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Implementation of stability-based transition model by means of
transport equations
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J. Cliquet¶
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A natural laminar-turbulent transition model compatible with Computation Fluid Dynam-

ics is presented. This model accounts for longitudinal transition mechanisms (i.e. Tollmien-

Schlichting induced transition) thanks to systematic stability computation on similar bound-

ary profiles from Mach zero to four both on adiabatic and isothermal wall. The model embeds

as well the so-called “C1-criterion” for transverse transition mechanisms (i.e. cross-flow waves

induced transition). The transition model is written under transport equations formalism and

has been implemented in the solver elsA (ONERA-Airbus-Safran property). Validations are

performed on three dimensional configurations and comparisons are shown against a database

method for natural transition modeling and experiments.

I. Nomenclature

α = Angle of attack

γ = Intermittency

β0 = Angle between the wall friction vector and the velocity vector at the boundary layer edge

Λ2 = Pohlhausen parameter Λ2 = θ2

νe

dUe

ds

H = Boundary layer shape factor

M = Mach number

Reδ1 = Displacement thickness based Reynolds number

Reδ2 = Transverse displacement thickness based Reynolds number

Reθ = Momentum thickness based Reynolds number
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†Research Scientist, Multi-Physics and Energetics Department
‡Research Scientist, Multi-Physics and Energetics Department
§Research Scientist, Department of Applied Aerodynamics
¶Engineer



n = Wall normal

s = Curvilinear abscissa

Tu = Turbulence level

Subscript(s)

e = Edge of the boundary layer

i = Incompressible

cr = Critical point of the boundary layer

tr = Transition location

∞ = Free-stream

II. Introduction

Accurate computation of transport aircraft drag strongly relies on natural laminar-turbulent transition prediction

capabilities. As Computational Fluid Dynamics (CFD) is now a major component of industrial processes, it is necessary

to develop accurate transition prediction techniques for RANS solvers both for aerodynamic performance prediction

and for design of future laminar transport aircraft concepts.

The development of transition prediction methods compatible with CFD is a major research topic. A quite recent

approach consists in using methods based on Partial Differential Equations (PDE). This approach consists in solving

additional transport equations governing the dynamic of quantities that are related to transition process. The most

famous PDE-based method is probably the “γ − Reθ” approach of Langtry and Menter [1] based on phenomenological

reasoning. This method has demonstrated success on many configurations and has been extended to handle as well

cross-flow transition [2]. The Amplification Factor Transport (AFT) method was derived more recently by Coder and

Maughmer [3]. This promising method consists in writing under a transport equation the eN method [4, 5] of Drela and

Giles [6]. AFT method was recently extended to cross-flow transition by Xu et al. [7]. The γ − Reθ and AFT methods

are said to be “local” in the sense that the additional transport equations associated to transition only involve values

available at RANS computational points. This property reduces much the implementation effort in a RANS solver.

As far as the elsA [8] RANS solver (property of Airbus-Safran-ONERA) is concerned, developments have been

conducted to give access to non local variables (for instance integral boundary layer variables) at grid point. This feature

has been used to implement the AHD criterion [9] evaluated along mesh lines [10] and the so-called “parabola method”

[11] for transition prediction by means of transport equations [12].

This paper presents the implementation of the ONERA transition criteria (denoted AHD and C1) by means of

transport equations and their comparison with the parabola method (embedded in a three dimensional boundary layer
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equations solver). These criteria are presented in section III while section IV deals with their implementation in a

RANS solver. Numerical results are presented in section V.

III. AHD/C1 transition criterion and parabola method for transition prediction

A. AHD criterion

The Arnal-Habiballah-Delcourt (AHD) criterion [9] was derived by performing linear stability analysis on two-

dimensional incompressible similar profiles. The N-factor envelope is approximated by linear functions of the

Pohlhausen parameter Λ2:

N = a(Λ2)(Reθ − Reθ,cr (Λ2) + ∆Reθ,cr (Λ2)) (1)

where:



a(Λ2) =
2.4
A

exp(−BΛ2)

∆Reθ,cr = −
2.4

a(Λ2)

(
8.43
2.4
− log(C) + D

)
Reθ,cr = exp

(
G/H2

i + E/Hi − F
) (2)

Reθ,cr is the Reynolds number at the critical point, i.e. the location from which Tollmien-Schlichting instabilities start

to grow. The dependency on Λ2 is replaced by a dependency on Hi as there exists a biunivocal relationship between

both. Due to the approximation error, ∆Reθ,cr is not zero.

To apply Eq. (1) on spatially evolving flows, Λ2 is replaced by Λ̄2 which corresponds to its averaged value between

the critical point of curvilinear abscissa scr and the current location of curvilinear abscissa s (measured along the

streamline at the edge of the boundary layer):

Λ̄2 =
1

s − scr

∫ s

sc r

Λ2(ξ)dξ.

By combining Eqs. (1) and the transition threshold NT given by the Mack’s law (NT = −2.4 ln(Tu ) − 8.43), the

AHD transition criterion can be expressed as a threshold on Reθ :

Reθ, tr = Reθ,cr + A exp(BΛ̄2)
(
ln(CTu ) − DΛ̄2

)
. (3)

This criterion accounts for flow history through Λ̄2 and for receptivity through Tu . As this criterion is derived for natural

transition, it should not be used for Tu > 1%.

In its compressible extension [13], the variables A,B,C,D,E,F,G are function of Me , the Mach number at the edge

of the boundary layer. Moreover, this criterion accounts for effects of wall temperature [13, section V].

3



B. Gleyzes criterion

As the AHD criterion, Gleyzes criterion [14] was derived from systematic linear stability computations on similar

boundary layer profiles. However, the boundary layer profiles correspond to separated profiles and the criterion models

short bubbles transition. This criterion assumes that in the neighbourhood of and within the separated region, the

growth rate of Tollmien-Schlichting waves is almost independent of the frequency. Therefore dN
dReθ

depends only on the

incompressible shape factor and is expressed as:

dN
dReθ

=
−2.4
B(Hi )

(4a)

B(Hi ) =




−
162.11093

H1.1
i

3.36 < Hi

−73 exp (−1.56486(Hi − 3.02)) 2.8 < Hi < 3.36

−103 exp (−4.12633(Hi − 2.8)) Hi < 2.8.

(4b)

1. Combine AHD and Gleyzes criteria

A “trick” is used to combine the AHD and Gleyzes criterion. Let sGL be the curvilinear abscissa from which the

Gleyzes criterion is triggered. Likewise, NGL , Λ̄2,GL and Reθ,GL correspond to values at sGL . According to Eq. (4b)

The N-factor downstream of sGL is simply:

N = NGL +

∫ Reθ

Reθ,GL

−2.4
B(Hi )

dR. (5)

Let N̂ be the N-factor according to the AHD criterion Eq. (1) corresponding to a fictitious flow where Λ̄2 remains

Λ̄2,GL downstream of sGL :

N̂ = a(Λ̄2)
(
Reθ − Reθ,cr + ∆Reθ,cr (Λ̄2)

)
= NGL + a(Λ̄2,GL )(Reθ − Reθ,GL ).

(6)

Substituting NGL from Eq. (6) into Eq. (5) yields:

N = a(Λ̄2)
(
Reθ − R̂eθ,cr + ∆Reθ,cr (Λ̄2)

)
, (7)

which corresponds to the standard form of the AHD criterion Eq. (1) where Reθ,cr has been replaced by

R̂eθ,cr = Reθ,cr +

∫ s

sGL

(
2.4

a(Λ̄2,GL )B(Hi )
+ 1

)
dReθ

ds
dξ . (8)
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.

Eq. (3) can be applied by replacing Reθ,cr by R̂eθ,cr . Following Ref. [6],
dReθ

ds
can be approximated by the

following correlation:
dReθ

ds
=

1
2θ

*
,
0.058

(Hi − 4)2

Hi − 1
+

6.54Hi − 14.07
H2

i

− 0.068+
-
. (9)

C. C1 criterion

The C1 criterion [15] is used to predict natural transition induced by cross-flow instabilities. This criterion defines

the transition point as the location where the transverse incompressible displacement thickness Reynolds number Rδ2i

equals a threshold given by:

Reδ2, i, tr =




150 Hi ≤ 2.31

300
π arctan

(
0.106

(Hi − 2.3)2.052

) (
1 +

γ − 1
2

M2
e

)
2.31 < Hi < 2.65

(10)

(the criterion should not be applied for Hi > 2.65).

D. Parabola method

The so-called parabola method [11] is a database method which gives the growth-rate of longitudinal and transverse

instabilities for a given velocity profile for a much lower computational effort than exact local linear stability analysis.

As far as longitudinal instabilities are considered, the growth rate of a wave is given as a function of its angle φ, its

frequency f and the following parameters of the boundary layer profile: the displacement thickness Reynolds number

Reδ1 , the incompressible shape factor Hi and the Mach number at the edge of the boundary layer Me . The parabola

method agrees well with exact local linear stability analysis [11, 16].

IV. Implementation in a CFD solver

A. Non local variables

Evaluating eqs. (3) or (10) requires the knowledge of boundary layer variables Reθ , Reδ2 , Me , etc . . . . Contrary to

the approaches presented in Ref. [1] or [3], the present method does not rely on correlations based on local variables.

Non local variables are evaluated and made available at each cell point in elsA thanks to the fact that it is possible to: i)

get for a cell in the volume the associated wall interface (if there is any) and ii) know which cells in the volume form

the line normal to a given wall interface.
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B. “Transition lines method”

An implementation of the AHD, Gleyzes and C1 criteria has first been proposed by Cliquet et al. [17]. It consists in

assuming that streamlines at the boundary layer edge might be approximated by mesh lines. The implementation is

denoted thereafter as “transition lines method”. This method has been implemented in the elsA CFD solver and has

shown good results on aircraft configuration [16], helicopter blades flow [18], etc . . . However, this method requires

some effort from the user as the latter is asked to prescribe the starting points of each transition line and what to do in

case of transition computation failure.

C. Transport equations approach

To alleviate user effort and to account with higher fidelity for three dimensional geometries where streamlines

directions might strongly differ from mesh lines, a new implementation of the AHD/C1 criteria has been derived. This

implementation is based on transport equations which ensures that transition criteria are evaluated along streamlines.

The method shares similarities with the method based on the ONERA parabola method derived by Bégou et al. [12].

In the following, the variables denoted νcr , νtr and νGL are nonlocal in the sense that are shared by all cells on a

same wall normal. The term Γδ is introduced to restrain the influence of source term in a region near the walls and is

defined by:

Γδ = exp
(
−

( n
4δ

)4
)
. (11)

1. AHD criterion

The first prerequisite to estimate the transition threshold Reθ, tr following eq. (3) is to know the value of the critical

Reynolds number downstream of the critical location. To answer this need, the transported variable R̃eθ,cr governed by:

∂t
(
ρR̃eθ,cr

)
+ νcr∇ ·

(
ρR̃eθ,crU

)
= (1 − νcr ) ΓR̃eθ,cr

(
R̃eθ,cr − Reθ,cr

)
(12)

is introduced. νcr equals one where Reθ ≥ R̃eθ,cr,e and zero elsewhere. As a consequence, as long as the boundary

layer is not critical the source term forces R̃eθ,cr to equal Reθ,cr and if the boundary layer becomes critical R̃eθ,cr is

simply convected.

The second prerequisite is to compute the value of Λ̄2. To do so, a second transport equation is introduced (see

section VI.B):

∂t

(
ρ˜̄Λ2

)
+ ∇ ·

(
ρ˜̄Λ2U

)
= νcrΓδ

ρ| |U | |
s̃

(
Λ2 −

˜̄Λ2

)
+ Γ˜̄Λ2

(1 − νcr )Γδ ρ(˜̄Λ2 − Λ2) (13)

where s̃ is an additional transported variable corresponding to the curvilinear abscissa measured from the critical point
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(upstream of the critical point s̃ equals zero). s̃ is governed by (see section VI.A):

∂t (ρs̃) + ∇ ·
(
ρs̃U

)
= νcrΓδ ρ| |U | | − Γs ρ (1 − νcr ) s̃ . (14)

The transition threshold on Reθ given by Eq. (3) can then be evaluated from ˜̄Λ2,e and R̃eθ,cr,e obtained by extracting

˜̄Λ2 and R̃eθ,cr at the edge of the boundary layer. A last equation is then added to set the intermittency of the transition

point:

∂t
(
ρĨ

)
+ ∇ ·

(
ρĨU

)
= νtrΓδ ρ| |U | | − ΓI ρ (1 − νtr ) Ĩ . (15)

νtr equals one if Reθ ≥ Reθ, tr or Reδ2, i reaches Reδ2, i, tr (given by Eq. (10)). As a consequence Ĩ corresponds to a

curvilinear abscissa measured from the transition point (either induced by longitudinal or transverse instabilities).

The values of νcr and νtr are set to zero at the leading edge stagnation line and the variable Ĩ is forced towards

zero by the additional right hand side term:

− Γ
Ĩ
Ĩ. (16)

The leading edge stagnation line is computed by following the method proposed by Kenwright et al. [19].

2. Coupling with turbulence models

The coupling with turbulence models is performed by multiplying the turbulence production terms and the Reynolds

stress tensor by the intermittency γ. The latter is evaluated from the value of Ĩ at the boundary layer edge Ĩe according

to (in the current implementation, the intermittency is set constant in the whole boundary layer profile):

γ(Ĩe ) = 1 − exp *.
,
−5 *

,

Ĩe

ltr
+
-

2
+/
-
. (17)

Eq. (17) is derived from Refs. [20, Eqs. (1,6)]. At the current stage of development, the user is asked to prescribe the

streamwise length ltr of the transition region.

3. Gleyzes criterion

Following section III.B, the Gleyzes criterion is implemented by modifying the R̃eθ,cr equation with an additional

source term:

νGLΓδ ρ| |U | | *
,

2.4

a( ˜̄Λ2)B(Hi )
+ 1+

-

dReθ
ds

(18)

Where νGL equals one where Hi > 2.8 (as in Ref. [10]) or β0 > π/2 (condition sufficient for a boundary layer

profile to be separated) is zero elsewhere.
dReθ

ds
is given by Eq. (9). In order to make sure that Λ̄2 remains Λ̄2,GL

downstream of sGL , the ˜̄Λ2-equation and s̃-equation source terms are multiplied by (1 − νGL ). Although it might be
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already the case, νcr is set to one if νGL equals one.

4. C1 criterion

Due to the simplicity of C1 criterion, its implementation is quite straightforward. It consists in setting νtr to one in

Eq. (15) if δ2, i reaches the threshold given by Eq. (10).

V. Validations

Three three dimensional configurations have been chosen to validate the prediction method.

In sections V.A and V.C, validations are performed against results obtained with the 3C3D solver of ONERA which

has been shown to give excellent results (see for instance Ref. [16]). The latter solves the boundary layer equations on

three dimensional geometries. 3C3D takes as input the velocity at the edge of the boundary-layer, extracted here from

full turbulent computation with elsA . It embeds the AHD/C1 transition criteria and the parabola method. Comparisons

with 3C3D are useful i) to validate the implementation of the AHD/C1 transition criteria by means of transport equations

ii) compare the transition location with linear stability theory (as explained in section III.D, parabola method shows

excellent agreement with exact linear stability computations). Finally in section V.C validation are performed against

experiments.

elsA computations are performed with a second order Roe spatial scheme and a backward Euler time scheme.

In the following, “transition line” denotes the location where the intermittency γ starts to grow.

A. M6 wing

This first validation case is the swept ONERA M6 wing. The flow conditions are taken from Ref [21]: M∞ = 0.262,

Re = 3.5 × 106. Computations are performed for α = 5o. According to Schmitt and Cousteix [21], the turbulence level

is Tu = 0.2%. Even though experimental transition locations are given in Ref. [21], reproducing numerically this case

is challenging since “one can assume that the application of the naphthalene sublimation technique has accelerated

the transition” [22]. Moreover, wind-tunnels walls are not accounted for here. elsA computations are compared with

3C3D computations only performed with AHD and C1 criteria in order to validate the implementation of AHD and C1

criteria by means of transport equations in elsA . The turbulence model of Spalart and Allmaras [23] is here chosen.

The mesh is composed of approximately 10 × 106 cells. The wing is meshed with 230 elements along the chord and

about 60 elements along the span. In the laminar flow region, there are between 20 and 30 cells along the normal in the

boundary layer following a geometric progression. Such refinement is known to be sufficient to catch quite accurately

the stream-wise momentum thickness θ (necessary for AHD criterion) but might be insufficient to compute correctly

the cross-flow displacement thickness δ2 (necessary for C1 criterion).

The transition line predicted by elsA agrees quite well with 3C3D, see Figs. 1(a,b), even though boundary layer
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refinement is quite coarse. As far as the suction side is considered, early transition is observed due to strong adverse

pressure gradient (there is a leading-edge separation bubble from about 50% of the span up to the tip of the wing).

Pressure side may be classified in three regions: at the root of the wing (approximately between 0% and 10% of the

span) transition is triggered in elsA by C1 criterion. In 3C3D, transition is triggered by turbulent wedge contamination.

At this stage of development, this mechanism is not accounted for by the model presented in this paper. The transition

line is then quite flat until two third of the span. Transition is here triggered by C1 criterion. Finally, at the outer part of

the wing, the transition location is again flat but transition is triggered by AHD criterion.

(a) (b)

Fig. 1 Intermittency contours (light and dark corresponds respectively to γ = 0 and γ = 1) at the suction (a)
and pressure (b) sides. The black line depicts the transition location predicted by 3C3D by means of AHD/C1
transition criteria. Black squares depict transition by turbulent wedge in 3C3D. Flow is coming from left to
right.

B. Nacelle transition prediction

While numerical validations of transition models in CFD are usually made on wings, numericals results on the

XRF1 nacelle configuration of Airbus are shown in this section. A cut view of the geometry and of the surface mesh is

shown in Fig. 2. The mesh was generated automatically and contains about 3 × 106 nodes. The nacelle is discretised

by about 120 elements along the chord and 100 elements in the azimuthal direction. Laminar boundary layer profiles

are discretised with ten to twenty elements in the wall normal direction. Such refinement is quite poor which does not

ensure an accurate computation of boundary layer integral variables.

The turbulence level is set to Tu = 0.1% and the flow conditions are imposed with α = 1.1o and M∞ ≈ 0.6. The

Menter-SST turbulence model [24] is chosen.

The computed intermittency is plotted in Figs. 3(a,b) in the outer and inner sides of the nacelle. For the sake

of visibility, both sides are “unrolled”: the contours are shown in a plane (x,ψ) where ψ ∈ [0,2 π] is defined as
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Fig. 2 Cut view of the XRF1 nacelle. Pressure boundary condition is imposed on the black surface.

tan(ψ) = z/y (see Fig. 2 for the definition of mesh axis). The transition line computed with the boundary layer

equations solver 3C3D with the same transition criteria (AHD and C1) and with the parabola (only for Tollmien-

Schliting instabilities) method. AHD criterion matches fairly well with parabola method. Moreover the implementation

of the criteria by means of transport equations compares well with 3C3D solver. In the outer side, slight deviations

are observed for ψ ∈ [0, π] which corresponds to the upper part of the nacelle. As far as the inner side is considered,

there are two small regions near ψ = 0 and ψ = π where the transition location predicted by AHD and C1 criteria in

3C3D is slightly upstream because of C1 criterion. In these two regions, locally higher cross-flow velocity component

is expected given the non zero angle of attack. The transition line obtained by means of the parabola method is not

modified since only parabola method for Tollmien-Schlichting instabilities is here selected. In the CFD computation,

Reδ2, i reaches 90% (respectively 98%) of Reδ2, i, tr at the left side θ = 0 (respectively at the right side θ = π).

1. γ − Reθ transition model

For the sake of comparison, the results obtained with the transition model of Langtry and Menter [1] are plotted on

Fig. 4. Contours of incompressible shape factor are plotted, turbulent flow corresponds here to Hi ≈ 1.5 and laminar

flow to Hi >∼ 2.2. Fairly good comparison with parabola method is obtained even though it systematically anticipates

the transition location, especially for ψ ≈ π/2 at both the inner and upper sides.

C. Sickle wing

The last validation case is the sickle wing [25, 26]. This configuration is an interesting validation case since “the

sickle-shaped planform with distinct kinks creates spanwise gradients, and the assumptions of linear local stability theory

are therefore challenged” [25]. Kruse et al. [26] measured the transition location by means of infrared thermography.
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(a) (b)

Fig. 3 Intermittency contours computed with elsA by means of AHD and C1 criteria for transition prediction
(light and dark corresponds respectively to γ = 0 and γ = 1) at the outer (a) and inner (b) sides of the nacelle.
The black line (respectively the black symbols) depicts the transition location predicted by 3C3D by means of
AHD/C1 transition criteria (respectively parabola method). Black squares depict ψ ∈ {0, π/2, π,3π/2,2π}. Flow
is coming from left to right.

(a) (b)

Fig. 4 Incompressible shape factor Hi contours computed with elsA by means of γ − Reθ model for transition
prediction at the outer (a) and inner (b) sides of the nacelle. The black line (respectively the black symbols)
depicts the transition location predicted by 3C3D by means of AHD/C1 transition criteria (respectively parabola
method). Black squares depict ψ ∈ {0, π/2, π,3π/2,2π}. Flow is coming from left to right.
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Table 1 Flow cases

Re α

Case A 2.75 × 106 −2.6o

Case B 4.5 × 106 −2.6o

Case C 4.5 × 106 −0.3o

Case D 2.75 × 106 6.0o

Computations are performed for four flow cases, see 1. Overset technique is used to mesh the wing within the wind

tunnel. The mesh contains 48 × 106 cells among which 5.7 × 106 are in the overset block containing the wing. The

latter is meshed with 230 elements along the chord on each side. The unswept segment at the root is meshed with 60

elements along the span while each swept segment is meshed with 120 elements along the span. For all four cases,

between 40 and 60 cells are contained within the boundary layer thickness. Four all four computations, the flow is

forced to be turbulent at the root of the wing on both sides.

The computed intermittency is plotted on Figures 5, 6, 7 and 8 together with the experimentally measured transition

locations.

Fig. 5 Sickle wing, case A - Contours of γ compared to the experimentally measured transition locations at
the suction (left) and pressure (right) sides.

For case A (Figure 5), very good transition agreement is obtained on the pressure side, where transition is mostly

due to longitudinal mechanisms. The model is even able to reproduce the behaviour observed at the kinks where

transition is induced by cross-flow mechanism. As far as the upper side is concerned, the model agrees well with the

experiments. At the root, the tip of the wing and around section B, the model is not able to reproduce the experimental

results. Except at the root and at the tip of the wing, transition is induced by cross-flow instabilities.

On case B (Figure 6) and for both sides, transition is moslty triggered by the C1 criterion except at the root of the

wing (flat region below span section A). The computed transition location agrees quite well with the experiments.

Similarly to case B, transition is triggered by AHD criterion at the root of wing (flat region below span section A)
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Fig. 6 Sickle wing, case B - Contours of γ compared to the experimentally measured transition locations at
the suction (left) and pressure (right) sides.

Fig. 7 Sickle wing, case C - Contours of γ compared to the experimentally measured transition locations at
the suction (left) and pressure (right) sides.
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on both sides of case C (Figure 7). Elsewhere transition is triggered by C1 criterion. The model yields quite good

agreement with experiments. As observed already on case A, the model is not able to reproduce the trend measured at

the suction side near the span section B.

Fig. 8 Sickle wing, case D - Contours of γ compared to the experimentally measured transition locations at
the suction (left) and pressure (right) sides.

The transition model yields a quite good agreement with the experiments on case D (see Figure 8). Compared to the

experiments, the model slightly delays the transition location on the suction side, especially near the first kink. While

on the suction side transition is only triggered by AHD criterion, the flat transition line around the span section B on the

pressure side is due to the C1 criterion. Above the span section C on the pressure side, the model does not agree very

well with the transition location experimentally measured.

VI. Conclusion

An implementation of the stability based AHD criterion by means of transport equations is presented. This criterion,

valid for Mach number up to M = 4 and for heated and cold wall, is combined with C1 and Gleyzes criteria to account

for cross-flow transition and transition in separation bubbles.

The implementation by means of transport equations and the accuracy of the model were validated by comparing

with results obtained with the boundary layer equations solver 3C3D on the M6 wing and on the XRF1 nacelle.

Comparisons with experiments were performed for four flow cases on the sickle wing geometry. The obtained results

ranged from quite good to excellent agreement with experiments.

The method may be applied at early design stages as good agreement with linear stability theory was observed

even on poorly refined mesh generated automatically. Transition prediction in CFD matching closely exact local linear

stability computations can be obtained thanks to the method of Bégou et al. [12] for higher computational cost. This

latter method complements well with the method presented in this paper as it can be used in more advanced design

stages.
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Appendix

In the following sections, we show that solving Eqs.(14) and (13) corresponds to computing s and Λ̄2 by means of

transport equations.

A. Transport equation compute s

Let s be the curvilinear abscissa at (x, t). At t + ∆t, the new location is x + ∆x = x + U∆t and the curvilinear

abscissa is s(x + ∆x, t + ∆t) = s(x, t) + ∆t‖U ‖. Taylor expansion yields:

s(x + ∆x, t + ∆t) = s(x, t) + ∇s ·U∆t + ∂t s∆t (19)

which implies that:

∂t s + ∇s ·U = ‖U ‖. (20)

Combining Eq. (20) with the continuity equation of the Navier-Stokes equation yields:

∂t (ρs) + ∇(ρs) ·U = ρ‖U ‖. (21)

B. Transport equation to compute Λ̄2

Let Λ̄2 be the average Pohlhausen value at (x, t). At t + ∆t, the new location is x + ∆x = x + U∆t and the average

Pohlhausen value is

Λ̄2(x + ∆x, t + ∆t) =
sΛ̄2(x, t) + ∆t‖U ‖Λ2

s(x + ∆x, t + ∆t)
(22)

.

Taylor expansion yields:

Λ̄2(x, t) + ∇Λ̄2 ·U∆t + ∂t Λ̄2∆t =
sΛ̄2(x, t) + ∆t‖U ‖Λ2

s(x, t) + ∇s ·U∆t + ∂t s∆t
(23)

which can be combined with Eq. (20):

(
Λ̄2(x, t) + ∇Λ̄2 ·U∆t + ∂t Λ̄2∆t

) (
s(x, t) + ∆t‖U ‖

)
= sΛ̄2(x, t) + ∆t‖U ‖Λ2 (24)
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Neglecting O(∆t2) terms yields:

∂t Λ̄2 + ∇Λ̄2 ·U =
‖U ‖

s

(
Λ2 − Λ̄2

)
. (25)

Combining Eq. (25) with the continuity equation of the Navier-Stokes equation yields:

∂t (ρΛ̄2) + ∇(ρΛ̄2) ·U = ρ
‖U ‖

s

(
Λ2 − Λ̄2

)
. (26)
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