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Short communication

A bias-compensated MUSIC for small number of samples

Francois Vincent®*, Frédéric Pascal® Olivier Besson®

3 ISAE-Supaéro, Department Electronics Optronics Signal, 10 Avenue Edouard Belin, 31055 Toulouse, France

b[2S, CentraleSupélec, 91192 Gif-sur-Yvette, France

ABSTRACT

The multiple signal classification (MUSIC) method is known to be asymptotically efficient, yet with a
small number of snapshots its performance degrades due to bias in MUSIC localization function. In this
communication, starting from G-MUSIC which improves over MUSIC in low sample support, a high signal
to noise ratio approximation of the G-MUSIC localization function is derived. This approximation results
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in closed-form expressions of the weights applied to each eigenvector of the sample covariance matrix.
A new method which consists in minimizing this simplified G-MUSIC localization function is thus in-
troduced, and referred to as sG-MUSIC. Interestingly enough, this sG-MUSIC criterion can be interpreted
as a bias correction of the conventional MUSIC localization function. Numerical simulations indicate that
sG-MUSIC incur only a marginal loss in terms of mean square error of the direction of arrival estimates,
as compared to G-MUSIC, and performs better than MUSIC.

1. Introduction and problem statement

Estimating the directions of arrival (DoA) of multiple sources
impinging on an array of M sensors is a primordial task in most
sonar or radar systems [1]. A reference approach to tackle this
problem is by the maximum likelihood estimator (MLE) [2-5],
whose performance is at best matched asymptotically, but is usu-
ally most accurate in the so-called threshold area where most es-
timators begin to depart from the Cramér-Rao bound (CRB). The
MLE entails a global search for the maximum of a K-dimensional
likelihood function, where K stands for the number of sources
and can thus be prohibitive from a computational point of view.
In the eighties, the paradigm of subspace-based methods was in-
troduced, relying heavily on the low-rank structure of the noise-
free covariance matrix. Exploiting the partitioning of the space as
a subspace containing the signals of interest and its orthogonal
complement, the K-dimensional problem was reduced to a one-
dimensional problem where either K maxima, K eigenvalues or K
roots of a polynomial were to be searched, see e.g. MUSIC [6,7],
ESPRIT [8] or MODE [9] respectively.

MUSIC [6,7], which is one of the first subspace-based technique
introduced and is applicable to any array geometry, has been ex-
tensively studied. The MUSIC DoA estimates are obtained as the
K deepest minima of the localization function Lyygc(8) defined
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hereafter. In the large sample case, it was demonstrated that it is
asymptotically unbiased and efficient [10-12], i.e. it achieves the
CRB either as the number of snapshots T or the signal to noise
ratio (SNR) grow large. Nonetheless, its performance in finite sam-
ple degrades. This is detrimental in practical situations where dy-
namically changing environments require carrying out DoA estima-
tion with a possibly small number of snapshots. In [13], Kaveh and
Barabell provided a detailed study of MUSIC localization function

ZMUSIC ) =a"©®) Unﬁ# a(o)

where a(@) stands for the array steering vector and U, =
[ 4 -Gy ]| where @i are the eigenvectors of the sam-
ple covariance matrix with the convention that the correspond-
ing eigenvalues Jm are sorted in ascending order. They proved
that, when evaluated at a true DoA 6, Lyysic(8) has a finite
sample bias, which is generally larger than the corresponding
standard deviation, and is thus the main factor for the loss of
resolution and accuracy. In [14], rigorous expressions for the fi-
nite sample bias of MUSIC DoA estimates were derived. In fact,
resorting to random matrix theory (RMT), i.e. considering the
asymptotic regime where M, T — oo with M/T — ¢ (denoted
as RMT-regime), it was proven in [15] that the localization func-
tion of MUSIC is not consistent. As a corollary, it was demon-
strated that MUSIC cannot consistently resolve sources within the
main beam width. In order to cope with this problem, the G-
MUSIC method was introduced which provides a consistent esti-
mate of af(9)U,UHa(9) in the RMT sense. G-MUSIC estimates
the noise projection matrix as Peyyusic = X M_, Wmlinaf, where
wy, are weights defined hereafter. The difference with the MUSIC
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projector PMUSIC:Z% fumu” is twofold: MUSIC uses only

“noise” eigenvectors while Pg_yyusic makes use of all eigenvectors,
and MUSIC does not attribute a different weighting to the eigen-
vectors. G-MUSIC was shown to improve over MUSIC and, although
it relies on an asymptotic assumption, G-MUSIC proved to be effec-
tive in small sample support [15,16].

This said, the weights of G-MUSIC are not easy to obtain: com-
puting them requires finding the roots of a Mth degree polynomial
or finding the eigenvalues of a M x M matrix, see below for details.
Additionally, it is difficult to have a simple and intuitive interpre-
tation of these weights. In this communication, we start from G-
MUSIC which performs well for small T, and try to simplify calcu-
lation of its weights and to obtain more insightful expressions. Our
approach is based on a high SNR approximation of the G-MUSIC
weights and results in a simple, closed-form expression. Interest-
ingly enough, the so-approximated weights can be interpreted as
a correction of the bias in MUSIC localization function. The new
scheme is thus simpler than G-MUSIC without sacrificing accuracy,
as will be shown in the numerical simulations.

2. Derivation of sG-MUSIC

In this section, we derive an approximated and simplified ex-
pression of G-MUSIC projection estimate

M
Pomusic = ) Winliniify (1)

m=1

and relate the so-obtained estimate to a bias compensation of MU-
SIC.

2.1. Background and approach
The weights wy, of G-MUSIC are given by [15]
5\' ~
”Z’MM(ﬁ _#) m<M-K

)\m_uk
by A
Y wx (im_ik T m>M-K

)\m_uk

Wy = (2)

where A, are the eigenvalues of the sample covariance matrix and

Ay, k=1,...,M denote the roots of
M s
A M
f =Y === =T 3)
m_1 Am — 1

sorted in ascending order. Note that, when ¢ < 1, we have the
interlacing property that A;_1 < fim < Am [17]. It follows that, at
high signal to noise ratio where there is a clear separation be-
tween signal and noise eigenvalues, the last K values ji, will be
well above the cluster of the M — K smallest fin,, which should lie
around the white noise power (WNP), and the latter is assumed
to be small. Moreover, observe from (2) that the M — K smallest
fAm will impact the weights of the signal eigenvectors while the
weights of the noise eigenvectors depend on the K largest fi; only.

Our approximation relies on finding the roots of (3) by con-
sidering the two clusters of solutions independently. Rewriting the

function in (3) as f(u) =Y M_, fin(), where fr(u) = A:—Tﬂ one
can thus make the following partitioning

M-K M
me(ﬂ)+ Z fm(p) =

m=1 m=M-K+1

f(p) = Fa(u) + fs(u).

First, we use the fact that, when searching for the M — K small-
est values of u, fs(u) is approximately constant, which leads to an
approximation of fi, for m < M — K and hence of the signal eigen-
vectors weights. As for the wp, m <M — K, we will provide a high
SNR approximation of them directly.

2.2. Approximating the signal eigenvectors weights

Proposition 1. At high signal to noise ratio, the weights wp, of Eq.
(2) applied to the signal eigenvectors can be approximated as

M-K
Wi~ —A (T = K)™! (Z Xk) m>M—K. (4)

k=1

Proof. First note wy, for m > M — K is related to the M — K small-
est solutions of (3). The latter will be typically of the same mag-
nitude as the WNP (due to the mterlacmg property Am 1< fm<
Am) and hence negligible compared to Ay_ K10 AM Hence,
they belong to some interval Z, where )\m/(km —n)~1 for m>
M — K which results in fs(u) ~ K when u € Z,. Consequently, the
M — K smallest values of p are obtained by solving

1 M-K ,}\\m
T—K &3,

e1- —1<\/;<A ul) \f 0
@det< 1<\/>\/> ul> (5)

where A, = [ e An = diag(X,) and where the
. It fol-
lows that i, form=1,...,M — K are approximately the eigenval-

ues of A, — (T — K)*K/):\/X»HT.

Let us accordingly consider an approximation of the weights
Wm, m > M — K. Let us introduce the notation A, = 5\,( — fi. Note
that, at high SNR, we have A, A,! «1 for k=1,--- .M —K and,
since fi; < ik, it follows that ﬂki,}l < 1. It then ensues that, for
m>M-K

M-K 5\' ~
Wm:_Z(A k_ _AMkA)
o1 \Am— A Am— [l

o M= hAa) (- yda)

A T
ik |
last equivalence is obtained by multiplying by det([\n - p,l)
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-~ MiKA
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k=1

2.3. Approximating the noise eigenvectors weights

Proposition 2. At high signal to noise ratio, the weights applied to
the noise eigenvectors can be approximated as

Wnac1 m<M-K (7)
Proof. Let us write, for m <M — K

M 2 ~
Wp =1+ Z (;}1 AkA S MkA>
m—

k=M-K+1
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Under the high SNR assumption, we have that Amk <« 1form<

M —K and k > M — K. Let us now show that Amuk <1 form<

M-K and k> M —K. As [} € ]ik_l,ik [ it follows directly from

the high SNR assumption that, for k> M —-K+1 and m <M —K,
imﬂ}f < Xm)( ; < 1. It remains to examine the special case of
kin =M —K +1 that is of the smallest signal eigenvalue since,
in this case, /,Lk lies between the largest noise eigenvalue and
the smallest 51gnal eigenvalue. We now prove that &, is close to

A k- FOT K = Kmin
A A
— k< Tk (9)
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The right-hand side of last equation being strictly greater than T, it
follows that

R N K

/"Lkmin > )\'kmin <1 - T) (11)
The previous equation shows that fi;_
Kkmin—1 Akmin

Similar derivations as for (10) can show that, for any k> M —
K. fi > (1 M) and hence as the eigenvalues increase,

(10)

is rather close to the up-

per bound of the interval ]A [ to which it belongs.

[, comes closer to Ak. Furthermore, (11) implies that imﬁgl. <
min

Am)\k‘ (1- %)71 « 1. Coming back to (8) it follows that, at high
min
SNR, wp ~ 1 form<M-K. O

2.4. sG-MUSIC and its relation to MUSIC bias compensation

Combining (4) and (7), it follows that Pg_yugic can be approxi-
mated by

()

Pycmusic = 0,0 - T_K A, Uf
M-K 3
= Pmusic =~ UsAs U (12)
where  Ug = [@y_g1---fy] and As = diag(xs) with  As =

~ ~ T . . .
[AM,KH AM] . The projector in (12) provides an ap-
proximation of Pcusic Which relies only on the eigenvalues
and eigenvectors and thus avoids the need to solve (3). One can
observe that the noise eigenvectors are attributed a common

weight equal to one as in MUSIC, while the signal eigenvectors

are weighted by A, (T — K)~! (ZkM;]K ik), which tends to zero as

T increases and/or the signal to noise ratio increases, which seems
logical.

Interestingly enough, P.c_yusic can be viewed as a correction
of the bias of MUSIC localization function. More precisely, we will
show that the corrective term in the second line of (12) can be
interpreted as a compensation of MUSIC bias due to finite sample
support. As shown in [13], see also [1, Chapter 9], one has

E{f)MUSIC} - U, U
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We can rewrite the previous equation as
E{PMUSIC} - u,uff
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where o2 stands for the WNP. Therefore, when evaluated at a true
DoA 6y, the average value of MUSIC localization function is given

by

. M-K)o? &yl (Gou?
E{Lmusic(0) } = T _ > ()Li_(;z)z
i=M—-K+1
M-Kjo? X
~ W20 5 e Gu?
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Comparmg (12) to (15), one can interpret the correction
Pecmusic — PMUSIC as an O(T~!) estimate of the bias of MUSIC. In
other words, Psgvusic can be viewed as a modification of MU-
SIC by attempting to remove bias. It is very interesting to note
that the theory which led to G-MUSIC is completely different from
the theory from which (13) originates. With this respect, the new
P.c_music enables to sort of establish a bridge between the two ap-
proaches. It can either be viewed as an approximation and simpli-
fication of G-MUSIC and/or a correction of MUSIC.

3. Numerical simulations

In this section, we compare the mean-square error (MSE) of
the DoA estimates obtained by MUSIC, G-MUSIC and sG-MUSIC.
We consider the same scenario as in [15] i.e., a uniform lin-
ear array of M = 20 sensors, spaced a half-wavelength apart. Two
equi-powered sources are assumed to be present in the field of
view of the array, with power P and DoA 35° and 37°. The mea-
surements are corrupted by white Gaussian noise with power o2
and we define the signal to noise ratio as SNR = U% We con-
sider as figure of merit the mean square error defined as MSE =
Yot E{(Qp
timate MSE. In Figs. 1-3 we plot MSE as a function of SNR for
various values of T, namely T =15, T =25 and T = 75. As can be
observed, sG-MUSIC performs nearly as well as G-MUSIC in the

- Gp)z}. 5000 Monte-Carlo simulations are run to es-



MSE of DoA estimates: M =20, T =15
T T T T T

-10 T
20 A
30 A
=
’_JJ
<)
< -40 - =
20
°
50 - A
eor CRB b
—-6-~ MUSIC
-y = G-MUSIC
—8— sG-MUSIC
770 Il Il Il Il Il Il Il Il Il
8 10 12 14 16 18 20 22 24 26 28

Signal to noise ratio (dB)
Fig. 1. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 15.
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Fig. 2. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 25.
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Fig. 3. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 75.

threshold area (especially for small T) and much better than MU-
SIC. As SNR increases the difference between the three methods
vanishes. Therefore, sG-MUSIC offers a very good compromise: it
is somewhat simpler than G-MUSIC and undergoes a marginal loss
in the threshold area, at least when a limited number of samples
is available. On the other hand, sG-MUSIC has a complexity similar
to that of MUSIC but provides more accurate estimates.

4. Conclusions

In this communication, starting from the G-MUSIC localization
function, we have presented an approximation that can be viewed
as a bias compensated version of MUSIC. Indeed, the new method
corresponds to a modification of MUSIC localization function which
somehow removes the bias in the latter. Moreover, the weights to
be applied to the eigenvectors of the sample covariance matrix are
obtained in closed-form, similarly to MUSIC, but do not require to
find the M roots of a non-linear equation as in G-MUSIC. Numer-
ical simulations indicate that the new scheme performs nearly as
well as G-MUSIC, especially in low sample support, and better than
MUSIC.
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