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a b s t r a c t 

The multiple signal classification (MUSIC) method is known to be asymptotically efficient, yet with a 

small number of snapshots its performance degrades due to bias in MUSIC localization function. In this 

communication, starting from G-MUSIC which improves over MUSIC in low sample support, a high signal 

to noise ratio approximation of the G-MUSIC localization function is derived. This approximation results 

in closed-form expressions of the weights applied to each eigenvector of the sample covariance matrix. 

A new method which consists in minimizing this simplified G-MUSIC localization function is thus in- 

troduced, and referred to as sG-MUSIC. Interestingly enough, this sG-MUSIC criterion can be interpreted 

as a bias correction of the conventional MUSIC localization function. Numerical simulations indicate that 

sG-MUSIC incur only a marginal loss in terms of mean square error of the direction of arrival estimates, 

as compared to G-MUSIC, and performs better than MUSIC. 
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. Introduction and problem statement 

Estimating the directions of arrival (DoA) of multiple sources

mpinging on an array of M sensors is a primordial task in most

onar or radar systems [1] . A reference approach to tackle this

roblem is by the maximum likelihood estimator (MLE) [2–5] ,

hose performance is at best matched asymptotically, but is usu-

lly most accurate in the so-called threshold area where most es-

imators begin to depart from the Cramér-Rao bound (CRB). The

LE entails a global search for the maximum of a K -dimensional

ikelihood function, where K stands for the number of sources

nd can thus be prohibitive from a computational point of view.

n the eighties, the paradigm of subspace-based methods was in-

roduced, relying heavily on the low-rank structure of the noise-

ree covariance matrix. Exploiting the partitioning of the space as

 subspace containing the signals of interest and its orthogonal

omplement, the K -dimensional problem was reduced to a one-

imensional problem where either K maxima, K eigenvalues or K

oots of a polynomial were to be searched, see e.g. MUSIC [6,7] ,

SPRIT [8] or MODE [9] respectively. 

MUSIC [6,7] , which is one of the first subspace-based technique

ntroduced and is applicable to any array geometry, has been ex-

ensively studied. The MUSIC DoA estimates are obtained as the

 deepest minima of the localization function 

ˆ L MUSIC (θ ) defined
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ereafter. In the large sample case, it was demonstrated that it is

symptotically unbiased and efficient [10–12] , i.e. it achieves the

RB either as the number of snapshots T or the signal to noise

atio (SNR) grow large. Nonetheless, its performance in finite sam-

le degrades. This is detrimental in practical situations where dy-

amically changing environments require carrying out DoA estima-

ion with a possibly small number of snapshots. In [13] , Kaveh and

arabell provided a detailed study of MUSIC localization function 

ˆ 
 MUSIC (θ ) = a H (θ ) ˆ U n ̂  U 

H 
n a (θ ) 

here a ( θ ) stands for the array steering vector and 

ˆ U n =
ˆ u 1 · · · ˆ u M−K 

]
where ˆ u m 

are the eigenvectors of the sam-

le covariance matrix with the convention that the correspond-

ng eigenvalues ˆ λm 

are sorted in ascending order. They proved

hat, when evaluated at a true DoA θ k , ˆ L MUSIC (θ ) has a finite

ample bias, which is generally larger than the corresponding

tandard deviation, and is thus the main factor for the loss of

esolution and accuracy. In [14] , rigorous expressions for the fi-

ite sample bias of MUSIC DoA estimates were derived. In fact,

esorting to random matrix theory (RMT), i.e. considering the

symptotic regime where M, T → ∞ with M / T → c (denoted

s RMT-regime), it was proven in [15] that the localization func-

ion of MUSIC is not consistent. As a corollary, it was demon-

trated that MUSIC cannot consistently resolve sources within the

ain beam width. In order to cope with this problem, the G-

USIC method was introduced which provides a consistent esti-

ate of a H (θ ) U n U 

H 
n a (θ ) in the RMT sense. G-MUSIC estimates

he noise projection matrix as ˆ P G-MUSIC = 

∑ M 

m =1 w m ̂

 u m ̂

 u 

H 
m 

where

 m 

are weights defined hereafter. The difference with the MUSIC
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projector ˆ P MUSIC = 

∑ M−K 
m =1 ˆ u m ̂

 u 

H 
m 

is twofold: MUSIC uses only

“noise” eigenvectors while ˆ P G-MUSIC makes use of all eigenvectors,

and MUSIC does not attribute a different weighting to the eigen-

vectors. G-MUSIC was shown to improve over MUSIC and, although

it relies on an asymptotic assumption, G-MUSIC proved to be effec-

tive in small sample support [15,16] . 

This said, the weights of G-MUSIC are not easy to obtain: com-

puting them requires finding the roots of a M th degree polynomial

or finding the eigenvalues of a M × M matrix, see below for details.

Additionally, it is difficult to have a simple and intuitive interpre-

tation of these weights. In this communication, we start from G-

MUSIC which performs well for small T , and try to simplify calcu-

lation of its weights and to obtain more insightful expressions. Our

approach is based on a high SNR approximation of the G-MUSIC

weights and results in a simple, closed-form expression. Interest-

ingly enough, the so-approximated weights can be interpreted as

a correction of the bias in MUSIC localization function. The new

scheme is thus simpler than G-MUSIC without sacrificing accuracy,

as will be shown in the numerical simulations. 

2. Derivation of sG-MUSIC 

In this section, we derive an approximated and simplified ex-

pression of G-MUSIC projection estimate 

ˆ P G-MUSIC = 

M ∑ 

m =1 

w m ̂

 u m ̂

 u 

H 
m 

(1)

and relate the so-obtained estimate to a bias compensation of MU-

SIC. 

2.1. Background and approach 

The weights w m 

of G-MUSIC are given by [15] 

w m 

= 

⎧ ⎨ 

⎩ 

1 + 

∑ 

k>M−K 

(
ˆ λk 

ˆ λm −ˆ λk 

− ˆ μk 

ˆ λm − ˆ μk 

)
m ≤ M − K 

−∑ 

k ≤M−K 

(
ˆ λk 

ˆ λm −ˆ λk 

− ˆ μk 

ˆ λm − ˆ μk 

)
m > M − K 

(2)

where ˆ λk are the eigenvalues of the sample covariance matrix and

ˆ μk , k = 1 , . . . , M denote the roots of 

f (μ) = 

M ∑ 

m =1 

ˆ λm 

ˆ λm 

− μ
= 

M 

c 
= T (3)

sorted in ascending order. Note that, when c < 1, we have the

interlacing property that ˆ λm −1 < ˆ μm 

< ̂

 λm 

[17] . It follows that, at

high signal to noise ratio where there is a clear separation be-

tween signal and noise eigenvalues, the last K values ˆ μm 

will be

well above the cluster of the M − K smallest ˆ μm 

, which should lie

around the white noise power (WNP), and the latter is assumed

to be small. Moreover, observe from (2) that the M − K smallest

ˆ μm 

will impact the weights of the signal eigenvectors while the

weights of the noise eigenvectors depend on the K largest ˆ μm 

only.

Our approximation relies on finding the roots of (3) by con-

sidering the two clusters of solutions independently. Rewriting the

function in (3) as f (μ) = 

∑ M 

m =1 f m 

(μ) , where f m 

(μ) = 

ˆ λm 
ˆ λm −μ

one

can thus make the following partitioning 

f (μ) = 

M−K ∑ 

m =1 

f m 

(μ) + 

M ∑ 

m = M−K+1 

f m 

(μ) = f n (μ) + f s (μ) . 

First, we use the fact that, when searching for the M − K small-

est values of μ, f s ( μ) is approximately constant, which leads to an

approximation of ˆ μm 

for m ≤ M − K and hence of the signal eigen-

vectors weights. As for the w m 

, m ≤ M − K, we will provide a high

SNR approximation of them directly. 
.2. Approximating the signal eigenvectors weights 

roposition 1. At high signal to noise ratio, the weights w m 

of Eq.

2) applied to the signal eigenvectors can be approximated as 

 m 

≈ −ˆ λ−1 
m 

(T − K) −1 

( 

M−K ∑ 

k =1 

ˆ λk 

) 

m > M − K. (4)

roof. First note w m 

for m > M − K is related to the M − K small-

st solutions of (3) . The latter will be typically of the same mag-

itude as the WNP (due to the interlacing property ˆ λm −1 < ˆ μm 

<

ˆ 
m 

) and hence negligible compared to ˆ λM−K+1 , · · · , ̂  λM 

. Hence,

hey belong to some interval I n where ˆ λm 

/ ( ̂ λm 

− μ) ≈ 1 for m >

 − K which results in f s ( μ) ≈ K when μ ∈ I n . Consequently, the

 − K smallest values of μ are obtained by solving 

f n (μ) + K = T ⇔ 1 − 1 

T − K 

M−K ∑ 

m =1 

ˆ λm 

ˆ λm 

− μ
= 0 

⇔ 1 − 1 

T − K 

√ 

ˆ λn 

T (
ˆ �n − μI 

)−1 
√ 

ˆ λn = 0 

⇔ det 

( 

ˆ �n − 1 

T − K 

√ 

ˆ λn 

√ 

ˆ λn 

T 

− μI 

) 

= 0 (5)

here ˆ λn = 

[
ˆ λ1 · · · ˆ λM−K 

]T 
, ˆ �n = diag ( ̂  λn ) and where the

ast equivalence is obtained by multiplying by det 

(
ˆ �n − μI 

)
. It fol-

ows that ˆ μm 

for m = 1 , · · · , M − K are approximately the eigenval-

es of ˆ �n − (T − K) −1 
√ 

ˆ λn 

√ 

ˆ λn 

T 

. 

Let us accordingly consider an approximation of the weights

 m 

, m > M − K. Let us introduce the notation �k = ̂

 λk − ˆ μk . Note

hat, at high SNR, we have ˆ λk 
ˆ λ−1 

m 

	 1 for k = 1 , · · · , M − K and,

ince ˆ μk < ̂

 λk , it follows that ˆ μk 
ˆ λ−1 

m 

	 1 . It then ensues that, for

 > M − K

 m 

= −
M−K ∑ 

k =1 

(
ˆ λk 

ˆ λm 

− ˆ λk 

− ˆ μk 

ˆ λm 

− ˆ μk 

)

= −
M−K ∑ 

k =1 

ˆ λm 

�k 

ˆ λ2 
m 

(1 − ˆ λk ̂
 λ−1 
m 

)(1 − ˆ μk ̂
 λ−1 
m 

) 

≈ −ˆ λ−1 
m 

M−K ∑ 

k =1 

�k = −ˆ λ−1 
m 

[ 

M−K ∑ 

k =1 

ˆ λk −
M−K ∑ 

k =1 

ˆ μk 

] 

≈ −ˆ λ−1 
m 

[ 

M−K ∑ 

k =1 

ˆ λk − Tr { ̂  �n − (T − K) −1 

√ 

ˆ λn 

√ 

ˆ λn 

T 

} 
] 

= −ˆ λ−1 
m 

(T − K) −1 

( 

M−K ∑ 

k =1 

ˆ λk 

) 

. � (6)

.3. Approximating the noise eigenvectors weights 

roposition 2. At high signal to noise ratio, the weights applied to

he noise eigenvectors can be approximated as 

 m 

≈ 1 m ≤ M − K. (7)

roof. Let us write, for m ≤ M − K

 m 

= 1 + 

M ∑ 

k = M−K+1 

(
ˆ λk 

ˆ λm 

− ˆ λk 

− ˆ μk 

ˆ λm 

− ˆ μk 

)
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t  

W  

e  

e  

v  

s

a  

s  ∑
 

t  

v  

o  
= 1 + 

M ∑ 

k = M−K+1 

ˆ λm 

( ̂ λk − ˆ μk ) 

( ̂ λm 

− ˆ λk )( ̂ λm 

− ˆ μk ) 

= 1 + 

M ∑ 

k = M−K+1 

( ̂ λm ̂

 λ−1 
k 

)( ̂ λk ̂  μ−1 
k 

− 1) 

(1 − ˆ λm ̂

 λ−1 
k 

)(1 − ˆ λm ̂

 μ−1 
k 

) 
. (8) 

nder the high SNR assumption, we have that ˆ λm ̂

 λ−1 
k 

	 1 for m ≤
 − K and k > M − K. Let us now show that ˆ λm ̂

 μ−1 
k 

	 1 for m ≤
 − K and k > M − K. As ˆ μk ∈ 

] 
ˆ λk −1 , ̂

 λk 

[ 
, it follows directly from

he high SNR assumption that, for k > M − K + 1 and m ≤ M − K,
ˆ 

m ̂

 μ−1 
k 

< ̂

 λm ̂

 λ−1 
k −1 

	 1 . It remains to examine the special case of

 min = M − K + 1 , that is of the smallest signal eigenvalue since,

n this case, ˆ μk min 
lies between the largest noise eigenvalue and

he smallest signal eigenvalue. We now prove that ˆ μk min 
is close to

ˆ 
k min 

. For k ≥ k min 

ˆ λk 

ˆ λk − ˆ μk min 

≤
ˆ λk min 

ˆ λk min 
− ˆ μk min 

(9) 

hich implies that 

M ∑ 

k = M−K+1 

ˆ λk 

ˆ λk − ˆ μk min 

≤ K 

ˆ λk min 

ˆ λk min 
− ˆ μk min 

 

M ∑ 

k =1 

ˆ λk 

ˆ λk − ˆ μk min 

≤ K 

ˆ λk min 

ˆ λk min 
− ˆ μk min 

+ 

M−K ∑ 

k =1 

ˆ λk 

ˆ λk − ˆ μk min 

 T ≤ K 

ˆ λk min 

ˆ λk min 
− ˆ μk min 

+ 

M−K ∑ 

k =1 

ˆ λk 

ˆ λk − ˆ μk min 

 K 

ˆ λk min 

ˆ λk min 
− ˆ μk min 

≥ T −
M−K ∑ 

k =1 

ˆ λk 

ˆ λk − ˆ μk min 

. (10) 

he right-hand side of last equation being strictly greater than T , it

ollows that 

ˆ k min 
> 

ˆ λk min 

(
1 − K 

T 

)
. (11) 

he previous equation shows that ˆ μk min 
is rather close to the up-

er bound of the interval 

] 
ˆ λk min −1 , ̂

 λk min 

[ 
to which it belongs.

imilar derivations as for (10) can show that, for any k > M −
, ˆ μk > ̂

 λk 

(
1 − M−k +1 

T 

)
, and hence as the eigenvalues increase,

ˆ k comes closer to ˆ λk . Furthermore, (11) implies that ˆ λm ̂

 μ−1 
k min 

<

ˆ 
m ̂

 λ−1 
k min 

(
1 − K 

T 

)−1 	 1 . Coming back to (8) it follows that, at high

NR, w m 

≈ 1 for m ≤ M − K. �

.4. sG-MUSIC and its relation to MUSIC bias compensation 

Combining (4) and (7) , it follows that ˆ P G-MUSIC can be approxi-

ated by 

ˆ 
 sG-MUSIC = 

ˆ U n ̂  U 

H 
n −

(∑ M−K 
k =1 

ˆ λk 

)
T − K 

ˆ U s ̂
 �
−1 

s 
ˆ U 

H 
s 

= 

ˆ P MUSIC −

(∑ M−K 
k =1 

ˆ λk 

)
T − K 

ˆ U s ̂
 �
−1 

s 
ˆ U 

H 
s (12) 

here ˆ U s = [ ̂  u M−K+1 · · · ˆ u M 

] and 

ˆ �s = diag ( ̂  λs ) with 

ˆ λs =
ˆ λM−K+1 · · · ˆ λM 

]T 
. The projector in (12) provides an ap-

roximation of ˆ P G-MUSIC which relies only on the eigenvalues

nd eigenvectors and thus avoids the need to solve (3) . One can

bserve that the noise eigenvectors are attributed a common

eight equal to one as in MUSIC, while the signal eigenvectors
re weighted by ˆ λ−1 
m 

(T − K) −1 
(∑ M−K 

k =1 
ˆ λk 

)
, which tends to zero as

 increases and/or the signal to noise ratio increases, which seems

ogical. 

Interestingly enough, ˆ P sG-MUSIC can be viewed as a correction

f the bias of MUSIC localization function. More precisely, we will

how that the corrective term in the second line of (12) can be

nterpreted as a compensation of MUSIC bias due to finite sample

upport. As shown in [13] , see also [1, Chapter 9] , one has 

 

{
ˆ P MUSIC 

}
− U n U 

H 
n 

= −
M ∑ 

i = M−K+1 

M ∑ 

j =1 , j � = i 

λi λ j 

T (λi − λ j ) 2 

[
u j u 

H 
j − u i u 

H 
i 

]
. (13) 

e can rewrite the previous equation as 

 

{
ˆ P MUSIC 

}
− U n U 

H 
n 

= −
M ∑ 

i = M−K+1 

M−K ∑ 

j=1 

λi λ j 

T (λi − λ j ) 2 

[
u j u 

H 
j − u i u 

H 
i 

]

= −
M ∑ 

i = M−K+1 

M−K ∑ 

j=1 

λi σ
2 

T (λi − σ 2 ) 2 

[
u j u 

H 
j − u i u 

H 
i 

]

= 

[ 

−
M ∑ 

i = M−K+1 

λi σ
2 

T (λi − σ 2 ) 2 

] 

U n U 

H 
n + 

(M − K) σ 2 

T 

M ∑ 

i = M−K+1 

λi u i u 

H 
i 

(λi −σ 2 ) 2 

(14) 

here σ 2 stands for the WNP. Therefore, when evaluated at a true

oA θ k , the average value of MUSIC localization function is given

y 

 

{
ˆ L MUSIC (θk ) 

}
= 

(M − K) σ 2 

T 

M ∑ 

i = M−K+1 

λi | a H (θk ) u i | 2 
(λi − σ 2 ) 2 

≈ (M − K) σ 2 

T 

M ∑ 

i = M−K+1 

λ−1 
i 

| a H (θk ) u i | 2 

= a H (θk ) 

[
(M − K) σ 2 

T 
U s �

−1 
s U 

H 
s 

]
a (θk ) . (15) 

omparing (12) to (15) , one can interpret the correction
ˆ 
 sG-MUSIC − ˆ P MUSIC as an O (T −1 ) estimate of the bias of MUSIC. In

ther words, ˆ P sG-MUSIC can be viewed as a modification of MU-

IC by attempting to remove bias. It is very interesting to note

hat the theory which led to G-MUSIC is completely different from

he theory from which (13) originates. With this respect, the new
ˆ 
 sG-MUSIC enables to sort of establish a bridge between the two ap-

roaches. It can either be viewed as an approximation and simpli-

cation of G-MUSIC and/or a correction of MUSIC. 

. Numerical simulations 

In this section, we compare the mean-square error (MSE) of

he DoA estimates obtained by MUSIC, G-MUSIC and sG-MUSIC.

e consider the same scenario as in [15] i.e., a uniform lin-

ar array of M = 20 sensors, spaced a half-wavelength apart. Two

qui-powered sources are assumed to be present in the field of

iew of the array, with power P and DoA 35 ° and 37 °. The mea-

urements are corrupted by white Gaussian noise with power σ 2 

nd we define the signal to noise ratio as SNR = 

P 
σ 2 . We con-

ider as figure of merit the mean square error defined as MSE =
 P 
p=1 E 

{ 

( ̂  θp − θp ) 
2 
} 

. 50 0 0 Monte-Carlo simulations are run to es-

imate MSE. In Figs. 1–3 we plot MSE as a function of SNR for

arious values of T , namely T = 15 , T = 25 and T = 75 . As can be

bserved, sG-MUSIC performs nearly as well as G-MUSIC in the



Fig. 1. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 15 . 

Fig. 2. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 25 . 

Fig. 3. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 75 . 
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hreshold area (especially for small T ) and much better than MU-

IC. As SNR increases the difference between the three methods

anishes. Therefore, sG-MUSIC offers a very good compromise: it

s somewhat simpler than G-MUSIC and undergoes a marginal loss

n the threshold area, at least when a limited number of samples

s available. On the other hand, sG-MUSIC has a complexity similar

o that of MUSIC but provides more accurate estimates. 

. Conclusions 

In this communication, starting from the G-MUSIC localization

unction, we have presented an approximation that can be viewed

s a bias compensated version of MUSIC. Indeed, the new method

orresponds to a modification of MUSIC localization function which

omehow removes the bias in the latter. Moreover, the weights to

e applied to the eigenvectors of the sample covariance matrix are

btained in closed-form, similarly to MUSIC, but do not require to

nd the M roots of a non-linear equation as in G-MUSIC. Numer-

cal simulations indicate that the new scheme performs nearly as

ell as G-MUSIC, especially in low sample support, and better than

USIC. 
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