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This monograph is expected to be of value to foundry engineers and master or PhD 

students, as well as researchers involved in the field of graphitic cast irons. 

 

This is an open access manuscript the first version of which was loaded on the OATAO 

website in Toulouse, France, in November 2020. 

 

It is intended to be interactive, i.e. to serve as a forum for discussion, constructive 

criticism, amendments and improvements. As such, it will be regularly updated. 

 

As stated in the foreword, this monograph is not an in-depth literature review but 

rather aims to provide a comprehensive overview of the formation of the 

microstructure of silicon cast irons based on the works that the authors have carried 

out together or separately over many years. All contributions aimed at completing this 

overview are therefore welcome and it is proposed to submit each proposal in the form 

of a one-page fact sheet which will be appended to the main text with a link inserted in 

the appropriate place. Each added text will be identified with the author's name and a 

list of the contributors will appear here. 
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Foreword 

This monograph finds its foundation in a simple fact: there is a paradigm with cast irons which is that 

these alloys are produced and cast to shape since thousands of years but yet are amongst the most 

complicated metallic alloys when considering the formation of their microstructure by solidification 

and solid-state transformations. In turn, this complexity opens a wide range of possibilities for 

shaping the microstructure of these alloys. 

The first cast irons were mostly Fe-C alloys and as such solidified mainly in the metastable system, 

leading to hard and brittle parts that were heat treated for graphite precipitation to give malleable 

cast irons. The introduction of silicon into the melt increased the temperature difference between 

the stable and metastable systems, thus promoting the formation of graphite instead of cementite 

during solidification. This gave rise to the silicon cast irons that are the subject of this monograph. 

With the advent of metallographic observations, it was realized that cast iron also often contained 

phosphides related to the origin of iron ores. A good control of the metallic charge allowed to 

improving the mechanical properties, in particular by ensuring a minimum elongation before rupture 

under tensile stress. The essential step, however, was the discovery that it is possible to change the 

shape of graphite by transforming the interconnected lamellae into discrete spheroids. Cast irons 

thus became a material for safety parts and were no more restricted to construction. 

This historical evolution and the research effort during the first part of the 20th century are 

described in the vast study carried out by Merchant in the 1960s [MER68]. At that time, there was an 

explosion of research on cast irons with the aim of describing and understanding the formation of 

graphite during solidification and, to a lesser extent, during heat treatment. As far as solidification is 

concerned, the review by Lux [LUX70a, LUX70b] of this research effort is an important step which 

already contained most of the questions and provisional answers that are still referenced in more 

recent works [STE05]. It is worth mentioning here Zhou's comprehensive literature review on 

solidification of different types of cast iron [ZHO09, ZHO10, ZHO11]. 

This monograph is not intended to be an exhaustive review of the literature as those mentioned 

above, but rather to provide a coherent view of the formation of the microstructure of graphite cast 

irons. In fact, the authors felt it was very important to present how various aspects of microstructure 

formation could be related to each other using schemes based on known physical phenomena, and 

sometimes supported by ad hoc modelling. Consequently, the works that will be referenced first are 

those that contain information that has proven to be essential for the development of these 



 
 

schemes. Where appropriate, controversies will be mentioned but not discussed, with reference to 

the works where they are detailed. Instead, emphasis will be on open questions. 

The main text containing basic information and descriptions appears on odd-numbered pages, while 

details and more in-depth descriptions are limited to even-numbered pages. All references are listed 

at the end of the monograph, which also contains a glossary of acronyms and unusual terms and an 

index of the parameters used in the equations and the values employed for physical parameters. 

For more than 10 years, our work has certainly benefited from Azterlan's impetus and has greatly 

benefited from the dynamism of the European Cast Iron (ECI) group. The exchanges within this 

group, as well as the discussions and controversies that have taken place at its annual meetings have 

been renewed stimuli. We would like to thank the participants, both academics and industrialists, for 

their continued contribution to this group. 

 

 

Jacques.lacaze@toulouse-inp.fr - jsertucha@azterlan.es - manuel.castro@cinvestav.edu.mx 

  

mailto:Jacques.lacaze@toulouse-inp.fr
mailto:jsertucha@azterlan.es
mailto:manuel.castro@cinvestav.edu.mx
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Chapter I – Cast iron at a glance 

Cast iron emerged during the Iron Age when the temperature reached in the blast furnace became 

high enough. Though iron processing may have started in Middle-East, the first crafts, tools and 

weapons made of cast irons date back to 500 BCE in China [TAN10, STE17a]. Later development of 

cast iron in China benefited of the long standing knowledge of casting technology acquired on 

bronzes and other alloys which allowed refined jewellery as well as gigantic artefacts to be 

manufactured, see Fig. I-1. 

 
Figure I-1. Iron lion of Cangzhou, 953 AD [TAN10]. 

Cast irons have developed thanks to their good corrosion resistance - think of the famous water 

pipes in Versailles - as well as their resistance to oxidation which made them suitable for pots and 

pans for example. However, they are sensitive to rust in the long term, which may explain why small 

antique objects are rare or unidentified as they are most certainly rust pellets nowadays. 

Until the 19th century, the composition of the cast parts was given by that of the iron ore [WIT59], 

though high carbon and silicon contents were certainly helpful in melting and processing the alloys. 

During the first half of the 19th century, the changes in the melting furnaces led to an increase in the 

silicon content in the charges for cast parts. Although this was found later not to be a good design 

choice, it is worth mentioning the use of cast irons at that time for house building and bridges 

[STE17a]. 
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The biggest and the smoothest 

Cast iron is so "easy" that it is used to make gigantic parts such as windmill hubs and huge boat 
engines. Figure I-2 gives an example of this, where the staircase can be used for a scale estimate. 

 
Figure I-2: The biggest or nearly so (Wärtsilä X62 engine) 

(https://www.wartsila.com/media/news/08-01-2015-wartsila-x62-engine-now-fully-approved-
and-available-to-the-market) 

For the 2019 European Cast Iron (ECI) meeting in Ljubljana, the host group cast disk-shaped medals 
116 mm in diameter and 5 mm in thickness. The mould was prepared by the lost wax process and 
attention was put on perfect filling and on surface quality. Fig. I-3 shows the central part of the 
medal and illustrates that a high level of small details could be reproduced. 

 

Figure 1-3. The photograph on the left shows the central part of a medal cast by the lost wax 
process, with the square in the centre being one cm2 in size.  

The colour map on the right shows the surface roughness in the very centre of the medal,  
with the water basin in front of the castle (courtesy Sandrine Duluard, CIRIMAT). 
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In fact, brittleness was a concern because of the lamellar shape of graphite and when the parts 

contained cementite or phosphides. With the advent of chemical analysis and of microstructure 

observations, and with progress in melt procedures, it was finally found how to manipulate the 

composition (e.g. removing phosphorus) and the matrix of lamellar graphite cast irons (LGI). Note 

that LGI would have been better named flake graphite cast irons because the wording "flake" 

encompasses the various forms of graphite of concerns, namely plate-like, lamellar and undercooled. 

Finally, this is also during the first half of the 20th century that inoculation was introduced. 

Until the mid of the 20th century, the main concern was low ductility and associated moderate tensile 

strength because of the lamellar shape of graphite. Things had suddenly evolved when it was found 

possible to change the graphite shape to discrete nodules in so-called spheroidal graphite cast irons 

(SGI). The effect of this evolution is illustrated for the case of cast iron pipes in Fig. I-4, but applies in 

fact to any kind of castings. Since the discovery of the spheroidising treatment, SGI developed in 

many industries associating good casting ability for making complex shapes and good mechanical 

properties including fatigue properties.  

 
Figure I-4. Evolution of the elongation at rupture of cast iron used for water pipes.  

A first improvement in 1934 consisted in halving the phosphorus content of the metal together 
with adopting casting in metallic dies instead of sand moulds. The change in cooling rate resulted 
in a strong shortening of graphite lamellae. The dramatic change in the 1950 is due to casting SGI 

instead of LGI. Adapted from Lesoult et al. [LES84]. 

Millis et al. received a patent in 1949 for a grey iron having improved properties because graphite 

assumed a more compact shape than usual flakes. This was achieved by adding a controlled amount 

of magnesium, and such irons became later known as compacted graphite irons (CGI). However, this 

is only in the 1960s that it was found interesting to generate this intermediate graphite form, see the 

review by Nechtelberger et al. [NEC82]. CGI have thus been in use for a long time but this was only 

for niche applications until the development of a proper thermal analysis control of melt preparation 

just before casting. Since the beginning of the 21st century, CGI is breaking the market of automotive 

engines and components. 
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Compacted graphite and the role of spheroidisers.  

Graphite is industrially spheroidised by addition of magnesium and rare earths (RE), see chapters VI 

and VII. In contrast, there are several ways to generate compacted graphite as reviewed by 

Nechtelberger et al. [NEC82]. However, the most usual is by limited additions of Mg and RE when 

compared to SGI. Fig. I-5 shows the change in graphite nodularity as function of Mg content 

[DAW02], with indication of the domains for LGI (so called "grey" in the figure), CGI and SGI (called 

"ductile iron" in the figure). Note that the nodularity was set negative for lamellar graphite so as to 

emphasize that the industrial nodularity scale is defined for compacted and spheroidal graphite and 

not for lamellar graphite for which letters (A-E) are used to differentiate the various shapes [DAW03]. 

 

Figure I-5. Evolution of graphite shape with Mg content [DAW02] (courtesy SinterCast). 

What is the precise mechanism of the action of the spheroidisers is still unknown, or at least 

controversial. The first effect of magnesium and rare earths has long been associated to their high 

affinity with oxygen and sulphur, i.e. considering that change in graphite shape is controlled by 

tightening oxygen and sulphur as oxy-sulphides. The presence of some residual magnesium and RE 

dissolved in the liquid of a melt dedicated to SGI and CGI appears however essential for achieving the 

desired graphite shape. Subramanian et al [SUB82] therefore suggested associating the different 

forms of graphite with the thermodynamic activity of residual oxygen and sulphur. 

The selection and sorting of the most critical results among the multitude of available experimental 

work is proving to be problematic in this field. It is quite possible that the confusion of the terms 

used to describe the graphite shapes found in a given sample [DIN80], as well as the use of flowery 

terminology to describe unusual graphite shapes, may explain this difficulty. 
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There are two routes effecting graphite shape, chemical modification and cooling rate. These routes 

are in fact closely inter-related, see Fig. I-6. After standard preparation, a cast iron melt yields flake 

graphite, while a full or partial spheroidising treatment after desulphurisation is used to get 

spheroidal or compacted graphite, respectively. This is the so-called chemical route. It should be 

noted that: 

- Obtaining a fully graphitic SGI upon casting relies on appropriate inoculation of the melt for 

avoiding the formation of metastable eutectic. This is most often not necessary for LGI and 

CGI because, for the same cooling rate conditions, their faster growth kinetics ensures 

solidification above the metastable temperature with a lower count of nuclei, see chapter IV.  

- Many elements may lead to graphite “degeneracy” - i.e. the development of unwanted 

graphite forms – when present in the melt at a level above a critical limit which may be so 

low that these so-called poisoning elements can most often be classified as trace elements, 

see chapter VII. 

In a casting with various section thicknesses, the graphite shape depends on the local cooling rate. 

For a properly prepared melt, increasing the cooling rate changes: 

- Lamellar graphite to undercooled graphite. 

- Compacted graphite with low nodularity to nearly or fully spheroidal graphite. 

- Irregular spheroidal graphite to well-rounded one. 

 

Figure I-6. The interplay between chemical and cooling rate routes. 

The aim of this monograph is to explore the various possible paths defined in Fig. I-6 while limiting 

ourselves to usual graphitic cast irons, i.e. alloys based on the Fe-C-Si system and with graphite as the 

carbon rich phase. These may be called silicon cast irons. 
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Chapter II – The Fe-C-Si phase diagram and the carbon equivalent 

In most textbooks, silicon cast irons are differentiated from carbon steels as being Fe-C based alloys 

with a carbon content higher than 2.0 wt.%. This value makes reference to the maximum solubility of 

carbon in austenite in the binary Fe-C system and relates to the stable eutectic, i.e. to the reaction 

liquid (L)austenite ()+graphite at 1154°C, see Fig. II-1a. 

It is also seen in Fig. II-1a that the metastable eutectic liquid (L)austenite ()+cementite (Fe3C) lies 

only a few degrees below the stable one in the binary system, at 1148°C. Fortunately, adding a few 

percent of silicon to the melt increases significantly the temperature difference between the two 

systems as illustrated with the section of the Fe-C-Si phase diagram at 2.5 wt.% Si in Fig. II-1b. Such a 

section is called a Fe-C isopleth section of the phase diagram. The two graphs in Fig. II-1 were 

calculated using the TCFe8 database and all calculations performed similarly will be referenced 

[TCFE8] from now on. 

  
Figure II-1. Binary Fe-C phase diagram (a) and Fe-C isopleth section of the Fe-C-Si phase diagram 
at 2.5 wt.% Si (b). Bold lines are for the stable system, thin lines for the metastable one [TCFE8]. 

The increase of the temperature difference 

between the stable and metastable eutectics 

with added silicon is shown in Fig. II-2 in the 

(T,wSi) plane. It is seen to be due to both an 

increase of the stable eutectic temperature and 

a decrease of the metastable one. This evolution 

calls for two remarks: 

1- The stable eutectic presents a maximum 

at 5.5 wt.% silicon which is outside the 

range of usual silicon cast irons. 

2- The metastable eutectic goes to a 

minimum at about 1100°C for 3 wt.% Si 

where a third solid phase appears which 

is a silico-carbide. 

 
Figure II-2. Change in temperature of the stable 

and metastable eutectics as function of Si 
content (adapted from [LAC91]). 
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Polynomial expressions for describing the phase diagram  

for cast irons with silicon in the range 0 to 3 wt.%. 

In the composition range of usual silicon cast irons, the austenite liquidus, 
LT , and graphite liquidus, 

g
LT , can be represented to a good approximation by linear relations of alloy composition: 

 

i
iiCC0L wmwmTT  and  

i
i

g
iC

g
C

g
0

g
L wmwmTT    II-1 

in which 
0T  and g

0T  are constants, 
i

m  and g
im  are liquidus slopes relative to element i for 

austenite and graphite, respectively, and wi is the content in element i of the alloy (wt.%). 

Using the assessment of the Fe-C system [GUS85], the stable eutectic is given by the invariant point 

(4.34 wt.% C; 1154°C). Combining this data with the slope of the austenite and graphite liquidus 

assessed by Heine [HEI95] leads to the following expressions where the temperature is given in 

Celsius: 

  

i
iiCL wmw3.973.1576T   and  

i
i

g
iC

g
L wmw1.3897.534T   II-2 

To estimate the 
im and g

im values, points were selected in the assessed Fe-C-i phase diagrams 

except for the Fe-C-Si system for which the point was taken from a previous assessment of this 

system [LAC91], see Fig. II-2. In Table II-1 are indicated the selected points and the calculated values 

of the austenite and graphite liquidus slopes. The expressions thus derived are expected to be valid 

for silicon contents up to 3 wt.% and for any other alloying element up to 1 wt.%. 

The intersection of the two hyper-plans describing the austenite and graphite liquidus corresponds 

to the eutectic trough. By equating the two equations II-2, one thus gets the carbon content along 

the stable eutectic trough, eut
Cw : 







 



C
g
C

i
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g
i
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C
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w)mm(

34.4w               II-3 

The corresponding eutectic temperature, TEUT, is obtained by inserting eut
Cw  in the 

LT expression: 

 
























i
i

C
g
C

i
g
i

iEUT w
mm

mm
3.97m02.1154T  II-4 

Table II.1 - Data used to characterize the effect of third elements on the binary Fe-C stable system  

i species solid phases in equilibrium with liquid wC wi T (°C) 
im  g

im  

Cr austenite, graphite and cementite 4.2 4.30 1156 -2.71 13.14 

Cu austenite and graphite  4.0 3.7 1172 -4.08 40.62 

Mn austenite, graphite and cementite 4.32 3.0 1139 -5.66 -2.40 

Mo austenite and graphite 5.0 12.6 1350 -10.3 -4.84 

Ni austenite and graphite 3.8 10.0 1128 -7.86 18.41 

P austenite, cementite and Fe3P 2.2 7.1 954 -57.8 89.6 

Si austenite and graphite 3.78 2.0 1162.5 -23.0 113.2 
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For alloys with less than 3 wt.% Si, Fig. II-2 shows that the evolution of the stable eutectic 

temperature may well be represented as a linear function of silicon content. Extending this to other 

alloying elements at less than 1 wt.%, the stable eutectic temperature, TEUT, may be expressed by 

means of a linear relation of composition (see opposite page): 

SiPNiMoMn

CuCrEUT

w246.4w31.28w60.2w21.9w00.5

w86.4w46.002.1154)C(T




   II-5 

where wi is the content in element I of the alloy (wt.%). 

As a matter of fact, the stable eutectic (invariant) point in the Fe-C phase diagram gives rise to a 

eutectic (mono-variant) line in the Fe-C-Si ternary system. Fig. II-3a shows the projection on the (wC, 

wSi) plane of the stable liquidus in the Fe corner, with this eutectic line starting at the binary point e 

and the peritectic line (liquid+ferriteaustenite) at the binary point p. These two (mono-variant) 

lines intersect at the invariant ternary point E at about 7 wt.% Si. Note that Fe-C-Si eutectic alloys 

with a Si content higher than this value would solidify with ferrite as Fe-rich phase instead of 

austenite. 

In Fig. II-3b both the stable and metastable eutectic lines are plotted in the (wC, wSi) plane with a 

reduced Si scale compared to Fig. II-3a. It is thus seen that the carbon content of the eutectic 

decreases significantly with added silicon in the stable system, but much less in the metastable 

system. Hence, the distance between the two eutectic lines in terms of carbon content increases 

with the silicon content. This relates to the increase in the temperature difference between the two 

eutectics which is illustrated in Fig. II-2. The maximum of the stable eutectic of 1172°C at about 5.5 

wt.% Si is due to a slight curving of the austenite and graphite liquidus surfaces. 

  

Figure II-3. a: projection of the stable liquidus of the Fe-C-Si system;  

b: projection of the stable and metastable eutectic lines on the (wC, wSi) plane  

in the Fe corner [TCFE8].  
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Thermodynamics of the Fe-C system 

The assessment of the Fe-C phase diagram selected for the TCFE thermodynamic database 

developed by Thermocalc AB for steels is due to Gustafsson  [GUS85]. It may be used to write the 

useful thermodynamic expressions for austenite () and liquid (l) as function of the temperature TK in 

Kelvin [HIL98]. Austenite is described with two sub-lattices, one for substitutional elements and the 

other one for interstitial elements. The activity of carbon in austenite 
Ca is thus: 

    








 C

K
CC

K
C y21

T314.8

34671
y1/yln

T314.8

T877.1577207
aln     II-7 

where )x1/(xy CCC


  is the so-called site fraction of carbon in the interstitial sub-lattice and 
Cx  

is the molar fraction of carbon in austenite. The liquid is described with one single sub-lattice. With 
l
Cx the molar fraction of carbon in the liquid, the carbon activity l

Ca is given as: 

          l
C

l
CK

l
CK

2l
C

l
C0,l

C

l
C

x61x21T1949260x4119300T5.28124320
T314.8

x1

xln
a

a
ln









 II-8 

with K
0,l

CK T63.24117369alnT314.8   

Fig. II-4 shows the change with carbon content of the carbon activity in the Fe-C liquid for three 

temperatures, with 1427 K (1154°C) being the eutectic temperature. Though this is not the way the 

THERMOCALC software calculates phase boundaries, the graphite liquidus is simply given by 1a l
C   

(see the dashed horizontal line). Similarly, the austenite solidus and liquidus could be obtained by 

solving simultaneously the equations 
 C

l
C aa and 

 Fe
l
Fe aa . 

 
Figure II-4. Change of carbon activity in the Fe-C liquid vs carbon content  

for three temperatures given in Kelvin. The marked change in the carbon content at aC=1 illustrates 

the strong slope of the graphite liquidus. 

The above equations are rather close to the expressions evaluated much earlier by Hillert [HIL64]. 

The enthalpy of dissolution of carbon in the Fe-C melt equals its enthalpy of melting (as being a pure 

phase) and is given as 117369/8.314=14117 J·mol-1 which compares reasonably well with the value of 

19396 J·mol-1 previously estimated by Hillert [HIL64].  
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On the opposite page is described part of the data relevant for the Fe-C system which is 

implemented in the TCFe8 database. As an application example, a simple calculation of the graphite 

liquidus is described. 

Locating an alloy onto the Fe-C-Si projection of Fig. II-3a indicates if it is hypo- or hyper-eutectic in 

the stable system, i.e. if its carbon content is "lower" or "higher", respectively, than the stable 

eutectic line. Further, the isopleth Fe-C sections along eE are all similarly shaped with only a shift of 

the eutectic point to lower carbon content as silicon is increased, see Fig. II-1b. This led defining the 

carbon equivalent CE of a cast iron which indicates if an alloy is to the right or to the left of the 

eutectic point in the isopleth section. From the expression of eut
Cw  (eq. II-3), one can express the 

carbon equivalent, CE, of an alloy as: 







 



C
g
C

i
ii

g
i

C
mm

w)mm(

wCE         II-9 

With the data in eq. II-2 and Table II-1, this writes: 

SiPNiMoMn

CuCrC99

w280.0w303.0w054.0w011.0w007.0

w092.0w033.0w.%)wt(CE
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Neumann [NEU68] made a review of the experimental information to evaluate the change in 

solubility of carbon in Fe-C-i melt due to alloying with i. The author also provided thermodynamic 

evaluation for the whole periodic table which compared well with reported experimental values, 

though done at the very high temperature of 1550°C. Limited to the same elements as above, the 

following experimental carbon equivalent expression, CEexp, was obtained [NEU68]: 

SiPNiMoMn

CuCrCexp

w310.0w3331.0w051.0w014.0w028.0

w076.0w064.0w.%)wt(CE




   II-11 

It is quite noticeable that the sign and values of the coefficients in CE99 and CEexp agree for 

graphitising elements (Cu, Ni, P and Si) but not for carbide former elements (Cr, Mn and Mo). The 

reason is certainly to be found in the fact that the eutectic in the Fe-C system was set at 4.26 wt.% by 

Neumann when it is 4.34 wt.% (see Fig. 2b in the paper by Neumann). 

One may wonder why the CEexp is still very much in use when the coefficient for silicon is higher than 

it should be. For any cast iron composition in the Fe-C-Si system, (wC, wSi), the value of CEexp will be 

higher than that of CE99 by CEexp-CE99=0.03·wSi. Considering that the CE99 value is the right one, the 

difference means that an alloy should be slightly hypereutectic to experimentally appear as eutectic. 

This is exactly what is known from thermal analysis, see chapters III and IX. 
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Metastable eutectic temperature 

There are not so many data available in the literature on the metastable eutectic in the Fe-C-Si 

system. Oldfield [OLD62] studied it at varying cooling rates, up to 480°C/min, and extrapolated the 

values at zero cooling rate to get the ”equilibrium” value. Oldfield investigated alloys with 0 or 0.5 

wt.% Mn, 0 to 0.1 wt.% Cr, and Si content up to 2 wt.%. The values reported versus the silicon 

content in Fig. II-5 show a fair linear relationship with silicon content. There is another Oldfield’s 

point at more than 2 wt.% Si which was obtained by remelting and is unexpectedly at significantly 

lower temperature.  

Other results are from Heine [HEI86, HEI95] and were obtained with Te-bearing cups. Some of this 

data were from melts containing 0.46-0.81 wt.% Mn and are represented with solid symbols while 

open symbols are for melt with no or little (0.2 wt.%) Mn. There is no clear effect of Mn which is seen 

to change the temperature in both directions (positive and negative). It is noted that all values from 

Heine are below those of Oldfield by about 10°C which may be due to thermal or growth 

undercooling whose effect was evidenced and accounted for by Oldfield [OLD62]. 

For describing the effect of Si on the metastable eutectic in the Fe-C-Si system, the solid line in Fig. II-

5 was drawn based on Oldfield’s results, but starting from the binary Fe-C metastable eutectic at 

1148°C.  This line writes: TEW=1148.0-12.5·wSi. The parallel dashed line indicates a possible upper 

limit of the metastable eutectic when the binary temperature is set at 1150°C as sometimes found. 

This gives TEW=1150.0-12.5·wSi.  

 
Figure II-5. Effect of the alloy’s silicon content on the temperature  

of the metastable eutectic, TEW. 
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With the present development of high-silicon cast irons, there is a need for extending the description 

of the phase diagram as done in this chapter. The main change to be carried out is to replace the 

linear terms describing the effect of silicon by second order polynomials for accounting of the curving 

of the liquidus surfaces in the Fe-C-Si system. 

Emphasis has been put in this chapter on the co-existence of the stable and metastable systems 

because of the risk of changing from stable to metastable solidification. In most cases, the resulting 

mottled structure, i.e. a mixture of microstructures of the two eutectics as the one illustrated in Fig. 

II-6, is unwanted. However, this transition is used in the manufacturing of centrifugally cast iron 

pipes as a mottled microstructure eases the extraction of the tubes from the die because the white 

eutectic shrinks significantly upon solidification while the stable eutectic does not. The pipes are later 

shortly heat-treated in the austenite field – typically at 950°C - for full graphitisation. 

 

Figure II-6. SGI with a mottled structure. 
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Chapter III – Thermal analysis 

In many respects, phase transformations in cast irons can be described by considering that they are 

pseudo-binary Fe-C alloys. This means in practice that qualitative and quantitative features may be 

obtained from information given by the appropriate Fe-C isopleth section such as the one in Fig. III-

1a for a silicon content of 2.5 wt.%. In the remaining of this monograph, the necessity of accounting 

for alloying elements in a more precise way will be mentioned here and there when appropriate. 

Equilibrium solidification occurs if there is no delay in nucleation and growth of the solid phases to 

precipitate, and further enough time given to these phases to be chemically homogeneous at any 

time during solidification. An hypo-eutectic (1) and an hyper-eutectic (2) alloy with both a liquidus 

temperature at 1200°C are located in Fig. III-1a. Upon cooling from a temperature at which the 

material is liquid, the equilibrium solidification path of these alloys consists of: 

- Primary precipitation of austenite (alloy 1) or graphite (alloy 2), starting at the liquidus 

temperature and continuing along the corresponding liquidus line as the temperature 

decreases. At any temperature, the fraction of primary phase is given by the lever rule. 

- Eutectic transformation of the remaining liquid (liquidaustenite+graphite) when the 

eutectic temperature, TEUT, is reached. Note that the invariant eutectic of the binary Fe-C 

system is now changed to a monovariant one because of Si addition so that there is a very 

narrow eutectic temperature interval. In practice one defines the eutectic temperature TEUT 

as the upper value of this interval. 

Fig. III-1b shows the change in enthalpy of the two materials during equilibrium solidification. 

Primary precipitation leads to significant latent heat release for alloy 1 while the amount of primary 

graphite is too small for alloy 2 to lead to any thermal effect. The abrupt change at nearly constant 

temperature represents the latent heat of the eutectic transformation. Note that the total 

solidification enthalpy change is nevertheless quite similar for both alloys. 

 

Figure III-1: (a) Fe-C isopleth section of the stable phase diagram at 2.5 wt.% Si with indicated an 
hypo-eutectic (1) and an hyper-eutectic (2) alloy, both alloys having a liquidus of 1200°C [TCFE8]. 

(b) Evolution with temperature of the enthalpy HW (J·g-1) of these alloys for equilibrium 
solidification [TCFE8]. 
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Thermal gradients in a TA cup 

A few works have been devoted to the so-called Fourier thermal analysis of solidification of castings 

which applies to simple cylindrical geometry [FRA97, DIO04]. This analysis allows accounting for 

radial thermal gradient and may be supported by experimental records of the temperature at two 

locations, typically at the centre and near-surface of the casting. Examples of such records are 

reproduced in Fig. III-2 which shows that the temperature difference may be between 10°C and 20°C 

for cylinders cast in sand mould and solidifying within 200-300 seconds as this is the case of TA cups. 

Dioszegi and Svensson [DIO05] carried out a numerical analysis of the solidification of cylinders 5 cm 

in diameter solidifying in 600-700 seconds. Their calculations show a temperature difference of 7°C 

between the surface and the centre of the cylinder all along the eutectic solidification  

  

Figure III-2. Comparison of cooling curves recorded in the centre of a small LGI sand casting and 
closer to the surface. a: 40 mm in diameter cylinder with thermocouples located at the centre and 
at 12 mm from the centre [FRA97] b: small-sized cylinder cast in sand with one thermocouple at 

the centre (TC) and the other at mid-radius (TL) (adapted from [DIO04]). 

The horizontal dashed line in Fig. III-2b shows the austenite liquidus calculated at 1188.9°C with the 

data in Table II-1 for the composition indicated by the authors (3.45 C, 2.02 Si, 0.68 Mn, 0.114 Cr, 

0.259 Cu, wt.%; CE99=4.05 wt.%). The difference in the shape of the two arrests associated to primary 

austenite, at the centre TC and at mid-radius TL, is striking. The solidification front certainly 

decreases the temperature gradient in the liquid, leading eventually to this plateau of the austenite 

liquidus arrest recorded at the centre of the casting. The time interval t which is indicated in Fig. III-

2b will be called time shift later in this chapter.  
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Solidification never takes place at equilibrium because both nucleation and growth of solid phases 

require undercooling, i.e. a driving force. Recording the cooling curves as function of time, denoted 

T(t) in the following, is the most usual way to investigating alloy solidification. In aluminium and cast 

iron industries, this has led to the development of thermal analysis (TA) for melt control. The 

method is based on pouring and solidifying a sample small enough to solidify in a couple of minutes 

but large enough to be representative of casting solidification. Thermal cups as the one shown in Fig. 

III-3a have dimensions of the order of a few centimetres. 

When analysing the thermal records, it is implicitly considered that the temperature of the metal in 

the cup is homogeneous at any time during cooling and solidification. Based on a comparison with 

steels, Stefanescu [STE20] states this may not be the case, meaning that some temperature 

differences must develop in the cup during cooling, see the opposite page.  

   
Figure III-3: (a) schematic of a cup for thermal analysis with the thermocouple in the centre. 

(b) typical TA cooling curve T(t) showing a single thermal arrest, the eutectic plateau. 
 

The TA record in Fig. III-3b shows one single thermal arrest which is associated to eutectic 

solidification without primary deposition. Because such a eutectic structure develops in cast irons by 

nucleation and growth of independent solid entities, the thermal record gives a perfect idea of the 

solidification process at the centre of the cup. In other words, the thermal gradient in the cup may 

only marginally affect such a record. On the contrary, a solidification front moving from the surface 

to the centre of the cup will slow down the cooling at the centre of the cup and will thus affect the 

thermal effects taking place close to the thermocouple junction. It will be seen later that this is 

essential in understanding more complex T(t) records. Note that in the present chapter, no 

distinction is made according to the kind of cast iron, LGI, CGI or SGI, because "reading" of the TA 

records does not depend on it.  
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Heat balance and solidification of a representative volume  

Keeping in mind the limits discussed in the preceding pages, cooling and solidification of 

small castings such as TA cups could be described quite satisfactorily considering the thermal 

gradients are small enough and thus assuming their temperature is homogeneous at any 

time. Hence, the following heat-balance applies: 

dt

dV
H

dt

dT
CVqA

S

p         III-1 

where q is the density of the heat flux exchanged by the metal with the mould (q<0 for usual 

casting conditions), V and A are the volume of the casting and its outer surface, respectively, 

V/A being the thermal modulus,  and pC  are the density and the heat capacity (per unit 

mass) of the metal, respectively, T is the sample temperature, H is the latent heat of 

melting per unit volume, VS is the solidified volume and t is time. Assuming a fully eutectic 

structure consisting of NV eutectic spherical cells having the same radius R at time t, the 

change in the solidified volume writes dVS/dt=NV·R2·dR/dt. It will be further assumed that 

the growth of individual eutectic entities may be written dR/dt=EUT·(TEUT)n, where 

TEUT=TEUT-T is the eutectic undercooling and n is 1 or 2. During the eutectic plateau, the 

temperature is nearly constant leaving: 
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V TRNHqA   or 

n/1

EUT
2

V

EUT
RNH

qA
T


















  III-2 

Hence, increasing heat extraction rate does increase eutectic undercooling while increasing 

the number of eutectic entities by inoculation does decrease it. These opposite actions are 

represented in the plot of Nv versus TEUT in Fig. III-4.  
 
 
 
 
 
Figure III-4. Relation between 
number of eutectic entities, NV, 
and undercooling of the eutectic 

plateau, TEUT, depending on 
heat extraction (red cuves) and 
inoculation (blue lines). 
  
Inverse calculation of solidification kinetics has been carried out for one thermocouple 

[FRE75a, EKP81, BAR97] and two thermocouples [FRA97, BAR97, DIO04, DIO05] 

configurations. As an example, Dioszegi and Svensson [DIO05] considered a eutectic LGI and 

calculated the cooling curves assuming various growth laws for the eutectic cells. They then 

carried out the inverse calculation and noticed that the growth law was better retrieved 

when the two points for inverse calculation are sufficiently close to each other. 
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Consider an hypo-eutectic alloy having the composition pointed with the vertical arrow (1) in Fig. III-

5a. Though unrealistic, it is of interest to first consider the case of equilibrium solidification, further 

assuming there is no thermal gradient in the cup. As the temperature decreases from the pouring 

temperature, the austenite liquidus 
LT  is eventually reached. With further decrease in temperature, 

growth of austenite gives rise to a slope change in the T(t) curve until the eutectic temperature is 

reached where graphite becomes stable. At that temperature and under equilibrium, the stable 

eutectic reaction proceeds at TEUT which is considered as an invariant temperature. The curve 

labelled 1 in Fig. III-5b shows the corresponding temperature evolution with time.  

On an actual record, the formation of austenite leads to a smooth thermal arrest as in Fig. III-2b 

which is noted TLA in Fig. III-5b. With further cooling, austenite continues growing alone until the 

eutectic temperature is reached. However, nucleation of graphite needs a high undercooling (driving 

force), see chapter V, which leads to the fact that the melt undercools significantly below the 

eutectic temperature before the bulk eutectic reaction sets up. During this stage, it is considered that 

austenite continues growing along the metastable extrapolation of the austenite liquidus which is 

shown with an interrupted line in Fig. III-5a. When the number of graphite particles has increased 

enough, the bulk eutectic reaction takes place and the temperature may rise because of rapid latent 

heat release, this is the so-called recalescence, see curve 1’ and 1’’ in Fig. III-5b. The T(t) curve then 

shows a plateau with a maximum temperature being the result of a balance between heat extraction 

rate and latent heat release due to eutectic growth, see opposite page. This balance is directly 

related to the eutectic undercooling  TTT EUTEUT   which is often used to express the driving 

force for eutectic growth. Note that the temperature during this stage must remain below the stable 

eutectic temperature given by the phase diagram. However, this reference temperature may be 

affected by microsegregation, particularly of substitutional elements (Si, Cr, Cu, etc.), see Chapter IX.  

In Fig. III-5b, the two curves labelled 1' and 1'' differ by the temperature at which the bulk eutectic 

reaction takes place, i.e. when the number of graphite nuclei has increased enough. If, instead, the 

number of graphite nuclei and thus of eutectic entities remains too low, the temperature of the 

metal decreases further and eventually falls below the metastable eutectic temperature TEW. Once 

cementite has nucleated, cementite plates and ledeburite rapidly invade the remaining volume as 

their growth rate is high in comparison to any of the graphitic eutectic, see chapter IV. 

  
Figure III-5: (a) solidification path of an hypo-eutectic alloy in the related Fe-C isopleth section;  

(b) cooling curves, T(t), associated with the solidification paths 1 (equilibrium), 1’ and 1’’. 
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Comparison of nucleation and growth rates of graphite and cementite 

Let us consider a hypoeutectic alloy that started solidifying with precipitation of austenite  and 

undercools to the temperature at which the graphite and cementite liquidus intersect each other. 

Fig. III-6 shows schematically the plot of molar Gibbs energy of the liquid, cementite and graphite 

phases in the Fe-C diagram [HIL64, HIL98 page 154] at this particular temperature. Please, note the 

use of molar fraction here. The Gibbs energy curves of the three phases possess a common tangent. 

As there is also an equilibrium between austenite and the undercooled liquid, the common tangent 

between their Gibbs energy curves indicates by how much the curves for graphite and cementite fall 

below it. The driving force for precipitation of cementite cem
mG and graphite gra

mG are shown. It is 

clearly seen that for a liquid composition l
Cx  close to the eutectic composition at 175.0xEUT

C  , 
gra
mG  is 11)x25.0/()x1( l

C
l
C   times larger than cem

mG  indicating nucleation of graphite has a 

higher driving force and thus that nucleation of graphite is much more favoured than that of 

cementite.  

 
Fig. III-6. Molar diagram of the Fe-C system showing the Gibbs energy of the liquid, cementite and 

graphite phases at the temperature T for which the graphite and cementite liquidus intersect. 

Assuming that pro-eutectic graphite and cementite grow as plate with a thickness proportional to the 

critical width of the respective nuclei shows that the ratio of the growth rate of cementite plate, 

cem
growthV , to the growth rate of graphite plate, gra

growthV , is such that: cem
m

gra
m

gra
growth

cem
growth G/GV/V   

[HIL64]. Growth of cementite plate is thus much easier than growth of graphite plate. Similarly, 

assuming diffusion controls the growth of austenite/graphite and of austenite/cementite eutectics, 

growth of ledeburite will be made easier than that of the stable eutectic because much less carbon 

has to redistribute at the solidification front of the metastable eutectic as compared to the stable 

eutectic. 
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The case of hyper-eutectic alloys is illustrated with Fig. III-7. Under equilibrium, precipitation of 

primary graphite starts when the liquidus temperature g
LT  is reached but it does not lead to any 

significant signal on the thermal record as previously emphasized, see Fig. III-1b. The equilibrium 

solidification path first follows the graphite liquidus until the eutectic temperature is reached when a 

simple flat eutectic plateau labelled 2 in Fig. III-7b takes place. 

In reality, both nucleation and growth of graphite are kinetically limited (see Chapters V and IX) so 

that the solidification path during primary deposition lies below the graphite liquidus as indicated 

with the arrows labelled a' and a'' in Fig. III-7a. With decreasing temperature, the solidification path 

will eventually hit the metastable extrapolation of the austenite liquidus somewhere below TEUT. In 

case enough graphite particles nucleated during the primary stage (curve a'), austenite precipitates 

and bulk eutectic solidification takes place without delay leading to a eutectic plateau labelled 2' in 

Fig. III-7b. In the opposite case, i.e. when nucleation of primary graphite particles is insufficient, 

austenite forms as well when the extrapolation of the austenite liquidus is reached but further 

cooling is needed for more graphite particles to nucleate and for the bulk eutectic to take place 

(curve a''). The curve labelled 2'' shows thus an arrest associated with austenite formation (blue 

arrow) and a eutectic plateau with a minimum temperature at lower temperature. During 

recalescence in case 2’’, the temperature can rise above the austenite arrest but should stay below 

TEUT as mentioned above. 

  
Figure III-7. (a) solidification path of an hyper-eutectic alloy in the related Fe-C isopleth section.  

(b) cooling curves, T(t), associated with the solidification paths 2 (equilibrium), 2’ and 2’’. 

Fig. III-7 calls for further remarks. The first is that decreasing the cooling rate or increasing graphite 

nucleation kinetics move the lines labelled “a” to the left, i.e. austenite will appear at increasing 

temperature though remaining below TEUT. A second remark is that a first small thermal arrest 

associated to primary precipitation of graphite has been reported for alloys with CE>4.60 wt.% 

[CHA74, CHA75], with CE calculated as wC+wSi/3. Finally, according to usual practice, curves 2' and 2'' 

would be said characteristic of an eutectic and hypo-eutectic alloy, respectively. This contradiction – 

or inconsistency – is discussed further below.  
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Actual solidification process of small-scale casting  

Mampaey has performed quenching experiments at various times during solidification of cylinders 38 

mm in diameter. He studied LGI and SGI [MAM83] and then CGI [MAM00]. Fig. III-8a illustrates three 

successive steps of the solidification of a LGI with metallographic section of the cylinder on which the 

quenched liquid appears white. It is thus seen that as time evolves a solid shell develops at the outer 

surface, then becomes fully solid and thickens toward the centre of the cylinder. The micrograph in 

Fig. III-8b illustrates the solid shell at intermediate solidification time with the quenched liquid on the 

right side of the image. The fraction solid at the centre of the casting is 20-40% when the shell 

becomes fully solid, the amount depending on the CE level. 

    

Figure III-8. (a) metallographic section of a cylinder 38 mm in diameter 
quenched at various times during solidification of a LGI.  

(b) micrograph of the outer fully solidified shell (Courtesy F. Mampaey). 

Mampaey reported that the mushy zone remains extended for a much longer time in the case of SGI, 

meaning that full solidification of the outer shell occurs while the solid fraction in the centre has 

reached 50-80% depending on CE and inoculation level. Finally, CGI processes as a SGI at the start of 

solidification of the cylinder developing an extended mushy zone, but as an LGI when at about half 

solidification time of the cylinder. 

The austenite undercooling recorded with TA may thus well be associated with the kinetic 

undercooling of the front of austenite dendrites when growing from the surface to the centre of the 

TA cup. This undercooling is due to solute build-up around the austenite dendrite tips. The growth 

rate 
growth

V  of austenite cells and dendrites has been previously theoretically calculated as a 

function of this tip undercooling Ttip for Fe-C-Si alloys [SIR93]. In the dendritic regime, a relation 

between 
growth

V  (µm/s) and Ttip (°C) can be expressed as:   60.2
tipgrowth

T1.01V 
 . For an 

undercooling of 10°C, the time needed for the austenite dendrite front to travel the 18.5 mm from 

the surface of a thermal cup to the thermocouple junction is thus calculated to be 46 s which appears 

to be quite similar to the time shift observed in the experimental records, e.g. Fig. III-2b. A micro-

macroscopic modelling of the solidification of a thermal cup accounting for this phenomenon would 

be highly welcome. 
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In small castings such as thermal cups, austenite dendrites nucleate at the outer surface of the cup 

and then grow inwards to the centre, see opposite page. It is generally accepted that the 

undercooling for austenite nucleation at the cup surface is very small, certainly smaller than the 

temperature difference between the surface and the centre of the cup. While austenite solidification 

proceeds towards the centre of the cup, the latent heat is evacuated through the mushy region, 

slowing down the cooling rate in the inner part of the casting without giving rise to recalescence as 

noticed by Chaudhari et al. [CHA74]. The important feature here is that the solidification front of 

austenite needs time to reach the centre of the cup, a time shift t during which the liquid alloy in 

the centre continues anyway to cool down. This time shift is thought to lead to the TLA plateau 

mentioned above. In the opposite page, it is suggested that it is due to tip undercooling at the 

austenite growth front. In other words, the thermal arrest associated with austenite on a TA curve 

shows an undercooling with respect to the austenite liquidus. Such an undercooling has been 

evidenced and detailed by Heine [HEI71, HEI95] who stressed the fact that it depends on each 

process (foundry practice, including melting atmosphere and pouring temperature). 

The austenite undercooling is of paramount importance for analysing thermal records, in particular 

for their main application to the evaluation of the carbon equivalent. This evaluation is carried out 

during melt preparation on the basis that solidification of cast iron may be described with Fe-C 

isopleth sections. Several expressions for determining TLA have thus been proposed based on series 

of TA records for various carbon and silicon (up to 3 wt.%) contents. The most known of the 

expressions describing the austenite arrest, denoted TLA or TAL depending on the authors, are listed 

in table III-1. It is seen that most of these expressions show a composition dependence expressed as 

CEL=(wC+0.25wSi+0.5wP), where CEL stands for Carbon Equivalent Liquidus. The liquidus expression 

derived in Chapter II is given for comparison in the last line of table III-1 where it is seen that the 

silicon and phosphorus coefficients agree fairly well with the experimental estimates. 

 

Table III-1. Various expressions from the literature for the austenite arrest TLA as function of the 
main elements, carbon and silicon, and for some of them phosphorus and magnesium.  

The carbon equivalent liquidus CEL appears between brackets. 

Remark Equation reference 

Base iron 1609.4-108.72·(wC+0.22·wSi) [CHA74] 

[CHA75] NiMg treated iron 1608.3-107.4·(wC+0.25·wSi-0.69·wMg) 

Base iron 1569.0-97.3·(wC+0.25·wSi) 

[HEI95] Deoxidised iron 1594.4-102.2·(wC+0.25wSi+0.5wP) 

Super-heated iron 1550.0-92.06·(wC+0.25·wSi+0.5·wP) 

 1669-124·(wC+0.25·wSi+0.5·wP) Humphreys, cited in [STE15] 

Heraus – Electronite 1623.6-112.36·(wC+0.25·wSi+0.5·wP) [PERRE] 

Phase diagram 1576.3-97.3·(wC+0.236·wSi+0.59·wP) 
LT  (eq. II-2) 
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How can a TA record show a single eutectic plateau? 

Accepting that the austenite undercooling TTT LLA    is due to growth kinetics of austenite from 

the surface to the centre of the thermal cup has some definite consequences on the reading of TA 

records. Following Heine [HEI95], TLA will be considered as fixed for a given process, leading to an 

effective temperature for austenite development at the centre of the TA cup that is represented with 

the long-dashed line parallel to the austenite liquidus in Fig. III-9. Growth of bulk eutectic needs also 

some undercooling to proceed which will be first set at a value TEUT,1 corresponding to the 

intersection of the graphite liquidus and LAL TT 
 . Consider now the hypoeutectic composition 

defined by this intersection, CEhypo. When the austenite front reaches the centre of the thermal cup, 

graphite may theoretically appear as this composition is on the extrapolation of the graphite liquidus. 

The eutectic reaction can take place although the alloy composition is slightly hypoeutectic and the 

alloy will appear as eutectic on the basis of the thermal record. That slightly hypoeutectic alloys may 

behave as eutectic ones may explain that the CEEUT value at 4.26 wt.% has not been challenged until 

now while it should be 4.34 wt.%. 

If the eutectic undercooling needed for bulk eutectic is larger, say at TEUT,2 in Fig. III-9, alloys with CE 

slightly lower than CEhyper will appear hypoeutectic, though being mildly hypereutectic according to 

the phase diagram. This gives rise to a possible confusion which has been observed a long time ago 

by Chaudhari et al. [CHA74]. These authors noticed that the confusion can take place for CE 

(calculated as wC+0.33wSi) in between 4.26 and 4.60 wt.%.  

 

The above description uses the accepted view 

that graphite may nucleate and grow as soon as 

the temperature is below the graphite liquidus 

corresponding to the carbon content in the 

remaining liquid. It has been recently (as 2020) 

realized that effective growth of graphite needs 

that some undercooling gra
LT has been 

reached, this is described in Chapter IX.  

Figure III-9. The hatched area shows 
 the domain of CE where T(t) curves with a 

eutectic character can be recorded for a bulk 

eutectic undercooling TEUT,1. 

Also, the above schematic would predict that solidification takes place at decreasing temperature for 

CE values increasing from CEEUT to CEhyper. This conclusion goes against the analysis of thermal records 

which show that the austenite undercooling becomes erratic for mildly hypereutectic alloys. This is 

understandable as pre-eutectic austenite dendrites disappear when CE gets higher than CEEUT, so that 

the tip undercooling cancels. 
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Note that the CEL is not exactly the carbon equivalent CE defined in Chapter II. In fact, the difference 

appears in the theoretical expression of CE (eq. II-9) which contains a correction factor for each 

element with respect to the liquidus expression. The whole set of expressions in Table III-1 has been 

drawn in Fig. III-10 as function of the corresponding CEL. It is seen that the difference between the 

experimental relations increases from about 10°C at CEL=4 wt.% to 20°C at CEL=4.30 wt.%. Further, 

as expected and already pointed out by Heine [HEI95], all experimental curves lay below the 

equilibrium austenite liquidus 
LT (bold line) because of austenite undercooling. Apart for the effect 

of process mentioned by Heine, the scatter between these estimates may be due also to the fact that 

the austenite undercooling depends on the TA cup which has been used as an increased cooling rate 

leads to an increased undercooling [CHA74].  

Heine reviewed previous works dating back the 1960s and 1970s showing an effect of the melt 

oxygen content and of superheating. These results have been confirmed by other authors as 

reviewed by Stefanescu [STE15] and show that a deoxidised iron has higher TLA value than a base 

iron, while an iron which has been super-heated before pouring has a lower TLA value. Stefanescu 

[STE15] suggests that the increase in TLA with less oxygen is associated with a decrease of carbon 

activity, which is equivalent to a decrease in carbon content of the melt thus raising the austenite 

liquidus. He also suggests that super-heating decreases the nucleation potential of the melt, but it is 

unsure that there exist efficient nuclei for austenite for explaining this. 

 

 

 

 

 

 

 
 
 

Figure III-10. Variation of the austenite 

liquidus 
LT  and of the austenite arrest 

TLA as function of the carbon equivalent 
liquidus, CEL, as listed in Table III-1. 

 

The consequence of primary austenite undercooling is the possibility of misinterpretation of TA 

curves: a TLA arrest may show up in hyper-eutectic alloys while a single eutectic plateau may be 

observed for both hypo- and hyper-eutectic alloys, see opposite page. 
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Thermal analysis nomenclature 
Cooling records such as the one plotted in Fig. III-11 are used to measure a few characteristic 
temperatures. Not only the names given to these temperatures, but also the way to estimate them, 
vary significantly in the literature. This is due to the fact that not only the cooling curve but also its 
first and second derivatives are used for estimating these temperatures, whence some differences 
between authors. It is thus important to detail the used procedure when reporting thermal analysis 
results. Fig. III-11 illustrates the case of a hypoeutectic alloy which starts solidifying with appearance 
of austenite at a temperature denoted TLA. In most cases, the arrest is not-recalescent and shows up 
on the dT/dt curve by a local maximum which is used to estimate it (downwards black arrow). 
However, this maximum in dT/dt does not always appear and may be replaced by a faint slope 
change whose start may be somewhere in the greyed area. On the plot, it is seen that this may lead 
to an uncertainty of about 5°C on the evaluation of TLA.  

In between the liquidus and the eutectic plateau, the cooling curve shows a curvature change 
corresponding to a minimum on the dT/dt curve (see the downward blue arrow). The corresponding 
temperature is sometimes reported as the temperature for the initiation of the eutectic, TEN. An 
ambiguity however shows up if the alloy is now considered as mildly hypereutectic. The cooling curve 
will present the same shape but the arrest noted TLA should correspond to the formation of austenite 
after primary precipitation of graphite. Thus TLA should now be named TEN. Recent results suggest not 
to do so, i.e. to keep the name TLA for arrest such as that seen in Fig. III-11 even if the alloy is 
hypereutectic [CAS20]. 

In most cases, the eutectic plateau is simply characterized by reading directly on the curves the 
minimum temperature before recalescence, TEU (or Te,min) and maximum temperature after 
recalescence, TER (or Te,max). In case there is no recalescence, these two temperatures merge in one 
single characteristic temperature to be evaluated at the maximum of the dT/dt curve. Finally, the 
temperature for the end of solidification, TSOL, is estimated as corresponding to the minimum of the 
dT/dt curve or better of the second derivative d2T/dt2, see the downward red arrow. 

 
Figure III-11. Example of a TA cooling curve T(t) with the definition of characteristic temperatures. 

The first (black curve) and second (red curve) time derivatives have also been drawn after 
smoothing with a mobile average of 5 points for dT/dt and 10 points for d2T/dt2. 

In strongly hypereutectic alloys, a liquidus temperature corresponding to precipitation of graphite 
and denoted TLG has sometimes been reported. It is observed as a slope change or sometimes an 
arrest with recalescence on the cooling record. 
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Another feature of interest is the effect of the magnesium treatment reported by Chaudhari et al. 

[CHA74]. According to Table III-1, the effect of  0.06 wt.% Mg is to increase by 4.4°C the TLA value for 

an iron with 3.7 wt.% C and 1 wt.% Si. Interestingly enough, this value of 4.4°C is nearly the 

correction of 5°C that Perre suggests for applying his formula to magnesium treated alloys [PERRE]. 

This would mean that Mg increases the austenite liquidus which may be because of the associated 

decrease in oxygen content of the melt. Such a reason would agree with Heine's result that 

deoxidised melts have higher TLA value than a base melt. 

The possibilities of thermal analysis have been extended to predicting graphite shape, effectiveness 

of inoculation and tendency to porosity formation as reviewed several times (e.g. [STE15]). The most 

known extension is the determination of carbon and silicon contents by using two cups, one empty 

that will lead to TLA and another one containing some tellurium leading to the determination of the 

metastable eutectic temperature TEW. The equation proposed by Perre [PERRE] is: 

wC=-6.51-0.0084·TLA+0.0178·TEW      III-3 

From the equation expressing 
LT and the relation TEW=1148-12.5wSi given in Chapter II, one can 

calculate a similar equation from the phase diagram description. This equation writes: 

wC= -5.47-0.0130· 
LT +0.0189·TEW      III-4 

These two relations are compared in Fig. III-12 for two TEW temperatures (1100°C and 1120°C) where 

it is seen they do not differ much in the most usual range of temperature, 1140-1200°C. In one way 

or another, Perre appears to have managed to get rid of austenite undercooling for estimating the 

carbon content. 

 

Figure III-12. Carbon content calculated from austenite liquidus and TEW (two values have been 
used here, 1100°C and 1120°C). Solid lines are for equation derived from the equilibrium phase 

diagram, dotted lines according to Perre [PERRE]. 

On the opposite page is suggested a procedure and the associated nomenclature for analysing 

thermal records. All the relations that have been described and used in this chapter should now be 

reconsidered to deal with high silicon cast irons. 
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Chapter IV – Austenite-graphite and austenite-cementite two-phase growth 

The schematic in Fig. IV-1 shows a two-phase solidification front for the coupled growth of a regular 

eutectic corresponding to the reaction liquid, being  and  the two solid phases formed. In this 

figure, Vgrowth represents the growth rate of the eutectic front which is assumed to move in the 

direction of the arrow. For the solidification to proceed, redistribution of elements must occur in the 

liquid ahead of the front; this is illustrated with the two green curved arrows. Eutectic growth may be 

characterized by the inter-lamellar spacing, , and the average front undercooling, T, expressed 

with respect to the related eutectic temperature. If the fractions of the phases are very different, 

rod-like morphology may be preferred to plate-like one. For regular eutectics, isotropy of the three 

interfacial surface tensions is assumed so that the mechanical equilibrium at the triple junction 

follows the Young's law as exemplified by the set of three black arrows in the figure. Analytical 

models of such regular eutectics have been developed since long, with the work by Jackson and Hunt 

[JAC66] being the reference one. For a comprehensive description see the corresponding chapter in 

Dantzig and Rappaz [DAN09]. 

 

Figure IV-1. Schematic of the solidification front of a perfectly regular two-phase eutectic 
(longitudinal section of a directionally solidified sample). The green arrows show the path 

 for elements entering preferentially in , opposite arrows would show the path for elements 

concentrating in . 

It will be seen in the following that both the stable and metastable eutectics in Fe-C alloys can hardly 

be considered as regular. This is due to the fact that the interfacial tension between the liquid and 

graphite (resp. cementite) is anisotropic leading to the well-known faceted lamellar (resp. plate-like 

or rod-like) morphology. Nonetheless, the majority of the works devoted to eutectic growth of 

austenite and graphite or austenite and cementite refer to the growth laws developed for regular 

eutectics, which are thus first presented before detailing a number of features specific to cast irons. 

In the following, the undercooling T relates either to the stable diagram or to the metastable one. 

liquid
Vgrowth

 



mechanical
equilibriumredistribution
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The coupled zone 

In a binary system with a eutectic point, the coupled zone is defined as the domain in the 

temperature-composition diagram in which the two phases of the eutectic can grow side by side at 

the same rate. In Fig. IV-2a which represents the stable Fe-C phase diagram in the eutectic range, this 

domain is necessarily located in between the extrapolation of the two liquidus lines below TEUT. The 

coupled zone for natural (as opposed to directional) solidification is represented with the hatched 

area and is seen to be skewed towards the graphite side as experimentally known [LAK69]. 

With this coupled zone concept, Lakeland and Hogan described the solidification path of synthetic 

and industrial cast irons, focusing mainly on explaining how austenite dendrites may appear in hyper-

eutectic alloys as in hypo-eutectic ones. Their description has been refined by later works accounting 

for the competition between dendrites (primary phase) and eutectic [HIL78, KUR79], and by 

modelling of microstructure formation in cast irons accounting for nucleation and growth of graphite. 

The coupled zone of the Fe-C system calculated by Kurz and Fisher [KUR79] differs however 

significantly from the one by Fredriksson [FRE75b]. The interest of this latter work is that it is also an 

attempt to introduce interfacial kinetics in the growth of graphite which is eluded in all other 

approaches while it certainly has an impact for faceted phases [LES75].  

It is usual to consider two types of instabilities for directionally solidified (DS) two-phase eutectics 

which are illustrated in Fig. IV-2b. These are: i) dendrites of one of the two phases growing ahead of 

the eutectic front; ii) cellular eutectic growth arising because of the presence of an impurity rejected 

by both solid phases. It is needless to say that both of these instabilities occur in cast irons. In 

directional solidification, the eutectic may be stabilized by the temperature gradient at low growth 

rate (and thus low undercooling) as compared to primary solidification, leading to an extension of 

the coupled zone shown with the light greyed area in Fig. IV-2a. 

 

 
Figure IV-2. a) Schematic of the coupled zone 

in the Fe-C phase diagram for equiaxed 
growth (hatched area) and its extension for 

growth in a temperature gradient  
(light grey area).  

b) the two types of instabilities of a DS two-
phase eutectic (adapted from [KUR79]). 
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Redistribution of the elements in front of the solidification front leads to an average chemical 

undercooling TC which scales as ·V while the averaged curvature undercooling TK is proportional 

to 1/. Assuming no other source of undercooling - such as interfacial reaction - the total average 

undercooling T=TK+TC of the eutectic front writes: 




 growthVb
a

T         (IV-1) 

The evolution of T as function of  at given growth velocity V is illustrated in Fig. IV-3 which shows 

that it exists an extremum inter-lamellar spacing (0) at which T is minimum. According to the so-

called Zener's postulate, this defines the conditions at which the eutectic front grows. Writing that 

  0/T   at this extremum, one gets the following relationships: 

growth

0
Vb

a


         (IV-2) 

growth0 Vba2T         (IV-3) 

0

0

a
2T


          (IV-4) 

where the subscript 0 refers to the extremum condition for velocity Vgrowth, and a and b are material 

dependent constants. 

These relations have been quite successful in the case of non-faceted/non-faceted (regular) binary 

eutectics [KUR79], but much less in the case of faceted/non-faceted (irregular) eutectics such as Al-Si 

and Fe-graphite ones. Moreover, experimental investigations on both regular and irregular eutectics 

in directional solidification experiments have shown that the actual inter-lamellar spacing distributes 

between min and br. min has for long been considered as being equal to 0 but may in fact be 

smaller than this value [AKA04]. br is the maximum inter-lamellar spacing at which branching must 

occur for the coupled growth to be maintained.  

 

 

 

 

 

 

 

Figure IV-3. Evolution at given Vgrowth of the 
average eutectic undercooling as function of 

inter-lamellar spacing .  

 0, min and br are the extremum, minimum 

and maximum values of . 
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Growth of white eutectic 

Fig. IV-4 shows a schematic of a -Fe3C eutectic cell which grows both with a plate-like type with 

cementite plates and a rod-like type called ledeburite. Fig. IV-5 illustrates how such a two-fold 

microstructure may appear on a metallographic section of a mottled cast iron having solidified partly 

in the stable system and partly in the metastable one. Based on metallographic observations, it was 

considered by Hillert and Rao [HIL69] that the so-called edge-wise growth could be described using a 

model for separate plate-like growth (similar to growth of dendrites ahead of the eutectic in Fig. IV-

2b) and the side-wise growth by a eutectic model for coupled growth. These authors however 

noticed that coupled growth gave a better agreement for the inter-plate spacing than their estimate 

for growth controlled by cementite plates leading the eutectic. A comparison of the coupled growth 

prediction to experimental data is shown in Fig. IV-6 where it is seen that the general trend deviates 

anyway from the expected behaviour. This has been attributed by Catalina et al. [CAT03] to a change 

in the growth mode with growth rate. This latter analysis was substantiated with predictions from a 

modified Jackson and Hunt model in which the behaviour of each phase is considered independently, 

though the governing equations are those for coupled growth. 

 
Figure IV-4. Development of the white 

 -Fe3C eutectic showing a plate-like 
structure leaded by cementite and  

a rod-like coupled growth  
growing sidewise [HIL69]. 

 

 

Figure IV-5. Optical micrograph: appearance of 
cementite (white) on the metallographic etched 

section of a mottled CGI. 

In a literature review performed in the early 1990s, Selig could not find information that would 

define which of the two structures would be preferred in relation to growth conditions [SEL94]. 

Analysing directional solidification results, Catalina et al. [CAT03] noticed that the experimental 

information seems showing that the two structures grow at the same undercooling at high growth 

rates (>100 µm/s). This is in contradiction with the information reported by Kante and Leineweber 

[KAN18] who showed the white eutectic consisting mainly of cementite plates at large growth rates. 

This thus seems to be an open subject with some possible importance for surface hardening of cast 

irons. 
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For accounting of this range of inter-lamellar spacings just mentioned, Jones and Kurz [JON81] 

suggested that eutectic growth could be represented by an optimum average inter-lamellar spacing 

opt=· which should lie in between the two extrema, min and br. They further suggested that the 

previous theoretical approach could be used, leading to the following equations: 

Vb

a
0op


        (IV-5) 

  Vba1
1

T 2
op 


        (IV-6) 

 
op

2
op
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1T


         (IV-7) 

The metastable eutectic shows most of the time a mix of a plate-like and of a rod-like morphology, 

see opposite page. Considering a plate-like coupled-growth, Jones and Kurz evaluated the 

parameters a and b to a=0.74 µm·K and b=0.012 K·s·µm-2, and their experimental information could 

be satisfactorily reproduced with =2. This gives V=18·T2 µm·s-1 which is not so far from the value of 

30·T2 µm·s-1 obtained by Hillert and Rao for cooperative growth of austenite and cementite with a 

rod-like geometry. The relation between growth rate and inter-lamellar spacing is illustrated in Fig. 

IV-6 [HIL69]. Both Hillert and Rao [HIL69] and Jones and Kurz [JON81] considered that the austenite-

cementite eutectic behaves much as a regular eutectic based on the observation that the inter-

lamellar spacing does nearly follow equation IV-5. It is however seen in Fig. IV-6 that the agreement 

is not that perfect, with the experimental slope lower than the theoretical one. 

 

Figure IV-6. Evolution of the inter-lamellar spacing of the white eutectic with growth rate as 
measured on directionally solidified samples [HIL69]. 
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Competition of stable (grey) and metastable (white) solidification 

It has been described in the Chapter III that nucleation of graphite is easier than that of cementite, 

while growth of cementite or ledeburite is faster than that of graphite. This has important 

consequence on the formation of the stable and metastable microstructures in a casting as described 

by Hillert and Rao [HIL69]. If solidification started grey, it will proceed upon cooling in this way until a 

cementite nucleus is formed; when this happens, white solidification then proceeds very rapidly. 

Conversely, if the eutectic solidification has started in the metastable system, it will change to stable 

eutectic when the cooling rate is decreased enough and that a graphite nucleus has appeared. These 

transitions are schematized in Fig. IV-7 where is plotted the growth temperature versus growth rate 

for stable (blue curve) and metastable (red curve) eutectics. The gap in growth rate between these 

two transitions defines a hysteresis and a range of cooling rates where both structures could coexist. 

This is important for understanding the microstructure seen in the wedge castings dedicated to 

investigate the chill tendency of cast irons. This also explains the so-called inverse greyness when a 

casting that is expected to solidify fully white presents a grey case and a white core [HIL69]. 

 

Fig. IV-8 shows the various temperature records that obtained from a eutectic cast iron showing a 

fully grey structure (top), a fully white structure (middle) and a mottled structure (bottom). The 

recalescence associated to the formation of white eutectic may be much less pronounced than 

shown in these schematics which were recorded in wedge castings. In particular, growth of white 

eutectic in thermal cups shows little recalescence if any. It should be emphasized that 

microsegregation plays also an important role on the grey to white transition: negative segregation 

of silicon during stable solidification decreases the stable temperature and increases the metastable 

temperature corresponding to the remaining liquid, see Chapter IX. 
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When studied by directional solidification, the inter-lamellar spacing of the austenite-graphite 

eutectic was observed to decrease with an increase in growth rate as expected. However, Fig. IV-9 

shows that there is a twofold distribution that corresponds to the change from lamellar to 

undercooled graphite. In the graph, the upper line relates to flake graphite while the lower line 

corresponds to undercooled graphite [HIL69], and it is seen that the data by Jones and Kurz [JON80, 

JON81] spans the interval between these two lines. This transition can be either smooth [HIL69] or 

quite sharp [NIE75]. In the case of a smooth transition, there is a range of growth rates in which both 

structures coexist, with the undercooled graphite developing in the grooves between the cells with 

flake graphite, see the micrograph in Fig. IV-9. By quenching during directional solidification, Park 

and Verhoeven [PAR96] could evaluate at about 10°C the temperature difference between the fronts 

of these two eutectics growing side by side. 

 

 
Figure IV-9. Change of the inter-

lamellar spacing of the 
austenite/graphite eutectic. Dots 
and crosses are from [HIL69] and 

squares from [JON80, JON81]. The 
micrograph illustrates lamellar and 

undercooled graphite forms 
growing side by side in a 

directionally solidified sample 
[HIL69].  

 

In castings, the eutectic cells are most generally consisting of one given type of flake graphite, 

lamellar or undercooled. However, change in graphite shape can occur both ways; Fig. IV-10 shows a 

case where solidification started at high undercooling with undercooled graphite which switched to 

lamellar graphite upon further growth and recalescence. 

  

 
 
 
 
 

Figure IV-10. Eutectic cell showing undercooled 
graphite in the centre and much coarser lamellar 
graphite at the periphery [FRE75a]. Fredriksson 
and Wetterfall emphasized the sharpness of the 

microstructure change. 
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Effect of alloying elements 

The effect of additional elements in the melt, e.g. silicon, on the inter-lamellar spacing of graphite 

appears to be very limited. This can be rationalised by recognising that: i) graphite growth is related 

to the diffusion of carbon towards the graphite tips that may not be greatly affected by the alloying 

elements at the level where they are present; ii) the solubility of most alloying elements in austenite 

is sufficiently high that they only slightly affect its growth. However, these elements can change 

interfacial energies and thus alter the growth characteristics to some extent. More importantly, 

elements such as sulphur have very low solubility in both austenite and graphite, and their 

redistribution in the liquid can significantly alter the growth temperature. In a early work, Lux and 

Kurz [LUX69a] have shown this with the help of a graph (T,V) schematically reproduced in Figure IV-

11 and showing the evolution of the temperature of the solidification front with the growth rate. 

 

 

 

 

 

 

Figure IV-11. Growth temperature versus 
growth rate as function of the sulphur level 

with graphite shapes indicated 
(adapted from Lux and Kurz [LUX69a]).  

 

Over the years, there have been a few attempts to extend the analytical two-phase eutectic growth 

model of Jackson and Hunt [JAC66] to ternary alloys [DON68, HIL71, MAC80, WIL05] or multi-

component alloys [CAT15]. This latter work was applied specifically to cast iron and more particularly 

to the effect of silicon. As expected, the effect on the lamellar spacing is small and the agreement for 

the growth undercooling is satisfactory only for growth rates below 10 µm·s-1. It should be 

emphasized that the model was closed up assuming an isothermal eutectic front which cannot 

represent growth of lamellar graphite eutectic. To sum up, the analytical models for eutectic growth 

developed up to now are still unable to give answers to the question of the transition between 

lamellar and undercooled graphite and to give proper and accurate estimates of the effect of growth 

rate on both lamellar spacing and growth undercooling. Phase field modelling has been used 

successfully to describe the morphological transitions associated to modification of eutectic in Al-Si 

alloys [EIK15] but this has not yet been extended to the description of graphite/austenite eutectic in 

cast irons. 

Solute redistribution can definitely affect growth conditions when microsegregation develops and 

leads to a change in the mean composition of the remaining liquid. This changes the reference 

eutectic temperature and thus the driving force for growth, and has been considered in some 

modelling approaches [FRE86, FRA95]. This applies to casting and not to directional solidification 

where a steady-state composition field is rapidly established ahead of the eutectic front. 
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Hillert and Rao considered that the eutectic with flake graphite is loosely coupled, with graphite 

protruding in front of austenite, when the eutectic with undercooled graphite is much more strongly 

coupled and present a planar front. This is illustrated with Fig. IV-12. For this latter case, a theoretical 

analysis gave Vgrowth=5·T2 µm·s-1 and the inter-lamellar spacing was predicted at half of the observed 

values [HIL69]. The authors concluded that growth of lamellar graphite is not entirely controlled by 

diffusion. Jones and Kurz [JON81] considered the eutectic with flake-type graphite is an irregular one 

in which the branching process of the faceted phase is essential. Using the same model than above 

(equations IV-5 to IV-7), they obtained a=2.3 µm·K and b=0.080 K·s·µm-2 and  varying in between 2 

and 10 depending on the experimental data from the literature that were considered. This gives a 

change from Vgrowth=0.9·T2 µm·s-1 to Vgrowth=0.05·T2 µm·s-1 when  changes from 2 to 10. 

 

 

 

Figure IV-12. Longitudinal section of a 
quenched directionally solidified sample 

showing a composite solidification front with 
the quenched liquid at the upper part of the 

image. There is a sharp transition of the 
structure, with fine graphite on the left and 

coarse flake graphite on the right. On the left, 
the eutectic is strongly coupled while on the 
right this is not the case with graphite flakes 

protruding ahead of the two-phase front. 
[NIE75].

Precise measurement of eutectic undercooling in directional solidification experiments is quite 

difficult and shows large scattering [LUX69a]. Jones and Kurz [JON80] challenged this and designed a 

special experimental procedure to decrease the uncertainty on the eutectic undercooling estimate to 

a few tenths of degree. This was done on binary Fe-C alloys while we are still in need of such precise 

experiments to validate the results of the relationships used when analysing solidification of cast 

irons. 

A somehow simpler method to estimate the relation between growth undercooling and growth rate 

consists to record the temperature-time evolution in a small casting that shows a clear eutectic 

plateau. From the measured eutectic undercooling and the number of eutectic colonies evaluated on 

a metallographic section, an average growth rate may be estimated and related to the undercooling. 

Lux and Kurz [LUX69a] reported a large number of data obtained in this way on Fe-C-Si alloys with 

about 2 wt.% Si. The whole set of data seems at first as scattered as for directional solidification, but 

the authors found a clear effect of the sulphur content which explains much of the scatter. 
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Competition between the various forms of flake graphite 

It has been seen that there is a transition between lamellar and undercooled graphite as the growth 

rate is increased in directional solidification experiments. Note that, similarly, the same transition 

appears when the undercooling for eutectic growth is increased by increasing the cooling rate as in 

casting. The very detailed directional solidification experiments performed by Nieswaag and Zuithoff 

[NIE75] allow showing that decreasing the sulphur content of synthetic Fe-C-(Si) alloys increases the 

growth rate at which this transition occurs. This is illustrated with the two lower curves in Fig. IV-13 

where it is assumed that the structure growing is the one presenting the lowest undercooling. 

In synthetic Fe-C-(Si)-O alloys, there is similarly a transition from plate-like to coral graphite when the 

growth rate is increased, see the two upper curves in Fig. IV-13. And again, it is noteworthy that 

decreasing the amount of oxygen does increase the critical growth rate for the transition. As these 

transitions are associated with the branching capability of flake graphite, addition of low amounts of 

magnesium to the melts that first decreases the activity of oxygen and sulphur should lead to coarser 

flakes. This is effectively what is seen in compacted graphite irons [LAC18, LAC19]. 

 
Figure IV-13. Schematic showing the change of eutectic undercooling T versus growth rate for the 

four types of flake graphite coupled eutectics [LAC19]. 
a: plate-like, b: coral, c: lamellar and d: undercooled graphite. 

With permission from Elsevier 
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Experimental data shows that the eutectic growth undercooling of flake graphite eutectic is very 

similar in directional solidification and casting experiments [LUX69a]. This certainly means that the 

expected effect of the temperature gradient in directional solidification [PER13] could not be 

detected because of the experimental scattering. Hillert and Rao [HIL69] showed that theoretical 

predictions are away from experimental data, with separate growth of graphite (leading phase) 

giving by far too high undercoolings while cooperative growth predicted too low undercoolings. Part 

of the answer may be that growth is not only controlled by diffusion and capillarity, but also by 

interfacial kinetics. Accounting for this was worked out independently a long time ago by Fredriksson 

[FRE75b] and Lesoult and Turpin [LES75]. Fredriksson considered that the change of the interfacial 

kinetics constant needed to reproduce experimental information was related to change in the 

sulphur content of the alloys. This remains an open area in the case of cast irons while some progress 

has been made by means of phase field simulations in the case of Al-Si alloys. 

As indicated above, Jones and Kurz [JON81] evaluated the constants for flake graphite growth in eqs. 

IV-5 as a=2.3 μm·K and b=0.080 K·s·μm-2. This gave =3.9 but led to too low undercoolings. Magnin 

and Kurz [MAG87] corrected these constants to a=4.93 μm·K and b=0.146 K·s·μm-2 with which  was 

nearly unchanged and the undercooling predicted to agree with experimental values [JON80]. For 

equiaxed solidification of a Fe-C-Si eutectic alloy with 2.5 wt.% Si, Zou Jie found  should be set to 6.5 

[ZOU89]. Fig. IV-14 shows with dotted lines the evolution of the growth undercooling as function of 

the growth rate calculated with the corrected values of a and b and  set to 3.9 [JON80] and 6.5 

[ZOU89]. Solid lines are fits to experimental results by Lux and Kurz [LUX69a] for alloys with S content 

lower than 0.001 wt.% and by Throgrimsson [THO86] for cast iron with either lamellar or 

undercooled graphite. All curves show a similar behaviour except that for lamellar graphite. Because 

Thorgrimsson reported that the transition from lamellar to undercooled graphite occurs at an 

undercooling of 10 K, the curve for lamellar growth has not been drawn to high undercooling. From 

this figure, it is guessed that most of the experimental results did in fact relate to undercooled 

graphite. This conclusion is sustained by the fact that Jones and Kurz [JON81] noticed the presence of 

“degenerate” flakes in their directional experiments for undercooling higher than 10°C. 

 

 
 
 
 

Figure IV-14. Change in undercooling (°C) with 
growth rate (µm·s-1). The following equations 

were used: 

T=3.4·(Vgrowth)0.5 [JON80] 

T=5.4·(Vgrowth)0.5 [ZOU89] 

Vgrowth=0.37·T1.43 [LUX69a] 

V=0.48·(T)0.66 µm·s-1  
for lamellar graphite [THO86]  

V=0.022·(T)2 µm·s-1  
for undercooled graphite [THO86]. 
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An unresolved paradox 

It has been stated that the change between flake and undercooled graphite consists in increased 

branching of the latter with respect to the former. However, it is also admitted that the coupling of 

graphite and austenite is much tighter in undercooled graphite, meaning that it should be better 

described with a  parameter lower than that used for flake graphite. If this were so, Fig. IV-15 shows 

that the undercooling of the eutectic with undercooled graphite should then be lower than that of 

flake graphite eutectic when this is the opposite that is experimentally reported. 

One possible explanation is that the temperature of the growth front is decreased by rejection of S 

and O ahead of the eutectic growth front. In this case and at given sample temperature, the 

reference eutectic temperature and undercooling are expected to both decrease. The positioning of 

compacted graphite in Fig. IV-15 would then be the correct one. 

 
Figure IV-15. Positioning of lamellar and compacted graphite in the T() graph. The possible 

location of undercooled graphite on the basis of branching is located. The theoretical relation has 
been drawn based on eq. IV-6 with a=2.3 μm·K and b=0.080 K·s·μm-2. 

One further interesting thing is the abrupt transition from lamellar to undercooled graphite, and the 

reverse transition evidenced in Fig. IV-10. This is thought to be due to the fact that off-plane 

branching becomes active only when some undercooling with respect to the graphite liquidus has 

been reached, and disappears when the undercooling becomes lower than this critical value. 

However, the above discussion suggests this is not all, and it seems we lack at present of a growth 

model that could account for redistribution of a third element ahead of the front of an irregular 

eutectic. 
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In addition to undercooled and lamellar graphite, there are other forms of graphite growing coupled 

with austenite which are derived from flake graphite. In pure alloys, i.e. with low levels of oxygen and 

sulphur, there are plate-like and coral graphite which are only of theoretical interest. Another form is 

compacted graphite (CG) which is finding its way as industrial alloy for more and more applications. 

Fig. IV-16 compares the microstructure of lamellar and compacted graphite alloys which have been 

solidified in the same conditions, namely a standard thermal cup. It is seen that compacted graphite 

is much coarser than lamellar graphite while it has been shown that they have the same kind of 3D 

structure, i.e. cells with interconnected flakes of graphite. This suggests that this difference stems in 

the capability of branching of graphite which appears to be very much limited in the case of 

compacted graphite. This may be expressed by guessing that the value of  for describing compacted 

graphite eutectic growth may be much higher than the one for lamellar graphite eutectic, leading to 

much higher undercoolings, see opposite page. 

 

        

Figure IV-16. Comparison of lamellar (a) and compacted (b) graphite in alloys solidified in a TA cup. 

Fig. IV-17 shows a photograph of a 3D 

reconstruction of the graphite of a compacted 

graphite cell. It is seen that there are round or 

hemispherical bumps both on the lateral 

surfaces of the flakes and at the extremities 

which show that some free magnesium was 

present in the melt after the compaction 

treatment. As suggested by Stefanescu et al. 

[STE16], it is quite possible that these bumps 

grow by diffusion of carbon through austenite 

for those at the outer boundary of the CG 

cells, after graphite tips lost contact with the 

liquid. Growth of the bumps seen on the 

lateral faces of the flakes could possibly 

proceed by solid-state diffusion of carbon as 

well. 

 
Figure IV-17. Photograph of a 3D printing  

of graphite in a compacted graphite eutectic 
cell. The model was built from a tomographic 

study [CHU15]. 
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Austenite envelop and spheroidal graphite degeneracy  

There have been a few works on the formation of the austenite envelop which is most often seen as 
being so rapid that it can be considered as instantaneous. A first striking feature is that it seems 
accepted that spheroids do not get encapsulated before having reached a critical diameter of 7-17 
microns, depending on the authors. Wetterfal et al. [WET72] suggested this is related to the time 
needed by the spheroids to enter into contact with the nearest austenite dendrite, but there seems 
to be some other fundamental reason. By optical observations of several patches of austenite around 
graphite spheroids in a quenched samples, it has been suggested that several austenite grains form 
the envelop. However, a phase field calculation has shown that the austenite may adopt some kind 
of dendritic shape when encapsulating the spheroid. Fig. IV-18 suggests that these arms could be the 
patches observed on a cross-section. 

 

It is further seen by phase field simulation that irregularities can appear at the surface of the 
spheroids during encapsulation [EIK20a]. These morphological instabilities can thus form at early 
stage during the eutectic reaction and seem to develop further as the transformation proceeds. By X-
ray synchrotron tomography, it has been shown that this is a rule: graphite spheroids are less and 
less regular as they grow larger [AZE18]. It is clear that inhomogeneous distribution of graphite 
within the austenite grains will lead to uneven growth of the spheroids and will favour such 
irregularities. It is however unclear if these irregularities grow only by solid-state diffusion or if they 
can also form a coupled eutectic with austenite which then grows away from the spheroids.  

In the process of graphite precipitation, the molar volume of carbon increases dramatically. Once 
graphite precipitates are encapsulated by austenite, this latter is pushed away which leads to the 
well-known expansion of SGI which occurs during solidification as well as during final cooling. In this 
process, the crystallographic arrangement of the fcc matrix, i.e. the network of substitutional atoms 
(Fe, Si, Cu, Mn, etc.) is preserved, though some dislocations may appear. In mechanics, this may be 
called advection and Hillert rationalized it by stating that the substitutional site fraction is preserved. 
Interstitial atoms (C, N, O) are not affected by this as nicely shown in Fig. IV-19 [EIK20a].  
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Contrary to all of the forms of graphite described above, spheroidal graphite is said to grow with 

austenite in an uncoupled way. When the temperature of the material falls below TEUT, and once the 

spheroids have reached a certain size, see opposite page, they get enveloped by austenite. Further 

growth of the graphite spheroids proceeds by diffusion of carbon from the liquid to graphite, through 

the austenite envelop. As this envelop itself thickens, the growth rate of the individual eutectic 

entities decreases, see Chapter IX. This mechanism has been first quantified by Wetterfal et al. 

[WET72] who noticed the similarity with solid-state graphitisation of white or mottled cast iron. In 

their treatment, these authors assumed that growth of graphite is controlled by diffusion and this 

assumption has been kept in all the models developed since then. As a matter of fact, this 

assumption appears quite satisfactory, which means that the actual mechanism of carbon 

attachment onto the graphite spheroids does not affect the kinetics of the eutectic reaction. 

The approach of Wetterefal et al. considered a single eutectic entity. This approach has been 

extended to several of them and the most comprehensive model also takes into account non-

eutectic austenite through appropriate mass balances [LES98], see Fig. IV-20. This is an important 

feature because austenite dendrites are observed or easily revealed in eutectic and hyper-eutectic 

cast irons, and not only in hypo-eutectic cast irons. At a certain stage of solidification, austenite 

forms large grains which contain several spheroids [RIV02]. The eutectic entities are therefore less 

well defined and the distance between the remaining liquid and the spheroids may have a wide 

distribution. It is thought that this may lead to irregular spheroids [AZE18]. A modification of the 

model shown in Fig. IV-20 has been developed to account for this distribution [BJE18]. 

      
Figure IV-20. Schematic of the representative volume for describing solidification of SGI (a) and 

close-up on the constituents and interfaces that are accounted for in the mass balances and 
kinetics equations (b). See Chapter IX for details. 
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Chapter V - Nucleation of graphite – Inoculation 

Refining of casting's grain by inoculation is always necessary because part of the mechanical 

performance of shaped materials depends on grain size. Also, inoculation in LGI and SGI castings is 

crucial to avoiding mottled structure when reducing casting wall thickness. 

Classical nucleation theory gives an essential guide in search of inoculation performance. However, 

the details of the mechanisms involved are perhaps too complex to be quantitatively elucidated with 

the relatively simple experimental techniques used for inoculation testing, considering both the high 

speed and small scale that are related to nucleation. 

Among grey iron and spheroidal graphite iron, the latter is however an excellent experimental model 

to study inoculation phenomena. It is a unique case in terms of microstructural evidence related to 

the process of heterogeneous nucleation of graphite. In such a type of iron, it is relatively easy to find 

substrates that can be related to the nucleation of graphite spheroids. Data related mainly to the 

graphite spheroids inoculation is thus used through this chapter because it allows obtaining 

information about the general trends of the graphite inoculation. 

Classical nucleation theory 

The framework given by the classical nucleation theory is useful to look for further understanding 

and inoculation improvement and also to organise acquired knowledge. This theory is based on four 

key concepts: 

a. Thermodynamic equilibrium of small solid particles inside the liquid. 

b. Probability of existence of small solid particles, named nuclei that can appear and then 
grow. 

d. Kinetics of adhesion of atoms from the metastable phase – here the liquid - to the nuclei. 

e. Nucleation of the stable phase on other solid phases or substrates. 

The high surface/volume ratio inherent in the formation of a small volume of solid inside a 

metastable phase implies the need to consider interfacial energy in the total balance of its free 

energy, Gr. The energy balance describing homogeneous nucleation of a small sphere is thus given 

by: 

∆𝐺𝑟 = −
4

3
𝜋𝑟3∆𝐺𝑚 + 4𝜋𝑟2𝜎        V-1 

where is r the radius of the sphere, Gm is the standard energy of melting per volume and  is the 

solid/liquid interface energy. is always positive and Gm is positive at temperatures below the 

melting temperature, Tm, of pure elements or below the liquidus temperature of alloys. In the 

present case, this is the graphite liquidus which is to be considered. The value of the critical radius, 

r*, beyond which Gr begins to decrease with the growth of the sphere, is obtained from the 

differentiation of equation V.1, thus obtaining the so-called Thompson's equation: 

𝑟∗ =
2𝜎

∆𝐺𝑚
;   when     

d∆Gr

dr
= 0    V-2 
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Capillarity effect on phase transformation 

Interfacial energy is essential for phase transformation in metals and metallic alloys when the scale 

of phenomena is small, below a micron or so. Several phenomena are linked with capillarity: Ostwald 

ripening, curvature effect on nucleation and growth. Each of them constitutes a different application 

of the Gibbs-Thomson equation. For example, Eq. V-4 gives the relationship between the radius of a 

solid sphere with T, at the equilibrium of driving forces for solidification and melting back [KUR98]. 

Inserting typical values of pure metals in Eq. V-4, for a sphere with 1 m or 0.01m radius, T is 

under 1 K and around 40 K respectively. That shows that capillarity becomes important below the 

scale of a micron. The need to provide interfacial energy to nucleation of solid could also be 

considered as a free energy barrier to nucleus formation.  

 

Ostwald ripening is a mechanism frequently considered for inoculation fading. As schematised in Fig. 

V-2, capillarity affects the solute concentration at interphase matrix-particles: the concentration 

diminishes when the particle size shrinks. That leads to a gradient of chemical potential or solute 

concentration that drives solute transport from small particles to the large ones. This process 

reduces the number of particles and increases the size of the remaining ones. Ostwald ripening is 

more critical for particles under 1 micron. 

 

Note:  G and H in eqs. V-1 and V-3 should be given per mole to be strictly conservative. To avoid 

the additional terms this implies, their expression per volume has been adopted here. 

 

∆   
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Figure V-1. Free energy barrier, 

G*, to nucleus formation at a 

given T. G is the free energy,  

G
  

and G
m

 are the interfacial 

free energy and standard energy 

of melting per volume, 

respectively. Solid line is the sum 

ofG
  

and G
m
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Figure V-2. The effect of 

interfacial energy on the free 

energy of small particles. G
l 
is 

the molar free energy of liquid 

and  G
s,r 

is the molar free 

energy of the solid of an “r” 

size particle. 
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Considering the following approximation valid close to Tm: 

 ∆𝐺𝑚 = ∆𝐻𝑚 −
𝑇  ∆𝐻𝑚

𝑇𝑚
 V-3 

where Hm is the enthalpy of melting per volume, then, 

 𝑟∗ =
2𝜎𝑇𝑀
∆𝐻𝑚 

 
 

∆T
          V-4 

and 

 ∆𝐺𝑟
∗ =

  𝜋𝜎3(𝑇𝑚)2 

 (∆𝐻𝑚)2
 

 

∆𝑇2
 V-5 

where T=Tm-T is the undercooling corresponding to the formation of the solid phase and ∆𝐺𝑟
∗ the 

free energy of the nucleus of size r*. While eq. V-4 shows that 𝑟∗ diminishes when T increases, 
another condition is needed to establish if nuclei of size r* could appear in a liquid phase and further 

grow at the given T. This condition is obtained using the concept of discontinus phase fluctuations 
from Volmer and Weber, also simply called structural fluctuations [CIN00]. The number N* of nuclei 
of size r* with the structure of the solid in equilibrium inside a metastable liquid, is given by: 

where N is the total number of atoms in the system and k is the Boltzmann's constant. It is essential 

to note in eq. V-6 that N* exponentially increases when G* decreases, i.e., when T increases  

The subsequent probability, Js, that an atom jumps to the solid across the phase boundary has been 

expressed as a function of activation energy for atom diffusion in the liquid, Gd, and a factor, A, that 
depends on geometrical considerations about atoms of a metastable phase in contact with a nucleus. 

 𝐽𝑠 = 𝐴  exp (−
∆G𝑑

𝑘𝑇
) V-7 

Then, the nucleation rate, I, is expressed as the product of N* and Js: 

 
I = 𝐴  exp (−

∆G𝑑

𝑘𝑇
)  N  exp (− 

∆𝐺𝑟
∗

kT
) 

V-8 

For nucleation of pure metal, the first three terms in the right side of eq. V-8 are roughly constant, 
then: 

 
𝐼 = 𝐼𝑜 exp (−

∆𝐺𝑟
∗

𝑘𝑇
) 

V-9 

Using values for pure metals, Io takes a value about 1039 m-3s-1. 

 𝑁∗ =  N exp (−∆𝐺𝑟
∗   

 

𝑘𝑇
) ;    or 𝑁∗ = 𝑁𝑒𝑥𝑝 (−

  𝜋𝜎 3 (𝑇𝑚)2 

 (∆𝐻𝑚)2 
 

 

∆𝑇2
  

 

𝑘𝑇
) V-6 
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Looking for advances in nucleation theory 

The classical theory of nucleation is based on the theory of structural fluctuations of Volmer and 

Weber. These fluctuations lead to the presence of embryos of the solid phase inside the liquid phase. 

Fig. V-3 shows a schematic of their number distribution, Nr, at a given undercooling, according to eq. 

V-6. Small embryos are numerous while large ones are scarce. Homogenous nucleation occurs when 

there is some reasonable probability for the existence of an embryo of the critical radius. Turnbull 

proposed a model for the growth of such an embryo, that then becomes a nucleus. Fig. V-4, shows a 

schematic of the assumed growth mechanism which determines the term Js in the nucleation 

equation V-7. 

     

This classical theory of nucleation was developed for pure metals. In cast irons, austenite is certainly 

close enough to a pure metal but this may not be the case of graphite considering the two following 

aspects: 

1. The possibility of graphite germs to be surrounded by carbon atoms. According to Cini et al. 

[CIN00] both structural and concentration fluctuations are needed to nucleate solid embryos in liquid 

alloys. Both fluctuation types have been so far implicity considered as simultaneous events while the 

authors propose a model for describing each of them [CIN00]. This kind of theory is developing in 

other fields with the help of numerical simulation, see Chakraborty et al. [CHA13] and Wallace et al. 

[WAL13] for example. Within this framework, it is possible of having concentration fluctuations 

providing suitable conditions to get structural nucleation. That means that, in a solution, by the 

effect of compositional fluctuations, more atoms are around the embryo of solid and then enhance 

the jump probability and thus the Js value.  

2. Considering again graphite, it should be reminded this is a faceted phase. Hence, only a small part 

of the precipitated volume provides sites for additional atoms to stick on. The resulting effect in the 

case of graphite nucleation in cast iron has not yet been investigated. 

rN

𝑁𝑟 = 𝑁 exp( −
𝛥 𝑟
𝑘 

) 

rG

r 

Figure V-3. Scheme of the number of 

embryos as a function of their size r. 

  

* 

Nucleus, 

r* 

The atoms that could 

jump to the nucleus 

Figure V-4. Representation graphic of 

the addition of atoms to solid  from 

liquid. 
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A consequence of Eq. V-9 is that "𝐼" increases suddenly when some value of T or T is reached. 

Considering the above value of Io, a nucleation rate of 106 m-3s-1 (i.e., one nucleus per cm3 and per 

second) is obtained when G* ~7 𝑘𝑇. The "𝐼" value increases further and becomes very high within 

a small temperature interval, see Fig. V-5.  

Homogeneous nucleation, as described above, could be observed provided the original melt is free 

from any exogenous substrate. Turnbull and Cech [TUR50a] reported values of T/Tm = 0.18 for the 

maximal solidification undercooling in different pure metals. With an improved experimental 

technique, Perepezko [PER84] reported even higher T/Tm values. These aspects concerning 

homogeneous crystal nucleation have been more recently extended to refractory metals by Vinet et 

al. [VIN02]. The high T/Tm values which have been achieved mean that homogeneous nucleation 

needs a high driving force to take place. 

 

Nucleation undercooling or driving force for nucleation could be considerably decreased by the 

effect of nucleation catalysis by a substrate, this is the so-called heterogenous nucleation. From a 

theoretical point of view, this catalytic effect is a function of the contact angle or wetting angle 

between the liquid and the substrate (Volmer cited by Turnbull [TUR50b]). The volume of the nucleus 

needed to overcome the energy barrier is a part f() of the sphere of critical radius (see Fig. V-10), 

with: 

 
f(θ) =

(2 + cosθ)( − cosθ)2

4
 

V-10 

The value of the free energy of the nucleus over the substrate is given as ∆𝐺ℎ𝑒𝑡
∗  = f()  ∆𝐺∗. Hence, 

small values of  enhance nucleation kinetics which is now written: 

 
I = 𝐼𝑜 exp(−

∆𝐺∗

𝑘𝑇
 
(2 + 𝑐𝑜𝑠𝜃)( − 𝑐𝑜𝑠𝜃)2

4
)     

V-11 

With the help of proper substrates, the nucleation undercooling for important industrial metals as 

iron and aluminium could be reduced to values of a few degrees. 

0.18 

m
-3

s
-1
 

0 

 −  𝑚

 𝑚
 

Figure V-5. Homogeneous nucleation rate as a function of undercooling 

normalized with the melting temperature 
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Heterogeneous nucleation catalysis 

A substrate diminishes the free energy for 

nucleation by an amount following Eq. V-10 

proposed by Volmer (cited by Turnbull [TUR50b]). 

A structural fluctuation having a size smaller than 

r* could reach this critical size by the wetting 

effect, providing the value of  is suitable, see Fig. 

V-6. In pure metals, heterogeneous nucleation 

consumes all the substrates that can be activated 

at given undercooling, see Fig. V-7. This 

consumption of substrates was pointed out by 

Turnbull on a time basis [TUR50b].  

 

 

Within these lines, Hunt modeled the nucleation process over a given kind of substrates by 

simplifying Eq. V-11 to: 

I = (𝑁𝑜 −𝑁)   020  exp (−
𝑢

∆𝑇2)          V-12 

where N0 is the initial number of substrates on a volume basis, N is the number the activated 

substrates, u is a constant depending on the substrates, and T is the undercooling. Calculations with 

Eq. V-12 show that heterogeneous nucleation takes place in small temperature interval, see Fig. V-

7a. When an industrial melt is in a transitory step regarding the liquid-substrates equilibrium, it could 

be expected that substrates with different  are present in the melt. Accordingly, they can be 

activated as nuclei at different undercoolings as schematised in Fig. V-7b. 

 

It is finally worth mentioning that, in the case of alloys, it has been demonstrated that the solute 

build-up around growing grains affects nucleation of the primary phase by decreasing the actual melt 

undercooling.  

r* 

 

substrate 

solid 

liquid 

r<r* 

Figure V-6. Heterogeneous nucleation over 

a substrate for a given value. 
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Inoculation as related to nucleation theory 

Depending on the material, the inoculation process could present different difficulties. On the one 

hand, materials with rapid growth kinetics could hardly be grain refined. As a matter of fact, the high 

rate of heat release during solidification of such materials leads quickly to recalescence. In this way, 

further activation of new sites of nucleation is hindered. Pure metals with non-faceted growth are 

extreme examples of such materials. Alloying these pure metals reduces the growth kinetics of the 

major phase, but this kinetics generally remains so high that grain refining keeps limited. Some 

research has been done to understand austenite nucleation in cast irons where austenite grains size 

is on the order of a few mm [DIO07, ELM10, MIY98]. The maximum undercooling for austenite 

nucleation on samples melted and cooled in the same crucible was observed to be about 14°C 

[MIY98]. Such a value is well within the range discussed in relation with Chapter III. 

The use of the characteristic temperature of austenite solidification to control the carbon equivalent, 

CE, in cast iron assumes that austenite solidification, i.e., nucleation and growth of austenite in the 

thermal cup, is relatively unchanged by variations in the melt processing other than the variations of 

carbon equivalent. 

The addition of tellurium in thermal cups is used to allow the estimations of Si content, but also it 

increases the precision of thermal analysis in the control of CE. Because the cost to these thermal 

cups, small foundries could tend to use standard cups without tellurium, with thus some loss in the 

CE control.  

Contrary to austenite, nucleation and growth of graphite are so sensitive to process variation that 

the control of Si content by thermal analysis needs tellurium-coated cups. Tellurium leads to 

metastable eutectic which allows estimation of the Si content in a more precise way than stable 

eutectic does*. The general context in cast iron shows that nucleation of graphite, as well as its 

growth, is somewhat complex and needs particular focus. While inoculation in other materials, such 

aluminium alloys, is a single step in-melt process, inoculation in cast iron implies more steps, known 

in technical literature as preconditioning, primary inoculation, late Inoculation and in-mould 

Inoculation [FOU05].  

The choice of the inoculation treatment depends on casting thickness and foundry setup. Thin walls 

castings need improved inoculation using late inoculation, i.e. performed during pouring, to avoid 

mottled structure in spheroidal graphite iron or type D graphite in grey cast iron, though in-mould 

inoculation could also be applied. Late inoculation requires a special equipment to spray inoculant 

particles into the liquid metal in a controlled way and an automatic pouring systems as well. Thick 

wall castings poured with traditional pouring ladle process are primary inoculated, i.e. when metal is 

translated to pouring ladle. Finally, commercial inoculants are tailored depending on when they are 

used during the process. Fast dissolution of inoculant is suitable in the late and in-mould inoculation 

processes while a low fading rate is preferable for preconditioning and primary inoculation process. 

 

* This applies to cast irons with silicon content lower than 3 wt.%. At higher silicon content, there 

is a risk that metastable solidification proceeds through simultaneous precipitation of cementite 

and silico-carbide, at a temperature that will depend little on the silicon content, see Chapter II. 
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Driving force for nucleation in SGI 

Quite frequently, inoculation of cast irons is related with the obtained number of eutectic cells or 

entities, which is then considered as equal to the number of activated graphite nuclei. Because of 

that, nucleation of graphite is most generally associated to the undercooling with respect to the 

stable eutectic temperature. Unfortunately, this is a shortcut that could lead to confusion when 

experimental data of solidification of cast iron is analysed. As a matter of fact, this is the 

undercooling with respect to the graphite liquidus, gra
LT , which should be considered because this is 

a more consistent way to represent the driving force for graphite nucleation.  

Fig. V.8 schematises the evolution of the carbon content in the liquid during the solidification of a 

hypoeutectic alloy. According to this figure, solidification begins by austenite formation that needs 

some undercooling to nucleate, 
 LT , and then keeps some undercooling related to its growth during 

further cooling. At the beginning of this stage, N austenite grains have nucleated. When the metal 

reaches the eutectic temperature, graphite nucleation becomes theoretically possible. However, 

experimental observations consistently show that graphite precipitation needs some significant 

undercooling to proceed. This undercooling results in the continuing growth of austenite from TEUT to 

Te,min as illustrated in Fig. V-8. Hence, the maximum undercooling for graphite nucleation gra
LT is 

typically related to Te,min and to Ng,1 spheroids. Nucleation stops with recalescence because gra
LT  

now diminishes. At the end of solidification, the temperature of the metal can go below Te,min before 

solidification completion. In such a case, a second nucleation “wave”, Ng,2, takes place.  

 
Figure V-8. Evolution of the carbon concentration in the liquid during the solidification of a 

hypoeutectic cast iron, and its relationship with undercooling associated to graphite liquidus, 
gra
LT , or to eutectic temperature, TEUT. Note that at temperature lower than TEUT, TEUT is about 

¼ of the corresponding gra
LT value [LAC98a]. 

The above description calls for two remarks. The first one is that austenite does not catalyse 

nucleation of graphite per se, but its growth leads to a continuous increase of the carbon content in 

the liquid, and hence to a continuous increase of the graphite undercooling which finally favours 

graphite nucleation. This schematic suggests that, at the beginning of the eutectic solidification of 

cast iron and during a short time, eutectic growth should be decoupled. Unfortunately, only indirect 

experimental evidence may be obtained because following the carbon content of the remaining 

liquid during eutectic solidification appears out of reach at present.  

The second remark is that the observed undercooling before bulk eutectic solidification of an hypo-

eutectic cast iron has been attributed to the nucleation stage. It has been recently evidenced that 

graphite growth also needs that a large enough gra
LT value has been reached [CAS20]. 
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Nucleation laws as a function of temperature 

One of the applications of the classical theory of nucleation is the establishment of nucleation laws to 

simulate grain refinement in castings. In a pioneering work based on experimental data, Oldfield 

established the following law for nucleation of lamellar eutectic iron grains [OLD66]: 

𝑁𝑉 = 𝐴𝑛  (∆𝑇𝐸𝑈𝑇)
𝑛      V-12 

where NV is the volume number of cells, An and n are constants that depend on the process and TEUT 

is the undercooling as respect to the stable eutectic temperature. This kind of nucleation law agrees 

with calculations made by the classical nucleation theory in the sense that heterogeneous nucleation 

over a given kind of substrate proceeds in a minimal range of temperature. It is thus assumed that all 

existing substrates of a given kind get exhausted as soon as their activation temperature is reached. 

Oldfield [OLD66] and later Hunt [HUN84] assumed further that exists in the melt a population of 

substrates that are activated at different undercoolings. 

Several other forms of nucleation laws have been proposed since Oldfield's work, either as a function 

of temperature or including time dependence. The former kind of laws is firstly considered in the 

following because they account for the essentials of the nucleation phenomena, while time effects 

are discussed afterwards. 

Lacaze et al. [LAC90] proposed a nucleation law where graphite nucleation is related to the graphite 

liquidus undercooling, ∆𝑇𝐿
𝑔𝑟𝑎

: 

𝑑𝑁𝑉 = 𝐴𝑛  ∆𝑇𝐿
𝑔𝑟𝑎

 𝑔𝑙𝑖𝑞  𝑑(𝑇𝐿
𝑔𝑟𝑎

)     V-13 

where the liquid volume fraction, 𝑔𝑙𝑖𝑞, is included as an attenuation factor, i.e., assuming that 

nucleation sites disappear with liquid consumption. 

For aluminium alloys, Rappaz et al. suggested a nucleation law in which the number of sites that can 

be activated follows a gaussian law of the liquidus undercooling ∆𝑇𝐿  [RAP86]: 

𝑁𝑉 =
𝑁𝑚𝑎𝑥

√2𝜋∆𝑇𝜎
∫ 𝑒𝑥𝑝 (−

(∆𝑇𝐿−∆𝑇0)
2

2(∆𝑇𝜎)
2 )

∆𝑇𝐿

0
 𝑑(∆𝑇𝐿)   V-14 

in which T and T  are the standard deviation and the mean of the undercooling distribution, 

respectively, and  𝑁𝑚𝑎𝑥 the maximum number of substrates. Eqs. V-13 and V-14 both give a similar 

bell-shape to the distributions of activated sites as a function of undercooling, eq. V-13 because of 

the attenuation factor and eq. V-14 due to the Gaussian law. 

The parameters of the above laws, and of similar laws in the literatureare, depend on every 

particular melt preparation process. It is worth stressing these laws make abstraction of the 

characteristic of the substrates issued from the actual nucleation catalysis. In cast irons, the 

inoculation process is quite complex, involving both transitory and various chemical phenomena 

which are not described by the laws just seen.  

As a starting point to present these phenomena, consider the case of a liquid metal cast without any 

inoculation after melting. Moreover, assume that the melt was kept at a high temperature for some 

time, so that the inclusions within it reached equilibrium. Also, if it is considered that there is only 

one kind of substrate, then the value of  between such primary inclusions and the solid nuclei could 

be considered constant. In this case, the only variable to consider is the size distribution of the 

substrates.  
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Nucleation laws for microstructure modelling 

Virtual casting laboratory must include microstructure modelling in the simulation packages. 

Nucleation laws are fitted to experimental data using equations which have a mathematical form 

based on theoretical aspects. Figure V-9 is a graphical representation of such a procedure.  For this, 

castings which will solidify at different cooling rates are equipped with properly located 

thermocouples. After solidification, the microstructure of the castings is characterized to get the 

number of eutectic cells or nodules. A transformation of the data from 2D to 3D data values is then 

performed, e.g. using the Saltykov procedure or any other. The microstructure results are finally 

related to the corresponding cooling curves and a fit with equations based on physical aspects of 

nucleation is looked for. In doing so, every attempt to keep the nucleation law as simple as possible is 

made, meaning that the use of only one or two parameters must be preferred, like An and n in the 

nucleation law of Fig. V-9. 

 

Fig V-9. Graphical representation of the procedure to obtaining nucleation law  

from experimental data. 

The parameters of a nucleation law depend on the particular process of each foundry. Because of the 

rather complex nucleation phenomena, a good practice could be to calibrate nucleation model 

parameters to the worse conditions, i.e. to the results of the most deficient inoculated metal 

obtained in regular practice. Such information is useful when the process of a new casting is in 

progress. 

Thermal analysis is useful to control the quality of liquid metal, though limited to one cooling rate. 

Knowing of how undercooling of the eutectic plateau changes with varying cooling rates is essential 

to detect which metal could lead to carbide formation in critical areas. This prediction could be more 

straightforward when the nucleation law is known. 
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The effect of substrate size on nucleation has been analysed in ice formation in a classical work by 

Vonnegut who mentioned that the effectiveness of the silver iodide particles as ice nuclei depends to 

a certain extent on the size of the particles [VON47]. The effect of substrate size on ice nucleation 

was later quantified by Fletcher considering spherical substrates (FLE58]. 

Eq. V-10 was obtained considering an infinite substrate size, i.e., a few microns at the scale of 

nucleation. The substrates found in graphite nodules [IGA98] or graphite lamellas [RIP03] effectively 

correspond to such size or even smaller. Following Fletcher, the effect of the substrate size on the 

undercooling for graphite nucleation was calculated [CAS91]. It is seen in Fig. V-10 that, at given 

value, the undercooling to activate nucleation increases as the size of the substrate decreases. 

Substrate radius effect is significant at values smaller than 0.2 microns, while the assumption of 

"infinite size" applies for radius values higher than 1 micron. 

Figure V-10. Effect of substrate size on the nucleation undercooling expressed with respect 

to the graphite liquidus. Results are shown for three different wettability angles [CAS91]. 

In practice, foundrymen must deal with unexpected variation in inoculation performance, even if the 

inoculation process is controlled in a "known" allowed range. The nature and number of primary 

inclusions, which could be or not close to equilibrium, could then be in part the origin of such 

variations. As a matter of fact, there is not enough information about the effect of primary inclusions 

on graphite nucleation as a result of so-called preconditioning. This early inoculation, that is 

performed at the end of melting, is intended to obtain a better control of the nucleation process 

[FOU05]. 

The formation of primary inclusions in cast iron is still an open research subject. The importance of 

better understanding the nature of primary inclusions may become essential with changes in the 

composition of steel scraps used in foundry. Such an understanding requires both thermodynamics 

tools and experimental setup other than foundry shop. Typically, information given by Ellingham's or 

similar diagrams is used to understand the composition of commercial inoculants. That kind of 

diagrams show which elements are the most avid of oxygen and or sulphur, and effectively elements 

such as Ca, Al, Zr, etc., are found in commercial inoculants. However, information of Ellingham's 

diagrams corresponds to an ideal case, namely equilibrium of pure elements and simple (binary, at 

most ternary) compounds.  
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Thermodynamic of inclusion formation 
This topic is relevant for steelmakers to 

understand process limits to inclusion 

elimination or to modify their 

composition. In cast iron, this matter is 

related to graphite nucleation. A simple 

case in cast irons is the formation of MnS 

which shows two main aspects: 1) There 

is the neutralising effect of Mn on the 

deleterious consequences of S excess; 

and 2) there are cases where MnS 

affects graphite nucleation. 

To estimate the solubility constant of the 

reaction of MnS precipitation from Mn 

and S dissolved in the iron (eq. e), the 

free energy of the reactions a, b, c and d 

are needed. The thick line in Fig. V-11 

shows the solubility curve at 1160°C 

obtained with Eq. e. This curve 

corresponds to the product 

(fs·%S)(fMn·%Mn)=0.053 when the 

activity coefficients, fs and fMn, are set 

equal to one, i.e., when ideality is 

assumed. 

 

 

 

 

 

Furthermore, the real behaviour of the 

solution could be approached with the 

help of the interaction parameters, 𝑒𝑥
𝑦

, 

that take into account the effect of 

element y on element x. Performing such 

calculation for a Fe-3.4%C-2.1%Si-

0.03%P-0.05%Cu alloy, it is obtained: 

𝑓𝑀𝑛 · 𝑓𝑆 =   87. The thin line in Fig. V-11 

corresponds to the non-ideal behaviour 

of MnS precipitation. If the sulphur 

content in a grey iron is 0.1%, then Mn 

contents over 0.53% and 0.28% are 

needed to form MnS according to the 

ideal or real behaviour, respectively. The 

correction of non-ideality is thus not 

negligible, and it is needed to estimate 

inclusion formation. When inclusion 

composition is complex, then a salg 

model must also be included in the 

modelling of inclusion formation. 

 

 

 

Figure V-11 Solubility curve for MnS formation in iron. 

Data from different sources [FRU98, LUP83]. 

 
 

 

Reaction G°=H°-S°T (J/mol) 

𝑀𝑛(𝑠) +
1

2
𝑆2(𝑔) = 𝑀𝑛𝑆(𝑠)   

−277, 900 + 64𝑇 a 

𝑀𝑛(𝑙) = 𝑀𝑛(𝑠) −14,600 + 9.6 𝑇 b 

𝑀𝑛(%) = 𝑀𝑛(𝑙) −4,086.31 + 38.15𝑇  c 

𝑆(%) =
1

2
 𝑆2(𝑔) 135,149.9 − 23.44 𝑇 

d 

𝑴𝒏(%) + 𝑺(%) = 𝑴𝒏𝑺(𝒔) −𝟏𝟔𝟏, 𝟒𝟑𝟔.𝟒 + 𝟖𝟖.𝟑𝑻 e 

(s) solid, (g) gas, (%) weight per cent in Fe 

  ∆𝐺𝑒
𝑜 = −𝑅𝑇 ln𝐾      =  𝑅𝑇𝑙𝑛(𝑓𝑆%𝑆)(𝑓𝑀𝑛%𝑀𝑛) 

log 𝑓𝑀𝑛 = 𝑒𝑀𝑛
𝐶 %𝐶 + 𝑒𝑀𝑛

𝑆𝑖 %𝑆𝑖 + 𝑒𝑀𝑛
𝑃 %𝑃 + 𝑒𝑀𝑛

𝑆 %𝑆 + 𝑒𝑀𝑛
𝐶𝑢 %𝐶𝑢 .. 

log𝑓𝑆 = 𝑒𝑆
𝐶𝑊%𝐶 + 𝑒𝑆

𝑆𝑖%𝑆𝑖 + 𝑒𝑆
𝑃%𝑃 + 𝑒𝑆

𝑆%𝑆 + 𝑒𝑆
𝐶𝑢%𝐶𝑢..   
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A more precise analysis of inclusion formation requires considering time-dependent dissolution and 

precipitation effects of elements in iron melts and modelling of the slag constituent. Most of the 

available data for such calculations corresponds to the temperatures and slag composition for 

steelmaking process, i.e. at 1500-1600°C.  

However, a few studies that apply to cast irons have been carried out in this line. Lekakh et al. have 

studied the thermo-chemistry of non-metallic inclusions in ductile iron during the transitory step of 

inoculation [LEK09]. They studied the effect of pre-treatment with Ca-La mischmetal before 

spheroidising and of ladle inoculation. They did both chemical characterisation of the inclusions and 

thermodynamic calculation. Their results show a wide range of composition of inclusions at every 

step of their treatment. More recently, Lekakh applied thermodynamic calculations for predicting the 

most suitable inclusions for graphite nucleation [LEK18]. 

Muhmond and Fredriksson studied the effect of the change in the content of Mn and S of a grey iron 

on the nature of the inclusions [MUH13]. The melt was carefully prepared and cooled in a quartz 

tube after inoculation with a commercial inoculant. They used a thermodynamic approach to assess 

the nature of the inclusions and related this with the observed graphite nucleation. As expected, it 

was concluded that the composition of the melt must be handled so as to provide a large number of 

MnS-Oxide particles for graphite nucleation, see opposite page. 

Transitory effects 

A way to enhance the inoculation process is to add or generate substrates under local undercooling. 

The cooling of the metal by contact with the mould wall provides a local thermal undercooling. This 

undercooling induces profuse metal nucleation, as already known for several metals, and explains 

the chill zone on the skin of castings. Another way is to induce local chemical undercooling by 

addition of a small quantity of alloying elements as done with FeSi addition in cast irons. Silicon 

increases the graphite liquidus temperature and reduces the carbon solubility in liquid iron. Post or 

late inoculation and mould inoculation do certainly take advantage of this latter mechanism, which is 

also complemented with the formation of new substrates and the chemical modification of the 

primary inclusions because of the low-level elements added to the Fe-Si alloys. 

Post-inoculation operates in transitory conditions, because it is performed such a short time before 

or even during pouring of the casting. As a reference of the timing of this process, it could be 

mentioned that it takes several minutes for the inclusions in steel to diminish their chemical 

composition differences due to contact of liquid metal with deoxidisers or alloying elements [HER98]. 

It is thus not surprising that, in post-inoculation studies, inclusions that work as a catalyser for 

graphite nucleation show wide composition ranges [ALO17, LEK09, RIP03, SKA93]. 
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Transitory picture of graphite inoculation 

The general qualitative trends for graphite inoculation are known. The experimental data that 

support this knowledge is extensive, but they concern only final microstructure results, hiding details 

of the evolution of the inoculation process. For example, the time elapsed between inoculation and 

solidification of casting is most frequently not explicitly given. That complicates the assessment of 

these data if it is looked at the understanding of inoculation evolution. 

Several phenomena occur during late inoculation of graphite, as schematised in Fig. V.12, leaving 

some questions being still open. One of them is the usefulness of modifying the Mg silicates provided 

by the spheroidising treatment with further additions, Ca for example. Also, another unknown is the 

time such modified inclusions could survive in the melt. Another question is if, in the presence of Ca, 

Sr, Ba and Al silicates, the local chemical undercooling is needed or not. This information could allow 

separating the effect of different aspects of inoculation to improve the cast iron process. Moreover, 

more fundamental details are needed concerning inclusion evolution during preconditioning and 

primary inoculation. 

 
Figure V-12. Evolution of inclusion nature from the beginning of inoculation to the time at which 

the FeSi based inoculant is entirely dissolved. 
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The importance of FeSi dissolution effect in graphite nucleation has been pointed out in several 

studies, e.g. those by Fredriksson [FRE84] and by Lekakh and Loper [LEK03]. Feest et al. [FEE83] 

argued that the dissolution time of FeSi is of a few seconds, and concluded that it is no possible to 

keep Si-rich zones for any enough time of practical interest. However, the dissolution step of FeSi is 

not the only one that must be taken into account. By comparison to steel refining practice, it may be 

guessed that the modification of inclusion composition initiated by FeSi dissolution and the 

subsequent inclusion evolution take longer time than the time for pouring and solidification of typical 

medium-size castings. Related studies are still scarce, although they would be useful to improve 

graphite inoculation understanding. 

Fading of inoculation is mostly associated with inclusion coalescence or Ostwald ripening as well as 

inclusion floatation. However, the decrease of the chemical undercooling generated by the 

dissolution of FeSi should also be taken into account. 

Skaland et al. [SKA93] proposed a nucleation model accounting for the time elapsed between stream 

inoculation and casting solidification, considering that inoculation fading is due to Ostwald ripening: 

 𝑁𝑉 = 𝑐[ln (    + 0  4𝑡𝑒) − ln (    + 0  4𝑡𝑠)]  V-15 

where c is a kinetic constant and ts and te are the time intervals between inoculation and start and 

end of solidification, respectively. Stream inoculation was performed immediately before pouring 

mould metal.  

Svensson and Diòszegi [SVE03] studied inoculation of grey iron by adding the inoculant while the 

melt was transfered to the pouring crucible. The estimated time between adding the inoculant to 

casting the metal was 40-60 seconds. They proposed the following nucleation law: 

 𝑁𝑉 =
𝐾

𝑡
 V.16 

This kind of laws gives an idea of the time evolution of inoculation performance. 

Crystallographic similitude concept 

Complementary to the wetting effect on nucleation catalysis, there is also the concept of crystal 

similitude between the solid to precipitate and the substrate. According to this concept, the more a 

crystallographic plane of the substrate is similar to a dense plane of the solid to nucleate, the more 

the substrate is efficient for nucleation catalysis. This concept was applied by Cibula [CIB49] to 

analyse inoculation of aluminium. The similitude between two crystal structures could be quantified 

by the linear mismatch,  between two lattices [TUR52], or by planar disregistry according to 

Bramfitt [BRA70]. In principle, a term describing the elastic energy associated with the disregistry 

between the two phases should be added to the surface energy. However, this term is negligible if 

the elastic modulus of one or both of the two solid phases, the substrate and the precipitate, is small. 

This can happen at the solidification process temperature while this is generally not the case for 

solid-state precipitation. 
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Crystallographic similitude 

This concept is frequently associated with classical nucleation theory. Turnbull and Vonnegut 

introduced the effect of  the linear mismatch between two crystals, in the heterogeneous 

nucleation law [TUR52], but the concept was previously known (Cibula cited by Turnbull). This 

concept has been useful for understanding the kind of particles that could be suitable for graphite 

nucleation. Comparison of crystallographic similitude between such particles and graphite has given 

most of the time an indirect evidence of their nucleation catalysis performance. Using this kind of 

approach, and based on experimental evidence, Gad and Bennett concluded that addition of Ca in 

inoculant allows the formation of Ca silicates that are suitable substrates for graphite nucleation 

[GAD85]. 

 

Skaland et al. applied the crystallographic similitude to elucidate which kind of silicate are the best 

for inoculation [SKA93]. Based also on experimental evidence, they concluded that MgOSiO2 

silicates are not efficient nucleation sites to promote graphite. Instead silicates of Ca, Sr, Ba and Al 

are suitable for enhancing graphite nucleation. 

Considering the undercooling with respect to the graphite liquidus and a liquid composition close to 

the austenite liquidus allows visualising easily that very high undercoolings might be achieved when 

graphite nucleation occurs (see Fig. V-8). In such a scenario, the theoretical substrate size for 

nucleation may be less than 1 micron. Therefore, inclusions larger than 1 micron do not need to be 

fully crystalline, as the actual nucleation site may be only part of its surface. 
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Inoculation for enhancing graphite precipitation has been developed around the use of FeSi alloys 

containing minor quantities of other elements that are avid of oxygen and sulphur. It is estimated 

that some of the oxy-sulphides formed present planes with enough crystallographic similitude with 

graphite to allow its nucleation. Accordingly, the crystallographic similitude approach proved itself to 

be relevant to improve graphite inoculation, see opposite page. Then, even if local chemical 

undercooling could help to catalyse graphite nucleation, these other elements are mandatory to 

modify primary inclusions or to form other kinds of inclusions that present similitude of their 

crystallographic planes with the graphite ones. 

The detailed assessment of crystallographic characteristics of substrates related to graphite 

inoculation is complicated by the wide compositional range of such substrates. The crystalline nature 

of these substrates is inferred most of the time based on micro-chemical analysis. Few works provide 

experimental evidence of the crystalline nature of some substrates as did by Skaland et al. [SKA93].  

Skaland et al. [SKA93] evidenced that the population of inclusions formed by the Mg treatment in 

ductile iron could be composed of sulphides and magnesium silicates.  They showed that this kind of 

inclusions has a higher planar lattice disregistry with graphite than the CaO, SrO, BaO, Al2O3 silicates 

or even -Al2O3 generated by the inoculant addition. The latter kind of silicates has thus higher 

graphite nucleation capabilities than Mg silicates. These authors also proposed successive steps for 

the formation of inclusions that catalyse graphite nucleation. The most suitable inclusions are 

constituted of a sulphide core with an outer shell made of the silicates mentioned above. This means 

that primary inclusions play an essential role in the inoculation process. Hence, modification of the 

composition of Mg silicates or change only of their surface seems essential to provide good graphite 

nucleation. 

Other compounds than the sulfides and oxides mentioned above have been considered for graphite 

nucleation: graphite, silicon carbide, CaC2-like carbides. Details of these works were summarised in 

several reviews [ALO17, LOP98, SKA13]. Following the similitude approach, Loper et al. [LOP85] 

explored the use of graphite particles as an inoculant. Graphite particles showed good potential for 

inoculation of LGI but not for SGI. The authors also mentioned several inconveniences that may 

hinder the application of such kind of particles in an industrial process.  

Finally, it is worth reminding that amorphous sulphides may also act as substrates for graphite 

nucleation [IGA98]. In this case, the interfacial energy is only chemical; there cannot be any elastic 

energy accumulating between the liquid substrate and the solid nucleus. 
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Chapter VI - Crystallography and morphology of graphite 
 

The stable crystallographic form of graphite is hexagonal compact with a ABAB stacking, Fig. VI-1. The 

cell thus consists of an hexagonal base with the distance between carbon atoms in the basal planes 

being much shorter than that between these planes, in direct relation with the strength of the 

corresponding electronic bonds. A rhombohedral structure is sometimes reported which may be 

obtained from the most stable one by inserting point defects as described in detail by Qing et al. 

[QIN17] in their analysis of the structure of graphite spheroids.  

 
Figure VI-1. Crystallographic structure of the stable hexagonal form of graphite. 

The very weak bonds between basal planes account for the great capability of graphite to present 

defects at the scale of atomic stacking, but also to show an impressive variety of shapes at the scale 

of precipitates. A catalogue of these shapes has recently been made [STE18] which are not all 

relevant for cast irons. The present chapter deals with those of these shapes that are usual in cast 

irons, putting emphasis on the relation with the background crystallography, on the one hand, and 

the presence of impurities or added elements, on the other hand. A more complete view of the 

effect of low level elements on graphite shape and so-called degeneracy is presented in Chapter VII.  

Transmission electron microscopy (TEM) is the appropriate tool to get relevant information at the 

scale of graphite stacking and the results presented below rely on it. This chapter is mostly dedicated 

to the characterization of primary graphite, though a few results on two phase microstructure will be 

also mentioned. A clear schematic for growth of graphite in cast irons emerges whatever its overall 

shape: graphite grows as blocks elongated in the prismatic a direction, i.e. with carbon atoms 

attaching at the prismatic faces. This will be described along this chapter and it will be stressed that 

the length of these blocks is in close relation with the overall shape of the graphite particles. Some 

relevant models describing graphite growth from a carbon saturated metallic liquid will also be 

schematically presented. Note that this chapter is limited to solidification whilst growth of graphite in 

solid state will be dealt with in Chapter VIII. 

a direction
a direction

[0001]

c direction [0001]

c direction
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Other means to characterize graphite crystallography 

Polarized light in optical microscopy gives indication of the change in orientation of the stacking in 

graphite precipitates, as illustrated in Fig. VI-2, as well as of the presence of defects. This technique 

could be usefully used for a rapid screening of graphite shapes in a sample, though it needs a good 

surface preparation and is limited by optical resolution at 0.5-1 µm. 

  

Figure VI-2. Polarized light optical micrographs illustrating  
the local changes in orientation of graphite stacking,  

in lamellar graphite [THE16] (a), and degenerate spheroidal graphite (Courtesy B. Tonn) (b). 
 

X-ray diffraction is a standard laboratory technique for materials characterization which has been 

applied as well to characterize graphite in cast irons [MAT53] or in Fe-C-Si steels [COW81]. Applied to 

spheroidal graphite, it was concluded that it is turbostratic rather than polycrystalline [PEN11]. 

However, in this latter study, the interlayer was found to correspond to perfect graphite at 3.34 Å 

and the thickness of the stacks was reported to be more than 30 nm in agreement with TEM results. 

It can therefore be assumed that the turbostratic aspect is due to the fact that the analysis of many 

spheroids at the same time leads to an apparently random orientation of the growth blocks.  

In a near future, the new generations of synchrotron will allow X-ray diffraction to be performed at 

the scale of a few tens of nanometres which could help removing some doubts about graphite 

growth in cast irons. 
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The stable form of a crystal is the one that minimizes the interface energy between the crystal and 

its environment. Many attempts have been made in the past to measure the interface energy 

between carbon saturated melts and graphite, and it is known that the spheroidising treatment does 

lead to an increase of it. Note that, as a rule of thumb, most elements are surface active though not 

efficient at the same level. Sulphur and oxygen are strongly surface active in iron melts and this 

explains why removing them increases the melt surface energy. In turn, adding more magnesium 

than needed to remove these elements leads also to a decrease of the melt surface energy. 

Extending this conclusion to the graphite/liquid interface should however be sustained by 

experiments which have not yet been done. Nevertheless, Fig. VI-3 shows the four data points from 

McSwain et al. [MCS74] which were selected as being self-consistent and well in the range of 

reported values for this graphite/liquid interface. The interrupted lines are tentative and do not 

account for probable local minima (intermediate facets). It is seen that with addition of magnesium, 

and thus removal of sulphur and oxygen, the interface energies of prismatic and basal planes both 

increase. Furthermore, the latter increases more than the former, leading to invert their sorting: 

prism planes have higher interface energy than basal planes in spheroidised melts while the reverse 

is true in untreated melts.  

 

Figure VI-3. Graphite/melt interfacial energy: 
symbols are experimental values according to 

McSwain et al. [MCS74], lines are tentative 

evolution in the  2011  plane. 

 

 

Figure VI-4. Graphite crystal pyramids 
from Sterling Hill [JAS94].

Owing to the data in Fig. VI-3, the expected shape of graphite crystals grown at infinitely small 

velocity from an impure melt should be a pyramid with lateral faces consisting of prismatic planes. 

Such natural crystals have in fact been observed, see Fig. VI-4.  In contradistinction, the plate-like or 

lamellar shape of graphite is related to growth kinetics with carbon atoms attaching preferentially to 

the prismatic faces where the energy gain is much higher than for basal faces. This preferential 

attachment applies certainly to any forms of graphite. 



70 
 

Growth models of graphite lamellae 

Amini and Abbaschian [AMI93] studied the growth of graphite precipitates in a Ni-C alloy that has 

been saturated in carbon at 1350°C and then cooled to room temperature (RT) at various rates. They 

measured the length and thickness of the precipitates and then compared these results to 

predictions obtained with a model illustrated in Fig. VI-5. In this approach, the lengthening of the 

graphite precipitates in the direction parallel to the basal plane is controlled by diffusion of carbon 

atoms in the liquid and their attachment on the prism faces. By contrast, the thickening of the 

precipitates proceeds by epitaxial nucleation of new layers whose height is h, which then extend 

laterally along the basal surface of the precipitate. 

 
Fig. VI-5. Schematic of the growth and thickening processes of a graphite flake(adapted from  

[AMI13]). Lengthening of the plate is controlled by carbon diffusion to the tips.  
Thickening proceeds by 2D nucleation of new growth blocks onto the basal faces of the plate and 

their lateral growth parallel to the basal faces.. 

For calculating the diffusion field around the lengthening flake, Amini and Abbaschian [AMI13] 

resorted to an approximate solution already used by Hillert for the same purpose [HIL64]. In a later 

work, Hillert and Subba Rao considered refined solutions [HIL69] which have been further improved 

since then [BOS74]. 

If growth is to be controlled only by diffusion, then the 

extending face should be rough at the atom scale. 

Subramanian et al. [SUB82] reported a few TEM micrographs 

from which they deduced that sulphur roughens the prismatic 

faces that would otherwise be faceted, see Fig. VI-6. 

 

Figure VI-6. TEM micrograph of a graphite crystal in a Fe-C 
solution containing 0.05 wt.% sulphur. Note the round 
segments growing out from the intersections between 

facets [SUB82]. 

 
 

Flake lengthening
by carbon diffusion

2D nucleated blocks and 
their growth by lateral

displacement of the ledges
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For describing graphite growth during solidification of cast irons, it is of prime importance to first 

consider primary growth, i.e. direct precipitation from the liquid. This is because simultaneous 

growth of austenite and graphite imposes further constraints to which graphite shape may be 

sensitive. Hypereutectic alloys must be used for studying primary growth of graphite, and the more 

hypereutectic the alloy is, the larger the graphite crystals will be. There is however the risk of rapid 

floatation at low cooling rate so that a compromise should be found for such experiments. 

Graphite crystals grown from a Fe-C-Si melt (or Ni-C melt) that has not been deoxidized consist of 

long straight lamellae, see Fig. VI-7a, which may sometimes appear as plate-like with even thickness. 

Such straight precipitates may be of millimetre size in length while their internal structure consists of 

a stack of graphite layers as illustrated with the fracture surface in Fig. VI-7b [LIU90a] observed with a 

scanning electron microscope (SEM). The typical thickness of these individual layers is 10-500 nm.  

  

Figure VI-7. Optical micrograph of primary graphite crystals (a) and SEM micrograph of a fractured 
lamella of kish graphite [LIU90a] (b). The sample in (a) was obtained by carbon saturating a piece 

of iron held in a pure graphite crucible at 1300°C, then cooling to 1180°C and holding it for 30 
minutes before RT cooling; the background made of a few graphite spheroids and dendrites 

delineated by undercooled graphite resulted from rapid solidification during final cooling. The 
experiment was made in a closed furnace which was initially under laboratory air. 

 

TEM study of such crystals has shown that the layers may be twisted between each other around 

their common c axis by an angle ensuring quasi-epitaxy [DOU71]. This suggests that the thickening of 

the graphite plates/lamellas occurs by nucleation of new layers onto the basal face of the plate, 

which then extend parallel to this face. This schematic has been considered and made quantitative 

by Amini and Abbaschian for explaining their experiments on hypereutectic Ni-C alloys [AMI13], see 

opposite page.  
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Some unusual features of plate-like graphite 

The most known, though little studied, is kish graphite which is defined by Sun and Loper [SUN83a] 

as primary graphite formed in untreated cast iron melts. In the bulk of a highly hypereutectic alloy, 

kish graphite appears straight with little branches as in figure VI-7. However, kish graphite rises in the 

melt by floatation and develops further at the surface. This has been studied by Liu and Loper who 

compared industrial and laboratory kish graphite [LIU90a, LIU91]. Under oxygen, they observed the 

development of foliated dendrites quite similar to those reported by Saratovkin when studying the 

crystallization of cadmium iodide crystals out from water solution [SAR59]. Under argon, pyramidal 

growth was observed on the melt side of kish graphite, see Fig. VI-8a. This microstructure seems very 

much alike to that obtained by Munitz and Nadiv investigating a Ni-C-3Pb (wt.%) alloy, Fig. VI-8b 

[MUN82]. This micrograph may be seen as an illustration of the 2D nucleation process with lateral 

extension of the new growth blocks limited by accumulation of Pb atoms. Such a process agrees with 

the concept of interface instability which was used by Munitz and Minkoff [MUN78] and by Liu and 

Loper [LIU91]. 

 

Figure VI-8. SEM micrographs of the basal plane of a graphite crystal. a: kish graphite grown under 
argon in a synthetic cast iron [LIU90a]. b: Ni-C-3Pb alloy [MUN82]. 

It is often suggested that growth along the c axis as in spheroidal graphite as well as thickening of 

plate-like graphite should involve spiral growth around a defect such as emerging dislocation. Roscoe 

et al. [ROS71] looked at the characteristic features of graphite single crystals grown from iron-carbon 

solutions and observed spiral growth only occasionally. Accordingly, they concluded that spiral 

growth mechanism plays no more than a MINOR role in graphite growth process, even at low 

supersaturation when it is expected to be favoured. It is noticeable that Liu and Loper [LIU90a, 

LIU91] did not mention any growth features that could be related to spiral growth. 
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When investigating the effect of antimony added to Fe-C melts under air, Theuwissen evidenced that 

the primary graphite precipitates appeared wavy when viewed under optical microscope, see Fig. VI-

9a [THE16]. A closer look shows that this wavy aspect is only apparent as the precipitate consists in 

straight segments in between turnings. This was confirmed with TEM which showed that successive 

straight growth blocks were tilted between each other by a rotation around an axis located in the 

basal plane. Because growth of the graphite plates proceeds in the prismatic directions, this 

observation suggests that antimony atoms accumulated at the graphite/liquid interface and 

eventually hindered further straight growth and forced the crystal to tilt. In the same type of 

experiments conducted under air with cerium added instead of antimony, the primary graphite 

precipitates appeared straight though much shorter and thicker, see Fig. VI-9b.  

 

 

 
 

Figure VI-9.  
a: Optical micrograph (upper right) of a Fe-C-Sb 
sample processed under air as the Fe-C alloy in 

Fig. VI-6a and mosaic of TEM micrographs of 
one of the primary graphite precipitates 

[THE16].  
 

b: Optical micrograph of a Fe-C-Ce sample 
similarly processed (under air) [THE16]. 
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Branching of graphite lamellae during two-phase growth 

In pure Fe-C alloys, branching of primary graphite lamellas is rare [SUN83a]  but it has been seen that 

it is triggered by some alloying additions (Fig. VI-9a). On the contrary, during two-phase growth of 

austenite and graphite, branching is necessary for the interface to adapt to the local growth 

conditions. Fig. VI-10A shows the two types of branching mechanisms identified by Nieswaag and 

Zhuitoff [NIE75] on directionally solidified samples and Fig. VI-10B how Sun and Loper [SUN83a] saw 

them in small castings. Both show the same two branching types, in-plane splitting and out-of-plane 

branching. According to Sun and Loper, the twisting and curving of graphite occur when branches 

come close to each other. Use should be made of the classification proposed by Austerman et al. 

[AUS67] according to whom twisting denotes cases where basal planes are rotated while remaining 

parallel and tilting is for cases when basal planes do not remain parallel to one another. The out-of-

plane branching is thus tilting. 

    

Figure VI-10. Branching mechanisms of graphite  

from directional solidification experiments [NIE75] (A)  

and small castings [SUN83a] (B).  

In both cases, in plane splitting and out-of-plane tilting were identified. 

   

  

A B
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All other solidification forms of lamellar graphite result from coupled growth with austenite: these 

are flake, undercooled and coral graphite which have already been described in chapter IV. It has also 

been suggested that compacted graphite may be associated with these lamellar forms. All of these 

forms have in common that the growth direction of graphite is parallel to the prismatic direction, 

with the prismatic planes in direct contact with the liquid thus easing attachment of carbon atoms. 

This has been illustrated several times in the literature with SEM images that show these graphite 

forms consisting of piling up of growth blocks elongated in the prismatic directions, but very few 

precise characterizations are available. Electron back-scattered diffraction (EBSD) would be the most 

suitable means to determine local crystallographic orientations and it has been applied to compacted 

graphite, see Fig. VI-11a [HOL07]. Unfortunately, graphite is not adequate for the perfect surface 

preparation needed for EBSD. Thus, only spot mode EBSD and no mapping has yet been reported for 

lamellar and compacted graphite. Hence, one has to resort to TEM and, again, very few studies have 

been carried out to date. It is worth mentioning the early work by Lux et al. [LUX69b] on coral 

graphite which is illustrated in Fig. VI-11b and demonstrates growth occurring along the prismatic 

direction, with however many crystalline defects [PAR96]. 

 
 
 
 
 
 
Figure VI-11.  

a. Crystallographic orientation within 
compacted graphite detected by EBSD in 
spot mode [HOL07]. Copyright 2007 by The 

Minerals, Metals & Materials Society and ASM 
International. Used with permission. 

b. TEM micrographs and schematic of 
graphite stacking in coral graphite 
[LUX69b]. 
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Initial growth of graphite spheroids 

For investigating nuclei in SGI, Stefanescu et al. [STE19] quenched thermal cup samples at an early 

stage of solidification. Fig. VI-12a shows a graphite precipitate around a multi-phase nucleus. It is 

seen that this graphite precipitate shows facets which demonstrate early formation of well-defined 

sectors. Also, Qing et al. [QIN20] provided a high resolution TEM (HR-TEM) image of the interface 

between the nucleus and graphite for a spheroid 5 µm in diameter from a sample quenched during 

solidification, Fig. VI-12b. A stack of well parallel layers can be seen which are however slightly 

irregular because of insertion of many foreign elements within graphite. These irregularities 

appeared more marked in samples from as-cast centrifuged SGI where the nucleus was found to be 

surrounded by a ≈0.5 µm thick inner zone giving an oblong selected area electron diffraction (SAED) 

pattern [BRO18]. It has been suggested that this is related to a deformation generated by 

compressive stresses applied to the spheroid during solidification of the remaining liquid in the 

metastable system (with shrinkage of about 4%) [LAF18]. Right outside this inner zone, many blocks 

radiating outwards could be imaged by TEM (Fig. VI-13) and were further characterized by 

transmission Kikuchi diffraction TKD [BRO18]. 

   
Figure VI-12. SEM micrograph [STE19] (a) and HR-TEM image [QIN20] (b) showing both the nucleus 

and adjacent graphite in laboratory samples quenched during solidification. 
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Early growth of spheroidal graphite has been studied since a long time by quenching samples at an 

appropriate temperature during cooling from the liquid state. Even when all efforts have been made 

to increase the quenching rate, it may be expected that freezing of the remaining liquid asks for a 

couple of seconds. This is exactly this time, 2-3 seconds, that is estimated for the whole solidification 

of thin-wall tubes centrifugally cast in water cooled die. The microstructure of either quenched 

laboratory samples or cast tubes show the same features, a more or less developed network of 

dendrites, graphite spheroids and cementite or ledeburite. When observed after polishing a 

metallographic section, these primary nodules appear to have a maximum diameter of 5-10 µm for 

centrifugal casting, see Fig. VI-14a. The same alloy (spheroidised and inoculated) shows spheroids up 

to 30 µm in diameter when cast in a Y2 keel-block, see Fig. VI-14b. Most importantly, the spheroids 

are compact and show the so-called sectors delineated with the interrupted lines in the micrographs. 

Thus, even if spheroids nucleated and grew for at most 2-3 seconds (Fig. VI-14a), they show the same 

internal structure than spheroids having grown for much longer time (Fig. VI-14b). For further details 

on the very early growth of spheroidal graphite see opposite page. 

   
Figure VI-14. Optical micrographs of an alloy that has been centrifugally cast (a) and cast in a Y2 
keel-block (b). Use of polarized light allowed evidencing the internal structure which consists of 

sectors [BOU18]. 

Growth of the spheroids from the liquid was interrupted by solidification in the metastable system in 

the case of the sample in Fig. VI-14a. On the contrary, solidification went to its end in the stable 

system for the sample in Fig. VI-14b which means that at some time in the process the spheroid got 

encapsulated in an austenite shell. Its further growth proceeded by diffusion of carbon from the 

remaining liquid through the austenite shell. Use of polarized light for the micrographs in Fig. VI-14 

evidences that the spheroids consist of sectors with the c axis of graphite stacks roughly parallel to 

the radius of the spheroid in any location. Radial internal features within each of the sectors are 

continuous which demonstrates that graphite grows with the same mechanism during the first stage 

(directly from the liquid) and the second stage (by carbon diffusion through austenite). This applies 

as well to the limited growth in solid-state, namely during continuous cooling in the austenite field 

(third stage) and possibly also during the ferritic transformation (fourth stage). It will be seen in the 

next chapter that spheroids may sometimes be less regular than the ones seen in Fig. VI-14.  
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Orientation mapping 

Fig. VI-15a shows the diametrical section of a spheroid that was submitted to local diffraction 
patterning (ACOM) in a TEM [THE14]. Graphite orientation was determined in points located along a 
grid with a 17 nm step size. Fig. VI-15b shows the projection of the measured orientations parallel to 
the Z direction (perpendicular to the image plane) and Fig. VI-15c gives the colour code for the 
orientations. Fig. VI-15b shows first that all (0002) planes of the studied spheroid section are 
effectively contained in the section plane as only blue and green show up and no red (the small red 
and pink areas in the upper right of the image are matrix inclusions). It further demonstrates that 
graphite is organized in sectors which appear to be strongly disoriented between each other as the 
transition between blue and green areas is quite sharp. TEM was also used to study the interface 
between sectors [THE16]. SAED patterns taken over two adjacent sectors (Fig. VI-16) show a sharp 
interface clearly defined by a difference in contrast and two distinctive c axis orientations. A HR-TEM 
lattice fringe image taken at the interface between the sectors shows straight fringes on left and 
right hand sides which are characteristic of a highly graphitic material. Nevertheless, c axes from both 
parts of the image do not have the same orientation and they are separated by an interface within 
which the graphite layers are rippled in a transition zone with a width from 4 to 12 nm. 

      
Figure VI-15. Mosaic of TEM micrographs showing the central part of a spheroid (a) and ACOM 

mapping along Z axis (out of plane) performed with a 17 nm step spacing (b and c). 

 
 

 

 

 

 

 

 

 

Figure VI-16. TEM image (top 
left) with the white circle 

showing the location of the SAED 
pattern (lower left) and HR-TEM 

lattice fringe image of the 
boundary between the two 

sectors (to the right) [THE16]. 
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As indicated above, the c axis of the graphite stack in the spheroids remains roughly parallel to the 

spheroid's radius, explaining the appearance of sectors under polarized light. It has been proposed 

that the radial internal features in the sectors – which show up during metallographic polishing – are 

boundaries between sub-sectors with limited change in c axis orientation [BOU20]. Support of this 

view was given by automated crystal orientation mapping (ACOM) in the TEM, see opposite page. 

This has also been studied by Qing et al. [QIN17] using selected area electron diffraction (SAED). 

There are only two schematics in the literature that describe usual graphite spheroids, i.e. spheroids 

which are compact and consisting of sectors: i) a beam of screw dislocations around which graphite 

grows by an helical mechanism [DOU74], Fig. VI-17a or around screw dislocations emerging similarly 

from the nucleus [MIA94]; ii) a beam of adjacent sectors on top of which graphite grows by 

continuous nucleation of new layers at the interface between sectors, Fig. VI-17 (b and c). Note that, 

in all cases, carbon atoms attach on the prismatic faces As no evidence of screw dislocations could be 

found [THE12, QIN17], or either of any helical axis of growth, we are left with the second mechanism. 

Moreover, the observation of exploded graphite spheroids (see next chapter) suggested that the 

nucleation of new growth layers is not necessarily related to the boundary between adjacent sectors 

or sub-sectors. In other words, the new nuclei may be anywhere on the outer surface of each sector 

or sub-sector, see Fig. VI-17c. This is this latter model [LAC17a] that will be used in the following 

chapters. It is worth noting that such a 2D nucleation/growth mechanism has been proposed by 

Herfurth [HER64] a long time ago, while many other suggested mechanisms have been reviewed in 

the literature [LUX70b, STE17b]. 

  

 
 
 
 
Figure VI-17. Schematic of the models 
describing compact spheroids: 

(a) Helical mechanism [DOU74]. 
(b) 2D nucleation and lateral growth 

mechanism [DOU75]. 
(c) Independent 2D nucleation and 

lateral growth mechanism [LAC17a]. 
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Chapter VII – Trace elements: graphite growth and degeneracy 
 

This chapter is devoted to the effect of trace elements, although cooling rate effect can be 

mentioned if necessary. It is intended to pin-point strongly established experimental information and 

to clarify what can safely be deduced from them and what is assumption. The most important 

feature to be described is the transition from lamellar to spheroidal growth of graphite, considering 

also the surprising intermediate shape of compacted graphite. In the second half of the chapter, the 

effect of "deleterious" trace elements on spheroidal growth will be dealt with.  

Spheroidising of graphite is achieved by adding elements to the left of the periodic table such as Ca, 

Ce and Mg. Systematic studies have been carried out to find other spheroidisers [LYU63] but it is 

accepted that Mg is more efficient than Ce which is itself far better than any other elements. It is 

often stated that the only role of spheroidisers is to decrease the content in oxygen and sulphur of 

the melt, and Fig. VII-1 shows that there is a well-established relation between the thermodynamic 

activity of these elements and the shape of graphite. Note that the calculations were performed with 

data for 1500°C – i.e. the temperature for melt treatment - and that the activity scale of oxygen is 

reversed. The graph was drawn considering cerium and the authors patented a method for obtaining 

compacted graphite using this element. A similar graph could have been devised for magnesium and 

for calcium. Furthermore, the use of modern thermodynamic softwares allows making more 

complete predictions, and in particular looking at the simultaneous effect of various additives, e.g. 

Ca, Ce and Mg [LEK06]. 

 

 

 

 

 

 

 
Figure VII-1. Graphite morphology 

control diagram established at 1500°C 
(adapted from [SUB82]). The axes give 

the activity coefficient of S and O. 
Note that the activity of oxygen along 
the Y axis increases downward.  The 
numbers between brackets give the 

residual Ce activity. The stable 
compounds of Ce, O and S are 

indicated. 
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Surface tension of iron melt 

The review by Keene [KEE88] of data for the surface tension of iron and its binary alloys shows a 

large scatter of the reported values which may be firstly due to the use of materials with variable 

purity. Kozakevitch and Urbain [KOZ61] studied the effect of alloying additions on the surface tension 

of pure iron after having developed a procedure for decreasing as much as possible the presence of 

impurities (amongst which oxygen and sulphur). Their work was extended to a large part of the 

periodic table and was selected here for illustration as certainly giving consistent results. Examples of 

their data are shown in Fig. VII-2. Carbon, silicon and phosphorus do not have much effect on the 

surface tension, as most of the metallic elements (Cu, Ni, Cr, and the like, and also Ce and La). On the 

contrary arsenic, tin, antimony and nitrogen are surface active. Oxygen is about 10 times more 

surface active than nitrogen and sulphur about 20 times, and the two elements that were found the 

most surface active amongst those studied by the authors were selenium and tellurium. 

The superficial layer associated with the effect of surface active elements is thought to be mono-

molecular and to consist of molecules or atoms or else of oriented groups of atoms. There must be 

an upper limit to adsorption which corresponds to the whole surface being occupied by the adsorbed 

molecules or atoms. 

 

Figure VII-2. Effect of various dissolved elements on the surface tension of iron melt, , referred to 

its value 0 for pure iron. Data from Kozakevitch and Urbain [KOZ61] at 1550°C. 

Interfacial tensions/energies are often studied using equilibrium of a liquid (L) drop on a substrate (S) 

within a given gas atmosphere (V). The three-phase equilibrium at the base of the liquid drop is 

written   180cosLVSVLS  where LS, SV and LV are the interfacial tension between 

liquid and solid, solid and vapour, and liquid and vapour, respectively, and  is the contact angle. 

Considering that SV between graphite (S) and vapour does not depend on the liquid properties, the 

interfacial tension between liquid and graphite changes as that between liquid and vapour. Shi et al. 

[SHI08] thus proposed to measure LV by the maximum bubble pressure and related its value to 

graphite shape.   
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Attempts have been made to relate knowledge about crystal growth and observations of graphite 

growth in cast irons [MIN83]. It has thus been stated [SUB80] and often accepted that "… the role of 

spheroidising elements is to control the residual concentration of surface active elements in the 

melt. These elements, such as sulphur and oxygen, are adsorbed on the graphite prism face, 

promoting a transition from a atomically smooth (faceted) interface of low mobility, to an atomically 

rough interface of high mobility. The growth of the rough prism face can then compete favourably 

with that of austenite." These statements call for the following remarks: 

- It is certain that adding elements such as Ca, Ce and Mg to an iron melt does decrease the 

oxygen and sulphur content in the melt, see Fig. VII-1. 

- However, most of foreign elements are surface active on a pure melt as shown on the 

opposite page for iron. Moreover, the relation which is often implicitly assumed between 

surface tension of a melt and interface energy between this melt and a crystalline phase 

(here graphite) is not straightforward. 

- It may be safely stated that some oxygen and sulphur atoms do adsorb onto graphite, but it 

will be seen later in this chapter this is true for any foreign element. Furthermore, it does not 

seem straightforward to conclude that O and S both adsorb on the prismatic planes as 

deduced from the increase of the interfacial energy when these elements are removed (see 

Fig. VI-3). In fact, Auger [PAR96] and SIMS [FRA85] measurements suggest that O adsorbs on 

the prismatic faces whilst S adsorbs on the basal faces, see Fig. VII-3. 

 
Figure VII-3. Distribution of C, O, Fe and S through the thickness of a graphite lamella. O is evenly 

distributed while S shows maxima regularly spaced. These SIMS distributions suggest that O 
adsorbed on the prismatic planes while S did on the basal planes.  

Adapted from Franklin and Stark [FRA84, FRA85]. 
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Cooling rate controlled transition of graphite shape - A few more challenges 

For studying the evolution of cast iron microstructure during solidification, a wealth of works have 

been carried out by quenching samples at appropriate temperature during cooling as already 

illustrated in the preceding chapters. This gave invaluable information on the transformation 

provided the quenching rate was high enough to freeze the liquid in the mushy zone. It has thus been 

demonstrated that graphite protrudes ahead of the austenite/graphite front in lamellar iron, see Fig. 

VII-4a, leading to the statement of loose coupling for this eutectic. In contrast, undercooled graphite 

eutectic shows a smoother front which is said to relate to tighter coupling.  

Fig. VII-4b illustrates that graphite spheroids can grow freely in the melt before being encapsulated 

by austenite.  Maximum diameter of such free spheroids have been reported to be in the range 5-15 

µm. Wetterfall et al. [WET72] related this to the possible flotation time of newly formed spheroids 

before encountering austenite dendrites. However, this could as well be due to nucleation and 

growth conditions of austenite onto and around graphite spheroids in very much the same way as 

halo formation in eutectic and peritectic alloys. 

  
Figure VII-4. Micrographs of samples quenched while partly solidified. a: front of a lamellar 

graphite cell [FRE75a]. b: graphite spheroid  floating in the melt not far from an ex-austenite 
dendrites [WET72]. 

Amongst those studies resorting to quenching during solidification, a few were performed with pure 

Fe-C-Si alloys, i.e. alloys in which no spheroidiser had been added. This led to the observation that 

both plate-like and spheroidal graphite may precipitate from the melt, see Fig. VII-5, and some 

authors suggested that the natural growth shape of graphite should be spheroidal. This conclusion 

was invalidated by an interesting result reported by Dhindaw and Verhoeven [DIN80] who noticed 

that if the melt was maintained under vacuum for a long period of time before cooling - so as any 

exogenous particles in the melt have disappeared - then spheroidal growth was replaced by a 

coupled eutectic with coral graphite. 

A couple of studies, either on Fe-C-Si alloys, on Ni-C or else on Co-C alloys, consisted in equilibrating a  

sample in a pure graphite crucible at high temperature so as to increase the temperature domain in 

which graphite could precipitate freely before bulk solidification. Unfortunately only very few of 

them report quantitative growth data as did Amini and Abbaschian [AMI13]. 
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The above statement by Subramanian et al. [SUB80] finally makes the link with crystal growth 

knowledge which considers that growth of rough interface is much more rapid than growth of 

faceted interface. Following these authors, adsorption of sulphur and oxygen is expected to roughen 

the graphite prismatic faces. Conversely, removing S and O with spheroidisers would hinder growth 

along the prismatic face leaving the possibility for growth along the basal direction. This calls again 

for the following remarks: 

- If such a roughening transition would exist, this should be easily seen when comparing the 

growth rate of primary graphite plates in melts with various S and O contents, but such data 

does not seem to exist. What has been reported relates to two-phase growth of lamellar 

graphite and austenite, it shows in particular that S decreases the temperature of the growth 

front, see Fig. IV-11, which would go against the statement. However, this latter effect is 

certainly related to the rejection of sulphur in front of the eutectic front, which leads to a 

decrease of the local equilibrium eutectic temperature. At imposed growth rate as in the 

directional experiments shown in Fig. IV-11, this temperature decrease thus does not 

necessarily mean that the eutectic undercooling has changed, i.e. it does not mean that the 

relationship between growth rate and eutectic undercooling has been affected by sulphur. 

- Following the most accepted model at the time they published, Subramanian et al. 

considered that growth in the basal direction is defect controlled, i.e. by spiral growth 

around dislocations, and they explicitly excluded growth by a 2D nucleation mechanism. It is 

quite surprising that neither Hillert, who first proposed the spiral growth mechanism for 

spheroidal growth of graphite in cast iron [HIL54], nor Minkoff who devoted 30 years to 

studying the growth of graphite [MIN83], showed any attempt to put numbers on this.  

 

As seen in the preceding chapter, the 2D nucleation/lateral 

growth model emerged as the most probable schematic for 

describing spheroidal growth in cast iron. Nevertheless, the 

challenge of predicting - or at least of explaining 

quantitatively -the simultaneous observation of plate-like 

and spheroidal graphite as seen illustrated in Fig. VII-5, 

remains open. See opposite page for further details.  

 

Figure VII-5. Observation of plate-like and spheroidal 
primary graphite in a pure Fe-C-Si alloy [VIG73]. 
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Other laboratory experiments on the effects of low level impurities 

Industrial alloys with the composition listed in the table below were melted in pure carbon crucibles 

at 1300°C for 10 minutes, then cooled to 1180°C and hold for 30 minutes, and finally quenched in air. 

Fig. VII-6a illustrates the shape of primary graphite when the furnace was not evacuated, leading to 

the samples processed under air [THE13]. SIMS analyses related the shape changes with absorption 

of alloying elements within graphite [LAC13a]. Fig. VII-6b shows that when Fe-C-X alloys are similarly 

processed under vacuum, with a peak temperature at 1350°C, primary graphite adopts other shapes 

[THE13, THE16]. It is worth noticing that the shape of graphite in the alloy with Sb added changes 

from a compacted shape when processed under air to thin lamellae when under vacuum.  

 

 
Figure VII-6-a. Optical micrographs of the primary graphite precipitates after processing under air 

with a peak temperature at 1300°C of the cast irons listed the above table.  
The scale is the same for all micrographs [THE13]. 

   

Figure VII-6-b. Optical micrographs of the primary graphite precipitates processed under vacuum 
with a peak temperature at 1350°C.  

From left to right: Fe-C, Fe-C-Sb and Fe-C-Ce alloys [THE13]. 

Alloy C Si Mn P S Mg Cu Ti Al N Ni Others 

10F2 3.64 2.05 0.11 0.033 0.015 0.037 0.04 --- --- 0.0050 0.03 0.003 Bi 

8P1-Cu 3.73 2.42 0.45 0.035 0.015 0.033 0.95 --- 0.010 0.0041 0.02 0.005 Sn 

8P3-Sn 3.49 2.60 0.40 0.035 0.015 0.033 0.86 --- 0.006 0.0047 0.02 0.024 Sn 

9P3-Sb 3.52 2.24 0.82 0.038 0.012 0.035 1.08 0.022 0.011 0.0038 0.04 0.005 Sb 

12P3-Ti 3.65 1.98 0.37 0.026 0.013 0.039 0.85 0.36 <0.010 0.0033 0.07 --- 
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The effect of low level impurities, such as Pb and Sb and many others, on lamellar graphite in LGI has 

often been reviewed (see e.g. [REY05]) and will not be detailed. On the contrary, there are very few 

studies on the effect of impurities on primary graphite lamellar growth and none being quantitative. 

This is quite unfortunate as the effect may be significant as illustrated in Fig. VII-7. 

 
Figure VII-7. Primary graphite precipitates in Fe-C alloys similarly processed under air with  

no addition (a), Sb (b) and Ce (c) addition [THE13]. 

On the contrary, quite a lot of effort has been devoted to studying the effect of minor elements on 

spheroidal graphite growth. It should be first stressed that spheroidisers as magnesium and cerium 

are themselves leading to spheroidal graphite degeneracy when added at a too high level. In Fig. VII-

8 is shown the evolution of nodularity with addition of either Mg or Ce to Fe-C-Si melt cast in various 

sections. Cerium is seen not to be a perfect spheroidiser and shows a limited optimum range around 

0.06 wt.%. Magnesium appears to give much higher nodularity and is efficient on a larger domain, 

0.04-0.08 wt.%, 0.08 wt.% being the upper limit beyond which it has been reported to lead to 

degeneracy illustrated with the micrograph in Fig. VII-8. 

  

Figure VII-8. Effect of addition of either Mg (solid lines) or Ce (dashed lines) on the graphite 
nodularity in a Fe-C-Si alloy cast in bars of different diameters (0.25-3 inches), adapted from White 

et al. [WHI83]. Micrograph illustrating graphite degeneracy due to Mg over-treatment [BAS73]. 
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Solubility of magnesium in iron melts 

Trojan and Flinn [TRO64] sat out to determine the solubility of Mg in cast iron as a function of 

pressure, composition and temperature. They worked with an open crucible placed in an 

overpressure vessel, and observed a negligible effect of pressure at 2250°F (1232°C). On the other 

hand, an addition of 1% carbon increases the solubility of magnesium by 0.5%, whereas it takes 3% 

silicon to have the same effect, see Fig. VII-9. Note that due to the decrease in the solubility of 

carbon in the liquid with addition of silicon, the solubility of magnesium is actually decreased in cast 

irons.  

 

Figure VII-9. Solubility of magnesium as a function of carbon content in a liquid Fe-C-Si alloy at 0, 
0.5 and 3 wt.% Si, for two temperatures: 1260°C and 1427°C. Data from [TRO64]. 

This work was completed a few years later by characterising the effect of silicon on the miscibility 

gap in the Fe-Mg system and the variation in Mg saturation pressure along this gap [GUI71]. It was 

found that this pressure decreases sharply with the silicon content on the iron-rich side. Speer and 

Parlee [SPE72] studied the dissolution and desulphurisation of Mg at sub-atmospheric partial 

pressures. At 1260°C (2300°F), they showed a minimum of 5 ppm dissolved S at a Mg content of 

0.23% in a carbon-saturated Fe-C liquid.  

The saturation vapour pressure of pure magnesium is given by [GUI71]:  

log PMg(atm)=4.928-6778/TK 

where TK is the temperature in Kelvin. 
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That magnesium and cerium lead to degenerate graphite demonstrates that their action is not simply 

to remove S and O from the melt. The amounts which appear in Fig. VII-8 are the total amounts of 

Mg or Ce in the casting, but the part that is active is the amount let free in solution in the melt and 

not tight in compounds. It has been demonstrated that the necessary level of free magnesium for 

spheroidisation is about 0.020 wt.% [SUA16] and also reported that as little as 0.001 wt.% of free Mg 

is enough to eliminate flake graphite in compacted graphite castings [DAW03]. Contrary to what is 

generally considered, solubility of magnesium in liquid iron is far from being negligible and in any 

case much higher than the above mentioned limits for spheroidising, see opposite page. 

When cerium or magnesium adsorb on graphite, they do modify its growth conditions first by 

spheroidising and then leading to degenerate graphite if added over a critical amount, see Fig; VII-8. 

There are two types of degenerate graphite that bear the same growth characteristic as spheroidal 

graphite, i.e. having an overall growth direction along the c crystallographic direction of graphite. 

These are exploded graphite, which relates to primary precipitation, and chunky graphite, which 

results from coupled eutectic with austenite. Liu et al. [LIU83] suggested continuity between these 

various shapes as illustrated with Fig. VII-10.  

 

Figure VII-10. Schematic of the transition between spheroidal,  
exploded and chunky graphite [LIU83]. 

It may be worth mentioning that various forms of exploded graphite have been described which do 

not all seem to relate to overall growth along the c direction such as so-called star-like graphite with 

faceted graphite precipitates radiating from a single centre [SUN83b]. It is noticeable as well that the 

effect of Mg over-treatment illustrated in Fig. VII-8 leads to protuberances that are certainly not 

growing along the c direction. It does not seem that any attempt has been made to clarify the 

reasons for these changes. 
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Irregular graphite spheroids 

It has been known since long that spheroidal graphite presents a magnetic signature because of iron-

rich particles embedded in it. These particles are typically of a few µm in size and are thus easily 

noticed on metallographic sections as white spots inside the graphite particles, see Fig. VII-11. The 

schematic at the right in Fig. VII-11 suggests that these iron-rich particles get engulfed in the 

spheroid when lateral extension of the sectors is not too much inhibited. This closing could possibly 

relate to a change in growth rate of graphite, e.g. when getting encapsulated in austenite as has 

been suggested [GHA19], and this does not need any change in the growth mechanism at the 

graphite scale. 

  
Figure VII-11. Micrograph of a spheroid showing iron-rich particles in white contrast that got 

embedded within graphite [BOU17] and schematic of the process.  

Another usual feature of spheroids that appears related is the radial “line” structure which is clearly 

evidenced under polarized light optical microscopy, see Fig.VII-12a. These lines are due to a relief on 

the surface of the polished spheroid section. In Fig. VII-12b are drawn the lines seen in Fig. VII-12a, 

with the apparent boundaries of the sectors in red and other lines in black. It appears that the 

sectors get more and more sub-divided by these black lines as graphite growth proceeds from the 

centre to the periphery of the spheroid. Such a schematic is akin to a process where new sub-sectors 

are generated and then compete with previous sectors to fill the space, in agreement with the 

divergent nature of spheroidal growth, see Fig. VII-12c [BOU20].  

  
Figure VII-12. optical micrograph under polarized light (a) and schematic of the radial line 

structure, without differentiating sectors (b) and after drawing their boundaries (c) [BOU20]. 
Reproduced with permission of Ductile Iron Society 

b c
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It is known that nodularity of spheroidal graphite decreases when the size of the spheroids increases. 

This leads to the practical statement of increasing inoculation or cooling rate to getting higher 

spheroid count and thus better nodularity. This effect of size can probably be explained on the basis 

of the intermediate form in Fig. VII-10 as described with the schematic in Fig. VII-13. This schematic 

illustrates the possible evolution of a spheroid from compact (a) to exploded (b) during its growth 

from the liquid.  

   

Figure VII-13. Schematic of the growth of a spheroid with sectors becoming separated when a large 
enough size has been attained (a,b) and thin foil of a spheroid in a Fe-C-Ce alloy [THE13] (c). 

The transition could at first be understood on the basis of the carbon available in the liquid for 

graphite growth, i.e. the carbon supersaturation of the liquid. Following nucleation of the spheroids, 

one expects an initial period of rapid growth during which most of the carbon supersaturation is 

consumed. A steady state flux of carbon then establishes which may be insufficient for the spheroids 

to keep compact, this is when irregular and then exploded graphite starts showing up. However, 

laboratory experiments illustrated in Fig. VII-13c showed that separate sectors are readily seen when 

Ce is added to Fe-C melt and processed under vacuum. This strongly suggested that the lateral 

growth of the sectors was inhibited leaving space between the sectors since the very early growth 

stages of the spheroid. It means that the rate of lateral extension of the new growth blocks nucleated 

at the top of the sectors, see Chapter VI, is sensitive to the amount of spheroidisers, Mg or Ce. The 

fact that both Mg and Ce are known to increase solidification undercooling may be seen as an 

indirect confirmation of this latter conclusion. 

A feature which seems closely related to the formation of exploded graphite is the observation of 

large spheroids or irregular spheroids with iron-rich precipitates encapsulated by graphite. This is 

discussed on the opposite page. There is another feature that might be closely related which is that 

inoculation changes compacted graphite to spheroidal graphite. The fact that CG cells develop from 

spheroids could be seen as a similar transition as is that of spheroidal to exploded graphite, but with 

protuberances growing along the a direction due to the low Mg content. 

a b
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Critical impurity levels for poisoning graphite growth 

Plotting the critical level of various elements for graphite degeneracy in nodular irons [LAC17a] 

versus the corresponding atomic mass shows a clear correlation: the heavier are the atoms the lower 

is their critical level, see Fig. VII-14a. As the atomic weight relates to the size of the atoms and to the 

number of their outer electrons, such a relationship - which has been suggested long ago as 

mentioned by Lux [LUX70a] - can be easily associated with adsorption of these elements at the 

graphite surface. Although foreign elements can be absorbed in graphite, most probably intercalated 

between graphite layers [QIN20], it is interesting to assume here they are all rejected during growth. 

Focusing on spheroidal growth, consider that the spheroids have precipitated with a density NV 

around nuclei having a radius r°. The volume of graphite per unit of volume, i.e. the graphite volume 

fraction, when the nodules have reached a radius rg is:     V
33gg Nrr3/4V 





  . The 

number ni of atoms of element i that were in the volume now occupied by graphite is: 

A
g

ii NVCn  , where NA is the Avogadro's number and Ci is the molar concentration of i in the 

initial liquid. This concentration is written: i
0
iiii M/wM/C  , with ρi the mass concentration 

(kg.m-3) of i in the liquid, ρ the density of the liquid, 0
iw the nominal mass fraction of element i in the 

material and Mi the atomic mass of element i. Now, assuming that all i atoms in the volume Vg 

adsorb at the surface of the growing graphite nodules, the coverage is given by: 
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where the surface occupied by a i atom has been taken as (ri)
2, where ri is the atomic radius of 

element i. With ρ set at 7200 kg.m-3 and r° at 0.5 µm, Mi set at 140 g.mol-1 and ri at 2 Å as for cerium, 

one gets the solid curves shown in Fig. VII-14b for three values of 0
iw , 10, 100 and 1000 ppm per 

mass. As growth proceeds, more and more i atoms accumulate at the surface of the spheroids and it 

is seen that full coverage would be easily achieved with 1000 ppm. However, for more reasonable 

values at 10-100 ppm, full coverage would be reached only for very large spheroids. This strongly 

suggests that modification of graphite growth relates to a limited number of sites at the surface of 

the spheroids, namely the prismatic sites where carbon atoms are expected to add on. 

  
Figure VII-14. a: Relation between atomic mass of elements poisoning nodular irons  

and their reported maximal levels. Adapted from [LAC17a]. 
b: Calculation of graphite nodule coverage for various nominal amounts of adsorbed element. 
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Since the Millis et al. patent, RE are known to counteract the deleterious effect of low level elements 

on spheroidising with magnesium. These so-called impurities or trace elements may be everything 

else than Fe, C and Si and spheroidisers, they can be impurities from the minerals used for pig iron 

manufacturing or trace elements coming from steel or cast iron returns. A long time ago, 

Thielemman [THI70] proposed an index Sb quantifying the appropriateness of a charge to give 

spheroidal graphite according to the deleterious elements considered at that time: 

 

where wi is the content in element i (wt.%) 

If Sb is lower than 1 no action is required while RE should be added if it is higher than 1. What is 

interesting in this index is that it shows that heavy elements such as Bi and Pb are far more 

deleterious than others, see opposite page. Selecting studies where no RE were used, it was found 

that all of the deleterious elements for which information was available lead to graphite 

degenerating in the same way, namely first giving protuberances named spiky graphite, that may or 

not develop in crab-like and eventually in mesh graphite, see Fig. VII-15 [LAC19]. It has been 

confirmed by ACOM that these protuberances do develop along the prismatic a crystallographic 

direction of graphite. An important peculiarity of these protuberances is that they start from the 

spheroids and eventually extend to the last to solidify zones where they falsely appear disconnected 

from the first graphite precipitates [TON18]. 

   

Figure VII-15. a: Spiky graphite due to Pb (courtesy of B. Tonn). b: mesh graphite due to Ti [HEC00].  
Crab-like graphite is illustrated with the micrograph in Fig. VII-8. 

 

TiSnSbPbBiAsAlb w4.4w3.2w0.5w290w370w0.2w6.1S 
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Adsorption energy 

Density-functional theory (DFT) calculations allowed comparing the adsorption energy of various 

elements (Al, C, Ca, Fe, Mg, O, S, Sb, Sn, Te, Ti) on the basal and prismatic planes of graphite. Both 

arm-chair and zig-zag configurations were considered for the prismatic planes [LAC19]. It was found 

that: 1) all elements can adsorb on the basal planes except Sb; 2) that the energy of adsorption is 

larger on the arm-chair sites than on the basal planes, and even higher on the zig-zag sites. These zig-

zag sites should thus be the preferred ones and the sorting of the adsorption energies explains that 

Mg atoms may be easily replaced by other elements. It would be of interest to investigate at which 

level of adsorption a type of sites gets saturated and to analyse interactions between adsorbed 

elements. 

However, it should be stressed that the 

environment for DFT calculations is vacuum 

which may not be appropriately representing 

the interface between graphite and iron melt. In 

that respect, dynamic molecular calculations 

would be of great interest. In this line, an 

interesting feature was observed when plotting 

the difference in electronegativity,EN, between 

carbon and the above elements, see Fig. VII-16. 

The two elements that have the lowest EN 

value, namely S and Te, are those that are 

known to adsorb preferentially on the basal 

planes [PAR96, VER89]. They do not form polar 

bonds with carbon. 

Table VII-1. Results of DFT calculations  
of adsorption energy Ead (eV) for basal  

and prismatic (arm-chair and zig-zag positions) 
 sites [LAC19]. 

 

 

Figure VII-16. Difference in electronegativity between carbon and elements having an effect on 
graphite growth in cast irons. Adapted from [LAC19]. 

element basal Arm-chair Zig-zag 

C -1.46 -6.30 -10.86 

Al -1.26 -3.64 -9.58 

Ca -1.11 -3.27 -9.20 

O -2.07 -5.37 -11.48 

Fe -1.25 -3.54 -8.74 

Mg -0.29 -2.05 -7.96 

S -0.77 -5.22 -10.06 

Sb 0.46 -3.69 -9.10 

Sn -0.64 -3.96 -9.64 

Te -0.29 -3.97 -9.28 

Ti -2.11 -4.82 -11.17 
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At about the same time as Thielemann designed his Sb index, Herfurth found that adding together 

impurities with Ti showed a more pronounced effect than being simply additive [HER66], see Fig. VII-

17. The more recent review by Javaid and Loper [JAV95] shows that we lack enough quantitative data 

to really characterize these interactions. However, we do have a semi-quantitative way for 

understanding these effects by considering the schematic proposed in the preceding chapter for 

growth of spheroidal graphite, namely that spheroidising is achieved by Mg atoms adsorbing on the 

prismatic faces. On these faces, there are two types of arrangement of the carbon atoms which are 

called arm-chair and zig-zag locations. From the table VII-1, see opposite page, it is seen that all 

elements for which calculations were performed have an adsorption energy which is higher on the 

zig-zag sites than on the arm-chair ones, and higher on the arm-chair sites than on basal planes. 

Focusing on the most favoured zig-zag sites and excluding the main elements C and Fe (that are the 

main constituent of graphite and the solvent of the liquid, respectively) the data for the zig-zag sites 

gives the following sorting for adsorption energy: 

O > Ti > S > Sn > Al > Te > Ca > Sb > Mg 

Mg has the lowest of the adsorption energy which means that any of these foreign elements could 

easily replace magnesium on the prismatic planes, or at least compete successively with it for 

adsorption. The spheroidising effect of Mg would thus be strongly altered. Note that Ti has the 

highest adsorption energy after oxygen, with a value which is much higher than that for the other 

deleterious elements. This may well explain that the curves in Fig. VII-17 are not linear, i.e. not 

reflecting a simple additive rule.  

 

 

 

 

 

 

 

 

 

 

 

Figure VII-17. Effect of Ti content on the critical 
level of Bi, Pb and Sb (lower scale) and Al, Sn 

and Al (upper scale) [HER66].  
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A possible model for chunky graphite growth 

Let us consider that the melt has been modified so that the overall (or apparent) growth direction of 

graphite is the c direction. Though it is accepted that cells of chunky graphite do grow in some 

coupled way, details of the liquid/eutectic interface and growth mechanism are unknown. A 

simplified schematic of the interface is anyway proposed in Fig. VII-18 where basal planes of graphite 

are now in contact with the liquid but where steps and intermediate facets develop on the edges of 

graphite. According to the orientation change in l/G proposed in Fig. VI-3 for spheroidised alloys, the 

anisotropy effect at the triple junction may be very low and could be neglected (see [TOR16] for 

more details). With the value of l/G at 1.5−1.7 J·m-2, /G of the order of 0.9−1 J·m-2 and l/ much 

lower at about 0.2−0.3 J·m-2, it is seen in Fig. VII-18 that the balance of forces is not satisfied, with |S| 

< |l/G|. In such conditions, chunky graphite would not be expected to grow. However, a slight over 

treatment of the melt with Mg and/or Ce, or the accumulation at the graphite−liquid interface of 

other "active" elements, may easily decrease l/G below a critical value of about 1.3 J·m-2 where the 

balance of forces could be achieved. 

 

 

Figure VII-18. Schematic of coupled growth of graphite when graphite grows along the basal 
direction with positive curvature of austenite at the triple junction. The forces acting at the triple 
junction are shown in bold lines. S is the resultant of the forces involving austenite and opposes 

the liquid/graphite interface tension. 

It has been suggested that spheroidal growth may well result from the fact that the above 

equilibrium is not satisfied [TOR16]. Then the delicate question of the conditions leading to the 

formation of austenite shells reappears.  
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Chunky graphite in spheroidal graphite cast irons has been described several times in the literature 

and the interested reader is directed to the reviews by Lacaze et al. [LAC13b] and Baer [BAE20]. It is 

sufficient here to remind that it appears most often as large cells of tiny graphite precipitates when 

seen on 2D sections while being a network of interconnected strings, see Fig. VII-19a. If formed only 

in the last to solidify areas, chunky graphite may show isolated strings which explain it has been 

confused with vermicular graphite during years. Chunky graphite is favoured by silicon, cerium and 

long solidification time, which makes it frequent in high silicon cast irons developed nowadays and in 

large castings. In practice, it has been found that adding antimony decreases significantly the amount 

of chunky graphite and this has been related to RE-Sb interactions cancelling each other deleterious 

effect by precipitation of compounds. However, it is known that tiny additions of As, Pb and Sb do 

improve nodularity in low silicon cast irons and this gave the idea of adding 40 ppm antimony to a 

high silicon cast iron spheroidised and inoculated without RE addition. While the reference high 

silicon alloy with very low RE content and without Sb addition showed chunky graphite, it was found 

that chunky graphite was replaced by some spiky graphite, i.e. the usual degenerate graphite, when 

adding Sb. In the same line, attempts were carried out with tin addition which has also been reported 

to decrease chunky graphite occurrence in low silicon cast irons. Trials on high silicon cast iron with 

addition of 250, 500 and 1000 ppm of Sn showed chunky graphite disappeared at 500 and 1000 ppm, 

but that both spiky and chunky graphite could be observed at 250 ppm, see Fig. VII-19b; 

  
Figure VII-19. Microstructure of: (a) a low-Si SGI cast in a Y4 keel-block [TOR16];  

(b) a high-Si SGI with 250 ppm Sn and no RE cast in a isolating mould.  
Chunky cells in (a), spiky and chunky graphite in (b).  

The question remains anyway on how and why magnesium spheroidises graphite. It has been seen 

that Mg behaves in fact as a few other elements, spheroidiser up to a certain level and leading to 

spheroidal graphite degeneracy beyond that level.  

1 mm
a
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Chapter VIII – Solid-state phase transformations 
 

Once solidification is completed, the as-cast matrix of silicon cast irons depends on the cooling 

schedule to room temperature, RT. Most of the castings being intended for use in the as-cast state, 

the matrix should be either ferritic or pearlitic. This relates to the eutectoid transformation of the 

high-temperature austenite processing in the stable or metastable system, respectively. Mixed 

matrices are sometimes looked for, which are characterized by the so-called bull-eye microstructure 

in the case of SGI which is illustrated in Fig. VIII-1. Such a microstructure has the great interest of 

showing the main principle of the eutectoid transformation, namely that, upon continuous cooling, 

ferrite nucleates at the graphite/austenite interface, encapsulates the graphite spheroids and then 

grows by diffusion of carbon from austenite to graphite through the ferrite halo. The transformation 

rate is thus expected to decrease as the transformation proceeds, leading eventually to nucleation 

and growth of pearlite in the metastable system. This latter constituent having a much higher growth 

rate than ferrite, it rapidly fills the untransformed matrix volume. This schematic has much in 

common with the competitive solidification in the stable and metastable systems. 

 

Figure VIII-1. Bull-eye microstructure in a SGI, optical micrograph after Nital etching. 

The first part of this chapter deals with the growth conditions at the interface between austenite and 

ferrite or pearlite as they explain the so-called hysteresis of the eutectoid transformation, i.e. the fact 

that it proceeds at much lower temperature upon cooling than upon heating. Then, it is emphasized 

that these growth conditions do not depend on graphite shape and distribution while the overall 

transformation kinetics does so. Solid-state growth of graphite is also shortly considered. 



100 
 

Experimental evidence of the eutectoid "hysteresis" 

The most accurate methods for studying solid-state transformations are dilatometry and differential 

thermal analysis (DTA). The use of this latter technique is illustrated in Fig. VIII-2 in the case of a SGI 

with 2.08 wt.% Si and 0.13 wt.% Mn which was ferritic-pearlitic in the as-cast state. The figure shows 

the case of heating the as-cast alloy to 950°C, holding it for 5 minutes and then cooling it to RT. Both 

heating and cooling were carried out at 5°C/min. Data records consist of time, temperature and 

differential signal (corresponding to the temperature difference between the sample and an inert 

reference), and it is usual to plot the DTA signal versus temperature. 

In Fig. VIII-2, the record upon heating shows three peaks: the Curie transformation of ferrite and then 

two peaks associated to pearlite and ferrite decomposition at increasing temperature. Upon cooling, 

ferrite precipitates first, followed by pearlite whose kinetics is seen to be much more rapid. It is 

noted that the start of austenite growth upon heating occurs at a temperature significantly higher 

than the start of its decomposition upon cooling, this is the so-called hysteresis. Note that the Curie 

peak does not appear upon cooling as there is no ferrite formed when the Curie temperature is 

reached. 

 
Figure VIII-2. Differential thermal analysis record upon heating and cooling at 5 °C/min of a SGI. 

Standard DTA is well suited to investigate the effect of scanning rate from a few tenths to a few tens 

of °C/min. At lower scanning rate, the signal becomes too weak while higher scanning rates are not 

achievable. This range of scanning rates is however compatible with those encountered in castings 

and thermal analysis, so that study of the scanning rate effect with DTA is of practical interest.  
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Owing to the fact that silicon cast irons are multicomponent alloys based on Fe-C-Si compositions, it 

exists an equilibrium three-phase field that involves austenite, ferrite and graphite. This field defines 

the well-named critical temperature range. Attempts to characterize the upper and lower 

temperatures of this equilibrium domain with dilatometry and differential thermal analysis failed 

because an important temperature lag showed up between the transformation intervals upon 

cooling and heating, see opposite page. This situation led a few authors, a long time ago, to 

determine the location of the equilibrium three phase field by very slow rates of transformation or 

by quenching samples from various temperatures after isothermal holding. These results have been 

discussed previously [GER00] and are represented in Fig. VIII-3. In this figure, open symbols show the 

upper temperature at which ferrite could be observed under near-equilibrium conditions. Most 

importantly, it was observed that ferrite was not necessarily associated to graphite nodules and 

precipitated everywhere in the metallic matrix. This observation may be understood by considering 

that achieving equilibrium in the three-phase field needs redistribution of substitutional solutes 

between ferrite and austenite. This relates to long range diffusion of these solutes which is very 

slow, so that full equilibrium of carbon may be assumed at any time during isothermal holding or 

very slow cooling rate. In such a case, ferrite may have better nucleating at austenite grain 

boundaries rather than at the graphite/austenite interface, and its growth is then controlled by 

redistribution of substitutional solutes and not by carbon diffusion. In Fig. VIII-3, the solid line was 

calculated using the equation for the upper limit of the stable three phase field, oT , given later in 

this chapter and a good agreement is observed. 

 

Figure VIII-3 . Effect of the silicon content on the upper (empty symbols) and lower (solid symbols) 
temperatures of the "stable" three phase field determined experimentally. Solid and dotted lines 

are the predicted oT  and o
pT  temperatures for Fe-C-Si alloys with 0.4 wt.% Mn [GER00]. 
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TTT and CCT curves 
Time-temperature-transformation (TTT) curves for cast irons are obtained by first austenitising and 

then quenching to a temperature where the austenite transforms. Continuous-cooling-

transformation (CCT) diagrams are obtained by again austenitising and then cooling at a given 

constant rate to RT. TTT and CCT diagrams were schematically presented in the ASM handbook of 

cast iron of 1995 as shown in Fig. VIII-4. In both of them, the upper critical temperature (upper 

dashed horizontal line) that is shown makes certainly reference to the upper limit of the three-phase 

field, showing that the authors considered that there should be a relation between the equilibrium 

phase diagram and the transformation temperatures. However, the lower horizontal dashed line was 

not named and seems to indicate the upper temperature at which pearlite can appear.  

In both diagrams, the most left curve indicates the beginning of the transformation while the one to 

the right locates the end of the transformation. As for many solid-state transformations, the nose of 

the pearlitic transformation is a well-known feature that is due to the increase of the nucleation and 

the lowering of the diffusion processes as the transformation temperature is decreased. It is seen 

that the same reasoning has been applied for the ferritic transformation; however the shape 

proposed does certainly not agree with experimental information. 

The present chapter shows that all four characteristic temperatures, oT  and T , o
pT and pT , 

should appear in complete TTT and CCT diagrams. For usual cooling rates, only the lower limits are of 

interest, see Fig. VIII-12a. 

  
Figure VIII-4. TTT (a) and CCT (b) diagram. Gr stands for graphite, MS and Mf for martensite start 
and end, respectively, stages I and II are for ausferritisation. The red curves are cooling schedules. 
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It appeared more difficult to experimentally determine the lower limit of the three phase field in the 

stable system. It is seen in Fig. VIII-3 that all the experimental points for Si content lower than 3.0 

wt.% are at the same temperature and the authors of the experiments realized that they relate to 

the formation of pearlite. These difficulties are reflected in the TTT and CCT diagrams, see opposite 

page.  

In Fig. VIII-5 are superimposed the isopleth sections of the stable and metastable phase diagrams at 

2.5 wt.% Si. It is seen that they are very close to each other and, in fact, overlap in the low-

temperature range thus explaining the above difficulties. In the figure, four temperatures are defined 

along the extrapolation of the austenite/ferrite equilibrium, two in the stable system, 0T  and T , 

and two in the metastable one, 0
pT  and pT . They will be later denoted as the upper and lower 

temperatures of the three phase fields. Expressions of these temperatures as function of alloying 

content have been calculated using first the work by Uhrenius [UHR77] and then complemented with 

TCFE8. These are: 

NiCrMoMnCuSi
o w0.26w7.10w3.3w7.18w7.7w5.31739T      VIII-1 

SnNiCrMoMn

Cu
2

SiSi

w1.5w5.27w0.24w0.2w0.45

w0.14)w(0.2w4.18739T



      VIII-2 

NiCrMoMnCu
2

SiSi
o
p w0.12w3.24w3.9w7.13w7.10)w(98.1w07.30727T    VIII-3 

SnNiCrMoMn

Cu
2

SiSip

w5.6w0.33w0.13w0.8w0.25

w0.21)w(023.0w6.21727T




     VIII-4 

These expressions were calculated with silicon content up to 3 wt.%, manganese, copper, chromium 

and nickel content up to 1 wt %, and molybdenum content up to 0.5 wt.%. 

 
Figure VIII-5. Fe-C isopleth section of the stable (solid lines) and metastable (dotted lines) systems 

at 2.5 wt.% Si in the eutectoid range [TCFE8]. 
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The start temperature of the stable eutectoid transformation upon cooling 

Fig. VIII-6 shows two isothermal sections of the Fe-C-Si phase diagram. They correspond to the 0T  

(a) and T  (b) temperatures of an alloy with a matrix at 2.5 wt.% Si. In these graphs, the red lines 

represent the tie-lines for equilibrium between ferrite, austenite and graphite (out of the figure). 

When the upper limit of the three phase field is reached, the ferrite to grow should have a significant 

lower carbon content and higher silicon content than the parent austenite (Fig. VIII-6a). Because 

diffusion of substitutional solutes in austenite is very slow, growth of ferrite with “long range” 

redistribution of silicon or any other substitutional solutes is impossible. This is in line with the 

accepted view that growth of ferrite is controlled by carbon diffusion upon continuous cooling. The 

only possibility for the transformation of austenite to ferrite is that the system cools down further 

until ferrite with the same silicon content as the parent austenite becomes stable. It is seen with Fig. 

VIII-6b that this happens at the lower limit of the three phase field. It is also shown in Fig. VIII-9 that 

this is only at this temperature that the “driving force” for carbon diffusion becomes positive. 

 
Figure VIII-6. Isopleth sections of the Fe-C-Si phase diagram  

at the temperature 0T  (a) and T  (b) for a silicon content of 2.5 wt.%.  

The open circles indicate the location of the eutectoid alloy at 2.5 wt.% Si. [TCFE8]. 

The above assertion that ferrite inherits the composition of substitute solutes from austenite during 

its growth can be rationalized by imagining that it does not. If this were the case, the local 

equilibrium at the interface imposes a redistribution of these elements and thus their long-distance 

diffusion. Ahead of the moving interface, a diffusion gradient builds up in austenite whose thickness 

 scales as ferritei V/D , where 
iD is the diffusion coefficient of element i in austenite and Vferrite the 

growth rate of ferrite [WES96]. In the case of SGI, Vferrite is easily estimated by dividing the average 

distance between spheroids by the total time for the eutectoid transformation, while 
iD  is typically 

of the order of 10-19-10-20 m-2·s-1 at 700°C. For usual cooling rates,  thus takes values lower than the 

atomic distance in the fcc lattice which is unphysical. The same reasoning applies to pearlite.  

a b
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In principle, the eutectoid transformation of silicon cast irons should bear many similarities with that 

of carbon steels. There is however an evident difference which is the presence of graphite particles 

which support the transformation in the stable system by acting as carbon sinks. Apart for this, the 

transformation of austenite to ferrite or to pearlite should obey the same rules as for carbon steels, 

and could thus be understood following the approach by Hillert [HIL02, HIL04] or others, see [HIL04] 

for a short review. This has been stated by Venogopalan [VEN90] and later by Lacaze et al. [LAC94]. 

For basic studies, carbon steels have been replaced by Fe-C-X alloys, where X is a substitutional 

solute, i.e. substituting for Fe in the austenite or ferrite crystallographic structures, while C is an 

interstitial element as are also N and O. Interstitial elements do diffuse much more rapidly than 

substitutional elements in solid state, i.e. through the bcc and fcc matrices, while substitutional 

solutes are strongly tight in these matrices. To make it simple, one may consider that substitutional 

elements cannot move by diffusion within either ferrite or austenite, except at very low cooling rate 

or during extended isothermal holding. This implies that - at usual cooling rates - the product of 

austenite decomposition, i.e. ferrite for the transformation in the stable system and pearlite for the 

transformation in the metastable system, has the same composition in substitutional elements as the 

parent austenite. In turn, this inheritance implies that the eutectoid transformation can start upon 

continuous cooling only when the lower limit of the three phase field has been reached, see opposite 

and next pages. Experiments performed by Ekpoom and Heine [EKP78] showed this to be true 

whatever the graphite shape is, see Fig. VIII-7. 

 

Figure VIII-7. Symbols represent experimental results from Ekpoom and Heine [EKP78] showing the 
start of the eutectoid transformation upon heating and upon cooling (solid symbols) and the upper 
limit of the equilibrium three-phase field (open symbols). The solid lines are the calculated upper, 

0T , and lower, T , limits of the equilibrium three-phase field (eqs. VIII-1 and VIII-2). The various 

symbols enable to differentiate cast irons according to graphite shape, see insert. The opening of 
the three-phase field at 0 wt% Si is due to the fact that calculations were performed for alloys 

containing 0.3 wt.% Mn, i.e. the average Mn content of the experimental alloys [LAC17c]. 
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Thermo-kinetics conditions for ferrite growth 

During continuous cooling at a rate higher than about 1.2°C/min, the eutectoid transformation takes 

place at such high rates that ferrite - in the stable system – and pearlite – in the metastable system – 

grow at the same composition as the parent austenite. What is in fact conserved is the ratio of 

substitutional solutes in the bcc and fcc lattices, respectively. For expressing this, Hillert introduced 

the site fraction  Ciiii x1/xx/xu  , where xi is the atom fraction of element i and the 

summation excludes carbon. In the present chapter and in the cited references, this conservation has 

been approximated using the mass fraction of substitutional elements.  

If there is no redistribution of substitutional solutes, then the stable eutectoid is controlled by carbon 

diffusion. A first possibility for ferrite to grow at the same composition as austenite is that their free 

energy is the same, which happens when the so-called T0 line is reached. For the eutectoid 

composition, this line is located far below the metastable three phase field which means that such a 

transformation is hardly possible in cast irons. Hence, the only possibility is by having carbon 

transferred to graphite, which needs a positive driving force that we expressed with wC, see Fig. 

VIII-9. Note that this does not exclude redistribution and diffusion of carbon in austenite ahead of the 

ferrite/austenite interface, but this can happen only once ferrite has started to grow under wC>0.

 

Figure VIII-8. Kinetics of austenite decomposition to 
ferrite at 1, 2, 5 and 10 °C/min as compared to the 

distribution of the T temperature [GER97]. 

 

 

The effect of microsegregation on the 

eutectoid transformation has been studied on 

samples processed by DTA at various cooling 

rates (1 to 10 K/min) [GER97]. Microprobe 

measurements gave the distribution of 

substitutional solutes that were then 

converted to reference temperature T for 

ferritic alloys and Tp for pearlitic alloys. It is 

seen in Fig. VIII-8, for a ferritic alloy, that the 

T temperature does not change much in 80% 

of the material. This is only when the last 20% 

are to transform that microsegregation could 

possibly enter into play. The same was 

observed for pearlitic iron. 

Under conditions where there is long range redistribution of substitutional solutes, i.e. at very low 

growth rates which are achieved within the three-phase temperature range, a spike of substitutional 

solutes develops ahead of the moving ferrite/austenite interface. Hillert recalls that this may lead 

quickly to ferrite having the same composition as the parent austenite [HIL04]. These conditions may 

be called false para-ferrite. As already mentioned, such a ferrite can grow anywhere in the cast iron 

microstructure because the carbon activity is the same throughout the material. Studying this thus 

needs quenching experiments to locating the transformation front. 
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If ferrite inherits the composition in substitutional solutes of austenite, then the stable eutectoid 

transformation is controlled by diffusion of carbon and may be described using the appropriate Fe-C 

isopleth section as the one illustrated in Fig. VIII-9a. Redistribution of carbon is described with the 

schematic in Fig. VIII-9b which is the basis for modelling ferrite growth in SGI. For ferrite to grow, 

carbon has to diffuse from the ferrite/austenite interface to graphite through the ferrite halo. This 

can proceed only if the quantity wC is positive, which happens only when the temperature is lower 

than T. Upon continuous cooling – at a rate higher than ≈1.2°C/min [GER00] – ferrite cannot grow 

within the three-phase domain. It may be worth stressing again that growth of ferrite proceeds at 

the expense of austenite, meaning that the ferrite/austenite interface has to move within parent 

austenite. At temperature above T, this would require long-range redistribution of substitutional 

solutes which is impossible even if the carbon gradient in austenite was favourable. The 

transformation is thus characterized by the undercooling T=T-T. 

  
Figure VIII-9. Isopleth Fe-C section of the relevant stable phase diagram (a) and schematic of 

carbon redistribution during ferrite growth in SGI (b) (adapted from [LAC98b]). 

In the description above, the matrix is assumed to be homogeneous in substitutional solutes. Owing 

to graphite precipitation, the content in substitutional solutes of this homogenous matrix should be 

corrected with respect to the nominal composition. This can be done by writing the mass balance of 

any substitutional i element. The corrected composition is written    0
i

gragragra wg1/g1   , 

where ggra is the volume fraction of graphite and 0
iw is the nominal content of i element. For ggra=9%, 

the corrected content in i element is 1.05 times the nominal content. Considering the main alloying 

element, namely silicon, it is totally fortuitous that this correction corresponds quite closely to the 

correction that should be applied to account for silicon microsegregation. It is seen in the opposite 

page that this microsegregation has a very limited effect on the start of the transformation. 

T

a
b
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The start temperature of the metastable eutectoid transformation 

upon cooling 

Fig. VIII-10a shows the isothermal section of the Fe-C-Si metastable phase diagram at the upper 

temperature, 0
pT , of the austenite/ferrite/cementite three-phase field for an alloy with 3.0 wt.% Si 

represented with the open circle. When the temperature decreases, the three-phase triangle moves 

to the left, see the yellow area in Fig. VIII-10b. When the temperature Tp is reached, the tie-line 

ferrite/cementite located to the right of the triangle goes through the open circle. In these 

conditions, the parent austenite can readily decompose to ferrite and cementite without long range 

redistribution of substitutional alloying elements. 

 

 
Figure VIII-10. Isothermal section of the Fe-C-Si system at the 0

pT temperature  

of an alloy with 3.0 wt.% Si (a) and illustration of the movement of the three-phase field (yellow 
triangle) when the temperature is decreased to Tp (b). 

Fridberg and Hillert have studied growth of pearlite in Fe-C-Si alloys and could find up to four 

different types of transformation [FRI70]. The effect of silicon was compared latter to the effect of 

other elements [HIL81]. It seems that the only kind of pearlite that is relevant for cast irons is what 

was called "constant orthopearlite" whose growth is controlled by interfacial diffusion. The upper 

limit for this pearlite is the Tp temperature. An interesting point is that this growth is not much 

sensitive to the content of silicon in the alloy because ferrite can dissolve large amounts of it. This 

could possibly explain as well the low sensitivity to other alloying elements illustrated in Fig. VIII-13. 
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The same condition holds for growth of pearlite: the mixture of ferrite and cementite must inherit 

the austenite content in substitutional elements. Accordingly, austenite can transform to pearlite 

only when the temperature has decreased below the lower limit of the three phase field, see 

opposite page. Owing to the fact that nucleation of ferrite is easy, it is proposed to select as 

reference temperature the intersection of the austenite/ferrite equilibrium with the lower limit of 

the three phase field, denoted Tp in Fig. VIII-11a. The transformation is thus characterized by the 

undercooling Tp=Tp-T. 

Numerous experimental values for the onset of eutectoid transformation, obtained either by thermal 

analysis or differential thermal analysis, are available. Though these results are scattered, analysis of 

such series of data showed an increase of T and Tp with cooling rate which is illustrated in Fig. 

VIII-11b [LAC94, SER10]. It is first seen that the undercooling for the start of ferrite growth may be 

extrapolated to zero at very low cooling rate (though remaining above the limit of 1.2 °C/min 

mentioned above), which confirms that there is no nucleation barrier for this phase. On the contrary, 

the curve for pearlite extrapolates to an undercooling of about 40°C which may thus be understood 

as corresponding to the driving force needed for nucleation of cementite.  

It has been observed that for SGI containing more than 0.05 wt.% Sn, the undercooling Tp is much 

lower and may well extrapolate to zero at a zero cooling rate. This has tentatively been understood 

as Sn cancelling the driving force for cementite nucleation and it has been proposed this is due to the 

transitory formation of a Kappa Fe3SnC compound whose crystalline structure is close to that of 

austenite and shows epitaxy with cementite [LAC17b]. 

  

Figure VIII-11. a) Isopleth Fe-C section of the relevant stable (solid lines) and metastable (doted 

lines) phase diagrams in the eutectoid temperature range. The undercooling Tp with respect to 
the selected Tp temperature is illustrated. b) Effect of the cooling rate on the undercooling for the 

start of the eutectoid transformation T in the stable system and Tp in the metastable one. 
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Construction of the CCT curves 

In Fig. VIII-12a is shown the CCT curve for the start of the ferrite and pearlite growth in a cast iron 

with 2.0 wt.% Si and 0.6 wt.% Mn which has been equilibrated at 950°C for carbon homogenisation. 

The curves labelled 2-200 are the cooling curves for cooling rates expressed in °C/min. The horizontal 

lines represent the T and Tp temperature, they are seen to be only a few degrees apart. When the T 

is reached, ferrite can start growing at a temperature which decreases with the cooling rate as 

described with Fig. VIII-11b. This is represented with the blue solid curve. When Tp is reached, 

pearlite can start growing but some undercooling is needed for cementite nucleation if the alloy does 

not contain more than 0.05 wt.% Sn. Again, the actual temperature for the start of the pearlitic 

transformation decreases with cooling rate; this is represented with the black dashed curve. It is seen 

that a cooling rate higher than 100°C/min would be needed to reach the pearlitic domain without 

ferrite precipitation. In case of addition of tin, the pearlite start curve moves upwards (black solid 

curve) to such an extent that the window for ferrite formation is practically limited to the 

temperature difference (T-Tp). Traces of ferrite could thus be observed only at very low cooling 

rates, less than a few °C/min. 

Combining the growth low for pearlite mentioned on the opposite page and an appropriate 

nucleation law, it is possible to describe the so-called pearlite nose [LAC99]. This is illustrated in Fig. 

VIII-11b. 

  
Figure VIII-12. a: CCT curve showing the start of austenite decomposition to ferrite and pearlite and 

illustrating the role of Sn. Cooling rates along the urves are in °C/min.  

b: Pearlite nose as function of Tp; the symbols represent experimental data for Fe-C-Si steels 
(adapted from [LAC99]). 
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The two curves in Fig. VIII-11b may be used to draw the envelop of the CCT curve and to illustrate 

how addition of Sn above 0.05 wt.% acts as a pearlite promoter, see opposite page. Once pearlite 

grains have nucleated, they grow with a more or less spherical front. Analysis of experimental data in 

the literature [LAL73, PAN87] has shown that their growth rate is not very sensitive to additions of As 

(0.5), Cu (2.08), Mn (0.75) or Sn (0.15), where the figures in brackets give the maximum amount for 

each element (% by weight) that has been studied, see Fig. VIII-13. 

 
Figure VIII-13. Fraction of pearlite versus time after the Tp temperature was reached for two 

cooling rates, 0.73 and 1.46 °C/s. Only fully pearlitic samples were selected. Adapted from [LAC99]. 

Calculations of the growth rate of pearlite in silicon steels [FRI70] showed that it is not much 

sensitive to silicon content. This suggests that carbon and silicon partitioning between ferrite and 

cementite controls the growth rate of pearlite and that addition of other alloying elements at low 

level does not affect it. Accordingly, and based on pearlite growth rate data in Fe-C-Si alloys, the 

following growth rate was proposed [LAC98b]: 1.63·10-5·(Tp)3 µm/s. Using this expression with an 

appropriate nucleation law for pearlite cells, the shape of the so-called pearlite nose could be 

retrieved, see opposite page. 

Molybdenum differs from the alloying elements mentioned above. It is known to strongly delay both 

the ferritic and pearlitic transformations, see the compilation of TTT and CCT curves by Röhrig and 

Fairhurst [ROH79], and this has been related to the associated significant decrease of carbon 

diffusion in both austenite and ferrite. A final note concerns the very low solubility of copper in 

ferrite and cementite which should lead to precipitation of free copper in pearlitic cast irons alloyed 

with this element. Such precipitation has been highlighted by TEM by Garcia et al [GAR19], and the 

fact that it does not seem to affect the growth of pearlite is certainly linked to the fact that these 

precipitates have nanometre size. 
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The "barrier" effect 

Lietaert [LIE97] showed that oxygen and sulphur favour pearlite and this was again demonstrated for 

sulphur by Nakae et al. [NAK16] by means of an elegant experiment which consisted in casting a LGI 

with a very low sulphur content. While usual LGI are fully pearlitic, this special LGI was fully ferritic 

which suggests that, in usual LGI, S adsorbed at the surface of graphite hinders the transfer of carbon 

atoms from the matrix to the precipitates and thus blocks ferrite growth.  

Antimony is know to have a strong pearlite promoter effect as well when present at level similar to 

that of sulphur. Auger spectroscopy evidenced the presence of 1-2 atom layers of Sb at the surface of 

spheroidal graphite [LIU90, DEK20] which may account for this pearlite promoter effect. As for 

sulphur, this  effect may be associated with a preferential adsorption of antimony at the graphite 

surface and, in this way, could be called a barrier effect. 

However, it seems totally excluded that micrometre size layers of one element could develop in 

between graphite and the matrix as proposed since a long time for copper. Indeed, such a thick layer 

would have been evidenced since long by micro-analysis techniques such as electron microprobe if it 

were to exist. The thick layer of copper shown by Zou et al. [ZOU12] seems to be an artefact because 

it was obtained after selective dissolution of the ferrite halo at an electrode potential removing iron 

but not copper which remained in place. 

Hence, the interesting observation is that some of the elements which have been seen to strongly 

affect graphite shape during the solidification step may as well determine the matrix structure 

resulting from the eutectoid transformation. Exactly as was the case for solidification, one may 

wonder if the preferential adsorption on prismatic or basal planes has any relevance. It is known that 

reheating a pearlitic LGI in the austenite field then leads to some ferrite precipitating when cooling 

down again. This could be related to the partial dissolution of graphite which increases the surface of 

prismatic planes facing the matrix during the eutectoid transformation.  
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The above considerations apply to all silicon cast irons whatever the shape and distribution of 

graphite. However, the final amount of ferrite depends strongly on the growth kinetics of this phase. 

As a rule, the finer are graphite precipitates the higher is the amount of ferrite. For the same alloy 

composition, it has thus been shown that ferrite growth is much more rapid in CGI than in LGI, see 

Fig. VIII-14. Similarly, undercooled graphite must be avoided in LGI castings which are intended to be 

fully pearlitic. In the case of SGI, it is known that the final amount of ferrite is very sensitive to nodule 

count at low nodule count, while formation of ferrite can hardly be avoided at high nodule count. 

Accordingly, for a given melt preparation solidifying within a large range of cooling rate, a minimum 

in ferrite content has sometimes been observed in SGI. As a matter of fact, increasing the cooling 

rate does increase the nodule count which would favour ferrite while at the same time increasing the 

undercooling for the eutectoid transformation that favours pearlite. Such a minimum has also been 

observed in CGI [GUE19]. 

 
Figure VIII-14. Comparison of austenite decomposition kinetics of flake (LGI) and compacted (CGI) 

graphite irons isothermally held at 750°C (adapted from Pan et al. [PAN86]). 

To favour pearlite, appropriate combinations of Cu, Mn and Sn are industrially used. However, Cu 

and Mn are "soft" pearlite promoters, being about 10 times less effective than Sn as suggested by 

the Sn equivalent, Sneq, proposed based on experimental information: Sneq=0.075·wMn+0.125·wCu+wSn 

[LAC16]. The fact that Cu and Mn do not affect pearlite growth kinetics (see Fig. VIII-13) leads to the 

conclusion that their pearlite promoter effect is due to them affecting ferrite growth. Their 

"softness" further suggests a thermodynamic effect [LAC16]. Both of these elements decrease the T 

temperature (eq. VIII-2) which then can become lower than the Curie temperature of ferrite. At this 

latter temperature, the diffusion coefficient of carbon gets divided by 3 [ÅGR86] and this certainly 

explains the role of copper. Further, Mn decreases also the driving force wC for ferrite growth and 

this was proposed to explain its role. In this approach, the "barrier" effect sometimes proposed to 

explain the role of perlite promoters is disregarded for Cu and Mn, whereas it can possibly apply to 

other elements, see opposite page. 
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Growth of graphite in the austenite field. 

Without doubt, the cooling rate from the end of solidification to the eutectoid temperature range 

determines the carbon content in austenite. This has been modelled [LAC98b] and gave the features 

illustrated in Fig. VIII-15a for the change in the average carbon content of austenite. At low cooling 

rate, the carbon content in austenite gets nearly homogenized at any time and the average 

composition nearly follows the graphite solvus. However, at high cooling rate, this average 

composition decreases little with respect to its value at solidification completion. Note that phase 

field modelling allows describing carbon distribution within austenite and not only the evolution of 

its average value [EIK20b].  

At high cooling rate, it is noticeable that the average composition hits the extrapolation of the / 

boundary at a temperature below T. Reminding that Tp may be close to T, see Fig. VIII-11, the 

schematic in Fig. VIII-15b suggests that there can be conditions where ferrite may become stable at a 

temperature lower than both T and Tp. How this can affect our understanding of the eutectoid 

transformation in cast irons does not seem to have been studied so far. Note that it can certainly be 

assumed that equilibrium is maintained at the austenite/graphite interface, at least for a first 

approach. 

There is another way to keep austenite supersaturated in carbon, and thus to follow the path in Fig. 

15b. This is by having an element adsorbed on graphite that hinders any graphite precipitation during 

cooling after solidification. This could possibly explain the role of antimony as pearlite promoter.  

 

Figure VIII-15. a: coloured lines show the evolution of the average carbon content in austenite 
upon cooling at two different rates from high temperature.  

b: at higher cooling rate, the average carbon content in austenite may change so little  
during cooling that the temperature at which the extrapolation  

of the austenite/ferrite boundary is reached is located below T and Tp.  
The black solid lines show the relevant Fe-C isopleth section of the stable system. 

The dotted blue lines show the three phase domain of the metastable system. 
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During cooling after solidification has finished the solubility limit of carbon in austenite decreases 

leading to some graphite growth which is the third of the stages mentioned in Chapter VI. The fourth 

stage of graphite growth occurs when the eutectoid leads to a ferritic matrix. The maximum volume 

fraction of graphite at any temperature may be determined by means of the lever rule which gives: 
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g where  stands for either ferrite or austenite. 

Based on the Fe-C phase diagram and considering an eutectic alloy (4.34 wt.% C), the amounts of 

graphite at the end of solidification, the end of austenite cooling and the upper limit of the ferritic 

field (738°C), as well as at RT were calculated and are listed in Table VIII-1. Considering further a 

uniform distribution of nodules, these amounts may be converted to nodule radius, R=[ggra/NA)]0.5. 

This has been done in table VIII-1 for nodule counts NA of 50 and 250 mm-2. It is seen that most of the 

solid state growth of the spheroids is predicted to occur during cooling in the austenite domain, with 

a maximum 26% increase in radius between the end of solidification and RT. Cooling from the end of 

solidification to the eutectoid temperature range may thus be of importance, see the opposite page. 

Fig. VIII-15 shows a near diametrical section of a SGI cast in a Y-block [BOU17] with the blue circle 

indicating the final outer radius. The red circle has a radius decreased by 26% and should thus more 

or less locate the transition between stages 2 and 3. It is seen that there is no evidence of this 

transition showing up. In contradistinction, one can find in the literature a few micrographs 

illustrating the different growth stages of graphite in SGI but, in most cases, details on casting 

schedule and possible heat-treatments are not available. Though not visible at the scale of optical 

microscopy, Monchoux et al. [MON01] have shown that the extreme surface of the spheroids 

consists of a superficial layer of polycrystalline graphite. The thickness of this layer, 1-2 µm, suggests 

it corresponds to the fourth stage, i.e. growth during the ferritic reaction. 

 
 
 
 
 
 
 

Table VIII-1. Fraction of graphite and spheroid radius at 
different temperatures: eutectic, eutectoid and RT. See 

text for details. 

Temperature Eutectic Eutectoid, 
austenite 

Eutectoid, 
ferrite 

RT 

ggra (%) 7.4 11.9 13.0 13.4 

R (µm) 
(NA=50) 

21.7 27.5 28.8 29.2 

R (µm) 
(NA=250) 

9.7 12.3 12.9 13.1 

 

 
Figure VIII-16. Graphite nodule with the 

red circle indicating the approximate 
size at the end of solidification. 
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Re-heating to the austenite field and cycling within the ferrite domain 

If the material is heated through the eutectoid temperature range, then graphite dissolves due to the 

higher carbon solubility in austenite than in ferrite. Monchoux et al. showed that this dissolution is 

not even along the spheroid outer surface [MON01]. For long holding time in the austenite field, so-

called matrix penetrations develop within graphite, at a depth of the order of 1 µm and parallel to 

the outer spheroid surface. After cooling to RT, the periphery of the nodules is replaced by a crown 

made of a mixture of graphite and matrix arches [MON01].  

An unexpected result was obtained by Bermont and Sikora [BER98] who cycled a pearlitic SGI in the 

ferritic domain to destabilize pearlite. Growth of graphite - due to cementite dissolution - proceeded 

by the development of spikes as seen in Fig. VIII-17a. The work by Matsushita et al. [MAT15] suggests 

this could be in relation with the lamellar distribution of cementite in pearlite.  

Finally, after cycling 2000 times a fully ferritic high-silicon SGI from 100°C to 800°C, i.e. remaining 

within the ferrite domain, uneven dendritic precipitation of graphite could be observed, see fig. VIII-

17b. This phenomenon could be quantitatively related to the dissolution of graphite because of the 

increased carbon content in high-silicon ferrite at 800°C [EBE20]. 

  

Figure VIII-17. a) spiky graphite precipitated around a spheroid (25 µm in radius) after 8 cycles from 
RT to 700°C for a total duration of 26 hours (adapted from [BER98]). The matrix was initially fully 

pearlitic while cementite decomposed during the process.  
b) development of dendritic graphite protuberances onto the largest spheroids of a high-silicon SGI 

cycled 2000 times from 100°C to 800°C (50 hours of total time at 800°C) [EBE20].  
The dashed circle indicates the original size of the spheroid. 
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Decomposition of the RT microstructure by reheating in the austenite field could be named reverse 

eutectoid. The transformation should be complete when dealing with heat-treating before 

ausferritising, while partial transformation will be considered for obtaining duplex matrix structure. 

The effect of heating rate and upper temperature on the formation of austenite has certainly been 

investigated many times in the past. The interest of the study by Wade and Ueda [WAD80] is that 

they compared materials with either ferritic or pearlitic initial microstructure. The former one 

decomposed more slowly than the latter one which may be due to the difference in the distance 

carbon has to diffuse. As a matter of fact, pearlite can change to austenite by carbon diffusion at the 

scale of the pearlite inter-lamellar spacing, while ferrite transforms by diffusion of carbon at the scale 

of the distance between graphite precipitates. 

Wade and Ueda noticed that the transformation of ferrite to austenite starts mostly around the 

nodules at high heating rate, both around the nodules and at grain boundaries away from them at 

low heating rate. Their micrographs and the one shown in Fig. VIII-18 suggest that microsegregation 

may also be of importance in determining the amount of ferrite transformed around the nodules and 

away from them. 

 

Figure VIII-18. Optical micrograph of a cast iron with 2.08 wt.% Si and 0.13 wt.% Mn.  

The sample was ferritized and then introduced for 5 minutes in a furnace pre-heated at 800°C,  

and finally quenched to RT. 

  



118 
 

  



119 
 

References 
[ÅGR86] J. ÅGREN, 

A revised expression for the diffusivity of carbon in binary Fe-C austenite , Scr. Metall., 20, 1986, 1507-1510 

[AKA04] S. AKAMATSU, M. PLAPP, G. FAIVRE, A. KARMA,  
Overstability of lamellar eutectic growth below the minimum-undercooling spacing,  
Metall. Mater. Trans. A, 35A, 2004, 1815-1828 

[ALO17] G. ALONSO, P. LARRAÑAGA, D.M. STEFANESCU, E. DE LA FUENTE, A. NATXIONDO, R. SUÁREZ,  
Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron, 
Int. J. Metalcasting, 11, 2017, 14–26. 

[AMI13] S. AMINI, R. ABBASCHIAN,  
Nucleation and growth kinetics of graphene layers from a molten phase,  
Carbon 51, 2013, 110-123. DOI: 10.1016/j.carbon.2012.08.019  

[AUS67] S.B. AUSTERMAN, S.M.MYRON, J.W. WAGNER, 
Growth and characterization of graphite single crystals, Carbon, 5, 1967, 549 

[AZE18] M.A. AZEEM, M.K. BJERRE, R.C. ATWOOD, N. TIEDJE, P.D. LEE, 
Synchrotron quantification of graphite nodule evolution during the solidification of cast iron, 
Acta Materialia, 155, 2018, 393-401. DOI:10.1016/j.actamat.2018.06.007  

[BAE20] W. BAER, 
Chunky graphite in ferritic spheroidal graphite cast iron: formation, prevention, characterization, impact on 
properties: an overview,  
Int. J. Metalcasting, 14, 2020, 454-488. DOI: https://doi.org/10.1007/s40962-019-00363-8 

[BAR97] J.O. BARLOW, D.M. STEFANESCU, 
Computer-aided cooling curve analysis revisited, AFS Trans., 105, 1997, 349-354 

[BAS73] P.K. BASUTKAR , C.S. PARK , R.E. MILLER , C.R. LOPER ,  
Formation of spiky graphite in high magnesium ductile iron castings, AFS Trans., 81, 1973, 180–184 

[BER98] V.M. BERMONT, J.A. SIKORA, 
Metallographic study on the influence of the morphology and distribution of graphite on the solid state 
transformations of grey and ductile cast iron, lnt. J. Cast Metals Res., 11, 1998, 51-61 

[BJE18] M.K. BJERRE, M.A. AZEEM, N.S. TIEDJE, J. THORBORG, P.D. LEE, J.H. HATTEL,  
A graphite nodule growth model validated by in situ synchrotron x-ray tomography, 
Modelling Simul. Mater. Sci. Eng., 26, 2018,  085012 

[BOS74] W.P. BOSZE, R. TRIVEDI, 
On the kinetic expression for the growth of precipitate plates, Metall. Trans., 5, 1974, 511-512. 

[BOU17] J. BOURDIE,  
Sphéroïdisation du graphite - Cas de la fonte centrifugée 
PhD thesis, INP-Toulouse, France, 2017, http://www.theses.fr/2017INPT0117 

[BOU18] J. BOURDIE, F. BRUNESEAUX, P. DE PARSEVAL, S. GOUY, L. LAFFONT, J. LACAZE
 

Effect of cooling rate and aluminium addition on graphite growth  
during solidification and graphitization, Materials Science Forum, 925, 20-27 

[BOU20] J. BOURDIE, J. LACAZE, C. JOSSE, L. LAFFONT,  
Growth of spheroidal graphite: light versus scanning and transmission electron microscopies,  
Int. J. Metalcasting, 14, 2020, 672-680 

[BRA70] B.L. BRAMFITT,  
The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, 
Metall. Trans. 1, 1970, 1987–1995. https://doi.org/10.1007/BF02642799 

[BRO18] E. BRODU, E. BOUZY, J.J. FUNDENBERGER, B. BEAUSIR, L. LAFFONT, J. LACAZE,   
Crystallography of growth blocks in spheroidal graphite,  
Science and Processing of Cast Iron, SPCI-XI, Materials Science Forum, 925, 2018, 54-61. 



120 
 

[CAS91] M. DE J. CASTRO ROMAN,  
Étude expérimentale et modélisation de la solidification des pièces coulées en fonte à graphite sphéroïdal: 
influence de la vitesse de refroidissement et de l’inoculation,  
PhD Thesis, 1991,. Vandoeuvre-les-Nancy, INPL, France. 

[CAS20] M.J. CASTRO-ROMAN, J. LACAZE, A. REGORDOSA, J. SERTUCHA, R. DEL CAMPO-CASTRO, 
Revisiting thermal analysis of hypereutectic spheroidal graphite cast irons, 
Metall. Mater. Trans. A, https://doi.org/10.1007/s11661-020-06005-7 

[CAT03] A.V. CATALINA, S. SEN, D.M. STEFANESCU,  
A new analytical approach to predict spacing selection in lamellar and rod eutectic systems,  
Metall. Mater. Trans., 34A, 2003, 383-394 

[CAT15] A.V. CATALINA, P.W. VOORHEES, R.K. HUFF, A.L. GENAU,  
A model for eutectic growth in multicomponent alloys,  
MCWASP, IOP Conf. Series: Mater. Sci. Eng., 84, 2015, 012085 

[CHA74] M.D. CHAUDHARI, R.W. HEINE, C.R. LOPER, 
Potential applications of cooling curves in ductile iron process control, AFS Trans., 82, 1974, 379-386 

[CHA75] M.D. CHAUDHARI, R.W. HEINE, C.R. LOPER, 
Principles involved in the use of cooling curves in ductile iron process control,  
AFS Cast Metals Research J., June, 1975, 52-60 

[CHA13] D. CHAKRABORTY, G.N. PATEY,  
Evidence that crystal nucleation in aqueous NaCl solution occurs by the two-step mechanism, 
Chem. Phys. Lett. 587, 2013, 25–29. https://doi.org/10.1016/j.cplett.2013.09.054 

[CHE84] I.G. CHEN, D.M. STEFANESCU, 
Computer-aided differential thermal analysis of spheroidal and compacted graphite cast irons,  
AFS Trans., 92, 1984, 947-964 

[CHU15] C. CHUANG, D. SINGH, P. KENESEI, J. ALMER, J. HRYN, R. HUFF,  
3D quantitative analysis of graphite morphology in high strength cast iron by high-energy X-ray tomography, 
Scripta Mater., 106, 2015, 5-8; and https://www.anl.gov/article/highenergy-xrays-give-industry-affordable-
way-to-optimize-cast-iron. 

[CIB49] A. CIBULA,  
The mechanism of grain refinement of sand castings in aluminium alloys, J. Inst. Met. 76, 1949, 321. 

[CIN00] E. CINI, B. VINET, P.J. DESRÉ,  
A thermodynamic approach to homogeneous nucleation via fluctuations of concentration in binary liquid 
alloys. Philos. Mag. A 80, 2000, 955–966. https://doi.org/10.1080/01418610008212092 

[COW81] N. COWLAM, G.E. BACON, L. GILLOTT, D.H. KIRKWOOD,  
Diffraction measurements of graphite nodules in ferritic steels, Acta Metall., 29, 1981, 6511981 

[DAN09] J.A. DANTZIG, M. RAPPAZ,  
Solidification, CRC Press, first edition, 2009 

[DAW02] Microstructure and Porosity Control, Sintercast datasheet, www.sintercast.com 

[DAW03] S. DAWSON,  
Cast iron alloy and method making the same, US Patent 6,613,274 B2 

[DAW13] S. DAWSON, P. POPELAR, 
Thermal analysis and process control for compacted graphite iron and ductile iron,  
Keith Millis symposium, 2013, 32-39 

[DEK20] L. DEKKER, B. TONN, G. LILIENKAMP,  
Effect of antimony on graphite growth in ductile iron,  
Int. J. Metalcasting, DOI: 10.1007/s40962-020-00434-1. 

[DIE86] P. DIETRICH, G. LESOULT, 
Simulation of heat transfer and capillary feeding during solidification of sand mold S.G. iron castings,  
State of the art of computer simulation of casting and advanced solidification processes,  
Les éditions de Physique, les Ulis, France, 1986, 225-235 

https://www.anl.gov/article/highenergy-xrays-give-industry-affordable-way-to-optimize-cast-iron
https://www.anl.gov/article/highenergy-xrays-give-industry-affordable-way-to-optimize-cast-iron
http://www.sintercast.com/


121 
 

[DIO04] A. DIOSZEGI, J. HATTEL, 
Inverse thermal analysis method to study solidification in cast iron,  
Int. J. Cast Metals Res., 17, 2004, 311-318 

[DIO05] A. DIOSZEGI, I.L. SVENSSON,  
Inverse kinetic analysis method to study eutectic growth, Int. J. Cast Metals Res., 18, 2005, 41-46 

[DIO07] A. DIÓSZEGI, K.Z. LIU, I.L. SVENSSON,  
Inoculation of primary austenite in grey cast iron, 
Int. J. Cast Met. Res. 20, 2007, 68–72. https://doi.org/10.1179/174313307X216633 

[DIN80] B. DHINDAW, J.D. VERHOEVEN,  
Nodular graphite formation in vacuum melted high purity Fe-C-Si alloys,  
Metall. Trans., 11A, 1980, 1049-1057 

[DON68] L.F. DONAGHEY, W.A. TILLER,  
On the diffusion of solute during eutectoid and eutectic transformations. Part 1,  
Mater. Sci Eng. 3, 1968/69, 231-239 

[DOU69] D.D. DOUBLE, A. HELLAWELL, 
The structure of flake graphite in Ni-C eutectic alloy, Acta metall., 17, 1969, 1071-1083 

[DOU71] D.D. DOUBLE, A. HELLAWELL, 
Defects in eutectic flake graphite, Acta metall., 19, 1971, 1303-1306 

[DOU74] D.D. DOUBLE, A. HELLAWELL, 
Cone-helix growth forms of graphite, Acta Metall., 22, 1974, 481-487 

[DOU75] D.D. DOUBLE, A. HELLAWELL, 
Growth structure of various forms of graphite,  
The metallurgy of cast iron, Georgi Ed., 1975, 509-525 

[EBE20] A. EBEL, M. ALVES PEGORARO, B. MALARD, C. TENAILLEAU, J. LACAZE,  
Coarsening and dendritic instability of spheroidal graphite in high silicon cast iron under thermal cycling in the 
ferritic domain, Scipta mater., 178, 2020, 86-89, 

[EIK15] J. EIKEN, M. APPEL, SONG-MAO LIANG, R. SCHMID-FETZER R.,  
Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al-Si alloys: combined 
thermodynamic computation and phase-field simulation, Acta Mater. 98, 2015, 152-163 

[EIK20A] J. EIKEN,  
Calphad-based phase-field study of the interplay between spheroidal graphite growth and chemical 
segregation in ductile cast iron,  
IOP Conf. Series: Materials Science and Engineering, 861, 2020, 012055 

[EIK20B] J. EIKEN, E. SUBASIC, J. LACAZE,  
3D phase-field computations of microsegregation in nodular cast iron compared to experimental data and 
CalPhad-based Scheil-prediction, Materialia, 9, 2020, 100538 

[EKP78] U. EKPOOM, R.W. HEINE, 
Austenite transformation temperature range in cast irons, AFS Trans., 86, 1978, 281-286 

[EKP81] U. EKPOOM, R.W. HEINE, 
Thermal analysis by differential heat analysis (DHA) of cast iron, AFS Trans., 89, 1981, 27-38 

[ELM10] L. ELMQUIST, S. SALERA, A. DIÓSZEGI,  
Inoculation and its effect on primary solidification structure of hypoeutectic grey cast iron, 
Int. J. Cast Met. Res. 23, 2010, 124–129. https://doi.org/10.1179/136404609X12490478029317 

[FEE83] E.A. FEEST, G. MCHUGH, D.O. MORTON, L.S. WELCH, I.A. COOK, 
Inoculation of grey cast iron,  
in "Solidification in the foundry and casthouse", The Metals Society, 1983, 232-239 

[FLE58] N.H. FLETCHER,  
Size effet in heterogeneous nucleation. J. Chem. Phys. 29, 1958, 573–576. 

https://doi.org/10.1179/136404609X12490478029317


122 
 

[FOU05] J. FOURMANN, 
Preconditioning Effect of Barium in Ductile Iron Production, 
AFS Cast Iron Inoculation Conference, 2005, p. 1-15 

[FRA84] S.E. FRANKLIN, R.A. STARK,  
Application of secondary ion mass spectrometry to study of graphite morphology in cast iron,  
Metal Science, 18, 1984, 187-200 

[FRA85] S.E. FRANKLIN, R.A. STARK,  
Further use of secondary ion mass spectrometry in the study of graphite morphology control in cast irons,  
E-MRS Symp Proc., 34, 1985, 25-35 

[FRA95] E. FRAS, W. KAPTURKIEWICZ, A.A. BURBIELKO,  
Micro-macro modeling of casting solidification controlled by transient diffusion and undercooling,  
MCWASP, 1995, 679-686 

[FRA97] E. FRAS, W. KAPTURKIEWICZ, A.A. BURBIELKO, H.F. LOPEZ, 
Numerical simulation and Fourier analysis of solidification kinetics in high-carbon Fe-C alloys,  
Metall. Mater. Trans. B, 28, 1997, 115-123 

[FRE75A] H. FREDRIKSSON, S.E. WETTERFALL,  
A study of transition from undercooled to flake graphite in cast iron,  
The metallurgy of cast iron, Georgi Ed., 1975, 277-289 

[FRE75B] H. FREDRIKSSON,  
The coupled zone in grey cast iron, Metall. Trans., 6A, 1975, 1658-1660 

[FRE84] H. FREDRIKSSON,  
Inoculation of iron-base alloys, 
Mater. Sci. Eng., 65, 1984, 137–144. https://doi.org/10.1016/0025-5416(84)90207-6 

[FRE86] H. FREDRIKSSON, J.T. THORGRIMSSON, I.L. SVENSSON,  
Computer simulation of structure formation and segregation during the solidification of cast iron,  
State of the art of computer simulation of casting and advanced solidification processes,  
Les éditions de Physique, les Ulis, France, 1986, 267-275 

[FRI70] J. FRIDBERG, M. HILLERT, 
Ortho-pearlite in silicon steels, Acta metal., 18, 1970, 1253-1260 

[FRU98] R.J. FRUEHAN,  
The making, shaping and treating of steel: steelmaking and refining, 
1998, AISE steel Foundation. 

[GAD85] M.A. GADD, G.H.J. BENNETT,  
The physical chemistry of Inoculation of cast Iron,  
in "The Physical Metallurgy of Cast Iron", Materials Research Society Symposium, 34, 1985, 99-108. 

[GAR19] L.N. GARCIA, A.J. TOLLEY, F.D. CARAZO, R.E. BOERI 
Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons, 
Materials Science and Technology, 35, 2019, 2252-2258 

[GER97] V. GERVAL, J. LACAZE, 
Effect of the solidification path on the eutectoid transformation of spheroidal graphite cast iron, 
Proc. SP97, Sheffield, 1997, 506-510 

[GER00] V. GERVAL, J. LACAZE, 
Critical temperatures of spheroidal graphite cast irons: a review of literature data, 
ISIJ International 40, 2000, 386-392 

[GHA19] E. GHASSEMALI, J.C. HERNANDO, D.M. STEFANESCU, A. DIOSZEGI, A.E.W. JARFORS,  
J. Dluhoš, M. Petrenec,  
Revisiting the graphite nodule in ductile iron, Scripta Mater., 161, 2019, 66-69 

[GUE19] W.L. GUESSER, 
personal communication 



123 
 

[GUI71] P.J. GUICHELAAR, P.K. TROJAN, T. MCLUHAN, R.A. FLINN,  
A new technique for vapor pressure measurement applied to the Fe-Si-Mg system,  
Metall. Trans., 2, 1971, 3305-3313 

[GUS85] P. GUSTAFSSON, 
A thermodynamic evaluation of the Fe-C system, Scand. J. Metall., 14, 1985, 259-267 

[HEC00] M. HECHT,  
Influence du titane sur les fontes GS largement ferritiques : structures et caractéristiques en traction usuelles, 
Fonderie Fondeur d’aujourd’hui, 200, 2000, 24-41 

[HEI71] R.W. HEINE,  
The carbon equivalent, Fe-C-Si solidification diagram and its application to cast irons,  
AFS Cast Metals Research J., June 1971, 49-54 

[HEI86] R.W. HEINE,  
The Fe-C-Si solidification diagram for cast irons, AFS Trans., 94, 1986, 391-402 

[HEI95] R.W. HEINE, 
Austenite liquidus, carbide eutectic and undercooling in process control of ductile base iron,  
AFS Trans., 103, 1995, 199-206 

[HER64] K. HERFURTH, cited and commented by Lux [LUX70b]  

[HER66] K. HERFURTH,  
Investigations into the influence of various additions on the surface tension of liquid cast iron with the aim of 
finding relationships between the surface tension and the occurrence of various forms of graphite.  
Freiberger Forschungshefte 105, 1966, pp. 267-309. 

[HER98] M. HERRERA-TREJO, M.R. CASTRO, J.N. MENDEZ, H.T. SOLIS, J.M. TENA, E. GUZMAN,  
Evolution of inclusion nature during the EAF-LF-CC process, Scand. J. Metall. 27, 1998, 233–239. 

[HIL54] M. HILLERT, Y. LINDBLOM,  
The growth of nodular graphite, J. Iron Steel Inst., 148, 1954, 388-390 

[HIL64] M. HILLERT, 
Some theoretical considerations in nucleation and growth during solidification of graphitic and white cast iron, 
In Recent Research on Cast Iron, 1964, 101-127 

[HIL69] M. HILLERT, V.V. SUBBA RAO,  
Grey and white solidification of cast iron, ISI Publ. 110, The Iron and Steel Institute, 1969, 204-212 

[HIL71] M. HILLERT,  
Diffusion controlled growth of lamellar eutectics and eutectoids in binary and ternary systems,  
Acta Metallurgica, 19, 1971, 769-778 

[HIL78] M. HILLERT,  
Fundamental aspects of aligned growth,  
TITRA-MAC-0146, Materials Center, Royal inst. Techn., Stockholm, 1978 

[HIL81] M. HILLERT, 
An analysis of the effect of alloying elements on the pearlite reaction, 
Proc. Int. Conf. "Solid/solid phase transformations", 1981, 789-806 

[HIL98] M. HILLERT, 
Phase equilibria, phase diagrams and phase transformations, Cambridge University Press, 1998 

[HIL02] M. HILLERT, 
Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite,  
Scripta materialia, 46, 2002, 447-453 

[HIL04] M. HILLERT, J. ÅGREN, 
On the definition of paraequilibrium and orthoequilibrium,  
Scripta materialia, 50, 2004, 697-699 
the discussion of it by Speer et al.: 52, 2005, 83-85; and the reply: 52, 2005, 87-88 



124 
 

[HOL07] D. HOLMGREN, R. KÄLLBOM, I.L. SVENSSON,  
Influences of the graphite growth direction on the thermal conductivity of cast iron, 
Metall. Mater. Trans. A, 38, 2007, 268-275 

[HUN84] J.D. HUNT,  
Steady state columnar and equiaxed growth of dendrites and eutectic, 
Mater. Sci. Eng., 65, 1984, 75–83. https://doi.org/10.1016/0025-5416(84)90201-5 

[IGA98] Y. IGARASHI, S. OKADA, S.,  
Observation and analysis of the nucleus of spheroidal graphite in magnesium-treated ductile iron,  
Int. J. Cast Met. Res. 11, 1998, 83–88. https://doi.org/10.1080/13640461.1998.11819261 

[JAC66] K.A. JACKSON, J.D. HUNT,  
Lamellar and rod eutectic growth, Trans. Met. Soc. AIME, 236, 1966, 1129-1142 

[JAS94] J. A. JASZCZAK,  
The Picking Table, 35, 1994, 6 

[JAV95] A. JAVAID, C.R. LOPER,  
Quality control of heavy-section ductile cast irons. AFS Trans., 103, 1995, 119-134 

[JON80] H. JONES, W. KURZ,  
Growth temperatures and the limits of coupled growth in unidirectional solidification of Fe-C eutectic alloys, 
Metall. Trans., 11A, 1980, 1265-1273 

[JON81] H. JONES, W. KURZ,  
Relation of interphase spacing and growth temperature to growth velocity in Fe-C and Fe-Fe3C eutectic alloys, 
Z. Metallkde., 72, 1981, 792-797 

[KAN18] S. KANTE, A. LEINEWEBER,  
EBSD characterization of the eutectic microstructure in hypoeutectic Fe-C and Fe-C-Si alloys,  
Mater. Charac. 138, 2018, 274-283 

[KEE88] B.J. KEENE, 
Review of data for the surface tension of iron and its binary alloys, Int. Materials Rev., 33, 1988, 1-37 

[KOZ61] P. KOZAKEVITCH, G. URBAIN,  
Tension superficielle du fer liquide et de ses alliages,  
Mémoires Scientifiques Rev. Métallurg., 58, 1961, pp. 401-413, pp. 531-534 and pp. 931-947 

[KUR79] W. KURZ, D.J. FISHER,  
Dendritic growth in eutectic alloys: the coupled zone, Int. Mat. Rev. 244, 1979, 177-204 

[KUR98] W. KURZ, D.J. FISHER,  
Fundamentals of Solidification, Fourth. ed., 1998, Trans Tech Publications LTD. 

[LAC90] J. LACAZE, M. CASTRO, G. LESOULT,  
Nucleation of Graphite Particles in Grey and Nodular Iron.  
EUROMAT'89, DGM Informationsgesellschaft.Verlag, 1990, 147-152  

[LAC91] J. LACAZE, B. SUNDMAN, 
An assessment of the Fe-C-Si system, Metall. Trans. A, 22A, 1991, 2211-2223 

[LAC94] J. LACAZE, C. WILSON, C. BAK 
Experimental study of the eutectoid transformation in spheroidal graphite cast iron 
Scandinavian Journal of Metallurgy 23 (1994) 151-163 

[LAC98A] J. LACAZE, M. CASTRO, G. LESOULT,  
Solidification of spheroidal graphite cast irons - II. Numerical simulation, 
Acta Mater. 46, 1998, 997–1010. 

[LAC98B] J. LACAZE, V. GERVAL, 
Modelling the eutectoid reaction of spheroidal graphite Fe-C-Si alloys, 
ISIJ International 38 (1998) 714-722 

https://doi.org/10.1016/0025-5416(84)90201-5


125 
 

[LAC99] J. LACAZE, 
Pearlite growth in cast irons : a review of literature data, 
Int. J. Cast Metals Research 11 (1999) 431-436 

[LAC13A] J. LACAZE, N. VALLE, K. THEUWISSEN, J. SERTUCHA, B. EL ADIB, L. LAFFONT
 

Redistribution and effect of various elements on the morphology of primary graphite growth in cast iron, 
Advances in Materials Science and Engineering, 2013, 638451 

[LAC13B] J. LACAZE, L. MAGNUSSON-ÅBERG, J. SERTUCHA,  
Review of microstructural features of chunky graphite in ductile cast irons,  
Proc. Keith Millis symposium, AFS, 2013, 232-240  

[LAC16] J. LACAZE, J. SERTUCHA AND L. MAGNUSSON ÅBERG 
Microstructure of as-Cast Ferritic-Pearlitic Nodular Cast Irons, ISIJ Int., 56, 2016, 1606-1615 

[LAC17A] J. LACAZE 
Trace elements and graphite shape degeneracy in nodular graphite cast irons, 
Int. J. Metalcasting, 11, 2017, 44-51 

[LAC17B] J. LACAZE, J. SERTUCHA,  
Effect of tin on the phase transformation of cast irons 
Journal of phase equilibria and diffusion, 38, 2017, 743-749. 

[LAC17C] J. LACAZE, 
Discussion on “Stable eutectoid transformation in nodular cast iron: modeling and validation”, Metallurgical 
and Materials transactions A, 48, 2017, 5146-5148. 

[LAC18] J. LACAZE, J. SERTUCHA,  
Some paradoxical observations about spheroidal graphite degeneracy,  
China Foundry, 15, 2018, 457-463 

[LAC19] J. LACAZE, D. CONNÉTABLE, M.J. CASTRO DE ROMAN, 
 

Effects of impurities on graphite shape during solidification of spheroidal graphite cast ions,  
Materialia, 8, 2019, 100471 

[LAF18] L. LAFFONT, R. JDAY, J. LACAZE,  
An electron microscopy study of graphite growth in nodular cast irons,  
Metall. Mater. Trans., 49A, 2018, 1287-1294. 

[LAK69] K.D. LAKELAND, L.M. HOGAN,  
The coupled zone concept applied to solidification of cast irons,  
ISI Pub. 110, The Iron and Steel Institute, 1968, 213-223 

[LAL73] M.J. LALICH, C.R. LOPER, 
Effects of pearlite-promoting elements on the kinetics of the eutectoid transformation in ductile cast irons, AFS 
Trans. 79, 1973, 217-228 

[LEK03] S. LEKAKH, C.R. LOPER, 
Improving inoculation of ductile iron. AFS Trans. 111, 2003, 885–894.  

[LEK06] S.N. LEKAKH, D.G.C. ROBERTSON, C.R. LOPER,  
Thermochemistry and kinetics of iron melt treatment, WFC06, paper 68 

[LEK09] S. LEKAKH, V. RICHARDS, K. PEASLEE,  
Thermo-Chemistry of Non-Metallic Inclusions in Ductile Iron,  
Int. J. Metalcasting, 3, 2009, 25–37. https://doi.org/10.1007/BF03355456 

[LEK18] S. LEKAKH,  
Effect of Non-metallic Inclusions on Solidification of Inoculated Spheroidal Graphite Iron, 
AFS Trans., 1998, 129–138. 

[LES75] G. LESOULT, M. TURPIN,  
Le couplage de croissance du graphite et de l’austénite pendant la solidification dirigée des fontes grises,  
The metallurgy of cast iron, Georgi Ed., 1975, 255-275 

[LES84] G. LESOULT, R. BELLOCCI, M. GRANDPIERRE,  
Les fontes à Pont-à-Mousson, CR PAM, 1984 



126 
 

[LIE97] LIETAERT F.,  
The austenite decomposition reaction kinetics as affected by surface active elements in graphite cast irons, 
Giessereiforschung, 49, 1997, 106-122 

[LIU83] P.C. LIU, C.L. LI, D.H. WU, C.R. LOPER, 
SEM study of chunky graphite in heavy section ductile iron, AFS Trans., 91, 1983, 119-126 

[LIU90A] S. LIU, C.R. LOPER, 
Morphology of kish graphite, AFS Trans., 1990, 385-394 

[LIU90B] B.C. LIU, T.X. LI, Z.J. RUE, X.Y. YANG, E.Q. HUO, C.R. LOPER,  
The role of antimony in heavy-section ductile iron, AFS Trans., 1990, 753-757. 

[LIU91] S. LIU, C.R. LOPER, 
The formation of kish graphite, Carbon, 29, 1991, 547-555 

[LOP85] C.R. LOPER, S. SHIRVANIS, T.H. WITTER,  
Graphite Inoculants for Gray Cast Iron,  
in The Physical Metallurgy of Cast Iron, MRS, 34, 1985, 89–99. 

[LOP98] C.R. LOPER,  
Inoculation of cast iron–summary of current understanding, AFS Trans., 1998, 523–528. 

[LUP83] C.H.P. LUPIS,  
Chemical thermodynamics of materials, New York, North Holland, 1983. 

[LUX69A] B. LUX, W. KURZ,  
Eutectic growth of iron-carbon-silicon and iron-carbon-silicon-sulphur alloys,  
ISI Pub. 110, The Iron and Steel Institute, 1968, 193-203 

[LUX69B] B. LUX, W. BOLLMANN, M.  GRAGES, 
On the structure of graphite in pure Fe-C-Si alloys, Practical Metallography, 6, 1969, 530-535 

[LUX70A] B. LUX,  
On the theory of nodular graphite formation in cast iron- Part I : experimental observations of nodular graphite 
formation during the solidification of cast iron melts. 
Giesserei Forschung in English, 22, 1970, 65-81, and also AFS cast metals research journal, 1972 

[LUX70B] B. LUX,  
On the theory of nodular graphite formation in cast iron- Part II : theoretical interpretation of the experimental 
observations,  
Giesserei Forschubng in English, 22, 1970, 158-177, and also AFS cast metals research journal, 1972 

[LYU63] A.P. LYUBCHENKO, D.G. SHERMAN, G.S. KUZ'MINOV,  
Iron self-diffusion in dependence on its cerium content, Phys. Met. Metallogr., 15, 1963, 151-153 

[MAC80] D.G. MCCARTNEY, J.D. HUNT, R.M. JORDAN,  
The structures expected in a simple ternary eutectic system: Part I. Theory,  
Metall. Trans., 11A, 1980, 1243-1249 

[MAG87] P. MAGNIN, W. KURZ, 
An analytical model of irregular eutectic growth and its application to Fe-C,  
Acta metal., 35, 1987, 1119-1128 

[MAM83] F. MAMPAEY, 
A quantitative study on the solidification morphology of cast iron,  
La Fonderie Belge, 1983, pp. 3-15 of issue 1 and pp. 4-16 of issue 3. 

[MAM00] F. MAMPAEY, 
Influence of compacted graphite on solidification morphology of cast iron, AFS Trans., 2000, 11-17 

[MAT53] E. MATUYAMA 
Inhomogeneity of crystal structure within graphite grain in cast iron, 
J. Japan Inst. Metals Materials, 1953, 17-20 

[MAT15] T. MATSUSHITA, E. GHASSEMALI, A. GÓMEZ SARO, L. ELMQUIST, A.E.W. JARFORS, 
On thermal expansion and density of CGI and SGI cast irons, Metals 2015, 5, 1000-1019 



127 
 

[MCS74] R.H. MCSWAIN, C.E. BATES, W.D. SCOTT,  
Iron-graphite surface phenomena and their effects on iron solidification,  
AFS Cast Metals Research J., 10, 1974, 181-190 

[MER68] H.D. MERCHANT,  
Solidification of cast iron – A review of literature,  
Recent research on cast iron, Gordon and Breach, 1968, 1-100 

[MIA94] BAIHE MIAO, D.O. NORTHWOOD, WEIMIN BIAN, KEMING FANG, MINZ HENG FAN, 
Structure and growth of platelets in graphite spherulites in cast iron, J. Mater. Sci., 29, 1994, 255-261 

[MIN83] I. MINKOFF, 
The physical metallurgy of cast iron, John Wiley and sons, 1983 

[MIY98] H. MIYAKE, A. OKADA,  
Nucleation and growth of primary Austenite in hypoeutectic cast iron, AFS Trans., 1998 581–587.  

[MON01] J.P. MONCHOUX, C. VERDU, G. THOLLET, R. FOUGÈRES, A. REYNAUD, 
Morphological changes of graphite spheroids during heat treatment of ductile cast irons,  
Acta mater. 49, 2001, 4355-4362 

[MUH13] H.M. MUHMOND, H. FREDRIKSSON,  
Relationship between inoculants and the morphologies of MnS and graphite in gray cast iron, 
Metall. Mater. Trans. B, 44, 2013, 283–298. 

[MUN78] A. MUNITZ, I. MINKOFF, 
Determination of the structure of graphite in cast iron from melt analysis, 
Proc. of the 45

th
 Int. Foundry Congress, Budapest, 1978, paper 32 

[MUN82] A. MUNITZ, S. NADIV, 
Effect of doping elements on the morphology of graphite grown from Ni-C melts, 
J. of Materials Science, 17, 1982, 3409-3422 

[NAK16] I. NAKAE, Y. ZOU, Y. SATO, 
Influence of graphite morphology, thermal history and S and Cu on ferrite/pearlite formation in cast iron, 
Proceedings of the 72nd world foundry congress, Nagoya, paper SL-2 

[NEC82] E. NECHTELBERGER, H. PUHR, J.B. VON NESSELRODE, A. NAKAYASU,  
Cast iron with vermicular graphite – State of the art. Development, production, properties, applications,  
Int. Foundry Congress, CIATF, 1982, 1-39 

[NEU68] F. NEUMANN,  
The Influence of additional elements on the physico-chemical behavior of carbon in carbon saturated molten 
iron, Recent Research on Cast Iron, Gordon and Breach, 1968, 659-705 

[NIE75] H. NIESWAAG, A.J. ZUITHOFF, 
The effect of S, P, Si and Al on the morphology and graphite structure of directionally solidified cast iron, in 
"The Metallurgy of Cast Iron", Georgi Ed., 1975, 327-351 

[OLD62] W. OLDFIELD, 
The chill-reducing mechanism of silicon in cast iron, BCIRA J., 10, 1962, 17-27 

[OLD66] W. OLDFIELD,  
A quantitative approach to casting solidification: freezing of cast iron, 
Trans ASM 59, 1966, 945-961. 

[PAN86] E.N. PAN, C.R. LOPER, 
Matrix development in graphitic cast irons, AFS Trans. 94, 1986, 545-556 

[PAN87] E.N. PAN, M.S. LOU, C.R. LOPER 
Effects of copper, tin, and manganese on the eutectoid transformation of graphitic cast irons,  
AFS. Trans. 95, 1987, 819-840 

[PAR96] J.S. PARK, J.D. VERHOEVEN,  
Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons,  
Metall. Mater. Trans. A, 27A, 1996, 2740-2753 



128 
 

[PEN11] I. PENCEA, D.M. STEFANESCU, R. RUXANDA, F.V. ANGHELINA, 
New aspects regarding the structure of spheroidal cast iron carbon inclusions revealed by WAXD investigations, 
Key Eng. Materials, 457, 2011, 120-125 

[PER84] J.H. PEREPEZKO,  
Nucleation in undercooled liquids, 
Mater. Sci. Eng., 65, 1984, 125–135, https://doi.org/10.1016/0025-5416(84)90206-4 

[PER13] M. PERRUT, S. BOTTIN-ROUSSEAU, G. FAIVRE, S. AKAMATSU 
Dynamic instabilities of rod-like eutectic growth patterns: a real-time study, 
Acta mater., 61, 2013, 6802-6808 

[PERRE] W. VAN DER PERRE 
Thermal analysis of cast iron, Heraeus, 
https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.p
df, accessed March 4, 2020 

[QIN17] J. QING, V.L. RICHARDS, D.C. VAN AKEN,  
Growth stages and hexagonal-rhombohedral structural arrangements in spheroidal graphite observed in 
ductile iron, Carbon 116, 2017, 456-469 

[QIN20] J. QING, M. XU, V. PIKHOVICH, 

Why is graphite spherical in ductile iron? A study of elemental distribution at interfaces in ductile iron 
using atom probe tomography and transmission electron microscopy, 
Int. J. Metalcasting, 14, 2020, 1115-1122 

[RAP86] M. RAPPAZ, P. THEVOZ, Z. JIE, J.P. GABATHULER, H. LINDSCHEID,  
Micro-macroscopic modelling of equiaxed solidification, State of the Art of Computer Simulation of Casting and 
Solidification Processes, Les éditions de Physique, les Ulis, France, 1986, 277-284. 

[REY05] A. REYNAUD ,  
Oligo-éléments et fontes, éditions ETIF, 2005 

[RIP03] I. RIPOSAN, M. CHISAMERA, S. STAN, T. SKALAND,  
Graphite nucleant (microinclusion) characterization in Ca/Sr inoculated grey irons, 
Int. J. Cast Met. Res. 16, 2003, 105–111. https://doi.org/10.1080/13640461.2003.11819567 

[RIV02] G. RIVERA, R. BOERI, J. SIKORA, 
Revealing and characterising solidification structure of ductile cast iron, 
Mater. Sci. Techn., 18, 2002, 691-697. DOI: 10.1179/026708302225003668 

[ROH79] K. RÖHRIG, W. FAIRHURST,  
Heat treatment of nodular cast iron, Giesserei-Verlag GmbH, Düsseldorf, 1979 

[ROS71] C. ROSCOE, D. NAGLE.,S.B. AUSTERMAN,  
Growth of graphite single crystals from iron-carbon solutions, J. Materials Science, 6, 1971, 998-1006 

[ROV94] A. ROVIGLIONE, J.D. HERMIDA, 
X-ray diffraction characterization of flake and compacted graphite in cast iron,  
Mater. Charac. 32, 1994, 127-137 

[SAR59] D.D. SARATOVKIN, 
Dendritic crystallization. Consultants bureau, 1959 

[SEL94] C. SELIG,  
Développement des microstructures et microségrégations lors de la solidification des fontes : 
transition de l’eutectique graphitique vers l’eutectique cémentitique,  
PhD thesis, Nancy, France, 1994 

[SER10] J. SERTUCHA, P. LARRAÑAGA, J. LACAZE, M. INSAUSTI, 
Experimental investigation on the effect of copper upon the eutectoid transformation of as-cast and 
austenitized spheroidal graphite cast iron, International Journal of Metalcasting, 4, 2010, 51-58  

[SHI08] D. SHI, D. LI, G. GAO, L. WANG, 
Relation between surface tension and graphite shape in cast iron, Mater. Trans., 49, 2008, 2163-2165 

https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf
https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf
https://doi.org/10.1179/026708302225003668


129 
 

[SIR93] N. SIREDEY, J. LACAZE, 
Growth conditions at the solidification front of multicomponent alloys,  
Scripta Metallurgica et Materialia 29, 1993, 759-764. 

[SKA93] T. SKALAND, Ø. GRONG, T. GRONG,  
A model for the graphite formation, 
Metall. Trans. A 24, 1993, 2321–2345. https://doi.org/10.1007/BF02648605 

[SMI99] SMITHELLS METALS REFERENCE BOOK,  
E.A. Brandes and G.B. Brook eds., Butterworth and Heinmann, 1999 

[SPE72] M.C. SPEER, N.A.D. PARLEE,  
Dissolution and desulfurization reactions of magnesium vapor in liquid iron alloys,  
AFS Cast Metals Res., 1972, 122 

[STE05] D.M. STEFANESCU,  
Solidification and modeling of cast iron - A short history of the defining moments,  
Mater. Sci. Eng., 413-414, 2002, 322-333 

[STE15] D.M. STEFANESCU, 
Thermal analysis – Theory and applications in metalcasting, Int. J. Metalcasting, 9, 2015, 7-22 

[STE16] D.M. STEFANESCU, R. HUFF, G. ALONSO, P. LARRANAGA, E. DE LA FUENTE, R. SUAREZ, 
On the crystallization of compacted and chunky graphite from liquid multicomponent iron-carbon-silicon-based 
melts, Metall. Mater. Trans. A, 47, 2016, 4012-4023 

[STE17A] D.M. STEFANESCU, 
A history of cast iron, ASM Handbook, Volume 1A, Cast Iron Science and Technology, 2017, 3-11 

[STE17B] D.M. STEFANESCU, G. ALONSO, P. LARRANAGA, E. DE LA FUENTE, R. SUAREZ,  
Reexamination of crystal growth theory of graphite in iron-carbon alloys,  
Acta mater, 139, 2017, 109-121 

[STE18] D.M. STEFANESCU, G. ALONSO, P. LARRANAGA, E. DE LA FUENTE, R. SUAREZ,  
A comparative study of graphite growth in cast iron and in analogous systems,  
Int. J. Metalcasting, 12, 2018, 722-752 

[STE19] D.M. STEFANESCU, A. CRISAN, G. ALONSO, P. LARRANAGA, R. SUAREZ, 
Growth of spheroidal graphite on nitride nuclei: disregistry and crystallinity during early growth, 
Metall. Mater. Trans. A, 50, 2019, 1763-1772 

[STE20] D.M. STEFANESCU, R. SUAREZ, SUNG BIN KIM, 
90 years of thermal analysis as a control tool in the melting of cast iron,  
China Foundry, 17, 2020, 69-84 

[SUA16] R. SUÁREZ, J. SERTUCHA, P. LARRAÑAGA, J. LACAZE 
Active Mg estimation using thermal analysis: a rapid method to control nodularity in ductile cast iron 
production, Metall. Mater. Trans. B, 47B, 2016, 2744-2753, 10.1007/s11663-016-0750-6 

[SUB80] S.V. SUBRAMANIAN, D. GOSH, D.A.R. KAY, G.R. PURDY, 
Graphite morphology control in cast iron, Iron and Steelmacking, March 1980, 18-25 

[SUB82] S.V. SUBRAMANIAN, D.A.R. KAY, G.R. PURDY,  
Compacted graphite morphology control, AFS Trans., 1982, 582-603 

[SUN83A] G.X. SUN, C.R. LOPER,  
Influence of hypereutectic graphite on the solidification of gray cast iron,  
AFS Trans., 91, 1983, 217-224 

[SUN83B] G.X. SUN, C.R. LOPER,  
Graphite flotation in cast iron, AFS Trans., 91, 1983, 841-854 

[SVE03] I.L. SVENSSON, A. MILLBERG, A. DIÓSZEGI,  
A study of eutectic inoculation in grey iron by addition of Fe-Si-Ca-Al-, Sr, Ba, Zr, Ti, RE and C, 
Int. J. Cast Met. Res. 16, 2003, 29–34. https://doi.org/10.1080/13640461.2003.11819554 

https://ui.adsabs.harvard.edu/link_gateway/2016MMTB...47.2744S/doi:10.1007/s11663-016-0750-6


130 
 

[TAN10] TAN DERUI, LIAN HAIPING, 
The Chinese traditional casting technique, Proc. 69

th
 World Foundry Congress, 54-65 and 

An illustrated history of ancient Chinese casting, edited by the organization committee of the 69
th

 World 
Foundry Congress, 2010 

[TCFE8] Calculations perfomed with the THERMOCALC software and the TCFE-8 database, 
https://www.thermocalc.com/ 

[THE12] K. THEUWISSEN, M.C. LAFONT, L. LAFFONT, B. VIGUIER, J. LACAZE, 
Microstructural characterization of graphite spheroids in ductile iron,  
Trans. Indian Inst. Met., 65, 2012, 627-631 

[THE13] K. THEUWISSEN,  
Etude de l’influence des impuretés et des éléments à l’état de traces sur les mécanismes de croissance du 
graphite dans les fontes, 
PhD thesis, INP-Toulouse, France, 2013, http://ethesis.inp-toulouse.fr/archive/00002393/.  

[THE14] K. THEUWISSEN, J. LACAZE, M. VÉRON, L. LAFFONT,  
Nano-scale orientation mapping of graphite in cast irons, Mater. Characterization, 95, 2014, 187-195 

[THE16] K. THEUWISSEN, J. LACAZE, L. LAFFONT,  
Structure of graphite precipitates in cast iron, Carbon, 96, 2016, 1120-1128 

[THI70] T. THIELEMANN,  
Zur Wirkung von Spurenelementen im GuBeisen mit Kugelgraphit, Giesereitechnik, 16, 1970, 16-24. 

[THO86] J.T. THORGRIMSSON,  
Effect of cooling rate on structure formation in cast iron castings,  
The Royal Institute of Technology, Stockholm, Sweden, thesis, 1986 

[TON18] B. TONN, J. LACAZE, S. DUWE,  
Degenerated Graphite Growth in Ductile Iron, Materials Science Forum, 925, 2018, 62-69 

[TOR16] U. DE LA TORRE, J. LACAZE, J. SERTUCHA,  
Chunky graphite formation in ductile cast irons: effect of silicon, carbon and rare earths,  
Int. J. Mater. Res. (previously Zeitschrift für Metallkunde), 107, 2016, 1041-1050. 

[TRO64] P.K. TROJAN, R.A. FLINN,  
Fundamentals of magnesium addition to ductile iron, SAE, January 1964 

[TUR50A] D. TURNBULL, R.E. CECH,  
Microscopic observation of the solidification of small metal droplets, 
J. Appl. Phys. 21, 1950, 804–810. https://doi.org/10.1063/1.1699763 

[TUR50B] D. TURNBULL,  
Kinectics of Heterogeneous Nucleation, J. Chem. Phys. 18, 1950, 198–203. 

[TUR52] D. TURNBULL, B. VONNEGUT,  
Nucleation Catalysis, Ind. Eng. Chem. 44, 1952, 1292–1298. 

[UHR77] B. URHENIUS 
Optimization of parameters describing the interaction between carbon and alloying elements in ternary austenite, 
Scand. J. Metall., 6, 1977, 83-89 

[VEN90] D. VENUGOPALAN, 
Decomposition of multicomponent austenite in spheroidal graphite cast iron 
in "Fundamentals and applications of ternary diffusion", 1990, 173-183 

[VER89] J.D. VERHOEVEN, A.J. BEVOLO, J.S. PARK,  
Effect of Te on morphological transitions in Fe-C-Si alloys: Part II. Auger analysis,  
Metall. Trans. A, 20A, 1989, 1875-1881 

[VIG73] B. VIGNERON,  
Contribution à l’étude de la dissolution d’alliages fer-silicium dans les alliages fer-carbone et fer-carbone-
silicium (modèle des procédés d’inoculation des fontes), Thesis, 1973, University of Nancy, France 

https://www.thermocalc.com/
https://doi.org/10.1063/1.1699763


131 
 

[VIN02] B. VINET, L. MAGNUSSON, H. FREDRIKSSON, P.J. DESRE, 
Correlations between surface and interface energies with respect to crystal nucleation, 
J. Colloid Interface Science, 255, 2002, 363-374 

[VON47] B. VONNEGUT,  
The nucleation of ice formation by silver iodide, 
J. Appl. Phys. 18, 1947, 593–595. https://doi.org/10.1063/1.1697813 

[WAD80] N. WADE, Y. UEDA, 
Continuous heating transformation of spheroidal graphite cast iron,Trans. ISIJ, 20, 1980, 857-861 

[WAL13] A.F. WALLACE, L.O. HEDGES, A. FERNANDEZ-MARTINEZ, P. RAITERI, J.D. GALE, G.A. WAYCHUNAS, S. WHITELAM,  
J.F. BANFIELD, J.J.D. YOREO,  
Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions, 
Science 341, 2013, 885–889. https://doi.org/10.1126/science.1230915 

[WES96] M. WESSEN, I.L. SVENSSON, 
Modeling of ferrite growth in nodular cast iron, Metall. Mater. Trans. A, 27, 1996, 2209-2220 

[WET72] S.E. WETTERFALL, H. FREDRIKSSON, M. HILLERT,  
Solidification process of nodular cast iron, J. Iron Steel Inst., May 1972, 323-333. 

[WIL05] J. DE WILDE, L. FROYEN, V. T. WITUSIEWICZ, U. HECHT, 
Two-phase planar and regular lamellar coupled growth along the univariant eutectic reaction in ternary alloys: 
An analytical approach and application to the Al–Cu–Ag system,  
Journal of Applied Physics 97, 2005, 113515 

[WIT59] A. WITTMOSER, 
Ein halbes Jahrhundert Giessereitechnik in Deutschland, Giesserei, 22, 1959, 630-639 

[ZHO09] ZHOU JIYANG,  
Colour metallography of cast iron, China Foundry, 6, 2009, 57-69; 152-163; 255-267; and 366-374  

[ZHO10] ZHOU JIYANG,  
Colour metallography of cast iron, China Foundry, 7, 2010, 76-88; 183-198;  292-307; and 470-478 

[ZHO11] ZHOU JIYANG,  
Colour metallography of cast iron, China Foundry, 8, 2011, 154-164; 239-26; 337-349; and 447-462 

[ZOU89] Zou Jie, 
Simulation de la solidification eutectique équiaxe,  
Ph.D thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1989. 

[ZOU12] Y. ZOU, M. OGAWA, H. NAKAE 
Interaction of boron with copper and its influence on matrix of spheroidal graphite cast iron,  
ISIJ Int., 52, 2012, 505-509 

  

https://aip.scitation.org/author/Witusiewicz%2C+V+T
https://aip.scitation.org/author/Hecht%2C+U


132 
 

  



133 
 

Glossary 

ACOM: automatic crystal orientation mapping 

CCT: continuous cooling transformation. CCT diagrams are used to illustrate the effect of cooling rate 

on solid-state phase transformations. 

CE: carbon equivalent which is calculated in the literature with various formulae. 

CGI: compacted graphite iron. 

DIS: ductile iron society. 

DS: directionally solidified, directional solidification. This relates to solidification against a chill in 

casting, but is also used in laboratories where it is often associated with a quenching device. 

DTA: differential thermal analysis. This technique measure the temperature difference between a 

sample and a reference located in the same furnace. It should not be confused with derivative 

thermal analysis which simply consists in using the time derivative of a cooling curve. 

EBSD: electron back-scattered diffraction. This technique uses the formation of Kikuchi lines when an 

electron beam is made to diffract on a surface. The position and the distance between the 

lines depends on the crystallographic structure of the analysed area, so that EBSD images may 

be analyzed to characterize / differentiate phases based on their crystallography, but also to 

map grain crystallographic orientation of a polycrystalline structure up to the submicron scale. 

It is sometimes combined with chemical analysis with EDX for improving phase identification. 

EDX: Energy dispersive Spectrometer (called also EDXS, EDS, EDS-X). This technique uses the 

characteristic X-ray photons resulting a the sample exposed to an electron beam and allows 

the chemical characterization of a region of interest for qualitative and quantitative analysis. 

Modern softwares allow obtaining elements distribution maps and line profiles. 

ECI: European Cast Iron. Used to name an informal group of European academics and industrialists 

which was created in 2008 and has a yearly spring meeting since 2009. 

FIB: field ion beam is used to mill a sample with a beam of a vaporized heavy element. In materials 

science, it is primarily used to investigate particular features in a microstructure up to a 

nanometre scale. It allows preparing thin foils (100 nm or so in thickness) for TEM observation. 

FIB ion column is commonly associated with a SEM electron beam column, known as DUAL-

BEAM FIB-SEM. 
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Keel-block: standardized casting for laboratory investigation, with various sizes (Y2, Y3, etc., where 

the number is the thickness of the leg in inches). 

LGI: lamellar graphite iron. 

Mottled: said of a microstructure mixing stable and metastable eutectics 

RE: rare earth. Most of the time, these are cerium and lanthanum which are used in cast irons, while 

mischmetal seems to be disregarded because of the presence of impurities. 

RT: room temperature. 

SAED: selected area electron diffraction. When the crystalline lattice diffracts the electron beam in a 

TEM, it gives rise to an image made of diffraction spots that relate to the reciprocal space. 

SEM: A variety of scanning electron microscopes (SEM) are available depending on the type of 

electron beam gun and the operational pressure. The most usual detectors use the secondary 

electron (SE) and the back scattered electron (BSE) modes that are sensitive to topography and 

atomic mass respectively. In the last decades, many other types of detectors have been 

developed. 

SGI: spheroidal graphite iron. Ductile iron is often used as well but should be restricted to SGI having 

a fully ferritic matrix. 

SIMS: secondary ion mass spectroscopy uses a beam of ionized particles to erode a surface. The 

extracted ions are then analyzed by a mass spectrometer. This powerful technique asks for 

complex analysis when there is a risk of mass interferences, which is most often the case. 

T, TK: temperature, in Celsius and Kelvin respectively 

TEM and HR-TEM: transmission and high-resolution transmission electron microscopes allow 

microstructure investigation at the nanometre and sub-nanometre scales. This includes 

imaging, e.g. of grains and dislocations, but also electron diffraction (SAED) for analysis of 

crystallographic structures. Combined with the EELS techniques, it allows also chemical 

analysis at atomic scale. 

TKD: transmission Kikuchi diffraction. Much alike EBSD but with images obtained with a detector 

located on the opposite side of the thin foil sample with respect to the beam. 

TTT: temperature-time-transformation. TTT diagrams are used to illustrate the effect of time on 

solid-state phase transformations. 
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Index of terms and values of the parameters 

Note: the values given here are indicative and were used for the calculations performed in the main 

text. They should be checked and modified as appropriate when necessary. 

 pThTh C/  : thermal diffusivity 

Th: thermal conductivity [J·s-1·m-1·K-1], 80 for liquid and 30 for solid cast iron

,: inter-lamellar spacing

min, 0, br: minimum, optimum and branching inter-lamellar spacing 

: density


, ferrite density: 7870 kg·m-3 at RT for pure iron, thermal coefficient of expansion of iron from RT to 

800°C: 14.6·10-6 [SMI99]


, austenite density 

  3
1

Si
32

C
4

C
36 10w103.1w102.2w100.4T107.91193.0 





 


  [DIE86] 


l: density of cast iron, 6800 kg·m-3 for liquid cast iron 


gra: density of graphite, 2200 kg·m-3 

Cp: specific heat [J·kg-1·K-1], 920 for liquid and 750 for solid cast iron 

ggra: volume fraction of graphite

T: temperature 

TEUT: temperature of the stable eutectic 

TEW: temperature of the metastable eutectic 

T: eutectic undercooling 

TEUT=TEUT-T: undercooling with respect to the stable eutectic 

TEW=TEW-T: undercooling with respect to the metastable eutectic 


LT : austenite liquidus temperature according to the phase diagram 

Ttip: growth undercooling of austenite 

TAL or TLA: austenite liquidus estimate from thermal analysis records 
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gra
LT : graphite liquidus temperature according to the phase diagram 

TTT
gra
L

gra
L  : undercooling with respect to the graphite liquidus 

0T and T : upper and lower temperatures of the stable austenite/ferrite/graphite three phase field

T-T: undercooling below T  

0
pT and pT : upper and lower temperatures of the metastable austenite/ferrite/cementite three 

phase field 

Tpp-T: undercooling below Tp
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Authorisations for re-use. 
A number of illustrations which were prepared in the original text of the monograph have been 
withdrawn because fees were asked for their re-use. This is quite unfortunate as this certainly 
inhibits appropriate dissemination of knowledge. In turn, obtaining the possibility for re-use without 
any condition was greatly appreciated. 
 
Courtesy of AFS 

 Figure VI-6: figure 5 of V. Subramanian, D.A.R. Kay, G.R. Purdy, Compacted graphite 
morphology control, AFS Trans., 1982, 582-603 

 Figure VI-7b: figure 14c of S. Liu, C.R. Loper, Morphology of kish graphite, AFS Trans., 1990, 
385-394 

 Figure VI-8: figure 11 of S. Liu, C.R. Loper, Morphology of kish graphite, AFS Trans., 1990, 
385-394 

 
Courtesy of DIS 

 Figure VI-12b: figure 9 of J. Qing, M. Xu, V. Pikhovich, Why is Graphite Spherical in Ductile 
Iron? A Study of Elements in the Spheroidal Graphite Using Atom Probe Tomography and 
Transmission Electron Microscopy, Keith Millis symposium, 2018. 

 Figure VII-12: figure 6 of J. Bourdie, J. Lacaze, C. Josse, L. Laffont, Growth of spheroidal 
graphite: light versus scanning and transmission electron microscopies. Keith Millis 
symposium, 2018. 

 
From the Iron and Steel Institute of Japan 
Figure VIII-3 is Figure 3 of, V. GERVAL, J. LACAZE, Critical temperatures of spheroidal graphite cast irons: 
a review of literature data, ISIJ International, 40, 2000, 386-392 
 
From TMS 

 Figure III-2a –Figure 3 of. FRAS, W. KAPTURKIEWICZ, A.A. BURBIELKO, H.F. LOPEZ, Numerical simulation and 
Fourier analysis of solidification kinetics in high-carbon Fe-C alloys, Metall. Mater. Trans. B, 28, 1997, 
115-123. Copyright 1997 by The Minerals, Metals & Materials Society and ASM International. Used 
with permission. 

 Figure VI-11a: figure 8 of D. HOLMGREN, R. KÄLLBOM, I.L. SVENSSON, Influences of the graphite growth 
direction on the thermal conductivity of cast iron, Metall. Mater. Trans. A, 38, 2007, 268-275. 
Copyright 2007 by The Minerals, Metals & Materials Society and ASM International. Used with 
permission. 

 Figure VI-12a: figure 5 of D.M. STEFANESCU, A. CRISAN, G. ALONSO, P. LARRANAGA, R. SUAREZ, Growth of 
spheroidal graphite on nitride nuclei: disregistry and crystallinity during early growth, Metall. Mater. 
Trans. A, 50, 2019, 1763-1772. Copyright 2019 by The Minerals, Metals & Materials Society and ASM 
International. Used with permission. 

 
From Elsevier 

 Figure IV-13: figure 1 of J. LACAZE, D. CONNÉTABLE, M.J. CASTRO DE ROMAN,  Effects of impurities on graphite shape during 
solidification of spheroidal graphite cast ions, Materialia, 8, 2019, 100471. Copyright (2019), with permission from Elsevier 

 figures VI-2a: figure 5b of K. THEUWISSEN, J. LACAZE, L. LAFFONT,  Structure of graphite precipitates in cast iron, Carbon 96, 2016, 
1120-1128. Copyright (2015), with permission from Elsevier. 

 Figures VI-9a: figure 9 of K. THEUWISSEN, J. LACAZE, L. LAFFONT,  Structure of graphite precipitates in cast iron, Carbon 96, 2016, 
1120-1128. Copyright (2015), with permission from Elsevier. 

 Figures VI-9b: figure 10 of K. THEUWISSEN, J. LACAZE, L. LAFFONT,  Structure of graphite precipitates in cast iron, Carbon 96, 2016, 
1120-1128. Copyright (2015), with permission from Elsevier. 
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