839/1/doc83.pdf>. Acesso em: 12 out. 2013.

SANTOS, K. M. O. dos; VIEIRA, A. D. da S.; BENEVIDES, S. D.; BURITI, F. C. A.; EGITO, A. S. do; LAGUNA, L. E. Processamento de queijo caprino probiótico tipo coalho adicionado de Lactobacillus acidophilus. Sobral: Embrapa Caprinos e Ovinos, 2010. 8 p. (Embrapa Caprinos e Ovinos. Comunicado Técnico, 119). Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/31717/1/UMT-Cot-119.pdf. Acesso em: 12 out. 2013.

Comunicado Técnico, 137 On line

Embrapa Caprinos e Ovinos Endereço: Estrada Sobral/Groaíras, Km 04 - Caixa Postal 145 - CEP: 62010-970 - Sobral-CE

Fone: (0xx88) 3112-7400 Fax: (0xx88) 3112-7455 Home page: www.cnpc.embrapa.br

SAC: http://www.cnpc.embrapa.br/sac.htm

1º edição

On-line (Nov./2013)

Cadastro Geral de Publicações da Embrapa - CGPE N° 11387

Comitê de publicações

Presidente: Francisco Selmo Fernandes Alves Secretária-Executiva: Juliana Evangelista da Silva Rocha. Membros: Alexandre César Silva Marinho, Alexandre Weick Uchoa Monteiro, Carlos José Mendes Vasconcelos, Maíra Vergne Dias, Manoel Everardo Pereira Mendes, Tânia Maria Chaves Campelo, Juliana Evangelista da Silva Rocha e Viviane de Souza (Suplente).

Expediente

Supervisão editorial: Alexandre César Silva Marinho. Revisão de texto: Carlos José Mendes Vasconcelos. Normalização bibliográfica: Tânia Maria Chaves Campêlo. Editoração eletrônica: Comitê Publicações