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Abstract: The propensity nature of evolutionary fitness has long been appreciated and 

is nowadays amply discussed (Abrams, 2009, 2012; Ariew and Ernst, 2009; Ariew and 

Lewontin, 2004; Beatty and Finsen, 1989; Brandon, 1978; Drouet and Merlin, 2015; 

Mills and Beatty, 1979; Millstein, 2003, 2016; Pence and Ramsey, 2013; Sober, 1984, 

2001, 2013, 2019; Walsh, 2010; Walsh, Ariew, Mahen, 2016; etc). The discussion has, 

however, on occasion followed long standing conflations in the philosophy of 

probability between propensities, probabilities, and frequencies. In this article, I apply 

a more recent conception of propensities in modelling practice (the ‘complex nexus of 

chance’, CNC) to some key issues, regarding whether and how fitness is explanatory, 

and how it ought to be represented mathematically. The ensuing complex nexus of 

fitness (CNF) emphasises the distinction between biological propensities and the 

probability distributions over offspring numbers that they give rise to; and how critical 

it is to distinguish the possession conditions of the underlying dispositional (physical 

and biological) properties from those of their probabilistic manifestations. 

 

Acknowledgements 

Abrams, Ariew, Huneman, Merlin, Sober and Vienna Konrad Lorenz Institute and Paris 

IHPST audiences. Project PGC2018-099423-P100. 

 

1. Evolutionary Fitness as a Propensity to Adapt 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PhilSci Archive

https://core.ac.uk/display/338814614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

In evolutionary biology, fitness has long been appreciated by many to be a 

probabilistic disposition, or propensity, to reproduce successfully (see Brandon, 1978; 

Mills and Beatty, 1979). This propensity interpretation of fitness (PIF) is part of a larger 

tradition in evolutionary thinking that takes fitness or adaptiveness to be a causally 

explanatory concept (Sober, 1984, 2001) – and one moreover that can be proudly 

traced back to the pioneering introduction of the concept of probabilistic or 

indeterministic causation more generally (Fisher, 1934). Yet, there has been little 

consensus as to the specific kind of propensity fitness is. On the contrary, there is 

much disagreement in the field as to how to formally represent fitness, how exactly it 

is an explanatory concept, and what exactly it explains. Critics have been quick to latch 

onto such disagreements in order to argue that fitness is not causally explanatory after 

all (Walsh, Ariew, Mahen, 2016), that it does not reflect causal relations (Walsh, 2010), 

and that there are no propensities underlying adaptation phenomena in evolutionary 

biology (Ariew and Ernst, 2009). 

 

 The current impasse suggests that there are fundamental issues at stake 

regarding the nature of propensity and its explanatory power that are yet to be 

clarified. In a recent state of the art article, Millstein (2016) argues that there is 

conceptual work to do; and that debates in the philosophy of probability may feed 

profitably into the discussion of the nature of fitness. This paper takes up Millstein’s 

suggestion, and offers a more complex and nuanced framework than is typically 

assumed for modelling chancy phenomena in general, the ‘complex nexus of chance’ 

(CNC). Contrary to what has been conventional in the philosophy of probability, this 

approach distinguishes clearly propensities from both probabilities and the finite 

frequency data that are used to test them. I argue that CNC bears significantly on a few 

important problems currently discussed in relation with the propensity interpretation 

of fitness (PIF). 

 

The propensity interpretation of fitness follows the standard convention in the 

philosophy of probability to interpret probabilities as propensities, in line with 

Popper’s (1959) renowned propensity interpretation of probability. The CNC is one 

amongst many recent developments in the philosophy of probability that rejects 
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Popper’s reduction of probability to propensity. It instead embraces a plural 

metaphysics, where propensities exist independently, and can give rise in appropriate 

environments to single case chances. It is these single case chances – represented as 

probability distributions within statistical models – which in turn provide the 

explanation of frequencies in the data. On the CNC approach, propensities, 

probabilities and frequencies must all be countenanced – and none can be done away 

with, nor reduced to any combination of the others.  This ‘tripartite conception’ 

(Suárez, 2017, 2020 -see also Mellor, 2005), implicitly abandons the propensity identity 

at the heart of Popper’s view since it favours a distinct and more substantial role for 

propensities to play in the explanation (rather than merely the interpretation) of 

probabilities. In this paper, I argue that the application of this general framework to 

evolutionary biology yields what may be called the complex nexus of fitness (CNF), 

which by necessity starts from the assumption that ‘fitness’ is an ambiguous term 

referring to i) statistical data regarding organisms’ actual offspring numbers and their 

frequencies; ii) probability distributions within population models representing 

expected or hypothetical reproductive successes; and iii) the physical and biological 

supervenience bases of such model-based probabilities, which are taken to include the 

dispositional properties of the relevant organisms. I argue that CNF overcomes some 

of the objections raised against the PIF, by making it explicit that propensities cannot 

be employed merely to interpret probabilities, as Popper thought, but must be 

invoked as separate explanatory entities. 

 

My aim is thus to employ CNF in order to inject some conceptual clarity into the 

discussion, so as to answer some outstanding objections to PIF. The first concerns the 

exact formal or mathematical representation of fitness as propensity. The relevant 

discussion here broaches two technical aspects of statistical modelling, informing what 

are sometimes known as the moments problem and the delayed selection problem 

(Sober, 1984; Beatty and Finsen, 1989; Pence and Ramsey, 2013). On the one hand 

there is the demonstrable empirical fact that fitness is often sensitive to higher 

moments of the statistical distribution for reproductive success. Hence identifying 

fitness with just the statistical mean average (the expected value, or expectation) of a 

probability distribution will often miss out critical differences down the lineage. The 
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differences can be so critical as to entirely reverse judgements of relative fitness 

between individual organisms (or traits, or genes – more about this later on). But the 

idea that fitness, understood as a propensity, must necessarily be identified with some 

or other moment of a probability distribution presupposes that all propensities are 

statistical functions, or formal moments of the distributions. This would be in 

accordance with the conventional wisdom deriving from Popper, but that is nowadays 

questionable in the philosophy of probability, and it is indeed rejected by the CNC.  In 

section three of the paper I consequently suggest that CNF accounts for the statistical 

modelling of fitness without such assumptions, and thus delivers us from the problem 

of moments. 

 

The second narrow technical issue concerns whether fitness is short or long term; 

i.e. whether it involves reproductive success in the most proximate generations, or 

perhaps even just the next generation; or whether, by contrast, fitness refers 

meaningfully only to reproductive success down the generations – or perhaps even 

hypothetical success in some infinite reproductive limit. On a propensity analysis, the 

issue may at first sight seem merely a version of the debate regarding ‘single case’ 

versus ‘long run’ propensity interpretations of probability (Gillies, 2000). If so, the 

delayed selection problem would boil down merely to a difference regarding the 

appropriate type of propensity involved, where those advocating long term fitness 

would be implicitly if not explicitly adopting a ‘long run’ propensity account. However, 

I argue in section four of the article that these distinctions are in fact tangential. Long 

term fitnesses, in particular, are perfectly compatible with ‘single case’ propensities, as 

advocated by the CNC. This has consequences for the precise mathematical definitions 

that are appropriate when modelling fitness in different contexts, and whether or not 

they issue in contradictions.  

 

Then there is the second and more general issue, namely the explanatory role of 

fitness. Advocates of the PIF typically defend the view that fitness is a causally 

explanatory property of biological entities – and for this reason they are sometimes 

known as ‘causalists’ (Abrams, 2012). Critics of the PIF by contrast, tend to view fitness 

as not particularly an explanatory concept – certainly not a causally explanatory one –, 
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but rather a descriptive or generalising concept. 1 In the last substantial section five of 

the paper, I argue that CNF shows both ‘causalists’ and ‘statisticalists’ to be in part 

right. Propensities are indeed explanatory entities, but in accordance to CNC they 

typically explain not frequencies in data, but the single case chances that they give rise 

to within particular chance set ups. Thus ‘fitness’ is indeed often a name for an 

explanatory propensity, but not merely that: it is also a name used for the distinct 

probability distribution within a statistical model that is adequate for the purpose of 

representing the single case chances manifested. And in turn these chances are used 

to account for the actual data recorded in observational studies of reproductive 

success, where ‘fitness’ is also sometimes confusingly used to refer to the finite 

frequencies in the data for reproductive success. The disambiguation of these three 

distinct but mutually related uses of fitness is essential for a better understanding of 

its explanatory power. 

 

My proposal of a complex nexus of fitness is a straightforward application of a 

particular approach to objective chance within the philosophy of probability, the 

complex nexus of chance (CNC). Therefore, it helps to first provide some background 

and motivation on the CNC, as it emerges in discussions over the last decade within 

the philosophy of probability and statistical modelling. The next section introduces 

some of the relevant considerations in the foundations of probability that motivate 

CNC in the first place. It turns out that many of the objections to the propensity 

account of evolutionary fitness are similar to those raised against the propensity and 

 
1 See (Walsh, Ariew and Matthen, 2016), but also (Sober, 1984, Ch. 3) which arguably anticipates the 
statisticalist view in his critique of the causal role of fitness. In more recent work (Sober, 2011) develops 
his view and argues that some of the causal explanations provided by evolutionary fitness are a priori. 
Sober appeals to precisely the sort of powers that I invoke as part of propensity explanations of single 
case chances, i.e. dispositional properties (akin to Molière’s ‘dormitive virtue’). However, as Sober 
points out, these dispositions are probabilistic: Given the appropriate testing circumstances these 
powers give rise not to particular events (as in Molière style deterministic dispositions), but to the 
probabilities of particular events (Mellor, 2005; Suárez, 2014).  Sober’s further distinction between 
sources and consequences of fitness differences is also grist to my mill: On a CNC account, ‘fitness 
differences’ amount to differences in single case chances for survival. The sources of such differences 
are propensities, which – as in Sober’s view –, may be said to ground and causally explain such chances 
a priori; while the consequences of fitness differences are the observed or predicted differences in traits 
-- which are of course the ultimate empirical facts, and explananda, in evolutionary biology. Thus Sober 
(1984, 2011) anticipates the tripartite conception, and the CNF may be understood to be providing 
precision for some of his distinctions. 
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frequency interpretations of probability known to philosophers for decades. Not 

surprisingly, the kinds of retorts that circumvent philosophers’ objections to these 

interpretations of probability are also helpful in constructing an alternative CNF view 

of fitness that dispenses with the objections to the propensity interpretation (PIF). 

 

 

2. The Complex Nexus of Chance in the Philosophy of Probability 

 

 It is nowadays widely accepted 2 that probability is formally defined through 

the four classical Kolmogorov axioms, which can be non-technically summarised (in the 

discrete and finite case) as follows: 

 
Axiom 1:  Probability is a mathematical function or mapping from the domain of a 
   logically closed set of propositions {A} onto the range of the unit interval 
  of the real numbers: . 
 
Axiom 2:  The probability of a tautology (a logical truth) is always 1:    
 
Axioma 3: The probability of a logical disjunction of mutually exclusive elements  
  (say a and b, where each one rules the other out) is the sum of the 
   probability of each disjunct: . (This axiom has a  
  notorious generalisation to the infinite or infinitesimal case, in the so 
   called axiom of countable additivity).  
 
 
Axiom 4:  The conditional probability of some proposition A given another 
   proposition B is given by Bayes’ theorem:  
  

    

 
The philosophical debates have traditionally concerned the interpretation of this 

probability function. According to one school, all probability is subjective degree of 

belief, hence a measure of agents’ ignorance regarding events (or the initial conditions 

 
2 Widely but not universally accepted, as is made clear by the raging debates regarding probabilities 
based upon fuzzy, quantum, and intuitionist logic. There is also considerable debate regarding the 
fourth axiom for conditional probability which is ill-defined when the conditioned upon proposition has 
zero probability (i.e. when P(B)=0) – see Hájek (2003) for discussion. 

f : {A}→ [0,1]⊆ℜ

P Taut( ) =1

P a∨b( ) = P a( )+P b( )

P A B( ) = P(A∧B)
P(B)

=
P(B / A)P(A)

P(B)
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that would give rise to such events in a deterministic or Laplacean universe). We shall 

instead assume here that probability at least partly – at least in some domains –, refers 

to the objective chances of events, which they possess independently of any agents’ 

knowledge of them. (The assumption that there are such chances is innocuous for our 

purposes, since routine in most natural sciences, including evolutionary biology). But 

what is objective chance, and how can it be an interpretation of probability?  

 

The two main philosophical approaches are the frequency and the propensity 

interpretations. Both have played some role in debates regarding the nature of 

evolutionary fitness. On a frequency interpretation, probability is identified with a 

ratio of outcomes of a type within the full sequence of all outcomes. We may refer to 

this as the frequency identity of probability. Thus, the probability that a coin may land 

heads, on this interpretation, is simply the ratio or frequency of head outcomes in the 

full set of (either heads or tails) outcomes. If the coin is fair, then that ratio is just ½. 

However, there are some very serious problems with this attempt to interpret 

probability, which are by now well known to philosophers, and which many of us think 

make any frequency interpretation untenable. 3 One problem that I like to emphasise 

is the explanatory circularity problem: frequencies cannot explain other frequencies, 

so the frequency identity renders probabilities explanatorily ineffective vis a vis 

frequency data. This seems contrary to the statistical modelling practice to invoke 

probabilities precisely in order to explain frequencies in the data. The problem is, as 

we shall see, acute for the kinds of probabilities that define evolutionary fitness. 

Another classic objection is the reference class problem: the fact that the relevant 

class of outcome events within which one should seek a ratio or frequency of the 

salient type is always underdetermined. Consider the coin toss example again: Is the 

outcome space the set of all outcomes of all tosses of all coins, of just some subset of 

coins, of just the one coin? Should we include the outcomes where the coin bounces 

off, or rebounds, or falls on the edge, or is simply not tossed? Should we include all 

possible outcomes of a similar kind, since any set of actual outcomes is finite and may 

 
3 See Hajek (2009) or Suárez (2020) for a description of this and other problems.  
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always diverge from the underlying probability (a phenomenon known as frequency 

tolerance), etc?  

 

An alternative that gets around such problems is the propensity interpretation of 

probability, advocated by philosophers such as Karl Popper (1959). Again, notice that 

this has traditionally been thought of as an interpretation, not an explanation, of 

probability. (This has impacted the philosophy of biology at least nominally in the 

propensity interpretation of fitness.) On this view, probability is not to be identified 

with any frequency but with the underlying propensities or dispositional properties (in 

what we may call the propensity identity). In the case of a coin toss, this identifies the 

chances with either the full set of physical properties of the coin, or the toss, or some 

subset of both. It is often claimed that the propensity interpretation is explanatory in a 

way that the frequency interpretation cannot be, since it is firmly linked to the 

conditions or underlying properties that give rise to the frequencies in the first place. 

Change the conditions, or the properties of the coin (or the coin toss, or its setup), and 

you will also change the frequencies. Yet, whilst the propensity identity overcomes 

some of the objections to the frequency identity, it has problems of its own too, 

related to what is known in the literature as Humphreys’ paradox.  

 

Paul Humphreys (1985) produced an influential argument that the explanatory 

asymmetries that characterize propensities cannot be represented in terms of classical 

Kolmogorov conditional probabilities – and that this renders impossible any propensity 

interpretation. More generally the propensity identity fails both ways (Suárez, 2014). 

Probabilities are inversible via the fourth axiom of conditional probability: if P (A / B) is 

well defined then so is P (B / A). Yet, if the former has a propensity interpretation, 

whereby B describes the conditions, or dispositional properties of the chance setup, 

and P (A/B) represents the probability that the chance setup yields outcome A, then P 

(B/A) does not have a propensity interpretation, and in fact has no meaning at all from 

a propensity point of view, as the coin toss example illustrates: whatever properties of 

the coin explain its probability of heads, they are not themselves explained, or 

determined by, the heads outcome. On the other hand, Humphreys’ ingenious thought 

experiment (involving subatomic particles being transmitted through a half-silver 
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mirror) shows that some, perhaps most propensities fail to have a coherent 

representation in terms of conditional probabilities. There are a number of different 

responses to Humphreys’ argument, but the most convincing ones abandon any 

attempt to reduce at least some relevant physical probabilities to propensities or vice-

versa.  

 

The complex nexus of chance (CNC) is on board with these recent rejections of 

what we may call the frequency and propensity identities. Instead of trying to reduce 

the notion of probability to either frequency or propensity, CNC fully embraces 

metaphysical pluralism regarding objective chance, accepting the need for 

propensities, single case chances, and frequencies (Mellor, 2005; Suárez, 2014, 2017, 

2020). They are all required to make full sense of the diverse uses of chance in the 

practice of model building: Propensities give rise to the probability distributions in 

models that are empirically confirmed by the frequency data obtained in observational 

and experimental trials. The point of a philosophy of science in practice is not to 

interpret away these categories, but to understand (and, if necessary, to suggest 

changes in) their intricate and productive synergies within the practice of model 

building (Suárez, 2020). In this spirit I now turn to attempts to represent fitness 

probabilities as either frequencies or propensities, and to my argument that an 

account of fitness as a more complex nexus (CNF) involving all three of them is 

required.  

 

 

3. Momentous Paradoxes and the Nature of Statistical Distributions 

 

 One initial difficulty in finding an appropriate mathematical representation of 

fitness is the inconvenient fact that there are different statistics that fitness may quite 

generally be identified with. The first attempts at a propensity interpretation of fitness 

(PIF) identified fitness with the expected value or expectation of the statistical 

distribution for offspring (Brandon, 1978; Mills and Beatty, 1979). Suppose the 

possible offspring of an organism O1 are given by Qi with i= 0, 1,…,n. The statistical 

distribution over O1’s possible offspring {Q0, Q1, …, Qn} in some environment E is then 
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given by some probability function indexed to organism and environment and defined 

over the possible offspring numbers: 𝑃𝑟𝑜𝑏%&&((𝑄+). The expected value or expectation 

of this probability function is its average, or population mean µ, the so-called first 

central moment of the distribution (Krzanoswki, 1998, pp. 14ff.; Grimmett and 

Stirzaker, 1982, p. 51):  

 

  𝜇%&&( = 𝐸𝑥𝑝%&&({𝑄} = ∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙ 𝑄+. 

 

Suppose the organism O1 in question has in the given environment either no 

offspring or two offspring with probability ½ in each case. The expected value of O1’s 

offspring in environment E is then exactly one since: ∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙ 𝑄+ = 	 &7 ∙ 0 +
&
7 ∙

2 = 7
7 = 1. The original definition of the propensity interpretation of fitness (PIF) then 

states that the fitness of organism O1 in environment E is its expected offspring value, 

namely, in this case, one. 

 

Yet, this definition has come under heavy criticism ever since originally expressed 

(Abrams, 2009; Mills and Beatty, 1979; Sober, 2001 and 2013; etc). Many of the 

objections rely upon what may be called the underdetermination of statistical 

distributions, the well-known fact in statistics that an indefinite number of different 

probability distributions may have the same expected value, i.e. yield the same 

expectation over a range of outcomes. 4 As an illustration, consider another organism 

O2 in the same environment E with a distinct statistical distribution over its offspring, 

defined by a different probability function: 	𝑃𝑟𝑜𝑏%7&((𝑄+). This organism can only 

have exactly one offspring with certainty, i.e. with probability one. Nevertheless, the 

expected value of O2’s offspring is the same as O1’s, since ∑ 𝑃𝑟𝑜𝑏%7&((𝑄+)+ ∙ 𝑄+ = 	1 ∙

1 = 1.  

 

 
4 Although the objections ride upon such mathematical facts, they are not essentially mathematical but 
biological, and aim to show that the predictive and explanatory power of fitness differences would be 
left unaccounted for (Sober, 2013). They thus take the form: ‘Given such mathematical facts, if fitness 
were associated with expected value, differences in fitness would not be explanatory or predictive since 
they would miss out other relevant statistics of the distribution’. 
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It stands to reason, however, that these two organisms, O1 and O2, are 

constitutionally distinct, and in particular they differ in their capacities or propensities 

to reproduce in the given environment. Hence, there should be significant differences 

in fitness relative to one another, contrary to the definition provided by the original 

(PIF). This is borne out when considering the higher moments of the respective 

statistical distributions. The second moment about the mean of a distribution is the 

statistic known as the dispersion parameter s2 of the distribution:   𝜎%&&(
= =

	𝐸𝑥𝑝	 >?𝑄+ − 𝜇%&&(A
=B = ∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙ ?𝑄+ − 𝜇%&&(A

=
. This is a representation of 

what is known as the variance about the mean in a population (roughly: how large on 

average the spread of values is about the mean). The variance is always positive – 

since it is a squared quantity – and it is sometimes replaced by another quantity, the 

standard deviation s, which is simply its square root. The larger a variance about a 

mean, the larger the spread of values exhibited by the random variable. A zero 

standard deviation or variance signals a distribution in which all values coincide with 

the mean.  

 

The most common empirical models for fitness show that variance in offspring 

statistical distributions with identical expectations can have considerable differential 

effects on reproductive success (Beatty and Finsen, 1989, pp. 24ff.; Sober, 2001, pp. 

30-34; see also Millstein, 2009, p.609ff.; many of the examples discussed originate in 

Gillespie, 1974, 1977). In these examples two organisms O1 and O2 have distinct 

offspring distribution functions with the same expectation: 𝜇%&&( = 𝜇%7&(, because 

∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙ 𝑄+ = ∑ 𝑃𝑟𝑜𝑏%7&((𝑄+)+ ∙ 𝑄+. Yet, the variance in O1’s offspring 

distribution is not as large as that in O2’s , pointing to the fact that the first distribution 

is not as spread about the mean:  𝜎%&&(
= > 𝜎%7&(

= , because ∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙

?𝑄+ − 𝜇%&&(A
= > ∑ 𝑃𝑟𝑜𝑏%7&((𝑄+)+ ∙ ?𝑄+ − 𝜇%7&(A

=
. The generic difference in variance 

between two distributions with the same mean is illustrated by the two curves (with 

equal expected mean value µ = 6,5 in both cases, yet differing considerably in 

variance) in figure 1 below: 
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The mode of both distributions (the ‘peak’) is at the mean value of 6,5, but in the 

interval of integer numbers one of the curves only ranges from having three offspring 

to having nine, while the other ranges all the way from having one to twelve and has a 

standard deviation twice as large. It is by now well known that there is often greater 

reproductive advantage for those organisms (or traits, or genotypes) that have the 

narrower spread, i.e. the smaller variance or standard deviation. Intuitively, a more 

regular reproductive pattern, or a less spatially or temporally located reproductive 

strategy is superior because the advantage brought about by high offspring in any 

given location (or period, say on a given year) does not balance out the disadvantage 

incurred in the lower reproductive success in other locations (or over longer periods). 

Thus a “lowering in the variance in the offspring number […] can only raise the 

probability of leaving offspring behind” (Gillespie, 1974, p. 605). Elliott Sober (2001, 

pp. 33-34) explains these cases as failures of the commutativity of expectations, on the 

one hand, and quotients or ratios on the other. Quite generally, the expectation of a 

ratio of two quantities is not the same as the ratio of the expectations of such 

quantities. Since frequencies are ratios, or proportions of attributes in populations, the 

expectation of a certain frequency in the population is not identical to the ratio of the 

expectations (of attribute, and overall population). This is helpful as an illustration of 
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the general phenomenon, particularly for trait fitness. It shows that the phenomenon 

of variance-dependence of fitness is general and it does not demand any particular 

interpretation of the probabilities at stake. Rather, as I shall argue, the phenomenon 

calls for an explicit distinction between propensities and their probabilistic 

manifestations in single case chances, regardless of how we interpret those chances. 5 

 

In fact, the phenomena are more complex still since the effects of variance (in 

distributions with identical expectations) on reproductive success are further 

compounded by even higher moments of the statistical distribution. The third moment 

about the mean of a distribution is its skewness, referred to as g, which serves to pick 

out asymmetries in the tails of the distribution either side of the mean. Formally, the 

third moment of the statistical offspring distribution for organism O1 is expressed as 

(Krzanowski, 1998, p. 16-17) : 𝛾%&&( = 	𝐸𝑥𝑝	 >?𝑄+ − 𝜇%&&(A
EB = ∑ 𝑃𝑟𝑜𝑏%&&((𝑄+)+ ∙

?𝑄+ − 𝜇%&&(A
E
. A distribution with g = 0 is symmetrical about the mean; one with g > 0 

will exhibit a long tail of high values and a bunched up tail of low values; another one 

with g < 0, will be bunched in the high values with a longer tail in the low values (see 

figure 2). The variance and expectation (mean) can be the same in all three.  

 

 
 

 

 
5 I have in the past defended a (Sober, 2010) style no-theory theory of single case chances, but my 
claims are more generally compatible with any sufficiently deflationary account of objective probability 
(Suárez, 2020, chapter 10).  
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It turns out that, all other things being equal, those distributions with larger 

skewness tend to correspond to organisms with greater reproductive success (Beatty 

and Finsen, 1989). There is hence a certain ‘trumping’ hierarchy: expected mean –> 

variance –> skewness, whereby lower variance and higher skewness can indicate 

greater reproductive success, and hence greater fitness, even though the expectations 

are the same. The intuitive way around such difficulties is to relinquish the 

identification of fitness with the expected value of the statistical distribution for 

offspring. Instead, one may suppose that fitness ought to be identified with the 

distribution as a whole – not any one particular statistic thereof. And this is moreover 

a natural move in thinking of the fitness of an organism (or a trait, or a genotype) along 

the lines of a propensity interpretation of probability. Most current versions of the 

propensity interpretation of fitness (PIF) decisively move in this direction, and away 

from identifying fitness with expectation (Brandon, 1990; Beatty and Finsen, 1989; 

Pence and Ramsey, 2013; Sober, 2001, 2011, 2013). 

 

The next section raises more general issues and difficulties with current propensity 

interpretations of the entire statistical distribution for offspring. But it is worth noting 

already that it is compromised by even more complex phenomena regarding the 

higher moments of the distribution.  Not only do higher moments determine fitness 

for otherwise statistically identical distributions of reproductive offspring. More 

remarkable still is that the higher moments can occasionally trump the lower ones. 

Thus a smaller variance can compensate for a smaller expectation, as the organism 

with the lowest expected value turns out to be more reproductively successful if its 

variance is considerably smaller; similarly higher skewness can occasionally trump 

larger variance in distributions with identical expectation (Beatty and Finsen, 1989, p. 

24; Millstein, 2016, p. 609-10). In none of these cases is the expected value of a 

distribution a good measure of fitness. And whether expected value is or not 

correlated with fitness will in fact depend on the context. Within some environments, 

as just noted, for some systems, expected value may even be negatively correlated 

with fitness. This suggests that taking the entire distribution, without further 

qualification, as the propensity fitness of the organism is a mistake; the fitness of an 

organism, for instance, seems always relative to a context, since it reflects the effect of 
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the environment on the delicate balance of the diverse statistical moments. No pre-

determined hierarchy of the features or functions of the offspring distribution, taken 

by themselves, seems sufficient as a reliable indicator of fitness. Thus, something more 

complex will be required. 

 

 And, indeed, on a complex nexus of fitness (CNF) view this sort of radical 

dependence upon extrinsic environmental factors, as well as the intrinsic features of 

the mechanisms of reproduction, is only natural. 6 The key is in the distinction between 

the propensities and the probability distributions that they give rise to. In any given 

context, the particular probability distribution that emerges in a given context is as 

responsive to the environmental conditions as to the system’s propensities. (And the 

propensities themselves may be more or less intrinsic to a particular organism or 

population – there are also environmental systems, for instance in ecology, which 

possess wholistic propensities of their own). At any rate, the critical point is that the 

underlying propensities first determine the space of possible outcomes, and then 

define the probability distributions over such outcomes. 7  On this picture, it is not 

surprising that the environment will often influence how the higher moments of a 

distribution relate to the lower ones in effecting changes in the reproductive success 

of organisms. In a different environmental context, there may be different extrinsic 

propensities, and those that are intrinsic may manifest themselves in different 

 
6 The ‘extrinsic’ / ‘intrinsic’ distinction in evolutionary biology has been revived by Peter Godfrey-Smith, 
albeit without any substantive ontological implications (Godfrey Smith, 2009, p. 53). Intrinsic biological 
features or organisms (or traits, or genotypes) are those that “do not depend on the existence and 
arrangement of others”. While they are not more real than extrinsic features, intrinsic features are 
indicative of more paradigmatically Darwinian evolutions by natural selection. Godfrey Smith even 
introduces a measure S of supervenience upon intrinsic properties that suits my purposes well. A high S 
is indicative of a high degree of supervenience of reproductive success upon the intrinsic propensities of 
organisms (traits or genotypes); a low S indicates that reproductive success rather depends on extrinsic 
features, whether they be relational propensities of the environment, including entire ecosystems, or 
the conditions required for the manifestation of the underlying propensities. Thus, on the CNF view, 
biological propensities may be intrinsic or extrinsic, depending on the system and nature of the case, 
but the single case chances that manifest those propensities are always necessarily ‘extrinsic’, and 
reliant on the environmental context and other ‘triggering’ factors.  
7 See Suárez (2018), which also suggests an indexical formulation of the probability distributions to keep 
out any variables representing the propensities out of the chance functions, thus avoiding Humphreys’ 
like paradoxes. The propensities set up the probabilities and their outcome spaces, thus delimiting the 
regime of the possible - not the other way around. 
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probability distributions. This is certainly so for long term reproductive success, but 

often also in very short generational terms.   

 

 

4. Varieties of Propensity and Fitness: The Long Term and the Long Run 

 

The literature on propensities distinguishes long run and single case varieties of the 

propensity interpretation of probability (Hacking, 1965). Long run views are inspired by 

empiricist accounts of evidence, concept formation, and belief (Gillies, 2000), and stay 

as close as possible to frequency interpretations such as Von Mises’ (1928). In a long 

run version, propensities generate stable frequencies in long, limiting, or infinite 

sequences of outcomes (depending on the type of long run propensity interpretation). 

The standard illustration employs the tossing of a fair coin: A long run theory ascribes 

propensities to the conditions that generate a 50-50 frequency in a long, limiting or 

infinite sequence of outcomes of the coin toss. 8  

 

A single case interpretation, by contrast, identifies propensities with conditions 

that uniquely generate the probabilities that obtain in every single experimental trial, 

regardless of whether they are actualised in any actual or imaginary sequence of 

outcomes, however long. In the coin toss example, propensities are identified with the 

conditions required to generate a probability distribution over the possible outcomes 

of any given single experimental trial on a chance setup. In any given coin toss, if the 

coin is fair, the probability of heads / tails is ½. The propensity in this case is the set of 

those properties of the chance setup (including the coin) that make it the case that the 

probability is indeed ½ for any given toss. Whether or not this is a random sequence 

(or a Von Mises’ collective) is immaterial to both propensity and probability.  

 

 
8 While long-run propensities are ostensibly identified with the conditions that generate sequences and 
not with the sequences themselves, the sequences must be a version of what Von Mises called a 
“collective”: A random sequences with a well-defined limit and no possible selection function picking 
out any subsequence within it with a different limit. It can thus be argued that long run propensities are 
indistinguishable in practice from frequencies (Suárez, 2014, p. 219). 
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In other words, in a coherent single case theory propensities and probabilities are 

distinct – the propensities give rise to the probabilities, and both concepts are required 

to make sense of objectively chancy phenomena. Moreover, testing a single case 

propensity requires displaying some experimental frequency that may support or 

contradict the probability distribution that it prescribes. Hence single case 

propensities, if they are in principle to have empirical manifestations and be subject to 

test – as surely most if not all scientific propensities must be – need recourse to 

empirical finite frequencies as the result of experimental trials. In other words, 

adopting a single case propensity theory makes it possible to appreciate the three 

distinct ingredients in any meaningful ascription of objective chance in scientific 

modelling, namely: propensities, probabilities and frequencies. I shall refer to this 

tripartite conception together with their inter-relations, as the “complex nexus”, and 

will advocate employing it as an appropriate tool for the analysis of biological fitness. 9 

 

The rejection of long run varieties of the propensity theory, in favour of the single 

case variety, does not necessarily conflict or contradict the view that biological fitness 

is best understood as “long term” as opposed to “short term”. A long-term view of 

fitness is not just compatible with a single case propensity interpretation of fitness, 

but, I urge, it is best understood in its light: Long term fitness is not long run 

propensity.  

 

Fitness is viewed as a short-term property of an organism (or a population or a trait 

– more about the differences later on), when it entails reproductive success in the 

short term, and possibly in the next generation only. Thus, two organisms O1 and O2 

have different relative fitness if their expected (next generation) reproductive success 

is different. This is straightforward only post facto, and in fact only under substantial 

assumptions. Suppose that throughout their existence O1 has two offspring, and O2 

only one offspring; and suppose only natural selection was acting (no drift, mutation, 

migration): On a short-term view of fitness, O1 is then necessarily fitter than O2.  

 

 
9 See Mellor (2005) for an exposition of single case propensities, and Suárez (2017, 2020) for a defence 
of the tripartite conception in statistical modelling. 
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However, it is well known that the short-term view of fitness has a number of 

paradoxical or counterintuitive consequences (Abrams, 2009; Beatty and Finsen, 1989; 

Sober, 2001). There are certain scenarios and environments where short-term 

reproductive success leads to long term failure and vice-versa (Gillespie, 1977; Pence 

and Ramsey (2016, p. 857) refer to this as the delayed selection problem). The initially 

least successful organism may enjoy greater reproductive success down the road, and 

go on to gain selective advantage, if there are environmental reasons why an early 

overpopulation may turn out to be deleterious in the long term. Thus, suppose that 

resources suddenly and temporarily become very scarce at the next generation. 

Having to feed and protect equally for two offspring may become more costly, to the 

point perhaps that it may lead to the early extinction of both. In this scenario, and 

environment, having only one offspring at an earlier point in time may lead to greater 

reproductive success down the generations, when resources recover.  

 

Even in a two-generation model, with scant environmental variation, it is possible 

for O1 to have greater reproductive success in the short term, as above, while having 

less reproductive success in the slightly longer two-generation term. The classic case is 

the mutation found in some species of drosophila (Crow and Kimura, 1956). If both of 

O1’s offspring die before reproducing, but O2’s sole offspring survives and goes on to 

reproduce, O2 already has reproductive advantage over O1 within two generations. It is 

obvious that such reversals are more likely the larger the number of generations 

envisaged, in whatever complex scenarios or environments, particularly if overlapping 

generations are allowed.10 

 

Fitness is therefore often best understood to be long term. But how long is ‘long’? 

The phenomenon of later on (i.e. two or more generations down the road) reversals in 

reproductive success is well established (Sober, 2001), and it is hard to see what would 

constitute an insurmountable number of generations, or generational threshold, 

 
10 In as much as an entire lineage may be wiped out if the organism reproduces early in what Godfrey-
Smith (2009, p. 51) calls a ‘strongly competitive’ intergenerational environment. 
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beyond which no reversals are biologically possible. 11  For this reason, some defenders 

of long-term fitness define it in an infinite limit. For example, Pence and Ramsey (2016, 

p. 862) define it in terms of Tuljapurkar’s (1990) asymptotic sequences of random, 

non-negative matrices:  

 

𝐹 = 𝑒𝑥𝑝 Hlim
L→N

O
L ∫ 𝑃𝑟(𝜙(𝑤) ∙ ln𝜙(𝑤, 𝑡))	
V∈X 𝑑𝑤Z.    (Infinite Fitness) 

 

Nonetheless, such limits only obtain under stringent conditions. For instance, 

Pence and Ramsey’s (Infinite Fitness) equation above demands: i) weak ergodicity, ii) 

that the logarithmic moment of the growth rate be bounded and, most importantly for 

our purposes, iii) that the probability function be generated by a stationary random 

process. Roughly, a random process, i.e. Brownian motion, is one where the values of 

the dynamical variables at a given time do not determine the next values; it is 

stationary if it converges towards its mean or average value. The assumption therefore 

entails that while no daughter population determines any of its direct descendant 

population, the series converges towards its mean or average. While this does not 

amount to (PIF), as usually expressed, it does impose a requirement on the evolution 

of populations that may not always be satisfied in stochastic dynamics. 

 

It has in addition been argued (Sober, 2001; Abrams, 2009) that short-term 

fitnesses also have their uses, and can claim legitimately to be real too. It stands to 

reason that the knowledge that O1’s short-term fitness is greater than O2’s, even if only 

for the next generation, may be very useful for purposes of both prediction and 

explanation regardless of whether in the longer term O1’s reproductive success 

continues to be greater. Or, to take a more extreme example, suppose that the 

environment is such as to generate mass extinction within two generations, anyway; it 

follows that the only concept that is explanatory and predictive in that environment is 

short-term fitness. This pluralist view strikes me as correct: It is not sound scientific 

methodology, and certainly not sensible pragmatic policy, to do away with a concept 

 
11 Biologists tend to define fitness in the long but finite term and remain uncommitted about how long 
that is, which is fine empiricist methodology, but leaves the conceptual questions unanswered.  
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that has its uses – however limited they may be. And there is no better hallmark of 

reality for any concept than finding use within scientific practice.  

 

 Yet, if fitness were identified with long run propensity, in accordance to the 

propensity identity, there could be no such uses of short-term fitness: nothing short of 

the long run would have any reliable expectation value. Since I agree with Sober (2001) 

and Abrams (2009) about the uses of short-term fitness, I am bound to reject long run 

propensity accounts of fitness. But there are more general reasons to reject them, and 

most importantly, the tripartite conception at the heart of CNF is perfectly compatible 

with both long-term and short-term fitness. For, recall, the propensities that are 

employed by the CNF, and the related CNC account of chance, are not identified with 

probabilities. Instead, propensities are employed to partly explain the probabilities 

that emerge in particular contexts in which chance setups operate. This means that the 

propensities, or probabilistic dispositions, of the organism within its environment may 

ground all the particular expected values for its reproductive successes – whether 

short or long term. The propensities, recall, are not themselves the expected values. 

So, while such a distinction (between the probabilities for reproductive success and 

the propensities of the chance setup that generate them) makes no sense in a 

frequency or long run propensity interpretation of probability, it makes perfect sense 

in a CNC. In cases where the limiting value of fitness can be calculated – as in the 

equation (Infinite fitness) above, whenever all its three assumptions apply –, the 

probability distribution that obtains in each generational “trial” is indeed given by 

(Infinite fitness), and the values of reproductive success at each generation are simply 

the random outcomes at each single trial that are consistent with that probability in 

the limit. The phenomenon does not then differ in any significant way from the case of 

a fair coin, i.e. one whose propensities display a single case chance to land heads and 

tails with equal probability ½ in each trial – even though obviously in every trial either 

heads or tails obtains. 12 

 

 
12 Defenders of the most sophisticated recent versions of (PIF) are not always entirely clear whether 
they mean to identify fitness with a long run propensity or a single case one. One may take my 
argument above as confirming that they must mean single case propensities.  
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The tripartite conception within the CNF thus resolves the conundrum between 

short term and long-term fitness by making it clear that fitness is a complex notion, 

that includes propensities and expected values of all statistical distributions for 

offspring, whether short or long term. 13 On this view the fitness of an organism (or a 

trait, or a genotype) is not identified with any of the distribution functions. Neither is it 

identified with the propensities that give rise to the distributions; fitness is rather the 

complex combination of both within each context. An issue undoubtedly remains 

regarding the nature of such an explanatory relation between the underlying 

propensities, on the one hand, and the probabilities of reproductive success that they 

give rise to, on the other. But nothing particularly hinges on whether success is short 

or long term, as both can be accommodated within CNF. 

 
 

5. The Explanatory Role of Fitness 

 

The generic CNC account takes propensities to be dispositional properties of 

systems or chance setups with probabilistic manifestations that can be tested against 

frequency data. The possession conditions for propensities are thus not the same as 

the those for the properties that manifest them, as is more generally the case for any 

dispositional property (think of the possession conditions for the fragility of an object, 

typically describing its internal composition and architecture, which do not coincide 

with the conditions, typically including environmental factors, for the breaking of the 

object). But, in addition, propensities – unlike sure-fire dispositions—, manifest 

themselves only probabilistically. It is then possible to test the probabilities manifested 

against frequency data – and this provides reasons, typically of an abductive sort, as is 

common for theoretical properties, for or against the ascription of the propensities. 

 

 
13 This is in line with the pluralism espoused by Sober (2001, pp. 29ff.), Beatty and Finsen (1989, p. 20), 
and Abrams (2009, pp. 754ff.), albeit for somewhat different reasons. While they emphasise the 
plurality of expectations, and how fitness cannot be reduced to either short or long term, I emphasise 
the plurality of chance itself, and how a set of propensities in a chance setup may give rise to different 
probabilities in different environments, both short and long term. Sober comes close to this view when 
he asserts (2013, p. 337): “Mixing is routine in models of evolution where some probabilities represent 
actual frequencies and others do not”. I agree with this, and I go beyond it in further distinguishing the 
propensities (dispositional properties) from the probabilities themselves.   
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The CNC account fits in better with the practice of statistical modelling, where 

parametrization of the phenomena plays a critical role. It is easier to see the practice 

of parametrization as reliant upon propensities understood as dispositional properties; 

the probability distributions as the emergent properties that get modelled by means of 

the probability distributions; and the experimental outcomes as the frequency data 

that can be used to test them (Suárez, 2017, 2020). The sorts of model explanations 

that are typical in statistical modelling fall out as applications of the parametrizations 

of the probability distributions to the frequency data. It is a plausible conjecture that 

all explanatory uses of evolutionary fitness in practice can be understood in this way, 

as cases of statistical model explanations. If so, I suggest that fitness properly speaking 

is not merely propensity, but it is rather to be identified with the whole complex nexus 

of chance, involving fully the tripartite distinction between propensities, probability 

distributions and frequency data.  

 

It would be beyond the scope of this paper to attempt a complete analysis and 

study of the modelling methodologies in evolutionary biology that bear the conjecture 

out. I will more modestly explore some of the relative advantages of the conception of 

propensities within the CNF as regards some of the recent controversies in the 

philosophical literature. CNF accepts that dispositional properties play a role, so it 

bears similarities with a causal dispositional account of fitness. 14 The difference is that 

CNF rejects both the reduction of fitness to dispositions, embracing instead a tripartite 

conception of fitness. More generally, ‘causal dispositionalism’ (Mumford and Anjum, 

2011) is a monistic doctrine about the metaphysics of dispositions, which attempts to 

reduce probability to causal dispositions, while the complex nexus of chance (CNC), 

and its application to fitness (CNF), take a pluralistic view of chancy phenomena and 

attempt no reduction of either fitness to probability, or of probability to propensities.  

 

CNF instead recommends considering fitness a generalisation over all those 

physical and biological properties that make some organisms ‘fitter’. The probability 

 
14 Drouet and Merlin (2015) consider causal dispositionalism and reject it, while Triviño and de la Rosa 
(2016) defend it. Sober (1984, 2013) is implicitly a defence of causal propensities, which it carefully 
distinguishes from frequencies, hence closest to my views. 
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distributions over offspring – and their statistical moments – supervene upon those 

dispositional properties, or propensities.15 But the properties are not the cause of the 

probability distributions, which are merely the representation of the overall 

expectation of reproductive success. What the properties of organisms do cause (at 

least partly) is of course further properties in themselves and other organisms as they 

evolve (they can also have an effect on their environments, as is nowadays accepted to 

be the norm in niche construction). There has been a tendency in the literature to 

identify fitness with either the frequencies of observed reproductive success (as in 

early circular conceptions of fitness); the probability distributions or their expectations 

(as in the PIF we just reviewed in previous sections), or the underlying properties in the 

supervenience base (as is the case amongst defenders of causal dispositionalism). I 

urge the view that fitness properly understood is all of these taken together – and 

moreover taken in their very productive connection in the practice of modelling the 

phenomena. 16 

 

 I have argued that the pluralism inherent in CNF is the key to its resolution of 

some recalcitrant objections to PIF. CNF recommends explicitly embracing propensities 

not as an interpretation of evolutionary probabilities, but an explanation of how they 

come about. The best way to illustrate its explanatory power of fitness on the CNF 

account is precisely to run through its responses to these issues. I will consider here 

only two issues, but the conjecture is that other discussions and issues in the field may 

take a different form and resolution in light of CNF. I first consider the argument that 

the PIF does not capture the proper objects of fitness (whether they are token 

organisms or genes, or token traits or populations). Then I move to the objection that 

 
15 For overall fitness as a supervenient property, see Sober (1984, Ch.3). Peter Godfrey-Smith (2009, p. 
30) also recommends thinking of fitness as “a compression of a full specification of causal factors”. 
16 CNF chimes in with a number of recent accounts in the philosophy of biology literature that there is 
no space here to discuss in full. Besides being on board with Elliott Sober’s pluralism regarding 
probabilities (Sober, 2013) and sympathetic to his minimalism about single case chances (Sober, 2010), 
CNF chimes in well with the pluralism in Beatty and Finsen (1989). True, it does not restrict it to 
propensities in the way they do (one could say that Beatty and Finsen embrace horizontal pluralism only 
as regards different probability distributions; while CNF pluralism is in addition vertical, since it 
distinguishes three layers in one complex notion of fitness). CNF also agrees with Peter Godfrey Smith’s 
(2009) emphasis on the plural practices of modelling fitness. Finally, Marshall Abrams’ (2015) nuanced 
distinctions between tendential / parametric fitness, mathematical / statistical fitness, and measurable 
fitness can all, I think, be subsumed under the tripartite conception in the CNF.  
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population level properties affect reproductive success rates, yet cannot be said to 

cause them, which would see PIF fail too. 17 In each case, I claim that CNF has the 

promise to resolve tensions, answer objections, and provide greater detail regarding 

the explanatory role of propensities in fitness. 

 

i) The objects of fitness 

 

 Mills and Beatty (1979) distinguished between fitness1 and fitness2, where the 

former is the fitness of an organism, and the latter is the fitness of the type of 

organisms that share some trait. They then identified fitness1 with the expectation or 

expected value of the organism’s offspring distribution – a definition we rejected in 

section three (following Beatty and Finsen’s (1989) own subsequent arguments). 

Nevertheless, if a trait T is defined extensionally as the set of organisms that share T 

(call this set {T}), then the fitness2 of trait T is simply the average of the fitnesses1 of 

the organisms in the set {T}. As Sober (2013, p. 336) puts it: “the fitness of a trait is the 

average fitness of the individuals that have that trait”. The full definition makes it 

explicit that fitness1 is relative to a population P and an environment E, and therefore 

so is fitness2 since it is built upon it. Sober (2013) then goes to argue that neither 

fitness1 nor fitness2 can be understood as propensities, but changes or variations in 

fitness2 may be. For only the latter exhibit the required causal asymmetries, and 

sensitivity to population and environmental conditions. The starting point of CNF, by 

contrast, is that neither fitness1 nor fitness2 can be identified with propensities – on 

pain of running propensities and probabilities together in a way that conflicts with the 

tripartite distinctions within CNC. Rather Mills and Beatty’s fitness1 and fitness2 are in 

my terminology the displays (or manifestations) of underlying propensities. But are 

they displaying the underlying propensities of organisms, sets of organisms, or traits?  

 

 
17 Amongst the many other issues that may be cast in a new light, those regarding causation in 
evolutionary biology naturally stand out. For instance, Walsh (2010) has recently objected that PIF 
entails Simpson-like paradoxes (reversals of conditional probability in subpopulations) and that fitness – 
and natural selection to boot – can therefore not be said to be a cause of evolution. From a CNF 
perspective such Simpson reversals are innocuous, since they only affect the probability distributions 
that emerge in distinct contexts, and not the underlying propensities and their causal effects. 
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 The question is whether traits are just averages over the properties of the 

individuals that make up the set of those organisms that share the trait. If so, since a 

set is extensionally merely the collection of the elements that compose it, only 

individual organisms may be said to display propensities – the ‘propensities’ of traits 

would be merely epiphenomenal. 18 Mills and Beatty’s ‘fitness1’ and ‘fitness2’ are then 

simply the expectation values of the distributions for token organisms, and for sets of 

token organisms, respectively, and they all answer to the underlying propensities of 

individual organisms. The CNF would go along with this and ascribe all relevant 

propensities to the individual organisms. If, on the other hand, traits are alternatively 

defined non-extensionally to be primitive token properties, the CNF would apply the 

tripartite distinction directly on traits, invoking separate (emergent) propensities, their 

manifestations in single chances for those traits, and the observed frequencies of such 

traits, without attempting any further reduction. And since we are no longer defining 

fitness in terms of expected value, or expectation – but rather as a complex nexus of 

propensities, probabilities and frequencies, as modelled relative to a population and 

environment –, it no longer follows that the fitness of the trait is the average of the 

fitness of the member organisms.  

 

 The same argument goes through mutatis mutandis for genes. We can again 

consider fitness1 (G) to be a property of some token allele G, and fitness2 ({G}) to be a 

property of the population of organisms {G} that carry a given genotype. Since CNF no 

longer defines fitness1 to be simply the expectation of the offspring distribution for G, 

it follows that fitness2 is neither the arithmetic average of the expectations. Rather the 

fitness of an individual allele, or a genotype, when it can be defined at all, is a complex 

three-layered notion that includes the propensities of the token allele or genotype, the 

probabilities generated in each particular context, and the frequency data it gives rise 

to when experimentally probed. 19  

 
18 This relies on the above extensional definition of traits as types of organisms. Sober himself makes it 
clear that the mathematical models of trait fitness variation introduce selection coefficients in modeling 
the strength of selection that are not themselves functions of expectations; only the responses to 
selection are expected values (Sober, 2013, p. 340). This suggests to me that Sober does not really think 
of ‘traits’ as merely the set of the organisms that share them. 
19 Except perhaps for fitness regarded as a property of an arbitrary population, which by necessity must 
be defined as some statistical function over the arbitrary set of elements in the population. However, 
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 To sum up, CNF is neutral on the issue of whether fitness applies to individual 

organisms or traits, whether at type or token level. It can be freely applied to token 

organisms, and to traits regarded as types with emergent properties of their own.  On 

the other hand, if traits are treated extensionally, as mere statistical collections, then 

naturally CNF would ascribe propensities to the token organisms, or individual alleles, 

only. 

 

ii) Properties of Populations and Reproductive Success 

 

 Ariew and Ernst (2009) argue that the Gillespie examples discussed in section 

three, which show sensitive dependence on higher moments of the offspring 

distribution, already by themselves demonstrate that evolutionary fitness cannot be 

understood as a propensity. On their account PIF requires fitness to be “a function of 

the properties of individual members of the population within their local 

environmental conditions” (what they refer to as desiderata (C) on any viable PIF). 20 It 

follows, on their account, that Darwinian natural selection (of the fittest) is not an 

explanatory cause, but merely a statistical phenomenon. Their reasoning is 

straightforward: since variance is a population level property, which critically depends 

on population size, it cannot be understood to lie in any particular individual organism. 

Gillespie (1977) showed fitness wi to rely on population size n according to what we 

may call Gillespie’s equation: 𝑤+ = 𝜇+ −
𝜎+= 𝑛] , where µi is the fitness in reproductive 

output, and si is the variance within a generation. This entails that we can increase 

population size – and therefore variance – by adding members even if they “do not 

causally interact with the existing members of the population at all” (Ariew and Ernst, 

2009, p. 294). Yet variance can have a decisive role in determining reproductive 

success, so it follows that the explanation of natural selection involves non-causal, 

merely statistical features of populations at large.  

 

 
the concept of fitness as applied to an arbitrary population – unlike populations naturally defined by 
traits – is of no use in understanding evolution by natural selection.  
20 Ariew and Ernst (2009, p. 291). 
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 The argument does not apply to CNF, which is not committed to (C). It is first of 

all, as just noted, not committed to only taking token organisms as the recipients or 

units of propensity ascriptions. But, in addition, even when applied to individual 

organisms as the appropriate units, CNF is not committed to identifying fitness with 

any one physical property of those organisms, at the expense of the probability 

distributions, and the frequencies observed. Rather CNF takes fitness to be the 

complex combination of all of them, and their interconnections. 

 

 Nevertheless, Ariew and Ernst make the additional point that even if (C) was 

abandoned as a desideratum, there are two other essential desiderata on PIF that 

cannot be jointly satisfied in any case, namely (A): “a fitness concept must be able to 

explain why one trait is expected to be better represented in a population under the 

influence of natural selection”; and (B): “a fitness concept must enable us to compare 

the degree to which natural selection will favour the spread of one trait over another, 

alternative trait” (Ariew and Ernst, 2009, p. 290). Yet, their reasons for thinking that (A) 

and (B) are not co-satisfiable is the fact that for any given evolutionary explanation of 

reproductive success, there is more than one statistic, even more than one 

distribution, that is appropriate in different cases, depending on the environment, the 

population, and the trait or type of organism considered. 21 Since there can be no 

unique comparison, there is no univocal explanation. Ariew and Ernst are therefore 

reading (B) in a particular robust way, as implying that any comparative measure must 

be unique, at any rate for any given set of environmental conditions. Yet, CNF 

embraces pluralism for the statistical distributions that manifest underlying 

propensities – the tripartite conception is in fact of a piece with the thought that 

differences in the environmental conditions, and also in populations, bring out 

different probabilistic manifestations of the underlying propensities. An arbitrary 

 
21 As they write: “no single unified account of fitness that satisfies conditions A and B can be found” 
(Ariew and Ernst, 2009, p. 298). This is echoed in another well-known paper by Ariew and Lewontin 
(2004, p. 348): “any attempt to introduce a unitary analogous concept of ‘reproductive fitness’ into 
dynamical models as a scalar ordinal, which will explain or predict quantitative changes in the frequency 
of types, must fail”.  I do agree if by ‘unitary’ it is meant an account that identifies fitness precisely with 
one and only one property of the organisms involved in each case. Such an account of fitness would be 
anathema to the plural character of CNF explored here. It does not follow though that there are no 
propensities involved in fitness, or that they do not have an explanatory role. 
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change in the membership of the population would not affect the underlying 

propensities of the organisms already included in the population, but it would alter 

their probabilistic manifestation in the group as well as obviously their relative 

frequencies in the set. Ariew and Ernst’s critique relies on running such distinctions 

together. If, by contrast, desideratum (B) was understood to already imply pluralism 

then the CNF naturally fulfils it, since it enables many different comparisons of the 

degrees to which natural selection favours one trait over another, depending 

sensitively on trait, population, environment, and underlying propensity ascriptions to 

either organisms, genotypes, or traits (or any of their sets).  

 

 

6. Conclusions 

 

 In this paper I have defended a new approach to evolutionary fitness in terms 

of what I call the complex nexus of chance (CNC). The resulting complex nexus of 

fitness (CNF) clarifies some of the commitments of a propensity account of fitness. It 

does not attempt to reduce fitness to the concept of propensity, nor does it think of 

propensity as a mere interpretation of probability. Nevertheless, propensities play a 

critical explanatory role in the account, and the tripartite distinction at the heart of the 

CNF is in close agreement with modelling practice. I first showed that the CNF 

overcomes the “momentous objection” regarding the influence of higher moments of 

the offspring distribution. I then argued that it renders superfluous the debate over 

whether fitness is properly long or short term. I finally argued that the explanatory 

power of fitness as a complex chancy nexus is revealed by a careful application to a 

range of issues and contemporary debates within the philosophy of biology. 
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