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Abstract. We present our publicly available semantic annotator bbw
(boosted by wiki) tested at the second Semantic Web Challenge on Tab-
ular Data to Knowledge Graph Matching (SemTab2020). It annotates a
raw CSV-table using the entities, types and properties in Wikidata. Our
key ideas are meta-lookup over the SearX metasearch API and con-
textual matching with at least two features. Avoiding the use of dump
files, we kept the storage requirements low, used only up-to-date values
in Wikidata and ranked third in the challenge.
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1 Introduction

Motivation. We are developing a domain-specific ontology together with a
knowledge graph and the reconciliation services in the project “Business and
Economics Research Data Center Baden-Württemberg”. We joined SemTab2020
in order to design, implement and test our own semantic annotator.

Challenge. SemTab 2020 was organized within the 19th International Se-
mantic Web Conference and the 15th International Workshop on Ontology Match-
ing. It consisted of 4 rounds and for the first 3 rounds the AICrowd platform
was used whereas for the 4th round an offline evaluation was performed. Data in
many tables as CSV files were given as input. These raw tables have no metadata
(i.e. table name, column names, etc.) and suffer from misprints, mistakes, encod-
ing problems and data changes. The goal was to annotate the column properties
(CPA), column types (CTA) and cell entities (CEA) using the properties, types
(classes) and entities in the Wikidata knowledge graph, see Fig. 1.

Our contribution. We designed bbw using two ideas: meta-lookup and
contextual matching. The bbw relies on the Wikidata SPARQL endpoint and
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Fig. 1: Tabular data (black) is annotated with the properties (blue), entities (magenta),
and types (green) from Wikidata as asked in the CPA, CEA, and CTA tasks respec-
tively.

the locally-deployed SearX1 metasearch API without using the Wikidata dump
files.

Relying on Web-APIs releases us from storing large data sets and processing
them locally. Moreover, the queries run every time on the most recent data
without the need of developing any updating mechanism.

Related work. According to the results of SemTab 2019 [4], the key for
a high performance (e.g. MTab2 [6] and CSV2KG3 [10]) is the use of 1) mul-
tiple lookup services and 2) elaborated lexical matching techniques. To speed
up a lookup, the ElasticSearch index of labels and aliases in a knowledge graph
is constructed in Tabularisi-system [12], ADOG4 [7] and DAGOBAH [1]. The
importance of contextual matching is showed by MantisTable5 [2]. The search
engine LOD4ALL6 is used in [5].

Structure. The rest of this work is organized as follows: We describe how
bbw works, show and discuss our results at SemTab2020, and make conclusions.

2 Implementation

The annotator bbw is implemented in Python3 and is distributed as an open
source library with MIT License7. We added the command-line interface (CLI)
using argparse8 library. A simple graphical user interface (GUI) is developed

1 https://github.com/searx/searx
2 https://github.com/phucty/MTab
3 https://github.com/IBCNServices/CSV2KG
4 https://github.com/danielapoliveira/iswc-annotation-challenge
5 https://bitbucket.org/disco unimib/mantistable-tool-3
6 http://lod4all.net/frontend/index/applicationtop
7 https://pypi.org/project/bbw
8 https://docs.python.org/3/library/argparse.html
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with Streamlit9. All scripts are available at the project page10. The bbw-CLI
is parallelized using GNU parallel [11] on subsets of the input data. We also
implemented a few scripts for merging partial solutions as well as outputting
aggregated information used for consistency checks.

2.1 Key concepts: a CSV-file and the data model of Wikidata

Wikidata as a knowledge graph can be easiest thought of simple statements, i.e.
triples containing a subject, a property, and an object/literal. For the subject and
object the Wikidata items are identified by a QID (Wikidata Q identifier) and
the property is identified by a PID (Wikidata property) which can be prefixed
accordingly in order to receive an URI. The data types for literals in Wikidata
are strings, quantities (i.e. numbers), times, coordinates and more. The actual
data model of Wikidata11 is more complex but we do not focus on it.

We assume that a row in a CSV-file contains data from an item in Wikidata.
We refer to that item as the subject or subject item. The first cell in a row usually
contains the label (rdfs:label) or an alias (skos:altLabel) of the subject. The
other (tail) cells in a row correspond to the values of properties of that subject.
Such a value can either be a literal (e.g. string, number, date) or the label (or
an alias) of the object item. Three kinds of annotation tasks for each row can
be defined:

Entity annotation. If a cell contains a label or alias of an item in Wikidata,
the cell can be annotated via the QID of this item.

Property annotation. If the values of two cells in a row are related via a
property in Wikidata, the relation can be identified by its PID.

Type annotation. If a cell contains a label or alias of an item in Wikidata
and the item has a statement with the property P31 (instance of), the cell’s type
can be annotated via the object’s QID.

These annotations may not exist, are not necessarily unique and may be
false positive due to mistakes in the values. The CPA and CTA tasks from the
challenge are then an aggregation over all rows, such that hopefully all possible
ambiguity or uncertainty vanishes.

Example: In our annotated example from Figure 1 we see in the first column
two subjects Q2119 (Mannheim) and Q23436 (Edinburgh). The second and forth
column contain the objects annotated with their QIDs and the third column
contains literals of type number. Between the first row with the subjects and the
other rows the property relations are annotated with P206, P2044, P131. The
type annotation for Baden-Württemberg is Q1221156 (state of Germany) and
the type annotation for the City of Edinburgh is Q15060255 (Scottish council
area), but in the end the CTA for the whole column will result in Q12076836
(administrative territorial entity of a single country). Both items Q1221156 and
Q15060255 are subclasses of Q12076836.

9 https://github.com/streamlit/streamlit
10http://github.com/UB-Mannheim/bbw
11https://www.mediawiki.org/wiki/Wikibase/DataModel
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2.2 Key ideas: meta-lookup and contextual matching

The data in some input tables have been changed by the challenge organizers.
For example, the labels can contain typos or other artefacts: “Monnhem” instead
of “Mannheim” or “dinbur” instead of “Edinburgh”. The values can differ from
the currently known ones in Wikidata, e.g. 9.78 instead of 9, or 1492-09-11

instead of 1492-10-12. Simple lookup and matching mechanisms fail when the
data contain such errors. We do a meta-lookup first and, if needed, perform
several contextual matching steps. However, before going into details, we will
explain these two key concepts here.

Meta-lookup. Meta-lookup is a lookup over many search and metasearch
engines. SearX can search over more than 80 engines. The use of some of them
is constrained technically or legally, see further information in Subsection 2.4.
Thus, we use only a subset of the engines: Wikidata, Wikipedia, Wikibooks,
Wikiquote, Wikisource, Wiktionary, Wikiversity, Wikivoyage, Startpage, Bing,
DuckDuckGo, DuckDuckGo Definitions, eTools, Erowid, Etymonline, MyMem-
ory, Qwant, Mojeek, Naver, DictZone.

We run a docker container locally with the SearX docker image12. The bbw
sends a GET-request to the SearX API. SearX sends the requests to the search
and metasearch engines, collects the responses, ranks them and returns the
search results, suggestions, corrections and infoboxes as JSON data. The bbw
collects those results and takes the best matches using the edit distance from
difflib13 library. To add more candidates, bbw takes the best match in sugges-
tions and corrections, sends them to the SearX API and collects the infoboxes.
We use a few out of these candidates as an input for matching.

For example, SearX resolves “Monnhem” and “dinbur” to the correct spellings
“Mannheim” and “Edinburgh”.

Contextual matching. In contrast to a simple matching, a contextual
matching is based on at least two features. For example, it can be 1) a label
of a subject item and a label of an object item (or literal), 2) a label and type
of an object item, or 3) a label of an object item (or literal) and a property.

The actual matching is performed as follows: We try an exact matching. If
it does not give any results, we try a case-insensitive matching for strings. If
there are still no results, we match a string with the edit distance. The names
are matched ignoring abbreviations. The date, which is nearest to the value, is
matched if it is within six months. All the numbers are matched within a 2 %
range.

2.3 Workflow: 7 steps

We implemented bbw as the 7-steps workflow illustrated in Fig. 2. Step 2 is
performed for all rows, but some rows might not be annotated. These rows are
then considered in Step 3 including all annotations we already have after Step

12https://hub.docker.com/r/searx/searx
13https://docs.python.org/3/library/difflib.html
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2. The same pattern continues up to Step 6. The postprocessing Step 7 takes
the annotations from all steps as input.

Fig. 2: The 7-steps workflow in bbb can be divided in a preprocessing Step 1, five
contextual matching Steps 2-6, and a postprocessing Step 7. Steps 5 and 6 are only
used in round 3 and 4 and Steps 3 and 4 only in round 3.

Step 1: Preprocessing. Encoding problems are fixed by the ftfy library [9]
and the regular expressions14 are used to predict the number, time, name and
string data types. A string is identified as a name if it starts with an abbreviation
or has an abbreviation between two words.

Step 2: Meta-lookup of the subject’s label and querying the can-
didates. We use the first cell in the row for a meta-lookup, assuming that it
is the subject’s label. The resulting candidates are used to query the Wikidata
SPARQL endpoint and we get all triples for the subjects with a label from the
candidates’ list. We match the value in a tail cell with object’s labels in the
resulting triples. If the matching is successful, we take the subject’s QID, the
subject’s type and the property. If, additionally, the object is a literal, we take
also the object’s QID and the object’s type.

Step 2 is performed for each row. We use the most frequent property per
column as the input property for Step 3.

Step 3: Querying the objects’ labels with their properties. An anno-
tated row is a row with all property annotations found. Otherwise we say that
the row is still unannotated. Step 3 is executed only for unannotated rows. We
query the endpoint with the values of the tail cells and their properties inferred
from Step 2. We match the value in the first cell to the subject’s label using the
edit distance. Then, we match the resulting triples with the values in the tail
cells as in Step 2.

Step 4: Querying the objects’ labels of entity columns. We call a
column an entity column if it has at least one type annotation inferred from
previous steps. In contrast to Step 3, we do not use properties in Step 4. We
query the endpoint with the values of the tail cells from all entity columns. It
results in the subject’s labels and the types of a subject and the objects. The
cell values are matched as in Step 2.

14https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html


R. Shigapov et al.

Step 5: Querying the objects’ labels with their types. As the type
for this step we use the most frequent type per column inferred from previous
steps. For every entity column the endpoint is queried using the value of a tail
cell and its type. We take the object’s QID from the received results.

Step 6: Querying the subject’s types. For unannotated rows the end-
point is asked for the labels of all items with a certain type. We do this for the
two most frequent type annotations of the first column. This list of labels is
matched with the subject’s label via the edit distance. We send another query
to the endpoint and receive all triples, which have the subject’s label equal to
one of the labels from the candidate items. The values in the tail columns are
matched as in Step 2.

Step 7: Postprocessing. After Steps 1-6 we might have a few candi-
dates for each task. We choose the most frequent property and entity for CPA
and CEA tasks correspondingly. Postprocessing for CTA task is different. If
there exists the unique most frequent type, we choose it. If there are mul-
tiple most frequent types, we find the first common class w.r.t. to the sub-
class relation using a special query15 to the endpoint with the SSSP class16 in
com.bigdata.rdf.graph.analytics package17. However, if the query returns
the generic class (Q35120), we choose the most frequent type. As the final post-
processing step we choose only those annotations which are mentioned in the
target files.

2.4 Limitations

The annotator bbw has both technical and legal constrains related to the use
of multiple API services.

Technical constraints. The current limits of the Wikidata SPARQL end-
point are five parallel queries per IP, thirty error queries per minute and one
minute runtime per single query.18 For example, in round 3 some of our requests
were blocked by the endpoint with the error code 429 (Too Many Requests) due
to the use of six parallel processes. We reduced the number of CPUs in round
3 after the deadline and added an extra request after waiting the number of
seconds returned by the “Retry-After” header.

SearX can throw an error message due to its own technical reasons and due
to constraints of a search engine. For example, it happens when an engine asks
to resolve a captcha. We experienced that during our initial tests with Google
Search. Thus, we did not use Google Search for our submissions.

We found a bug in SearX in the 2nd round and reported it19. It was fixed
shortly and we used the improved code in the next rounds.

15https://w.wiki/h8X. The user Pasleim proposed it.
16https://blazegraph.com/database/apidocs/com/bigdata/rdf/graph/analytics/SSSP.html
17https://blazegraph.com/database/apidocs/com/bigdata/rdf/graph/analytics/package-

summary.html
18https://www.mediawiki.org/wiki/Wikidata Query Service/User Manual#Query limits
19https://github.com/searx/searx/issues/2188
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Legal constraints. Possible legal restrictions for our usage of the search
engines may occur from copyrights and sui generis database rights20. In accor-
dance with the jurisdiction of the EUGH21, these rules do not restrict our usage
of search engines, because “if the database maker makes the contents of that
database accessible to third parties, [. . . ] his sui generis right does not enable
him to prevent such third parties from consulting that database for information
purposes”22. As described above, we “consult [. . . ] the database”23 for infor-
mation purpose in contrast to build “a parasitical competing product”24 and
therefore we do not harm the investment of the database makers. Though, the
terms of use of the different search engines may restrict our usage.

The terms of use of the search engines were examined for restrictions concern-
ing metasearch. While some search engines do not have written terms of use at
all, and therefore no contractual restrictions affecting their use via metasearch25

exists, others have terms of use without restrictions on metasearching26. Google
Search is a special case: Whereas their former terms explicitly prohibited “meta-
search[ing]”, their current terms merely demand to not use their services “abu-
sively”. This change can be understood as a waiver of restricting the use of their
service for metasearch. Unfortunately, the terms of use of some search engines
include formulations, that can be understood as a refusal of metasearching with-
out permission27. However, within the territorial scope of German contract law,
even the most extensive of these restrictions could be seen as invalid according
to § 307 I, II Nr.1 BGB as they are in violation of § 307 II in relation with basic
principle of privileging scientific research purposes stated in § 60d UrhG or at
least for privileged scientific use cases unenforceable according to § 60g I UrhG.

3 Results

Table 1 shows our scores and rank in leaderboard at the SemTab2020 challenge.
We did not participate in round 1 and round 2 before the first deadline. We
started to implement bbw on the day of the first deadline in round 2. One CPU
was used in round 2, six CPUs were used in round 3 before the deadline, and
five CPUs were used in round 3 after the deadline and in round 4.

We applied only Steps 1, 2 and 7 of the workflow in round 2 and this already
gave as a very high score in the CPA task. Our low CTA score before the second
deadline in round 2 has two reasons: 1) both the target and out-of-the target

20Art. 7 Directive 96/9 EC and their national implementations, eg.: §§ 4, 87a ff. UrhG.
21EUGH C-203/02 The British Horseracing Board Rn. 55; EUGH C-304/07 Direct-

media Publishing Rn. 53.
22EUGH C-202/12 Innoweb/Wegener Rn. 46.
23EUGH C-202/12 Innoweb/Wegener Rn. 47.
24EUGH C-202/12 Innoweb/Wegener Rn. 48; ErwG. 42, Directive 96/9 EC.
25For example, Duckduckgo, Etools, Mojeek and Startpage.
26For example, Bing, Erowid, Etymonline, MyMemory, Qwant, Wikibooks, Wikiquote,

Wikisource, Wikivoyage, Wiktionary, Wikiversity, Wikipedia and Wikidata.
27For example, Yandex and Yahoo.
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Round

1

2 (<1st deadline)

2 (>1st deadline)

2 (>2nd deadline)

3 (<deadline)

3 (>deadline)

4 (AG)

4 (2T)

4 (avg)

CPA

F1 P R

- - -

- - -

0.991 0.992 4

0.992 0.994 3

0.949 0.957 4

0.989 0.994 3

0.995 0.996 2

- - -

0.995 0.996 2

CTA

AF1 AP R

- - -

- - -

0.914 0.929 7

0.964 0.978 6

0.960 0.966 4

0.971 0.974 4

0.980 0.980 2

0.516 0.789 6

0.762 0.884 5

CEA

F1 P R

- - -

- - -

0.892 0.960 10

0.944 0.981 7

0.954 0.974 5

0.976 0.985 4

0.978 0.984 4

0.863 0.927 2

0.920 0.955 2

Table 1: Our scores (F1 is F1-score, P is precision, AF1 is approximate F1-score and
AP is approximate precision) and rank (R) in leaderboard at SemTab2020. AG –
automatically generated dataset, 2T – tough tables, and avg – averaged over both
datasets.

annotations were submitted, and 2) a bug in the evaluator at SemTab2020 which
counted the out-of-the target annotations. We interpret our low CEA score as a
consequence of using only Step 2 in contextual matching.

Our CPA-score dropped in round 3 in comparison to round 2 due to a bug in
bbw leading to the incorrect counts of the most frequent property. After fixing
it, our CPA scores were comparable to our CPA scores in round 2. Steps 3-6 of
the workflow increased our CTA and CEA scores in round 3. We continued our
tests after the deadline and found out that disabling Steps 3 and 4 increased our
scores further.

Only steps 2, 5 and 6 for contextual matching were used in round 4. The
dataset contained two parts: AG – automatically generated and 2T – tough
tables [3]. Tough tables were easily separated, because they are not mentioned
in the CPA target files and have usually higher size than the AG tables. We
applied our reduced 5-steps workflow to the AG tables, got our highest scores in
all tasks and ranked in second place in CPA and CTA tasks. Our 5-steps workflow
is applied to roughly three quarters of the 2T dataset containing relatively small
tables. Among those circa 70 % of tables were annotated. This gave us very low
CTA scores with the 2T dataset. We decided to improve our CEA scores and
to keep the CTA task as it was. We performed meta-lookup and non-contextual
matching with the Wikidata API in order to annotate 800 of the most frequently
unannotated labels. This improved our CEA score and we ranked in second place
with the 2T dataset. Due to time pressure we did not add the corresponding types
to our 2T-CTA submission.
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4 Conclusions

We presented the semantic annotator bbw for matching tabular data to the
Wikidata knowledge graph. The annotator is based on 1) meta-lookup over many
search and metasearch engines, and 2) contextual matching with at least two
features.

We were continuously developing bbw between rounds 2 and 4. Starting with
the low CEA and CTA scores in round 2, we improved the workflow and ranked
in second place in round 4. Thus, a meta-lookup is a competitive approach
compared to processing the Wikidata dump files. In contrast to the latter, the
meta-lookup keeps the storage requirements low and uses only up-to-date data
in the knowledge graph.

Further improvements to bbw can be made by using more features [8], fine
tuning the hyperparameters and optimizing the SPARQL queries28.

The annotator bbw is distributed as an open source Python library with
MIT license: https://pypi.org/project/bbw. It can be easily installed via “pip
install bbw”. The command line interface, a simple graphical user interface and
a script for parallel computations are also provided. Everyone is welcome to
adapt bbw at http://github.com/UB-Mannheim/bbw.
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