
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/26847

Dehez-Clementi, Marina and Deneuville, Jean-Christophe and Lacan, Jérôme and Asghar, Hassan and Kaafar,

Mohamed Ali Who let the DOGS out: Anonymous but Auditable communications using Group Signature schemes

with Distributed Opening. (2020) In: 4th International Workshop on Cryptocurrencies and Blockchain Technology -

CBT 2020, 17 September 2020 - 18 September 2020 (Guildford, United Kingdom).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/338819821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Who let the DOGS out : Anonymous but
Auditable communications using Group

Signature schemes with Distributed Opening

Marina Dehez-Clementi1,2, Jean-Christophe Deneuville3, Jérôme Lacan1,
Hassan Asghar2,4, and Dali Kaafar2,4

1 ISAE-SUPAERO, Toulouse, France
2 Macquarie University, Sydney, Australia

3 ENAC, Toulouse, France
4 Data61/CSIRO, Sydney, Australia

Abstract. Over the past two decades, group signature schemes have
been developed and used to enable authenticated and anonymous peer-
to-peer communications. Initial protocols rely on two main authorities,
Issuer and Opener, which are given substantial capabilities compared to
(regular) participants, such as the ability to arbitrarily identify users.
Building efficient, fast, and short group signature schemes has been the
focus of a large number of research contributions. However, only a few
dealt with the major privacy-preservation challenge of group signatures;
this consists in providing user anonymity and action traceability while
not necessarily relying on a central and fully trusted authority. In this pa-
per, we present DOGS, a privacy-preserving Blockchain-supported group
signature scheme with a distributed Opening functionality. In DOGS,
participants no longer depend on the Opener entity to identify the signer
of a potentially fraudulent message; they instead collaborate and perform
this auditing process themselves. We provide a high-level description of
the DOGS scheme and show that it provides both user anonymity and
action traceability. Additionally, we prove how DOGS is secure against
message forgery and anonymity attacks.

1 Introduction

Developed in the 70’s, digital signatures are one of the most important primi-
tives in public key cryptography and provide authentication, integrity and non-
repudiation to various applications. However, they do not provide privacy of
the signer [12]. Our focus is on signature schemes that provide both user
anonymity and action traceability , which fall in the realm of group signature
schemes.

Introduced by Chaum and van Heyst [5], group signature schemes enable
members of a group to sign messages on behalf of the group without revealing
their identity. The signature can be verified by the recipient as a valid signature
from the group, but cannot identify the member who generated the signature.
However, signing members remain accountable for their messages as the group
manager, a third-party managing the group, can open their signatures and hence
identify them.



In [2], Bellare et al. presented some fundamental security notions for dynamic
group signatures. A key feature of their scheme is that the group manager is split
into two distinct entities: the Issuer which interacts with users to authenticate
their credentials, and the Opener which is called when a signature needs to be
opened.

Role of the Opener. The opener acts as the tracing authority in charge of
linking a signed message to its origin, namely the signer. By definition, the role
of the Opener entails no privacy preservation. Existing literature [9, 10] usually
considers a unique entity to be playing the role of the Opener, inducing strong
assumptions of the level of trust in such an entity as well as its resilience. In Ve-
hicular Ad-hoc Networks (VANETs) for instance, vehicles use group signatures
to sign the (location and time-dependent) road-safety messages they broadcast.
A vehicle’s identity is protected by the scheme unless the Opener is compromised,
in which case signatures may be opened which then breaches user privacy. An
alternative way to relax these strong assumptions in the Opener is to implement
a distributed tracing authority instead.

Related Work on Distributed Traceability. Studies that propose a dis-
tributed traceability functionality for group signature schemes (e.g., [3, 6]) often
leverage Shamir’s Secret Sharing (SSS) scheme to generate shares of the Opener
secret key and then distribute one share per user. This approach however presents
a clear limitation: the computation of these shares is again centralized which still
represents a single point of failure from an adversary perspective.

Our Contribution. In this paper, we propose the Distributed Opening Group
Signature DOGS scheme, a BSZ group signature scheme [2] enhanced with the
Distributed Key Generation (DKG) protocol from [11] (later denoted ETHDKG)
for the distribution of the Opener secret key. The advantage of our DKG-
enhanced group signature over SSS-based approaches is that the key generation
is not entrusted to a third party. Instead, it is the result of the collaboration of
a group of users. Hence, none of them knows all the shares, making the scheme
strong against a more powerful adversary.

Structure of the paper. Section 2 provides a description of the system model,
desirable security features and the primitives used. Section 3 gives a generic
presentation of the DOGS construction. Section 4 presents the security analysis
of DOGS. Section 5 concludes the paper.

2 Preliminaries

In this section, we present the adversary model and corresponding security fea-
tures of DOGS. We describe the system, giving a real-world use case, and intro-
duce our solution for the distribution of the Opener.

2.1 Adversary Model and Desirable Features

In DOGS, we consider an adversary that wants to break the underlying group
signature scheme. Therefore it can perform de-anonymization attacks (i.e. inter-
cept a message and identify the signer), key recovery attacks or forgery attacks

2



(i.e. create a signature that would defeat the opening procedure or frame a le-
gitimate user). All these scenarios are captured in Bellare et al. [2].

Desirable features. Our main objectives are for our DOGS scheme to be cor-
rect and to provide anonymity, traceability and non-frameability. Let λ denotes
the security parameter.

Correctness. The correctness property guarantees that signatures issued by
honest users:

i) should pass the verification,
ii) should trace to the correct issuer if opened with the Opening key, and

iii) the proof output by the Open process should verify the Judge algorithm. ut

Anonymity. Let U0 and U1 be two honest registered users, and σ a valid
signature issued by Ub for some b ∈ {0, 1}. The anonymity property requires
that no probabilistic polynomial-time (PPT) adversary A can guess b with non
negligible (in λ) advantage. ut
Traceability. An adversary breaks the traceability property if she succeeds in
creating a valid signature σ such that either:

i) no registered (or revoked) user can be identified when σ is legitimately
opened, or

ii) the proof, produced by a honest opening, revealing that σ belongs to user
U , does not convince the Judge algorithm. ut

Non-frameability. Finally, the non-frameability property requires that no
PPT adversary A can create a valid signature that would trace to an honest
user if opened, unless this user has effectively issued it. ut

We prove that DOGS is compliant with these security goals in Sec. 4.

2.2 System model

Involved in our DOGS scheme are: an authority called the Issuer Iss for the
generation of initial cryptographic information, and a body of users, each with a
unique identity i (e.g. i ∈ N). We assume over half of the participants are honest.
Iss is public and has its own secret key. It interacts with users to issue them an
authenticated signing key. We consider a Region of Interest (RoI), which users
can join and leave and in which they can communicate. One Issuer is responsible
for one RoI.

Use Case. In VANETs, we can assimilate the RoI to a neighbourhood.
Vehicles are the users. They can enter, leave and move in the area, communicate
with each other and broadcast road information. The Roadside unit acts as the
Issuer.

2.3 Distributed Key Generation for DOGS
Distributed Key Generation (DKG) protocols are fundamental building blocks
for a variety of cryptographic schemes [8]. They enable a group of users to collab-
orate in order to obtain a common public key. The strength of DKG lies in that

3



the public key can be computed by any honest participant, while the correspond-
ing secret key cannot. Instead, it requires a threshold number of collaborating
honest parties to derive it.

In this paper, we draw from Schindler et al.’s DKG implementation [11]
(ETHDKG). The authors present a fully functioning DKG protocol for thresh-
old signature generation, based on Ethereum smart contracts. In the following
section, we explain how we combine this DKG proposition with BSZ group signa-
ture to produce a new Group Signature scheme with Distributed Opener called
DOGS.

3 Protocol Description

There are three phases in DOGS:

phase 1 “Distributed Generation of an Opening Keys”,
phase 2 “Inter Communications and App-related event logging” and
phase 3 “Auditing and Identification”.

We transpose them into five distinct modules (Fig. 1) namely Bootstrapping,
Registration and Opening Keys (OK) Generation (phase 1), Application
(phase 2) and Audit (phase 3).

Fig. 1. DOGS Workflow diagram

Algorithms and their usage. Users can become group members by joining the
Region of Interest and interacting with the Issuer. They become sub-opener au-
thorities and participate to the opening process if they own a share of an Opening
secret key. The group of sub-openers therefore replaces the Opener. The scheme
is specified as a tuple DOGS =(GKg, dOKg, UKg, Join, Iss, GSig, GVf,

Request, Collaborate, Open, Judge) of PPT algorithms, whose intended us-
age and functionalities are presented in this section. This protocol heavily relies
on previous works [2, 11] and we advice the readers to briefly review them before
they proceed. Indeed, (GKg, UKg, Join, Iss, GSig, GVf, Open, Judge)

are inherited from [2], and dOKg invokes (sharing, share verification,

claim verification, key derivation) formalized from [11].

Usage of the Public Ledger. Throughout these phases, we assume the exis-
tence of a trusted message delivery service. To do so, we make use of a public
ledger to record relevant information, i.e. any public data that can be used to
assert the validity and integrity of the shared cryptographic parameters.

We leverage a classic blockchain implementation with the usual functionali-
ties related to block addition, linkage and forking issues. In DOGS protocol, the

4



Module Algorithm Type Comments

Bootstrap GKg Bootstrap publication of the group public key gpk,
and the Issuer public key ipk

Registration

UKg none Ui generates local identity upk[i],usk[i]

Join Joining Request by Ui, sends personal data to Issuer

Iss Issuing Reply 2 issues: accept/reject. If accept,
the Issuer records the link between
upk[i],usk[i] and (i, pki, sigi)

sharing Opening Keys
(OK) Genera-
tion Request

Ui generates and distributes commit-
ments (Cij), encrypted shares sij and
value hsi , for k = 0..t, j = 1..n

Opening
Keys

share verification Claim a user U issues a claim =<
status, data, key, proof >

Generation claim verification Claim Verifica-
tion

all U check the validity of the claim; 2
issues: accept/reject

key derivation Key Publication the Issuer determines and publishes the
resulting Opening public key opk

Application
GSig Signature user U produces a group signature σ un-

der opk

GVf Verification user U verifies a group signature σ under
opk. 2 issues: accept/reject.

Audit

Request Open Request user U requests the opening of a group
signature σ under opk

Collaborate Secret Key Pub-
lication

one of the authorized users publishes the
re-constructed Opening secret key osk

Open Open the signature σ is opened and the result
is published by the requester

Judge Judge a user - not the requester - asserts and
publishes the validity of the requester’s
opening

Table 1. Description of the transaction (Tx) types and corresponding published data.

transaction types and corresponding published data are summarized in Table 1,
which includes the definition of: seven transaction types for Phase 1 (e.g. the
bootstrap transaction corresponds to the publication of bootstrapping informa-
tion); two transaction types for Phase 2, which illustrate the signing action of
a user and verifying process of other members of the group; and finally, four
transaction types for Phase 3.

Since the information published does not hold private or sensitive informa-
tion, the public ledger is readable by anyone. However, we restrict the writing
permissions to authenticated users only.

3.1 Phase 1: Distributed Generation of the Opening Keys

In the following paragraphs, we will explain each step of Phase 1.

Bootstrap. The scheme starts with the bootstrapping of the system. It con-
sists in the Issuer executing the GKg algorithm and results in the publication of
both the group public key gpk and the the Issuer’s public key ipk (Bootstrap
transaction).

5



Registration. User Ui enters the RoI. First, Ui executes the UKg algorithm
to obtain a personal public/private key pair, referring to its local identity
(usk[i],upk[i]). Then, Ui starts the Join,Iss interactive protocols. It executes
the Join function and triggers the Join Request transaction. The generation
and publication of related information (Tab. 1) is compliant with Bellare et al.’s
GS Join algorithm, but enhanced with logging functionalities for traceability
purposes. The Issuer receives encrypted data from Ui, including identifying in-
formation such as the public key pki used to verify Ui’s signed messages. It
compares it to the public record for data integrity checks; then executes the Iss

function, triggering the publication of resulting data and the Issuing Reply
transaction. The Registration step has two issues: the first ends up in Ui’s
request being rejected due to faulty data; the second grants Ui with a certificate
certi and allows it to perform subsequent actions such as Opening Keys (OK)
Generation Request, make a Claim, or a Claim Verification. If so, the
Issuer records, in its local database, the relationship between the user’s local
identity given by UKg, and the authenticated identity (i, pki, sigi) used in the
RoI.

Opening Keys (OK) Generation. Since the Opener is no longer a single
entity, from now on, we will use the wording “Opening” to designate the func-
tionality it was in charge of. We now consider an authenticated user Ui and
explain how it can request the generation of Opening keys to protect its future
communications (see GSig [2]).

Ui executes the sharing function inherited from [11]. This function triggers
the Opening Keys (OK) Generation Request transaction. Subsequently,
Ui generates and publishes the required information (commitments (Cik), shares
(sij) and value hsi according to [11]) for the computation of an Opening public
key.

The broadcasting of this new transaction triggers an update of the local
ledgers of the users. They individually execute the share verification function
to check the correctness of the share that has been sent to them by Ui (note: each
share sij is encrypted with a symmetric encryption scheme of key kij = gskiskj =

pk
skj
i = pkskij ). The execution of this function triggers a Claim transaction and

publishes the result as < status, data, key, proof >. Depending on status, there
are two different results: if status contains the value “no claim” or Uj does not
reveal kij or its proof π(kij), then the share is accepted and Uj in turn has to
broadcast its own shares (see Case 1). Else if, status value is equal to “claim”,
then the protocol holds as others check the claim (see Case 2).

Case 1. Therefore, Uj in turn executes the sharing function, distributes
the resulting shares and publishes related data. Again, share verification

function is used to check the validity of the shares but this time either the peers
{Uk}k 6=j∈N accepts Uj ’s share and it ends there, or it rejects it.

Case 2. In this case, a share has been rejected and a claim has been broad-
cast. Hence, users execute claim verification function to check its validity.
Doing so, they trigger a Claim Verification transaction which results in either
the claim being denied or accepted.

6



Once all the shares and claim have been verified, the Issuer can execute
key derivation function. It browses the public records and determines which
shares are usable to compute the final Opening public key. It finally publishes
this key opk and R the list of authenticated local identities which participated
to the establishment of this Opening key.

In the following sub-section, we explain how anyone in the RoI can use opk in
GSig to encrypt its signature, ensuring its anonymity in communications while
still providing action traceability.

3.2 Phase 2: Inter Communications and Application-related event
logging

Application. Our DOGS scheme has been initially thought to be applied in
the context of local logging of events, especially for VANETs. Let us consider
Ui has a road-safety information to share with vehicles in the neighbourhood,
for instance an alert about a car accident. However, Ui does not want to reveal
its identity nor its position at this particular time (to prevent location-based
identity inference [7]). If Ui applies GSig function on the alert message, it is
able to produce a signature that refers to the group but protects its identity.
It additionally triggers the Signature transaction. The use of [2]’s GSig along
with the DKG-computed Opening public key ensures that no single sub-opener
can open this signature, hence identify Ui. However, users in the neighbourood
can still individually execute GVf [2] to assert the correctness of the received sig-
nature and trust Ui’s alert. The result gets published along with Verification
transaction.

That is how user anonymity is provided in DOGS. In the following sub-
section, we consequently explain how DOGS also provides action traceability.

3.3 Phase 3: Auditing and de-anonymization

Audit. This module regroups the required functionalities implemented in DOGS
for providing action traceability.

With Request, the requester Ui triggers the Open Request transaction,
hence summoning users in the RoI to collaborate in order to reconstruct an
Opening secret key. Ui therefore communicates the signature σ it wants to open,
the message m it signs and the corresponding Opening public key opk. For
traceability guarantees, this request gets published on to the public ledger.

Then, the Collaborate function is executed. All Uj in the set R related to
opk will collaborate to reconstruct the Opening secret key osk (by consecutively
summing their shares to previous partial results). The last peer to add its own
secret st+1 also publishes the result while triggering the Secret Key Publi-
cation transaction. It includes the initial data < m, opk, σ >, the set R, and
the result of their work osk.

Finally, by retrieving osk, the requester Ui can identify the origin of σ and
publishes the result via the Open function (Open transaction). Other peers in the
RoI can consequently check this identification by executing the Judge function
(Judge transaction).

7



4 Security Analysis

In this section, we show that the use of ETHDKG functionalities is compatible
with the security environment related to group signature schemes as presented
in [2], hence that DOGS presents all the security properties we aimed for. Due
to space restrictions, the security proofs are only sketched, but most of them
are directly inherited from the BSZ construction and the ETHDKG protocol.
Only the anonymity property requires a careful treatment. We refer the reader to
BSZ [2] for a complete description of the experiments for each security feature.

Let λ be λ = 100 bits of security provided by the instantiation of the
ETHDKG with the elliptic curve BN254 [1].

Correctness. Properties i) and iii) are directly satisfied using BSZ. Assuming
the Opening key is correctly reconstructed, which is the case with overwhelming
probability (in λ) thanks to ETHDKG, then ii) is also satisfied. ut
Anonymity. In the original experiment [2], A does not have access to the
opening oracle. In DOGS, we weaken this assumption to “A has access to at
most t shares of the Opening secret key (including her own, if she is a registered
user)”. Then A has negligible advantage in λ in recovering osk [11] and our
anonymity feature boils down to the original one, which is fulfilled by using
BSZ. ut
Traceability. Similarly, in [2], A is granted access to the Opening secret key
osk. Therefore, A learns nothing more by corrupting users and DOGS traceabil-
ity is inherited from BSZ. ut
Non-frameability. Here again, since A has already access to osk in the original
experiment, she obtains no additional advantage by exploiting the shares of the
Opening secret key, and DOGS satisfies non-frameability as BSZ. ut

Discussion. Most of the security features are directly inherited from the BSZ
and ETHDKG constructions. However, the anonymity experiment as described
in [2] needs to be slightly modified. Indeed, an adversary A against the original
property could create and corrupt sufficiently many (more than t) users to obtain
their respective shares of the Opening secret key osk, and hence reconstruct it.
Using osk, A could trivially break the original anonymity property. Therefore,
an upper bound has to be integrated to compensate for the extra knowledge A
gets by corrupting users.

5 Conclusion

In this work, we present DOGS, a Blockchain-supported group signature scheme
which implements a distributed Opening functionality.

It would be meaningful, in future works, to include additional materials no-
tably regarding the algorithms and their explicit definitions, ways to contact
users from the group of sub-openers that are no longer in the Region of Interest
or potential solutions to redistribute their shares to newcomers, an implementa-
tion of the scheme with performance analysis to compare to real-world scenarios
(e.g. VANETs), and the establishment of more formal security proofs. Also, it

8



would be interesting to complete the current scheme with the addition of a
distributed Issuing functionality hence proposing a fully distributed Blockchain-
supported group signature scheme. Camenisch et al. [4] recently came up with
their own proposition and it might be interesting to analyse and compare both
to some extent.

Nonetheless, being the combination of a BSZ group signature scheme and
the ETHDKG protocol, we already succeed in formulating DOGS and show
that, only by distributing the Opener among a group of users, we preserve the
traceability feature of group signatures while enhancing their anonymity feature.
Indeed, our scheme is proven stronger than BSZ’s in terms of anonymity due to
the use of DKG. Furthermore, the scheme brings an additional novelty as it
enables the dynamic definition of the set of sub-opener authorities which makes
it more practical to applications with variable topologies such as VANETs.

Acknowledgements

We would like to express our great appreciation to E. Lochin for his valuable and
constructive suggestions during the planning and development of this research
work.

This work was partly supported by the French government through the
Toulouse graduate School of Aerospace Engineering (TSAE). Contract ANR-
17-EURE-0005. This work has also been supported by the Optus Macquarie
University Cyber Securiy Hub.

References

1. Barreto, P.S., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Inter-
national workshop on selected areas in cryptography. pp. 319–331. Springer (2005)

2. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Cryptographers’ Track at the RSA Conference. pp. 136–153.
Springer (2005)

3. Blömer, J., Juhnke, J., Löken, N.: Short group signatures with distributed trace-
ability. In: International Conference on Mathematical Aspects of Computer and
Information Sciences. pp. 166–180. Springer (2015)

4. Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., Towa, P.: Short threshold
dynamic group signatures. IACR Cryptol. ePrint Arch. 2020, 16 (2020)

5. Chaum, D., Van Heyst, E.: Group signatures. In: Workshop on the Theory and
Application of of Cryptographic Techniques. pp. 257–265. Springer (1991)

6. Ghadafi, E.: Efficient distributed tag-based encryption and its application to group
signatures with efficient distributed traceability. In: International Conference on
Cryptology and Information Security in Latin America. pp. 327–347. Springer
(2014)

7. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based
identity inference in anonymous spatial queries. IEEE transactions on knowledge
and data engineering 19(12), 1719–1733 (2007)

8. Neji, W., Blibech, K., Rajeb, N.B.: A survey on e-voting protocols based on secret
sharing techniques. Proceedings of CARI 2018 p. 142 (2018)

9. Perera, M.N.S., Koshiba, T.: Fully dynamic group signature scheme with member
registration and verifier-local revocation. In: International conference on mathe-
matics and computing. pp. 399–415. Springer (2018)

9



10. Sakai, Y., Schuldt, J.C., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: Preventing signature hijacking. In: International Work-
shop on Public Key Cryptography. pp. 715–732. Springer (2012)

11. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Ethdkg: Distributed key gen-
eration with ethereum smart contracts. Tech. rep., Cryptology ePrint Archive,
Report 2019/985, 2019, https://eprint.iacr.org (2019)

12. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous signature schemes. In:
International Workshop on Public Key Cryptography. pp. 347–363. Springer (2006)

10


