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argued, vindicates the overall methodological approach. The ensuing conception of 

objective probability in practice is the ‘complex nexus of chance’.  
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Introduction 

  

Humans have been thinking in probabilistic terms since antiquity. They have 

been thinking systematically, and philosophizing, about probability since the 

seventeenth century. And they have been formalizing probability since the end of the 

nineteenth century. The twentieth century saw intense philosophical work done on 

interpreting probability, in a sort of attempt to find out its essence. The twenty-first 

century, I argue, will bring a focus on more practical endeavours, concerning mainly the 

methodologies of data analysis and statistical modelling. The essence of probability, it 

turns out, lies in the diversity of its uses. So, the methodological study of the use of 

probability is what brings humans closer to a comprehensive understanding of its 

nature. 

 

These and other ideas expounded in this book developed out of a Marie Curie 

project on probability and propensities that I carried out at the Institute of Philosophy of 

the School of Advanced Study, at London University, during 2013-2015. I came out of 

that project with the distinct impression that the study of practice was of primary 

importance; and that much philosophy of probability is still to come to terms with it.  

This book is my first attempt at the bare bones of a new research programme into the 

methodology of statistical modelling. Most of the book is devoted to justifying this 

methodology – on the grounds of practical involvement with the scientific modelling 

practice but, also, I argue, on account of the limitations of the traditional interpretative 

approaches to the topic.  
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Thus, the first half of the book (Chapters 1-7) is entirely a state-of-the-art review 

of the historiography of probability, and its ensuing impact upon the interpretative 

endeavour. This is fitting for a Cambridge Elements volume, which allows for a profuse 

setting of the stage. And it is anyway needed in order to understand why nothing other 

than a study of the practice of statistical model building will do for a full understanding 

of objective probability. I first explore (in Chapter 1) the dual character of the notion of 

probability from its inception; the subjective and objective aspects of probability that 

are essential to any understanding the concept. The twentieth century brought in several 

interpretations of probability. But one way or another, they all aim to reduce probability 

to either subjective or objective elements, thus doing away with the duality; and one 

way or another they all fail, precisely because they do away with the duality. In the 

remaining Chapters in this half of the book, I analyse in detail the many objections 

against both the main subjective interpretations (the logical and personalist or Bayesian 

interpretations), and the main objective interpretations (the frequency and propensity 

interpretations). To make most of these interpretations work, and overcome the 

objections, demands some acknowledgment of the complex duality of probability. This 

is by now widely accepted, and the book first reviews the roots and consequences of 

pluralism about objective probability. 

 

The second half of the book (Chapters 8-13) then centres upon the objective 

aspects of probability, but now without any pretence of a reduction of the whole 

concept. The discussion is focused entirely on objective probability, and it contains 

most of the original material. I advance a number of novel theses, which I defend in 

various original ways, as well as proposing a number of new avenues for research. The 

starting point is pluralist, and it accepts the duality in so far as it argues that there are 
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important matters of judgement in the selection of crucial aspects of the application of 

objective probability in practice. Here, the critical distinction, advanced in Chapters 8 

and 9, is between the traditional project to merely interpret probability, and a distinct 

project to study the application of probability. On the other hand, I go considerably 

beyond the pluralism defended in the first half of the book and, in Chapter 10, I 

embrace novel forms of pluralism and pragmatism regarding objective probability. 

 

The central idea of the second half, which also informs the book as a whole, and 

looms large through most of its discussions is what I have elsewhere called the 

‘tripartite conception’ of objective probability (Suárez, 2017a). This is the idea that the 

failure to reduce chance to either propensity or frequency ought to lead to the 

acceptance of all three concepts as distinct, insufficient yet necessary, parts of the larger 

notion of ‘objective probability’. This tripartite conception is introduced in Chapter 10, 

which also assesses the role of judgement and various subjective components. The 

following Chapters 11, 12 and 13 are then devoted to modelling methodology, and the 

application of the tripartite conception in statistical modelling practice in particular, in 

what I call the ‘complex nexus of chance’ (CNC). The thought running through these 

Chapters is new and radical: objective probability is constituted by a thick array of 

interlinked practices in its application; these are practices that essentially involve the 

three distinct notions pointed to above; and since none of these notions is theoretically 

reducible to any combination or set of the other two, this means that the overall 

methodology remains unavoidably ‘complex’. There is no philosophical theory that may 

explicate fully the concept of objective probability, or chance, by reducing this 

complexity, and this already sheds light on the limitations of the interpretations 

reviewed in the book’s first half. 
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What’s more, the second half of the book also continues to illustrate the 

fundamental duality of probability unearthed in the historiographical material reviewed 

in the first seven Chapters. It does so in three different yet interrelated ways. First of all, 

it leaves open that subjective elements may come into the nature of the single-case 

chances that make up the tripartite conception. Secondly, confirmation theory comes 

into the assessment of evidence for and against different models. And, finally, there are 

irreducible subjective judgements involved in the pragmatist methodology advocated in 

the later chapters. For instance, in Chapter 11 I argue that choosing the appropriate 

parametrization of the phenomenon to be modelled is a critical part; and there is no 

algorithm or automatic procedure to do this – the choice of free parameters is subject to 

some fundamentally ‘subjective’ estimate of what is most appropriate in the context for 

the purposes of the model at hand. Once again, the ‘subjective’ and the ‘objective’ 

aspects of probability meet in fundamental ways (see (Gelman and Hennig, 2017), as 

well as my response (Suárez, 2017b) for an account of such merge in practice). Another 

related sense of subjectivism in statistical modelling is sometimes referred to as the ‘art 

of statistical modelling’ and concerns the choice of a correlative outcome or attribute 

space. There is nothing arbitrary about this ‘subjectivity’ though, since it answers 

precisely to specific pragmatic constraints: It is a highly contextual and purpose-driven 

judgement.   

 

On my view, each of the parametrizations of a phenomenon involves a 

description of its propensities, dispositions or causal powers. What is relevant about 

propensities is that they do not fall in the domain of the chance functions that they 

generate (Suárez, 2018). Rather a propensity is related to a chance function in the way 
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that possibilities are related to probabilities: the propensity sets the range of possible 

outcomes, the full description of the outcome space, while the chance function defined 

over this space then determines the precise single-case chance ascribed to each of these 

outcomes. A different parametrization would involve a different description of the 

system’s propensities, perhaps at a different level of generality or abstraction (and no 

parametrization is infinitely precise); and focusing on a different set of propensities may 

well issue in a different set of possible outcomes hence a different outcome space, over 

which a different chance function shall lay out its probabilities. Since the 

parametrizations obey pragmatic constraints that require appropriate judgements within 

the context of application, it follows that the outcome spaces will correspondingly 

depend on such judgements. In other words, a chance function is not just a description 

of objective probabilities for objectively possible outcomes; it is one amongst many 

such descriptions for a particular system, made relevant by appropriate judgements of 

salience, always within a particular context of inquiry. Here, again, the ‘subjective’ and 

the ‘objective’ aspects of probability merge.  
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1. The Archaeology of Probability 

 

The philosophy of probability is a well-established field within the philosophy of 

science, which focuses upon questions regarding the nature and interpretation of the 

notion of probability, the connections between probability and metaphysical chance, 

and the role that the notion of probability plays in statistical modelling practice across 

the sciences.  Philosophical reflection upon probability is as old as the concept of 

probability itself, which historians tend to place originally in the late seventeenth 

century. As the concept developed, it also acquired increasing formal precision, 

culminating in the so-called Kolmogorov axioms first formulated in 1933.  Ever since, 

philosophical discussions regarding the interpretation of probability have often been 

restricted to the interpretation of this formal mathematical concept, yet the history of the 

concept of probability is enormously rich and varied. I thus begin with a review of some 

of the relevant history, heavily indebted to Ian Hacking’s (Hacking, 1975, 1990) and 

Lorraine Daston’s (Daston, 1988) accounts. Throughout this historical review I 

emphasize the non-eliminability of objective chance. I then turn to a detailed description 

of the different views on the nature of probability, beginning with the classical 

interpretation (often ascribed to Laplace, and anticipated by Leibniz), and then moving 

onto the logical interpretation (Keynes), the subjective interpretation (Ramsey, De 

Finetti), the frequency interpretation (Mises, Reichenbach), and ending in a detailed 

analysis of the propensity interpretation in many of its variants (including the views of 

Peirce, Popper, Mellor, Gillies and my own contributions).  The discussion is driven by 

the ‘doctrine of chances’, and the recognition that objective chance is an ineliminable 

and essential dimension of our contemporary concept of probability. In particular I 

argue that the logical and subjective interpretations require for their intelligibility a 
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notion of objective chance, and that the frequency interpretation is motivated by a form 

of empiricism that is in tension with an honest and literal realism about objective 

chance.  

 

 Hacking’s archaeology of probability revealed unsuspected layers of meaning in 

the term ‘probability’, unearthed a fundamental duality in the concept, and revealed that 

although the concept itself in its modern guise only fully appears around 1660 (most 

notably in the Pascal – Fermat correspondence), the imprint of the antecedent marks 

(i.e. of the ‘prehistory’ of probability) are even to this day considerable. The legacy of 

Hacking’s inquiries into probability is an increased understanding of the transformative 

processes that turned the Renaissance’s concept of the ‘probability’ into our 

contemporary concept of probability. The new concept finally comes through strongly 

in the writings of the Jansenist members of Port Royal (mainly Arnauld and Pascal) but 

it has both antecedents and contemporaries in some of leading thinkers on signs, chance, 

and evidence, including Paracelsus, Fracastoro, Galileo, Gassendi, and most notably the 

contemporaneous Leibniz and Huygens.  

 

 The fundamental change traced by Hacking concerns the notion of evidence 

which, in its contemporary sense, also emerges at around the same time. In the old 

order, the justification of ‘probable’ claims was thought to be provided by the testimony 

of authority (usually religious authority). But the Renaissance brings along a reading of 

natural and, in particular, medical and physiological phenomena where certain ‘signs’ 

are taken to impart a corresponding testimony, under the authority of the book of nature. 

‘Probable’ is then whatever is warranted by the relevant authority in the interpretation 

of the ‘signs’ of nature. But what to do in cases of conflict of authorities? (Hacking, 
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1975, ch. 5) chronicles the fascinating dispute between the Jesuit casuistry tradition – 

which considers the consequences of each authority and chooses accordingly – and the 

protesting Jansenists novel emphasis on locating the one true testimony – typically the 

testimony provided by nature herself. The transformation of the testimony of earthily 

authority into the evidence of nature then configures the background to the emergence 

of probability. Hacking’s careful ‘archaeology’ then reveals that the most striking 

imprint of the old order upon the new is the dualistic or Janus-faced character of 

probability. Our modern concept of probability is born around 1660 and 

characteristically exhibits both epistemological and ontological aspects. It inherits the 

dualism from the medieval and Renaissance conceptual schemes which, however 

otherwise fundamentally different, also exhibited a similar duality. Thus, in the old 

order and parlance, ‘probable’ stood roughly for both the opinion of the authority and 

the evidence of nature’s signs, while in the parlance of the new order, ‘probable’ stands 

both for logical or subjective degree of belief, and for objective chance, tendency or 

disposition. 

 

 My aim in the first half of the book is to review the present state of the 

philosophy of probability with an eye on this fundamental duality or pluralism. I shall 

emphasize how an appropriate articulation of subjective probability is facilitated by a 

proper regard for the objective dimension of probability. And conversely, a fair theory 

of objective chance needs to make room and accommodate subjective elements.  First, 

in chapter 2 I continue the historical review by introducing the notion of equipossibility 

in Leibniz and Laplace. I then move on in chapter 3 to the logical interpretation and the 

principle of indifference as they appear mainly in the work of John Maynard Keynes. In 

both cases I aim to show the role of objective notions of probability in the background 
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of the argument and development of the logical interpretation of probability. In chapter 

4 I follow a similar strategy with the subjective interpretation of Ramsey and De Finetti, 

in an attempt to display the ways in which the interpretation ultimately calls for 

objective notions in order to overcome its difficulties. Chapter 5 retakes the historical 

account in order to review the history of metaphysical chance and its ultimate 

vindication in the late nineteenth century, particularly in relation to the work of the 

American pragmatist philosopher, Charles Peirce. In chapter 6 I introduce and review 

different versions of the frequency interpretation of probability (finite frequentism and 

hypothetical frequentism). I show that subjective notions appear in the formulation of 

these theories, or at any rate in those formulations that manage to overcome the 

objections. Finally, in chapter 7, I review in detail some of the main propensity accounts 

of probability, pointing out some of their resorts to subjective notions. 
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2. The Classical Interpretation: Equi-possibility 

 

The classical interpretation of probability is supposed to be first enunciated in 

the works of Pierre Simon Laplace, in particular in his influential Essai Philosophique 

sur les Probabilités (1814). But there are important antecedents to both classical 

probability and the notion of equipossibility that grounds it in the writings of many of 

the seventeenth-century probabilists,1 particularly Leibniz’s and Bernouilli’s about a 

century earlier. Ian Hacking (1975) chronicles the appearance of the notion of 

equipossibility in the metaphysical writings of Leibniz, and the connection is apposite 

since it is an essentially modal notion that nowadays can best be understood by means 

of possible world semantics. I first review the historical developments that give rise to 

the Laplacean definition, and only then address some of the difficulties with the 

classical view in more contemporary terms. 

 

 Leibniz seems to have developed his views on probability against the 

background of an antecedent distinction between two types of possibility, which 

roughly coincide with our present-day notions of de re and de dicto possibility 

(Hacking, 1975, p. 124).  In English we mark the distinction between epistemological 

and physical possibilities by means of different prepositions on the word ‘possible’. 

There is first a ‘possible that’ epistemological modality: ‘It is possible that Laplace just 

adopted Leibniz’s distinction’ expresses an epistemological possibility; for all we know 

	

1	(Gigerenzer	et	al.,	1989,	Ch.	1.9)	even	argue	that	by	the	time	of	Poisson´s	

subsequent	writings	circa	1837,	the	classical	interpretation	was	already	in	decline!	
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it remains possible that Laplace did in fact copy Leibniz’s distinction. The statement is 

in the present because it reflects our own lack of knowledge now. Contrast it with the 

following ‘possible for’ statement:  ‘It was possible for Laplace to adopt Leibniz’s 

distinction’ expresses a physical possibility at Laplace’s time, namely that Laplace had 

the resources at his disposal, and sufficient access to Leibniz’s work, and was not in any 

other way physically impeded from reproducing the distinction in his own work. More 

prosaic examples abound: ‘It is possible that my child rode his bicycle’ is 

epistemological, while ‘it is possible for my child to ride his bicycle’ is physical. And 

so on.  

 

 Now, epistemological possibility is typically de dicto (it pertains to what we 

know or state), while ontological possibility is de re (it pertains to how things are in the 

world independently of what we say or state about it). So, the ‘possible that’ phrase 

tends to express a de dicto possibility, while the ‘possible for’ phrase expresses de re 

possibilities. The two are obviously related – for one physical possibility may be 

thought to be a precondition for epistemological possibility since there is no de dicto 

without de re. For Leibniz the connection was if anything stricter – they were two sides 

of the same concept of possibility. And in building his notion of probability out of 

possibility, Leibniz transferred this dualism onto the very concept of probability: “Quod 

facile est in re, id probabile est in mente” (quoted in Hacking, 1975, p. 128). The link 

expresses Leibniz’s belief that the dual physical and epistemological aspects of 

probability track the duality of de re and de dicto possibility.  

 

 This tight conceptual connection is also the source of Leibniz’s emphasis on 

equipossibility as the grounds for the allocation of equal probabilities, and it in turn 
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underwrites Bernouilli’s and Laplace’s similar uses of the notion.  Leibniz employs two 

separate arguments for the equiprobability of equipossible events: the first derives from 

the principle of sufficient reason and is essentially epistemological; the other one 

derives from physical causality and is essentially ontological or physical (Hacking, 

1975, p. 127). According to the first, if we cannot find any reason for one outcome to be 

any more ‘possible’ than another, we judge them epistemically equiprobable. According 

to the latter, if none of the outcomes is in fact more ‘facile’ than any other, they are 

physically equiprobable.  

 

 The duality of probability (and its grounding in the similar duality of possibility) 

becomes gradually lost in the advent of the classical interpretation of probability, which 

is often presented in a purely epistemic fashion, as asserting that probabilities represent 

merely our lack of knowledge. The eighteenth century brought an increasing emphasis 

on the underlying determinism of random looking phenomena, in the wake of 

Newtonian dynamics, and probability in such a deterministic universe can only signal 

the imperfection of our knowledge.  By the time of the publication of the treatise that 

established the classical interpretation (i.e. Laplace’s Essai sur les Probabilités), in 

1814, the deterministic paradigm had become so imperious, and the demise of 

probability to the strict confines of the epistemology so marked, that Laplace could 

confidently assert that a superior omniscient intelligence would have no time or purpose 

for probability. If so, the fact that ordinary agents have use for non-trivial (i.e. other 

than 0 or 1) probabilities comes to show our cognitive limitations, and entails that 

probability is essentially an epistemic consequence of our ignorance. The connection is 

at the foundation of subjective views on probability, and is nowadays embodied in what 

is known as Laplace’s demon: “an intelligence which at a certain moment would know 
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all forces that set nature in motion, and all positions of all items of which nature is 

composed, if this intelligence were also vast enough to submit these data to analysis, 

she would embrace in a single formula the movements of the greatest bodies of the 

universe and those of the tiniest atom; for such an intelligence nothing would be 

uncertain and the future just like the past would be present before her eyes.” (Laplace, 

1814, p. 4, my own translation). 

 

 Yet, the Laplacean formal definition of probability as the ratio of favourable to 

possible cases of course only makes sense against the background of equipossible 

events, as:  where #a is the number of positive cases of a, and #t is the 

number of total cases. Thus, in the case of an unbiased coin, the probability of the coin 

landing heads if tossed is given by the ratio of the cases in which it lands heads divided 

by the total number of cases – i.e. either outcome.  But this of course assumes that each 

case is equipossible – that is, that the tosses are independent in the strong sense of there 

being no causal influences that determine different degrees of possibility for the 

different outcomes. If for instance, landing heads on the first trial made it more likely 

for the coin to land heads in the second trial, the probability of heads in the second or 

any other trial in the series would not be given by the ratio. Laplace himself was acutely 

aware of the issue. As he writes: “The preceding notion of probability supposes that, in 

increasing in the same ratio the number of favourable cases and that of all the cases 

possible, the probability remains the same” (Laplace, 1814, Ch. 6).   

 

 Commentators through the years have pointed out repeatedly how any purely 

epistemic reading of the condition of equipossibility would render Laplace’s definition 

of probability hopelessly circular: it defines the notion of probability back in terms of 

 

P a( ) =
#(a)
#(t)
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the equivalent notion of equal possibility – the very grounds for epistemic 

equiprobability.  Hence, we find Hans Reichenbach (1935 / 1949, p. 353) stating as part 

of his critique of epistemological theories: “Cases that satisfy the principle of “no 

reason to the contrary” are said to be equipossible and therefore equiprobable. This 

addition certainly does not improve the argument, even if it originates with a 

mathematician as eminent as Laplace, since it obviously represents a vicious circle. 

Equipossible is equivalent to equiprobable”. However, the realization that Leibniz and 

Bernouilli in fact entertained mixed notions of probability and possibility, incorporating 

both epistemic and ontological dimensions, allows for a distinct resolution of this issue. 

If the equipossibility is ontological, for example if it is physically there in nature, then 

the assumption of equal probabilities follows without any appeal to sufficient reason. 

There seems to be no circularity involved here as long as physical possibility may be 

independently understood.  

 

 Our standard contemporary understanding of modality is in terms of possible 

world semantics. A statement of possibility is understood as a statement about what is 

the case in some possible world, which may but need not be the actual world.  

Equipossibility is trickier since it involves comparisons across possible worlds, and 

these are notoriously hard to pin down quantitatively. Measures of similarity are 

sometimes used. For two statements of possibility to be quantitatively equivalent it 

needs to be the case, for example, that the number of possible worlds that make them 

true be the same, or that the ‘distance’ of such worlds from the actual world be the 

same, or that the similarity of those worlds to the actual world be quantitatively 

identical. Whichever measure is adopted, it does seem to follow that some objective 

relation across worlds warrants a claim as to identical probability. The quantitative 
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measures of equipossibility are not necessarily probability measures – but they can be 

seen ‘to inject’ a probability measure at least with respect to the equally possible 

alternatives. It is at least intuitive that physical equipossibility may give rise to 

equiprobability without circularity. The upshot is that what looks like an eminently 

reasonable purely epistemological definition of probability as the ratio of favourable to 

possible cases in fact presupposes a fair amount of ontology – and a concomitantly 

robust and unusually finely graded notion of objective physical possibility. 
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3. The Logical Interpretation: Indifference 

 

 There are two schools of thought that assume that probability is not objective or 

ontological – not a matter of what the facts of the world are, but rather a matter of the 

mind – one of our understanding or knowledge of the world. These accounts follow the 

main lines of the most common interpretation of the classical theory. According to the 

logical interpretation, probability is a matter of the logical relations between 

propositions – a question thus regarding the relational properties of propositions. 

According to the subjective interpretation, by contrast, probability is a matter of our 

degrees of belief – a question that regards therefore our mental states, and in particular 

our belief states. These interpretations developed particularly during the twentieth 

century. The logical interpretation was championed by John Maynard Keynes, Harold 

Jeffreys and Rudolf Carnap (for what Carnap called probability1 statements, which he 

distinguished from objective probability2 statements); while the subjective interpretation 

was defended by Frank Ramsey, Bruno de Finetti and Leonard Savage. In this chapter I 

review the logical interpretation, mainly as espoused by Keynes, and in the next one I 

look at the subjective interpretation, particularly in Ramsey’s version.  

 

 Keynes argues that probability is a logical relation between propositions akin to 

logical entailment but weaker – whereby two propositions A and B are related by means 

of logical entailment if and only if A cannot be true and B fail to be so; while A and B 

are more weakly related by partial degree of entailment if and only if A cannot be true 

and B fail to have some probability, however short of certainty, or probability one. So, 

the first caveat that must be introduced at this point is the fact that for Keynes 

probability is not in fact subjective but objective. However, we must be careful with our 
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use of language here – ‘objective’ for Keynes does not stand for ‘ontological’ but for 

non-arbitrary or relative to known fact. More particularly, Keynes held that the 

probability of a proposition is always the relation of partial degree of entailment of that 

proposition by some background body of knowledge. That is, given some background 

knowledge, a proposition is entailed to a certain degree. As he writes (Keynes, 1921, p. 

4): “In the sense important to logic, probability is not subjective. It is not, that is to say, 

subject to human caprice. A proposition is not probable because we think it so. Once the 

facts are given that determine our knowledge, what is probable or improbable in these 

circumstances has been fixed objectively, and it is independent of our opinion”.   

 

 The fundamental insight here is the thought that probability is a logical relation 

amongst propositions. Thus, if I claim now that ‘the probability that it will rain 

tomorrow is 50%’, I am making a claim about how probable this proposition is on 

account of the knowledge I now have of any facts relative to it – weather patterns, 

dynamical laws, the present isobaric facts and so on. If and when my information 

changes, so does my probability estimate. But this is perfectly consistent with the 

relational character of probability: it is always a property of a proposition relative to 

background knowledge, which will naturally vary with time, as new information 

accrues.  Therefore, the probability of the proposition in question becomes zero or one 

not at the time the event comes to be – or fails to be – but rather at the time we as agents 

gain the relevant background information. Yet, there is a normative dimension to 

probability according to Keynes, as we saw in the quote above. What this means is that 

there is some background information that is objectively relevant at each time for each 

proposition. The rational agent is normatively constrained by it in the sense that were 

the agent to be aware of all the relevant facts she would ascribe the corresponding 
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probability. We can thus say that objectively the probability of the proposition is given 

by its relation to the background facts that are relevant to our knowledge regardless of 

whether anyone is in fact aware or not of those facts. The knower’s contribution is in 

the relevance of the facts, not so much in the objective relation those facts hold to the 

proposition in question. This observation is not without consequence for any logical 

concept of probability – or in fact any inductive logic more generally (i.e. any logic that 

attempts to capture the non-deductive or demonstrative patterns of inference 

characteristic of inductive learning).  

 

 The main rule of probabilistic inference in a logical conception of probability is 

the so-called principle of indifference, a contemporary refinement of Leibniz’s principle 

of sufficient reason. It was clear since Leibniz that probabilities can only be quantified 

numerically to the extent that some of the alternatives may be regarded as equiprobable. 

Where Leibniz has spoken of ‘having no sufficient reason’ to assert one alternative as 

more probable than another, Keynes instead says (Keynes, 1921, p. 41) that “the 

principle of indifference asserts that if there is no known reason for predicating of our 

subject one rather than another of several alternatives, then relatively to such knowledge 

the assertions of each of these alternatives have an equal probability”. Thus, the 

application of Leibniz’s principle may seem circular, but Keynes’ statement is 

coherently non-circular. Critically and specifically the conditions for equiprobability 

here do not appeal to probability itself. ‘Predicating of our subject one rather than 

another of several alternatives’ does not imply taking one to be more probable than 

another. It just implies predication in a particular context, or relative to certain 

background knowledge. 
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 Thus, suppose we have no reason to believe a particular coin is biased – it seems 

then reasonable to give both possible outcomes of a tossing trial equal probability = ½. 

The subject here is the outcome of the tossing of this particular coin; the alternatives are 

the two different ways in which it may land; relative to our present knowledge there is 

no reason to ‘predicate’ of the subject that it may be heads any more than there is reason 

to predicate that it may be tails. It is then legitimate to apply the principle of 

indifference and ascribe equal probabilities to both outcomes. Similar kinds of 

reasoning apply to all kinds of games of chance, including dice or roulette.  

 

 Nonetheless, there are well-known problems with the application of the 

principle. 2 Most of these problems appear in the context of further divisions of the 

possible alternatives that result in numerically impossible or contradictory applications 

of the principle. A well-known example involves a coloured object, say a book, whose 

colour we ignore – surrounded by other objects coloured red, we may come to the 

conclusion, on applying the principle of indifference in complete ignorance as to its 

colour, that the probability that it is red is ½, while the probability that it is not red is 

also ½. In this case, the alternatives we may predicate of our subject are ‘red’ / ‘non-

red’. However, it should be obvious that there are many subdivisions of ‘non-red’ into 

all the different colours of the spectrum and the probability ascriptions can therefore be 

very different depending on what subdivisions are considered. For instance, the set of 

‘non-red’ objects may be taken to include all ‘yellow’ objects, and those ‘non-yellow’ 

	

2	See	in	particular	(Keynes,	1921,	Ch.	IV	§	4-9);	the	main	problems	are	nicely	

recapitulated	in	(Gillies,	2000,	Ch.	4).	Some	of	these	problems	go	back	to	objections	

famously	first	raised	by	(Bertrand,	1889)	and	(Borel,	1909).	
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objects that are also ‘non-red’. We then get ascriptions of probability ½ to ‘red’ and 

‘non-red’, and probability ¼ to both ‘yellow’ and ‘non-red and non-yellow’ which 

seems bizarre to say the least, since we could have similarly subdivided along any other 

different partition. Worse still, we could have initially entertained a different array of 

colours such as black versus non-black, or blue versus non-blue thus rendering 

probability (red) = probability (black) = probability (blue) = ½, yet obviously 

probability (red) + probability (blue) + probability (black) ¹ ½ + ½ + ½ = 3/2, since 

probability (any colour) = 1. So, the application of the principle of indifference to 

different partitions simultaneously yields a logical contradiction. (Keynes helpfully 

points out (1921, p. § 4) that the assumption that no object can be simultaneously two 

different colours is not itself part of the principle of indifference, since it concerns not 

the subject – the book, but the predicate – the colours.) 

 

 More examples can be easily generated, and multiply; Bertrand famously 

showed how to generate geometrical paradoxes with classical probability under the 

assumption of the principle of indifference – and these are nowadays known as 

‘Bertrand’s paradoxes’. Bertrand’s original paradox (Bertrand, 1889; see also Gillies, 

2000, Ch. 4) concerns the inscription of an equilateral triangle in a circle. The exercise 

is then to choose any chord of the circle at random (i.e. any line from one point on the 

circumference to another) and calculate the probability that it is longer than a side of the 

triangle. There are however many ways to compute this probability. Bertrand canvasses 

three: i) rotate the triangle until one of its vertices coincides with one of the end points 

of the chord, then check for the length of the chord against the side of the triangle; 

assuming indifference compute the probability for any arbitrary chord as a linear 

measure of the length of the arc smaller or longer than the side of the triangle; the 
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resulting probability that the chord is longer is 1/3. ii) Check against the radius of the 

circumference that lies perpendicularly to the side of the triangle; assuming indifference 

compute the probability as a linear measure of the length of the radius before and after it 

meets the side of the triangle; the resulting probability is ½. Finally, iii) draw a 

concentric inner circle within the larger circle at radius ½ of the total radius of the 

circle; its area is therefore ¼ of the total area of the circle; the pick a point on the larger 

circle and draw a chord at random assuming indifference; the probability that the chord 

is longer than the side of the triangle is the probability that it lies in the inner circle, 

which is ¼. 

 

 In other words, indifference generates different values for the probabilities of 

particular events, depending on the partitions or classes of events that are considered. 

There is a similar problem for frequency accounts, namely the reference class problem, 

as we shall see. Notice, however, that here probability is not defined with respect to the 

class, unlike in the case of frequencies, but entirely with respect to an underlying 

measure of indifference. It just so happens that the measure critically depends on the 

partitions. Notice also that in Bertrand’s geometrical paradoxes, the generating function 

of the partitions is continuous – the length of the arc; the first and simplest case by 

contrast works on the assumption that there is only a finite and discrete number of 

colours. While the paradox seems identical in both cases, its resolution in fact greatly 

differs for each case.  

 

 Keynes realized that the simplest form of the paradox for discrete finite events 

has a resolution within the confines of the principle of indifference.  It requires us to 

accept a principle that would select the narrowest possible class available to us – which 
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(Carnap, 1950, pp. 138ff) went on to describe as analogous to his own principle of total 

evidence: “A principle which seems generally recognized, although not always obeyed, 

says that if we wish to apply such a theorem of the theory of probability to a given 

knowledge situation, then we have to take as evidence e the total evidence available to 

the person in question at the time in question, that is to say, his total knowledge of the 

results of his observations”.  As regards the finite discrete case this entails that we use 

the narrowest class that we have available; ‘non-red’ is not suitable when we have 

‘blue’, ‘yellow’, and so on available and can so classify the object accordingly.  

 

 (Keynes, 1921, p. 55) refers to such judgements as judgements of ‘relevance’, 

and enunciates the modified version of the principle as follows: “There must be no 

relevant evidence relating to one alternative, unless there is corresponding evidence 

relating to the other; our relevant evidence, that is to say, must be symmetrical with 

regard to the alternatives, and must be applicable to each in the same manner”. Then, in 

a series of crucial subsequent qualifications of this statement he first adds (Keynes, 

1921, p. 60) that: “there should be a formal rule that will exclude those cases in which 

one of the alternatives involved is itself a disjunction of sub-alternatives of the same 

form”, and then he gives an appropriate formalization of this rule in terms of 

propositional functions f (ar). Finally, he critically adds the proviso that a necessary 

condition on the application of the principle of indifference is that these alternatives and 

sub-alternatives considered ‘should be, relatively to the evidence, indivisible’. In other 

words, the principle of indifference is also legitimately to be applied to indivisible finite 

sub-alternatives of any subject for which there is no distinguishing relevant evidence. It 

should be obvious that evidence for ‘red’ is not also relevant evidence for ‘non-red’, or 

viceversa. That is, the kind of observational evidence that may relevantly distinguish 
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‘red’ is also relevant for ‘blue’ or ‘yellow’ but not for the larger divisible alternatives 

such as ‘non-red’, etc.  

 

 Keynes’ modified principle of indifference is thus applicable to the ‘book 

paradox’ and can in principle overcome at least many of the paradoxes relative to the 

finite discrete case. It is widely believed however that it cannot overcome Bertrand style 

geometrical paradoxes in the real number continuum (Gillies, 2000, Ch. 3.5; 

Rowbottom, 2013). The reason is simply that the qualification introduced by Keynes 

makes the principle essentially inapplicable to the continuum cases, for which the 

application of ‘indivisible’ does not apply for any given interval. And no singular 

development or additional qualification seems to be able to render it applicable. Since a 

very large number of statistical probabilities require the real number continuum, 3 this 

does entail that the notion of logical probability, and the principle of indifference at its 

core, has very limited applicability. 

 

  

	

3	And	indeed	the	contemporary	notion	of	mathematical	probability,	which	defines	

probability	as	a	mapping	from	a	set	of	propositions	to	the	real	unit	interval	thus	

allowing	for	an	infinite	set	of	properties	and	subdivisions.	
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4. The Subjective Interpretation: Credence 

 

 Frank Ramsey was one of Keynes’ disciples at Cambridge and famously 

subjected Keynes´ logical interpretation to a searching critique. He complained that he 

could not in any way ascertain or detect the logical relationship that purportedly makes 

up probability. While logical consequence or demonstrative reasoning is self-evident, 

this is not the case for probabilistic reasoning or inference, which is not evident in the 

same way. As Ramsey famously put it (Ramsey, 1926, p. 161): “There really do not 

seem to be any such things as the probability relations that he [Keynes] describes. He 

supposes that, at any rate in certain cases, they can be perceived; but speaking for 

myself I feel confident that this is not true. I do not perceive them, and if I am to be 

persuaded that they exist it must be by argument; moreover I shrewdly suspect that 

others do not perceive them either, because they are able to come to so very little 

agreement as to which of them relates any two given propositions”.  Ramsey instead 

proposed to understand probability as personal degree of belief. That is, according to 

Ramsey, the probability of a proposition is a measure of the strength of a rational partial 

degree in the proposition. More particularly, Ramsey set out to show that probabilities 

can always be interpreted subjectively, on the one hand, and, on the other hand, that 

subjective degrees of belief, if they are rational, must conform to the axioms of 

probability. In other words, he set out to show an identity claim between probabilities 

and partial degrees of belief.  

 

 Ramsey’s identity claim is the first in a series that I review in later Chapters of 

this paper, including Reichenbach’s identity conception, which identifies probabilities 

with frequencies, and Popper’s ‘identity thesis’ – as referred to in (Suárez, 2013) – 
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which identifies probabilities and propensities. These identity claims all have a 

fundamental intent to reduce probability, which they consider suspect on a number of 

grounds, to notions that are supposed to be more legitimate or acceptable, often on 

empiricist grounds. Thus, Ramsey thought that agents’ degrees of belief are essentially 

measurable directly by experiments – and thus accessible in a way that probabilities as 

theoretical formal entities are not. Similarly, as we shall see in later Chapters, 

Reichenbach thought frequencies to be accessible, and Popper thought propensities to 

be legitimate, in a way that probabilities are not. In all cases, one tacit aim is to 

analytically reduce probability by means of necessary and sufficient, or identity, 

conditions.  

 

 On a subjective interpretation partial degrees of belief may be measured by 

means of ‘betting quotients’ 4 Suppose two people, X and Y, are to hold a bet about a 

certain proposition P regarding the future, or a possible future event E, and suppose that 

we are interested in finding out X’s degree of belief that E will occur.   The betting 

quotient q that X is prepared to offer Y on a certain stake S may then be established as 

follows. If E takes place Y will pay X a utility (e.g. money) given by the product of the 

quotient and the stake, i.e. U= q x S; if E does not take place then X will pay Y the stake 

S. Y fixes the stake S, which can be positive or negative, and is fixed after X reveals his 

	

4	(Ramsey,	1926,	section	3);	(Gillies,	2000,	pp.	61ff.).	There	are	issues	I	gloss	over	

in	the	text	concerning	whether	degrees	of	belief	are	behavioural	dispositions	

merely,	or	have	some	more	substantive	psychological	reality.	For	the	less	

controversial	relation	between	odds	and	betting	quotients,	see	(Mellor,	2005,	p.	

67).	
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or her betting quotient but ahead of the event. Since X does not know whether S is 

positive or negative, it is in X’s interest to reveal his or her true degree of belief in E as 

accurately as possible. Otherwise X stands to lose utility if the stakes are chosen 

appropriately. If Y were to reveal the stake S ahead of the betting, it would allow X to 

adjust the quotient accordingly and profit an in principle inordinate amount. For 

suppose the stake is positive; then X simply chooses a very large quotient q – thus 

enjoying maximal utility in case E does actually take place, and losing out only S if E 

does not take place.  

 

 Consider, for a particular example, betting on whether Arsenal will win the 

Premier championship next year. Suppose the real chance stands at 40 per cent. Y is 

merely interested in making money out of X, but X is a knowledgeable fan and his true 

degree of belief reflects the chance. However, if Y reveals a positive stake then it is in 

X’s interest to raise his betting quotient q indefinitely – for in case Arsenal actually goes 

on to win X would receive a large utility, and in case Arsenal does not win, X would 

lose only the small stake, which would be returned to Y (i.e. X in fact loses nothing). If 

Y reveals a negative stake S, then it is in X’s interest to lower his betting quotient well 

below 40 per cent and close to 0 per cent - for in case Arsenal fails to win X would lose 

out close to nothing. In fact, nothing so far prevents q from being a negative number, 

and it would obviously be in X’s interest at this stage to fix a large negative q which 

again would guarantee an inordinate amount of positive utility (q x S) in case Arsenal 

wins the championship and the mere loss of the stake (i.e. zero loss) in case it does not. 

However, if Y does not reveal its stake ahead of X’s declaring the betting quotient, then 

it is in X’s interest to neither go above nor below his or her true estimate of the chance 

of E – which we have agreed in X’s case is reflected as his or her degree of belief.  
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Therefore, the structure of the betting scenario entails that necessarily q will reflect 

accurately his or her degree of belief regarding E’s chances. And now we see that the 

assumption that X’s degree of belief correctly reflects the chances is also otiose in the 

argument since everything it takes for q to accurately represent X’s degrees of belief is 

that X’s degree of belief tracks X’s best estimate of the actual chance of Arsenal’s 

winning the championship, not the fact that indeed the estimate is correct.  

 

 Betting quotients are thus manifestations of agents’ degrees of belief, which in 

an operationalist sense (Gillies, 2000, p. 57) fix the latter by measuring the former. Yet, 

so far there has been no requirement that betting quotients obey the calculus of 

probabilities, and therefore it has not been shown that degrees of belief are probabilities, 

or that they interpret probabilities subjectively. To show this requires additional 

technical work, what is known as the Ramsey-De Finetti theorem (proved 

independently by Ramsey in 1926 and by De Finetti in 1931). The theorem establishes 

that degrees of belief are probabilities on pain of incoherence, where coherence does 

not amount to internal logical consistency, or any other a priori consideration, but is 

instead related to rationality constraints in betting scenarios, which requires some 

explication. 

 

 An agent’s degrees of belief – and the betting quotients that they express – are 

defined to be coherent if and only if it is not possible to formulate a Dutch book against 

the agent in any conceivable betting scenario, where a Dutch book is a combination of 

bets that would make the agent lose utility no matter what happens in fact. It is then 

relatively straightforward to show that betting quotients – or the degrees of belief they 

measure or represent – must be probabilities if they are coherent. An argument from 
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coherence to the effect that degrees of belief and betting quotients are probabilities is 

therefore known as a Dutch Book argument. 

 

 To prove the Ramsey-De Finetti theorem requires a prior definition of 

probability. I will follow here what is nowadays known as the definition of classical 

probability, first formulated by (Kolmogorov, 1933), but it must be noted that this 

definition is posterior in time to both Ramsey’s and De Finetti’s proofs of their theorem. 

The differences between the axiom systems that both Ramsey and De Finetti adopted 

and Kolmogorov’s own axioms are not without significance, particularly as concerns 

the notion of conditional probability, 5 but let that not detain us here since the difference 

is not significant for our purposes. Let {E1, E2, …, En} be the set of events over which 

an agent´s degrees of belief range; and let W  be an event which occurs necessarily. The 

axioms of probability may be expressed as follows (Gillies, 2000, pp. 59ff.; Mellor, 

2005, pp. 15ff.): 

 

Axiom 1:  0 £ P (E) £ 1, for any P (E): In other words, all probabilities lie in the real 

unit number interval. 

 

Axiom 2: P (W) =1: The tautologous proposition, or the necessary event has probability 

one. 

	

5	Kolmogorov	essentially	defines	conditional	probability	by	means	of	the	ratio	

analysis,	while	both	Ramsey	and	De	Finetti	presuppose	that	conditional	

probability	is	a	primitive	that	admits	no	explicit	definition	and	aim	instead	to	

characterize	it	axiomatically.	See,	for	example,	(Gillies,	2000,	pp.	65ff.)	
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Axiom 3: If {E1, E2, …, En} are exhaustive and exclusive events, then P (E1) + P(E2) + 

… + P(En) = P (W) = 1: This is known as the addition law and is sometimes expressed 

equivalently as follows: If {E1, E2, …, En} is a set of exclusive (but not necessarily 

exhaustive) events then: P (E1 v E2 v … En) = P (E1) + P(E2) + … + P(En).  

 

Axiom 4: P (E1 & E2) = P (E1 / E2) x P (E2). This is sometimes known as the 

multiplication axiom, the axiom of conditional probability, or the ratio analysis of 

conditional probability, since it expresses the conditional probability of E1 given E2.6  

 

The function P maps the set of events over which probabilities are defined onto the real 

unit interval and is a probability function, or (for countable versions of the addition law) 

a probability measure. The Ramsey-De Finetti theorem then shows that betting 

quotients, if they are coherent (if they are such that a Dutch book cannot be made 

against them), necessarily obey the axioms of probability (i.e. they are probabilities). It 

follows that probabilities are at least potentially representations of partial degrees of 

	

6	The	fourth	axiom	is	sometimes	written	in	the	form	of	Bayes’	theorem:	𝑃	(𝐴 𝐵⁄ ) =

)(* +⁄ )	)(+)
)(*)

,	although	strictly	this	is	just	a	consequence.	Bayes’	theorem	is	relevant	to	

the	theory	of	confirmation,	since	it	helps	evaluate	the	probability	of	a	theory	in	the	

light	of	evidence,	in	a	process	known	as	conditional	updating,	as:	𝑃(𝑇 𝑒⁄ ) =

)(. /⁄ )	)(/)
)(.)

,	as	long	as	estimates	are	available	for	what	are	known	as	the	priors,	that	

is,	the	prior	probability	of	the	theory,	P(T),	and	the	evidence,	P(e).	See,	for	instance,	

Howson	and	Urbach	(2006).		
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belief (also known as credences), whether or not actually manifested as betting 

quotients. Hence, the theorem also shows that probabilities may be interpreted 

subjectively as credences.  

 

 The proof of the Ramsey-De Finetti theorem goes in four stages, corresponding 

to each of the axioms of probability, and is too long to be reproduced here in full. 7 I 

will just illustrate the nature of the proof (and the theorem) by showing how it applies to 

the second theorem concerning the certain event W. All betting quotients on a certain 

event must be one if they are to be coherent. The reason is provided by the following 

Dutch book reductio argument. Suppose a betting quotient q on W is greater than one. 

Then Y will always win by choosing a negative stake – S, since in that case X receives 

with certainty the utility q x – S > – S; that is, X must give Y the utility corresponding 

to a quantity strictly larger than |S|. On the other hand, if X’s betting quotient in W is 

less than one, then Y will always win by choosing a positive stake S, since in that case 

X receives with certainty the utility q x S < S, which is less than the stake. The only 

way to avoid a Dutch book is for X to choose his or her betting quotient q to be one, i.e. 

q = 1. The same type of reasoning is easily generalizable to cover the remaining axioms. 

Coherent betting quotients must obey the axioms of probability; in other words, rational 

credences are in fact probabilities.   

 

 The subjective interpretation of probability is not, however, without its 

problems. Here I will only point out one, show how it has already made a tacit 

	

7	The	full	version	may	be	found	in	(Ramsey,	1926,	section	3);	(Gillies,	2000,	pp.	58-

64);	or	(Mellor,	2005,	pp.	69-70).		
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appearance in our reasoning so far, and provide some additional grounds for worry. The 

problem is this: in order to make the subjective interpretation of probabilities as 

credences work, we need to assume that not all probabilities are subjective or that at any 

rate some probabilities capture or describe objective matters of fact in the world. This 

points out nothing historically new, since we know from the historical scholarship that 

we reviewed in the first chapter that probability is Janus-faced, or essentially dual. But 

it comes as a blow for accounts of probability that reduce it to credence or subjective 

partial degree of belief.  

 

 My point here is also different to the usual point that there are as a matter of fact 

objective probabilities that subjectivists cannot account for, such as the objective 

probabilities predicted by quantum mechanics.8 My argument does not turn on the 

factual existence of objective probabilities. The argument is rather that the consistency 

of the subjective interpretation ultimately requires the recognition of an objective 

	

8	At	any	rate	I	am	amongst	those	who	believe	it	to	be	the	case	that	there	are	

objective	as	well	as	subjective	probabilities.	But	then	again,	so	is	Ramsey,	who	in	

1926	already	pre-empted	Carnap’s	(1950)	dual	concept	of	probability:	“Probability	

is	of	fundamental	importance	not	only	in	logic	but	also	in	statistical	and	physical	

science,	and	we	cannot	be	sure	beforehand	that	the	most	useful	interpretation	of	it	

in	logic	will	be	appropriate	in	physics	also.	Indeed	the	general	difference	of	opinion	

between	statisticians	who	for	the	most	part	adopt	the	frequency	theory	of	

probability	and	logicians	who	mostly	reject	it	renders	it	likely	that	the	two	schools	

are	really	discussing	different	things,	and	that	the	word	“probability”	is	used	by	

logicians	in	one	sense	and	by	statisticians	in	another”	(Ramsey,	1926,	p.	157).	
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dimension to probability, or a representation of chances along with those subjective 

degrees of belief. This is in line with the claim that the duality of probability unearthed 

by the archaeological scholarship is present in contemporary philosophical discussions 

regarding the interpretation. 

 

 The appeal to objective probability was of course already present in the 

discussion of how an agent’s betting quotients track or represent his or her degrees of 

belief. The argument implicitly appealed to the best estimation of chances, say the 

chance of Arsenal winning the premier league. Now, the reality of the chances 

themselves is not required by the argument since, as we saw, that assumption can 

ultimately be abandoned without loss of generality. What feeds into the argument is not 

the actual chance that Arsenal will win, but the best estimate of the agent – and the link 

between credences and betting quotients follows merely from the estimate regardless of 

how biased it may be. But what are these estimates of? Betting quotients are, as we saw, 

representations of the agent’s credences – about what? A reasonable answer, shared by 

different approaches, is that they are best estimates of the underlying chances (the 

agent’s best estimate of Arsenal’s chance to win). If so, there is still implicit at the core 

of the subjective interpretation an assumption regarding objective chances.  

 

 Another way to put the argument is by considering the crucial notion of 

exchangeability in the subjective interpretation. According to reductionists, such as (De 

Finetti, 1937), or (Savage, 1954), exchangeability is an assumption required to reduce 

what appear to be objective probabilities to subjective ones. It supposes that any agent 

will ascribe the same probability to any sequence of events which exhibits the same 

frequency ratios of possible outcomes. Those sequences are then said to be 
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exchangeable. De Finetti proved a theorem to the effect that such exchangeable 

sequences are to all extents and purposes indistinguishable from sequences of causally 

independent outcomes, that is, they satisfy a basic requirement of independence (see 

also Savage, 1954, p. 50ff). Thus, in the simple case of coin tossing, this amounts to the 

assumption that any sequence ‘HTHTHTHT’ is as probable as any sequence 

‘HHTTHHTT’ since the ratio of heads to tails is ½ in both cases. If so, according to the 

definition any infinite sequence generated by the tossing of the coin ‘HTTTHHTH …’ 

is exchangeable. More generally, we say that an infinite sequence of random variables 

{X1, X2, …, Xn} is exchangeable if for any finite cardinal number n and any two finite 

sequences {i1, i2, …, in} and {j1, j2, …, jn}, the two sequences {Xi1, Xi2, …, Xin} and 

{Xj1, Xj2, …, Xjn} have the same joint probability distribution. De Finetti’s thought is 

that the subjectively accessible property of exchangeability then may be used to reduce 

the objective notion of independence (or randomness) since his theorem guarantees that 

the latter follows from the former. 

 

 However, critics have argued that the theorem if anything shows the opposite, 

since independence is in fact presupposed in the very notion of identical joint 

probability distribution for randomly generated sequences. In other words, it is only 

under the assumption that the tosses are independent that exchangeability of any 

outcome sequence entails that any finite sequence will have an identical joint 

distribution. As Gillies puts it: ‘[… F]ar from our being able to reduce the notion of 

objective independence to that of exchangeability, the concept of exchangeability is 

actually parasitic on that of objective (causal) independence and so redundant. In order 

to use exchangeability in a way which does not lead to erroneous and misleading 

results, we have first to be sure that the situation is objectively one of independence’ 
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(Gillies, 2000, p. 77). The dual nature of probability thus seems to appear in the 

subjective interpretation too.   
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5. The Reality of Chance: Empiricism and Pragmatism 

 

 I have canvassed so far two interpretations of probability that emphasize and 

stress the epistemological (i.e. non-objective) side or dimension of probability. In their 

purest form each of these interpretations attempts to reduce the concept of probability to 

operative and manifestly epistemic concepts. The logical interpretation understands 

probability as a logical relation between propositions, such as partial degree of 

entailment or inductive support; the subjective interpretation understands probability as 

coherent partial degree of belief, or credence. In each case, the ultimate aim is to lay 

down necessary and sufficient conditions for probabilistic statements in terms of these 

epistemic properties. Occasionally, as we saw is the case with Ramsey, their proponents 

will accept that their theory can only account for the epistemic dimension or notion of 

probability, and that there is another objective or ontological dimension that remains 

untreated. But more often than not, the intent is ultimately reductive, and therefore 

implicitly dismissive of the reality of objective chance. 9 

 

	

9	In	some	cases	it	is	explicitly	so,	as	when	De	Finetti	writes	(De	Finetti,	2008,	p.	

43):	“Objectivist	statisticians	[…]	reject	the	use	of	the	initial	probability	because	

they	reject	the	idea	that	probability	depends	on	a	state	of	information.	However,	

by	doing	so,	they	distort	everything:	not	only	as	they	turn	probability	into	an	

objective	thing	[…]	but	they	go	so	far	as	to	turn	it	into	a	theological	entity:	they	

pretend	that	the	‘true’	probability	exists,	outside	ourselves,	independently	of	a	

person’s	own	judgement”.	



	 39	

 This brief chapter is intended to offer some empirical instances of objective 

chances, and hopefully will serve to strengthen the thought that the defender of 

subjective probability must at the very least offer some story to account for them. I then 

quickly run through some of the solutions that subjectivists have offered in response 

before I turn to a discussion of fully objective interpretations of probability. 

  

 Some of the games of chance that gave rise to the concept of probability in the 

seventeenth century on the face of it involve genuine operations on physically real 

chance set-ups yielding what look like undeniably objective chances – of the sort that 

cannot be rendered subjective. Consider dicing, where the physical properties of the die 

seem to minimally influence – if not fully determine – the probabilities for it landing on 

any of its different sides. Thus, a skewed, smaller, distorted, or otherwise defective side 

can lead to a very different, often much reduced, probability of the die falling on that 

side in the long run, and therefore to a higher probability of the number on that side 

appearing as the outcome. Similarly, a heavily biased coin, of greater density on one 

side than another, will in our common experience always lead to a different probability 

for heads and tails in the long run. These differences appear in our experience to be 

independent of any particular agent’s degree of belief. They do not seem to depend on 

any agent’s degrees of belief or state of knowledge, but solely on the actual physical 

constitution of the chance set-ups in question.  

 

 There are a multitude of similar examples across the natural and social sciences 

where the probabilities of particular chance set-ups or phenomena appear to be entirely 

independent of any agent’s beliefs regarding them. A common example from physics is 

radioactive decay. One may helpfully summarize the main facts regarding radium decay 



	 40	

as follows. Radium atoms have a chance pt of decaying within t years. In the case of the 

most common isotope, radium-226 this is ½ in 1600 years. To work out the chance of 

decay of a single atom in any single given period of time, we may employ the decay 

constant for exponential decay. Thus, radioactive materials exponentially decay in 

accordance to the formula: , where l is the decay constant. The decay 

constant for Ra-226 is  per second. Hence, the chance that an atom of Ra-

226 would decay within a second is . Alternatively, a gram of Ra-226 will 

display on the order of  decays each second (what is known as a curie). These 

sorts of numbers are constants for each kind of element and their isotopes. For example, 

less stable isotopes of radium will decay more quickly, in other words their probability 

of decay will be higher. Thus radium-228 has a half-life of 5.75 years, and radium-225 

only 14.9 days. There is nothing subjective regarding these probabilities; it just simply 

seems wrong to think of them as measuring anyone’s particular credence or degree of 

belief. Rather to the contrary it would seem that anyone rational and informed should 

adjust their credences to these objective chances as far as possible. What can the 

subjectivist say in response? 

 

 There is a long history of attempts by subjectivists to either deny the reality of 

chance or to ‘bring it under’ the scope of subjective probability. For lack of space I shall 

not be able to fully assess these attempts here; but I would like mention just two of 

them. Firstly, we saw how De Finetti defended that the notion of exchangeability would 

be able to provide a subjectivist surrogate for the objective notion of probabilistic 

independence, and thereby provide a reduction of objective chance. Such an attempt 

was criticized above as misguided, but others in this tradition have attempted a 

reduction of a different kind. For instance, Hewitt and Savage (1955) generalize 
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exchangeability to all random variables, and more recently Skyrms (1977) has 

suggested that resilience may do the trick (where a subjective probability is resilient 

roughly if it is no longer susceptible to major change or updating on the basis of new 

evidence, no matter what evidence may be forthcoming). The basic problems with these 

accounts are all in the spirit of the original objection to De Finetti’s exchangeability 

surrogate: it is not clear in any of these cases that the accounts succeed except to the 

extent that they presuppose objective notions.  

 

 Secondly, there is the different ‘Humean’ tradition defended by David Lewis 

(Lewis, 1980), who claims to provide ‘a subjectivist’s guide to objective chance’. Lewis 

even advanced an influential Principal Principle that explicitly connects chance to 

credence. However, it is unclear whether this tradition in fact provides a subjectivist 

surrogate of objective chance, or rather an entirely different metaphysical conception of 

objective chance (as the sort of probabilities invoked by best system analysis statistical 

laws – see Hoefer (2018) and Ismael (2008; Forthcoming). Thus, the role of David 

Lewis’ Principal Principle is not necessarily one of grounding objective chance in 

subjective credence, but it is rather one of specifying and making explicit some of the 

functions that any metaphysical conception of objective chance must deliver (see 

chapter 10 for further discussion). 

 

 I conclude that we have strong reasons to accept the reality of objective chance, 

and that we are therefore in need of an account of the probabilities that ably represent 

objective chances across the sciences. The rest of the book will deal with the question as 

to what these chances may be, or how they may be understood. Initially, in the next two 

chapters, I shall address the philosophical issue head-on through the ‘objective’ 
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interpretations of chance. In the second half of the book (chapters 8-13) I enlarge the 

family of objectivist views considered, and contrast the interpretational efforts with 

what I shall claim is a more promising approach in terms of modelling practice.  
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6. The Frequency Interpretation: Actual and Hypothetical 

Frequencies 

 

 Charles Sanders Santiago Peirce (in his 1893 and many other writings) was 

probably the first philosopher to explicitly advocate and defend irreducible 

indeterminism in connection with chance phenomena. Peirce argued tirelessly against 

what he called ‘the doctrine of necessity’ (by which he meant, roughly, Laplace’s 

determinism), and in favour of randomness and chance (Hacking (1990, Ch. 23), Mayo 

1996, Ch. 12). Peirce’s main inspiration was his practical work in geodetics at the US 

Coast Survey; he was amongst the first to argue for the legitimacy of statistical 

inference from data; to use sampling techniques as a foundation of inductive reasoning 

in general; and to argue first for a frequency theory of chance, and then later on in his 

life for a propensity account of probability. The frequency theory was first clearly stated 

in its modern form by John Venn (1866), and it went on to be developed fully by 

Richard von Mises (1928/1957) and Hans Reichenbach (1935/1949). Here I will mainly 

adopt and discuss Von Mises’ version. His account is squarely in the empiricist 

tradition, yet it is also objective because both the regularities and each of the involved 

facts are objective. In other words, this is a reductive account or, in Reichenbach’s term, 

an ‘identity conception’ that identifies probability with frequency. 10 

 

	

10	See	(Howson	and	Urbach,	2006,	p.	50)	for	an	alternative	view	on	Von	Mises’	

empiricism.	
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 The frequency account deals with chance as follows. The statement that the 

chance of decay of a Ra-226 atom within t years is pt can be translated into a statement 

of frequency as follows: ‘the frequency of Radium-226 atoms decaying within t years is 

pt’. Alternatively, if we fix on a curie, then ‘in the large collection of Ra-226 atoms that 

make up one gram of this material the proportion of those that decay within a second is 

’.  There are different ways of fleshing out this thought, but all of them share a 

commitment to probabilities understood as properties of groups, sets, or ‘collectives’ (in 

von Mises’ phrase to be more closely studied later on). On the frequency view a single 

individual taken in isolation does not have any chances, or probabilities. Only groups or 

sets or classes of such individuals can be said to have chances. Statistical laws are called 

forth in those cases simply because there needs to be a reference to the whole collection 

of objects for a probability statement to make sense. Hugh Mellor (Mellor, 2005, p. 37) 

puts the point well when he writes: “for frequentists there is no such thing as a chance pt 

(other than 0 or 1) of a single atom decaying in a given period of t years.  Such a 

chance, in their view, is no more a property of a single atom than, for example, the 

property of being numerous is.”   

 

 (von Mises, 1928/1957) first introduced the notion of a ‘collective’ in order to 

ground frequencies, even in cases where there are no obvious explicit references to 

groups, sets or classes of entities endowed with frequencies. The thought is that as long 

as a probability statement is meaningfully made, there must be implicit if not explicit 

reference to a collective, a sequence with a well-defined limit that remains invariant 

under place selection (von Mises’ definition of a random sequence). But a collective is 

necessary because for any given event that is ascribed a probability, there must exist a 

whole family or class that this event is properly a part of. Suppose that I want to 
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establish the probability that a particular atom will decay within an hour. The first thing 

I need to know is what kind of atom this is – the full description of the element and its 

corresponding isotope. But to be given this information is to be given implicitly a class 

that this particular atom is an instance or individual example of. The probability is then 

to be identified with some property that some of the elements in the class may have – a 

particular frequency. And this in turn is established as the ratio of the cases in the class 

that possess this property. If the probability of a radium-226 atom decaying in 1600 

years is ½, this means, on this view, nothing other than that exactly half of the atoms in 

this given class do decay within that specified period of time.  

 

 The proper definition of ‘collective’ is nevertheless plagued with difficulties, 

which ultimately make the frequency interpretation very difficult to maintain. von 

Mises introduced the notion of the attribute space W; this is the set of all possible 

outcomes of a particular repeatable trial, thus often also called the outcome space, over 

which probabilities are defined. The attribute space is constrained by both the 

population and the class of entities or properties relative to which the probability is 

defined. Thus, von Mises also distinguished empirical and mathematical collectives, and 

claimed that the latter were an abstraction or idealization of the former in the same way 

in which physics often abstracts away from concrete detail thus focusing on idealized 

frictionless planes, etc (von Mises, 1928/57, pp. 99-100). Nevertheless, the strength of 

the analogy has often been disputed – for discussion see, for example, (Gillies, 2000, 

Ch. 5). Yet without a mathematical notion of collective it is hard to see how the 

frequency definitions can be made to work, for all empirical collectives are finite, while 

probability distributions are continuous functions that map onto the full real number 

unit interval. On the other hand, the true empiricist commitment seems to lie with the 
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empirical collectives, since these can be defined for the finite frequencies that we 

actually observe or record experimentally.  

 

 It is thus typical to distinguish between two different views: finite and 

hypothetical frequentism. 11 Finite frequentism is a slightly simplified version of the 

view defended by Venn and identifies a probability as applied to a particular finite 

population with the finite frequency ratio of a particular attribute or outcome in that 

population.  Thus if in a particular experimental run, I toss a coin exactly 50 times 

obtaining 22 heads and 28 tails the probability of (the attribute) heads relative to the 

(collective made up of) 50 trials of this particular coin is exactly 0.44, and that of (the 

attribute) tails is 0.56. If I then go on to toss the same coin another 50 times obtaining 

20 heads and 30 tails, the probability of (the attribute) heads relative to the entire 

(collective) of 100 trials is now 0.42 and that of tails is 0.58. And so on. It is clear that 

this conception satisfies the empiricist constraints that motivate frequency accounts of 

probability in the first place, but it is also clear that it makes probability a perilously 

ephemeral property of the particular finite empirical collective at hand.  

 

 There is a clear sense in which our ascriptions of probability, particularly in 

scientific domains, transcend such empirical collectives. For instance, the chance of a 

radium-226 atom to decay does not seem relative to – or in any other way constrained 

by – any particular empirical finite trial or observation of any particular sample of Ra-

	

11	(Mellor,	2005,	Ch.	3)	more	finely	distinguishes	three	views:	finite,	limiting,	and	

hypothetical	frequentism.	I	follow	here	more	common	use	in	lumping	the	limiting	

and	hypothetical	versions	together	–	as	in	e.g.	(Hájek,	2009).		
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226. On the contrary, it is a theoretical result that appears at least in principle to be 

derivable from the quantum mechanical description of the stability of the atomic 

nucleus, and it is therefore independent of any particular trial on any particular sample. 

Similarly, we are tempted to think that the probability of a coin to land heads is an 

intrinsic feature of the coin in its proper context (which includes the features of the 

particular toss): it thus depends on the geometrical and physical properties of the coin 

together with the set-up and the particular circumstances involved in tossing it. The 

finite frequency account of probability denies this, and in so doing it appears to do some 

violence to our intuitions in these cases.  

 

 The finite frequency interpretation defines probability relative to an empirical 

collective. The main role of the collective is to lay down what is known as a reference 

class for the probability in question – this is the class of all the relevant events of the 

same type. The types may differ greatly depending on the level of description – as a 

result the probabilities too will differ, in ways that again seem contrary to our intuitions 

regarding the unconditional probabilities at stake. For example the probability that I 

may develop lung cancer in the next thirty years is different depending on the collective 

that it is defined relative to, because the event of my developing lung cancer in the next 

thirty years belongs to many different reference classes with different relative 

frequencies of positive outcomes to total number of cases. Thus, this probability is 

different if I am just regarded as a Western European, or a non-smoking male, or a 

person who regularly exercises, or who follows some healthy diet, etc. This is 

sometimes known as the reference class problem. According to the finite frequency 

account, there is not in fact a probability that corresponds to this event, only an 

indefinite number of relative or conditional probabilities.  



	 48	

 

 Hypothetical frequentism is often consequently advanced in order to overcome 

some of these difficulties. Instead of defining probability relative to a particular 

empirical collective, it defines it relative to the limit in the corresponding infinite 

collective; and it assumes that the limit coincides for all those empirical collectives that 

are sub-classes of this more general one. In other words, an infinite or mathematical 

collective must be selected ab initio. Thus, in my examples, all experimental 

observations on radium-226 atoms yield empirical collectives that have the appropriate 

limiting frequencies corresponding to the theoretical chance for decay. And the coin in 

the long term also tends to a particular limiting frequency (0.5 in the case of an unbiased 

coin), so both empirical collectives referred to above share the same limiting frequency 

even though their finite frequency ratios differ. This limiting frequency is guaranteed by 

the so-called axiom of convergence (von Mises, 1928/1957; see also Gillies, 2000, pp. 

96ff.), which states that for any arbitrary attribute A of any collective C, then 

, where PC(A) is the probability of A in the collective C, or 

relative to its reference class.  

 

 Although the move to the hypothetical limit lets frequentism off the hook 

regarding empirical collectives, it creates a number of hard problems of its own, and 

unfortunately retains some of the deficiencies of the finite frequency analysis anyway. 

Let me here review just three of them. Firstly, notice that going hypothetical entails a 

surreptitious abandonment of the empiricism that motivated the frequency interpretation 

in the first instance. For the consideration of the limit brings with it not just a 

hypothetical situation (the running of an experimental trial an infinite number of times) 

but, most glaringly, an essential modal element that seems prima facie contrary to any 
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empiricist strictures. What I have in mind is that the limit must be defined in relation to 

a counterfactual situation – one in which we toss the coin an indefinite number of times, 

under the assumption that the circumstances remain identical. In other words, we are 

asking not after the limiting character of an actual situation, but after a counterfactual 

limit in a counterfactual situation.  

 

 Take the example of a biased coin again. The hypothetical limit is that to which 

the outcomes of the coin toss would tend where the coin to be tossed under the same 

circumstances an indefinite (and potentially infinite) number of times. Assuming the 

circumstances stay the same (tossing on the surface of earth under the typical pressure 

level, in the same atmospheric conditions, on a surface of identical friction, with 

identical force, etc), the probability of heads would be, say 60 per cent, if that is the 

limit the frequency would tend to. However, nothing guarantees that the conditions 

would stay the same, and if pressure, friction, gravity, and other factors were to change 

the limit itself would change, and so would, arguably, the probability. And, in fact, it is 

impossible to suppose that none of those circumstances would in the actual world 

change, however slightly, in a given period of time, however short. Therefore, in an 

infinite run, we may therefore assume the conditions to change infinitely many times, 

and not necessarily slightly. To guarantee that the limit stays fixed, we need to 

guarantee the stability of the conditions, and this may only be achieved 

counterfactually.  

 

Hence the hypothetical frequency account is not merely hypothetical, but 

counterfactual. It asserts that probability of a particular attribute A in a reference class R 

is the limit of the relative frequency of A’s among the total number of cases in R that 
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would be the case if there were an infinite sequence of trials under identical conditions, 

or infinite collective C. This is hardly fitting for an empiricist account of probability and 

seems to rob it of its main attraction – namely to provide an account of probability that 

does not resort to metaphysics. 

 

 The surreptitious abandonment of empiricism does not deliver the hypothetical 

frequency interpretation from all objections or difficulties anyway. The second main 

problem for the hypothetical frequency account is again a variant of the reference class 

problem. The definition of probability is on the hypothetical frequency account still 

relative to some reference class, however counterfactual or hypothetical. Thus, in the 

example of the coin above, the limit is defined relative to a particular collective, and 

therefore a reference class of similar tosses. The class is made up of a number of 

different events, and the decision which events to include or exclude may well 

determine whether the sequence of outcomes in the class has a limit and what this limit 

is. We may for instance choose to include all tosses with the same coin irrespective of 

all conditions – hypothetical or otherwise – that it is tossed in – that is, we choose to 

abstract away friction, gravity, and so on. Or we may choose to include all tosses with 

different coins of the same type on the same surface in the same gravitational field, and 

under otherwise identical experimental conditions. And so on. Each of these decisions 

will determine the nature of the infinite collective and its limiting frequency.  

 

 Finally, there are issues regarding the limiting character itself of hypothetical 

frequencies. It was noted that the axiom of convergence guarantees that there is a 

limiting frequency for every well-defined collective. Yet, the application of the axiom 

may be circular for the purposes at hand; and particularly so as part of a definition of 
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probability as limiting frequency. One of the defining characteristics of a collective, 

according to von Mises, is a certain long-run stability of its attributes. Thus, the law of 

stability of statistical frequencies (von Mises, 1928/1957; see also Gillies, 2000, pp. 

92ff.) guarantees that for any collective, a repetition of an experimental trial an 

indefinitely large number of times will eventually converge upon a particular number. 

While von Mises thought of this as an empirical law, it is also true that it is a law known 

to hold only for stable chance set-ups or arrangements that exhibit the sort of stability of 

properties required by the counterfactual condition discussed above. It is therefore 

implicitly a law that only applies to collectives.  The application of the axiom of 

convergence is not valid for chance set-ups that are ‘not stable’, or for sequences of 

outcomes that are not properly part of collectives. In such cases, there is no guarantee 

that the sequence will have a limiting frequency for the attribute at hand, and therefore 

on a hypothetical frequency account there is no guarantee that there is any probability at 

all of the attribute in question (Hájek, 2009). 

 

 One final observation is that the resolution to these issues points again towards 

the dual nature of probability, as I have been stressing throughout the first half of this 

book. The obvious way around some of these objections requires a judicious selection 

of chance set-ups and reference classes. On a frequency account of probability, 

ascriptions of probability to present events have a curious dependence upon future 

events – under a particular description. What kind of chance a particular attribute A now 

has in part depends upon the future frequency of A’s within a relevant sequence. The 

sorts of problems involved are thus of a very similar sort to those regarding the 

projectability of ‘entrenched’ predicates in discussions of the problem of induction 
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(Goodman, 1955), and the resolutions in practice correspondingly appeal to similar 

pragmatic judgements in both cases. 

 

7. The Propensity Interpretation: Single Case and Long 

Run 

 

 The propensity interpretation of probability fully emerged in the 1960s as a 

realist attempt to overcome some of the difficulties with frequency accounts and to 

restore a robust objective interpretation of probability. Its historical sources, however, 

go a much longer way back to the end of the nineteenth century. Peirce defended a 

broadly dispositional account of probability, whereby dispositional properties inherent 

in chance systems and objects give rise to long-run stable frequencies. Critically, the 

dispositional properties according to Peirce reside in the very chancy objects 

themselves, who carry them over from situation to situation, regardless of hypothetical 

or counterfactual conditions. As he wrote (Peirce, 1910, p. 169) in relation to dice: “[…] 

the die has a certain “would-be”; and to say that a die has a “would-be” is to say that it 

has a property, quite analogous to any habit that a man might have …and just as it 

would be necessary in order to define a man’s habit, to describe how it would lead him 

to behave and upon what sort of occasion – albeit this statement would by no means 

imply that the habit consists in the action – so to define the die’s “would-be”, it is 

necessary to say how it would lead the die to behave on an occasion that would bring 

out the full consequence of the “would-be”; and this statement will not of itself imply 

that the “would-be” of the die consists in such behaviour’. 
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 The fundamental insight in this paragraph is of course the thought that 

probability is essentially a probabilistic disposition. Peirce went on to define the 

‘consequences’ of this probabilistic dispositional property in accordance with his 

pragmatist maxim, which prescribes to think of any concept in terms of whatever 

manifestations or effects in thought the concept has in our mind. He noted that some or 

maybe all of those consequences would only be manifested in the long-run. The actual 

long run frequency that manifests the underlying disposition of a die is only revealed in 

the long term – in an indefinitely large sequence of trials of tossing the die. The 

pragmatist maxim has sometimes been confused with a version of the principle of 

verification so dear to logical empiricists. But note how unsuitable this is as a reading of 

Peirce’s fundamental commitments. Under a verificationist reading the die’s ‘would-be’ 

has no empirical consequences and is therefore meaningless. It follows, on this reading 

of the pragmatist maxim, that there are no probabilistic dispositions, which shows that 

this is the mistaken reading of Peirce’s maxim. The version of the pragmatist maxim 

actually defended by Peirce does not stipulate that the manifestations or effects must be 

empirically accessible. Peirce’s pragmatism is a historical antecedent of twentieth-

century philosophy of science, but it was not a form of logical empiricism (and Peirce’s 

own explicit diatribes against Hume make clear the extent to which he would want to 

distance himself from traditional empiricism, or more generally any foundationalist 

epistemology).  

 

 In other words, in accordance to the actual pragmatist maxim, for a concept to be 

well defined it matters not so much what the empirically accessible consequences are, 

as simply what the consequences in thought of the concept are, regardless of whether 

they are accessible or not. When it comes to probabilistic dispositions or chance, long-
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run frequencies in the infinite limit are fine as far as Peirce is concerned, as a clear and 

precise consequence or effect of chances. But they may not be identified with the 

chances themselves on pain of conflating cause and effect. The mere fact that we 

understand these frequencies to possibly display or manifest the underlying probabilities 

shows that the concept of probability has a well-defined meaning in accordance with the 

pragmatist maxim. 

 

 The view is prescient, both in terms of the critical objections to the frequency 

conceptions, and in terms of the version of an alternative propensity interpretation that 

would make sense. Peirce was thoroughly committed to objective real chance – as we 

saw in the interluding chapter 5 – yet he refrained from any overly simple or 

straightforward reduction. Unfortunately, his lessons were not always clearly heeded, 

and the influence of the von Mises – Reichenbach empiricist reductionist projects was 

deeply felt in ways that cannot always be considered constructive or felicitous, in the 

various attempts to develop a propensity account of probability. 

 

 The most celebrated and better known amongst such accounts is due to Karl 

Popper, who developed his ‘propensity interpretation of probability’ in the late 1950s 

and early 1960s. It is well known too that Popper developed his propensity 

interpretation in response to some paradoxes of quantum mechanics. In particular he 

claimed that the resolution of the two-slit experiment requires a propensity 

interpretation of the quantum probabilities: ‘The interpretation of the two-slit 

experiment … ultimately led me to the propensity theory: it convinced me that 

probabilities must be “physically real” – that they must be physical propensities, 

abstract relational properties of the physical situation, like Newtonian forces, and “real”, 
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not only in the sense that they could influence the experimental results, but also in the 

sense that they could, under certain circumstances (coherence) interfere, i.e. interact, 

with one another’. (Popper, 1959, p. 28). 

 

 Unlike Peirce, however, Popper did not associate such propensities with the 

chancy objects individually taken, but with entire experimental set-ups instead. He thus 

contended that the same chancy object placed in different environments, and subjected 

to different gravitational forces, and so on, would not only display different long-run 

frequencies but actually is endowed with different propensities. For instance, a biased 

die tossed on the surface of the moon would not only exhibit different frequencies for 

the different outcomes but in fact properly and legitimately possesses different 

propensities. In other words, Popper conceived propensities as relational properties of 

chance set-ups, corresponding with the different displays of long-run frequencies in 

each case: “[Propensities] are relational properties of the experimental set-up. For 

example, the propensity ¼ is not a property of our loaded die. This can be seen at once 

if we consider that in a very weak gravitational field, the load will have very little effect 

– the propensity of throwing a 6 may decrease from ¼ to very nearly 1/6”. (Popper, 

1957, p. 68).  

 

 Popper was committed to a thesis that I have elsewhere referred to as ‘the 

identity thesis’, according to which probabilities are propensities, and vice-versa 

(Suárez, 2013, pp. 65-66). The identity thesis is the analogue for propensities of 

Reichenbach’s identity conception for frequencies. It is a reductionist commitment in 

the spirit of the logical empiricist philosophy that I have discussed in previous chapters. 

Its adoption by Popper (who by many other lights was a leading critic of logical 
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empiricism) signals another important difference between Popperian and Peircean 

accounts of chance and propensity. Popper mainly came up with an interpretation of 

probability; and in his works propensities’ only role is to provide a semantics for 

probabilities. Thus, according to Popper, one may solve the paradoxes of quantum 

mechanics merely by providing the right philosophical interpretation (i.e. the right 

model, in the model theoretic sense) of quantum probabilities as propensities.  

 

 By contrast, Peirce saw real chances everywhere, in every branch of science, 

whether theoretical or experimental, and as we saw he defended the identification of 

propensities with explanatory properties of chancy systems that would explain the long-

term behaviour under appropriate testing conditions. In other words, Peirce ascribed 

propensities an explanatory role, not an interpretational one, and he thought that this 

role was nearly universal across the sciences. There is a world of difference between the 

rather limited claim that propensities are a model for probability, and the claim that 

propensities are real dispositional properties of chancy objects that we may postulate in 

order to explain experimental frequencies.  For a start, the explanatory claim leaves 

open any issues regarding the identity conditions or the truth-makers of statements 

regarding probability since it does not make the claim that probabilities are propensities, 

or that probability statements are made true by propensity facts. On the one hand this 

leaves more work to be done; on the other hand, it nicely keeps neutral in the debate 

regarding the interpretation of probability itself. It may be that if the logical, subjective, 

frequency and (Popperian) propensity interpretations of probability do not apply, this is 

because there are at least cases where no interpretation at all is applicable. Perhaps 

probability is a plural notion admitting no single or simple interpretation. If so, Peirce’s 
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views have an advantage since they do not prejudge the issue. (For discussion and 

extension of Peirce’s views see Fetzer, 1993; and Suárez, 2013) 

 

 The one aspect that Popper and Peirce prima facie did agree upon was the 

putative link between propensities (whether as dispositional properties of entire set ups 

or isolated chancy systems) and long-run frequencies. In their younger periods both 

thinkers understood this link to be constitutive: propensities are at least in part to be 

thought of in terms of their manifestations or consequences. A theory of propensities 

that so links them constitutionally to long-run frequencies is known as a long-run 

propensity theory. The difference with long-run or hypothetical frequency views is slim, 

but significant: where the propensity theory thinks of probabilities as features of 

repeatable sets of conditions that give rise to stable long-run frequencies, the frequency 

theory conceives probabilities as long run frequencies directly – that is, without any 

intermediary detour via any conditions or other properties of chance set-ups. While the 

latter is open to an actualist reading (at least in the finite case) the former is explicitly 

dispositional and modal – since the repeatable conditions are precisely those ones that 

would give rise to the same long-run frequencies but only if the experiment were to be 

repeated often enough.  

 

 Later in their lives, both Peirce and Popper moved closer to a single-case 

propensity theory instead. The key difference is that the single-case theory can make 

sense of single-case probabilities, regardless of any repeatable conditions (or, regardless 

of any reference class or collective as required in the frequency view). The reason is 

that the propensities are ascribed to the chancy objects (or, alternatively, the entire set 

ups) but without implicit or explicit reference to any repeatable conditions, or the 
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ensuing long run frequencies. Take the old coin toss example. A single-case propensity 

theory in the spirit of Peirce ascribes the probabilistic dispositions to the coin itself 

independently of any experimental set-up, repeatable conditions, or frequencies in any 

sequences. In fact, the coin may never be tossed at all and still possess the propensities 

in question. On a long-run propensity view, by contrast, the coin only possesses 

propensities in as much as it may generate particular long run frequencies in certain 

indefinitely long sequences generated in specified identical repeatable conditions. So 

properly speaking, as in the frequency view, the long-run propensity theory ascribes no 

probabilities to single experimental trials that may display the chances of objects but 

can only be performed once. (See e.g. (Gillies, 2000); (Hajek, 2009), for more detailed 

discussion). 

 

 Yet, single-case chances seem obviously real and legitimate, in ordinary 

parlance or in science. Consider either the examples of the coin toss or the radioactive 

atom: There seems to be no reason that would prevent us from ascribing single-case 

chances to those systems, and in fact we routinely do so when considering the 

probability of heads in the next toss, or the chance of decay in the next minute. The 

long-run propensity view is therefore only viable to the extent that it has some surrogate 

notion for single-case chances. Some defenders of the long-run propensity theory have 

appealed to subjective probabilities at this point in order to furnish the required chances 

(Gillies, 2000, pp. 119ff.). Thus, the claim is that the single-case chances that appear in 

those instances above are nothing but our credences, or best estimates regarding those 

chances in light of our present information. Here we see again how subjective elements 

creep into the objective interpretations or theories of probability. It seems that the 
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hybrid nature of probability emerges one way or another in any attempt to develop a full 

and consistent understanding of objective probability. 

 

 To conclude, this first half of the book reviewed the state-of-the-art debate 

regarding philosophical interpretations of probability, as it stands today. It cast a 

particular eye on the historical scholarship of the last forty or so years, which unearthed 

unsuspected depth and complexity to our contemporary notions of probability. The 

nature of probability is essentially dual since its inception, incorporating both subjective 

and objective dimensions, and this shows in the difficulties that philosophers have had 

to face up to in developing either fully subjective or fully objective interpretations of 

probability tout court. The history reviewed in the first half shows probability to be 

plural in at least two senses. First, there are paradigmatic subjective and objective type 

probabilities out there – and none can be reduced to the other. Second, any coherent 

philosophical analysis of either type of probability involves both subjective and 

objective considerations. Thus, new conceptual space opens up for a thorough 

discussion of the practice of statistical modelling, which is the object of the second half 

of the book. 
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8. Interpreting and Applying Objective Probability 

 

The second half of the book addresses the nature of statistical modelling and its 

import for the philosophy of probability. It returns to some of the interpretations 

reviewed in chapters 6 and 7 but focusing much more narrowly on objective 

probabilities, which are of greatest interest in an analysis of the practice of statistical 

modelling. In other words, we leave behind the first kind of pluralism, distinguishing 

subjective from objective probability, and from now on shall deal only with objective 

probability, or chance, as it appears in science. (This does not mean that subjective 

judgements are excluded from the analysis, so the second kind of pluralism shall remain 

relevant). And while the first half of the book is essentially historical, this second half 

adopts an analytical tone, which is reflected in the brief review of frequency and 

propensity interpretations in chapter 9. I first introduce, in this chapter, a distinction 

between two different approaches to chance, contrasting the interpretative projects 

reviewed earlier with a new project in the application of objective probability more 

relevant to the practice of modelling.  

 

 Philosophers of probability have discussed the issue of the reality of chance or 

objective probability extensively, yet as we noted in the first half of the book, the 

discussion has often been framed as part of a debate or dispute about the ontology and 

epistemology of chance. Realists have tended to focus on issues of metaphysical 

constitution, and semantic reference; anti-realists have been concerned with evidence 

and epistemic accessibility. Hence empiricist-minded philosophers of science have 

attempted to reduce objective probabilities, or chances, to frequencies, or ratios of 

observable outcomes in experimental sequences of events. By contrast, metaphysically 
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minded philosophers have attempted to interpret chance in light of propensities or 

dispositional properties. In either case the assumption is that chance is an obscure - or at 

any rate contested - concept that must be defined in terms of other simpler, more 

fundamental, accessible, or substantive concepts. While chances are not supposed to be 

accessible, frequencies are meant to be directly accessible through observation.  And 

while chances are not supposed to be real and fundamental, dispositional properties are 

understood to be genuine properties of chance set-ups. It makes sense from the 

perspective of this debate about the ontology and epistemology of chance to attempt to 

reduce chance – objective probability – to either frequency or propensity. 

 

  Nevertheless, as we already know from the first half of the book, both the 

frequency and the propensity interpretations of objective probability are ultimately not 

viable. The former encounters insurmountable difficulties associated to the so-called 

reference class problem; while the latter confronts a family of problems related to the 

notorious Humphreys’ paradox. In the next chapter of this book I briefly review these 

conclusive arguments, with an eye not so much on history as on analytical precision. In 

addition, I present a further explanatory argument that cuts against both frequency and 

long-run propensity interpretations. Chances are employed in practice for explanatory 

purposes, in science and in ordinary life alike; but I shall argue that this explanatory 

function remains elusive on any interpretation of objective probability that identifies it 

with sequences of experimental outcomes, or their conditions. The conclusion of this 

Chapter is that it is time to consider alternative philosophical projects in our 

understanding of objective probability going beyond the interpretative endeavour, and I 

concur with Deborah Mayo when she states (Mayo, 2018, p. 13) that “discussions of 
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statistical foundations tend to focus on how to interpret probability, and much less on 

the overarching question of how probability ought to be used in inference”.  

 

 In the remaining chapters of the book, I consequently explore a different 

philosophical approach, which focuses instead on the role that chance plays in scientific 

modelling practice. In a brief slogan I aim to shift philosophical attention from the 

‘metaphysics and epistemology of chance’ towards the ‘methodology of chance 

modelling’.  In particular I shall argue that chance plays an essential explanatory role in 

that practice, which already militates against any reductive analysis. Chapter 10 outlines 

metaphysical pluralism as applied specifically to objective probability. I argue for a 

tripartite conception that keeps propensities, single-case chances, and actual frequencies 

distinct. Chapter 11 advances a pragmatic statistical modelling methodology, grounded 

on the tripartite conception, which I refer to as the complex nexus of chance (CNC).  Let 

it be noted outright that this methodological turn is not intended to foreclose any option 

in the ontology of chance, and it does not resolve epistemic worries or concerns, which 

are likely to endure. While realists may want to take the explanatory power of objective 

probability as further evidence in favour of the reality of chances, anti-realists will deny 

the inference from the explanatory power of the chance nexus to its reality, and I do not 

here pretend to resolve such quarrels. Rather, my more modest aim is to show that the 

epistemological debate goes under different terms in this new methodological arena. 

What I propose is a new take on the question over the nature of objective probability, 

one that starts from the standpoint of methodological practice, and which raises 

problems and issues of its own – including possibly new versions of the perennial 

debates in the ontology and epistemology of chance.  
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 Indeed, the thesis running through this part of the book is that new and 

interesting philosophical questions arise for a philosophical study of objective 

probability once this new methodological outlook is adopted. The focus is in particular 

on the role that dynamical equations play in statistical modelling, and I shall argue in 

chapter 12 that all statistical modelling in the natural sciences can be placed on a 

spectrum that goes from purely deterministic to purely indeterministic (‘stochastic’) 

dynamics. Many models use a mixture of both, and the regular assumption that all 

statistical modelling must invoke a thoroughly stochastic dynamics is disproven by the 

fact that many statistical models for macroscopic phenomena assume underlying 

deterministic dynamics. In the distinguished tradition of the method of arbitrary 

functions, which originates in the writings of von Kries and Poincaré at the turn of the 

nineteenth century, the ‘stochasticity’ is brought about in an ingenious way by a 

deterministic dynamics (in the traditional, Newtonian sense) that evolves a probability 

distribution defined over initial micro-variables into a probability distribution over the 

relevant macro-variables. I call this kind of modelling purely probabilistic, since the 

probabilities that it prescribes do not originate in the dynamics in or by itself. In 

contrast, what I call purely stochastic modelling requires no initial probability 

distributions over any dynamical variables – the final probability distributions arise 

naturally out of the dynamics. Much of statistical modelling, I argue, is impure, that is, 

it is neither pure probabilistic nor pure stochastic, but rather a mixture of both, and thus 

lies somewhere along the spectrum. 

 

 The concluding chapter 13 of the book wraps things up by pointing out that the 

CNC is in some ways a trivial consequence of the application of general philosophical 

lessons regarding the modelling attitude or methodology in general to the particular case 
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of statistical modelling. There is little mystery to chance – to the ways in which the 

chance nexus is employed in practice – beyond whatever mysteries lie in scientific 

modelling in science in general. If that seems an uninspiring philosophical attitude, let it 

be remembered that it takes to heart every lesson from the history of the emergence of 

probability, and the ever-lasting disputes in the interpretation of chance. The hope is 

that such disputes may take a different and more tractable form within the more fertile 

ground of the distinctions characteristic of modelling practice.  
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9. The Explanatory Argument and Ontology 

 

In this chapter I review more formal aspects of the approaches canvassed in the 

first historical half of the book. The philosophy of probability throughout the twentieth 

century has been centrally concerned with providing an appropriate semantics for 

objective statements of probability, or chance. This in turn has been seen as requiring a 

description of what the world may be like for such statements to be true. And such a 

description at the very least requires the provision of some ontology for chance, or more 

technically, a stipulation of the truth-makers for our probability statements – those 

things in the world (objects, properties, facts, events) in virtue of which our probability 

statements are true or false. There are two broad approaches to this question throughout 

the twentieth century, answering to a markedly empiricist school earlier on, and to more 

broadly realist leanings later on.  

 

 

9.1. The frequency interpretation 

 

 The empiricist tradition, recall, in particular the logical empiricists, understood 

an appropriate semantics for probability statements to entail reductions to observable 

facts or events - ascertainable directly by inspection or observation. The most likely 

candidate for such reduction – in Laplacean fashion – takes the form of ratios of 

outcome-types, or attributes, in regular series or successions of observable events in 

repeatable experiments. Thus, (von Mises, 1928/1957) and (Reichenbach, 1935/49) 

formulated empiricist interpretations of probability by insisting that the range of 

possible cases be observable outcomes in repeatable sequences of experimental trials. 
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The ‘frequency interpretation of probability’ takes the form of a conceptual identity 

along the lines of: ‘P (A) is the probability of outcome A if and only if there is an 

appropriate sequence S of outcomes such that P (A) is the frequency or ratio of 

outcomes of type A in S.’  

 

 I shall refer to this generic statement as the frequency identity of probability, 

following the terminology introduced in chapter 6. Hence, for example, P (heads) = ½ is 

the probability of heads in a coin-tossing experiment if and only if the ratio of heads to 

tails in the appropriate sequence S is exactly ½. It is easy to see how the frequency 

identity would generalize to more complex discrete or continuous probability 

distributions over a larger set of possible outcomes (a larger ‘outcome space’). Thus, a 

probability of some attribute in some population can easily be identified with a 

frequency ratio of the attribute in a representative sample of the population. 

 

 The strategy seems at first sight the most natural way to deliver us from any 

unverifiable metaphysical commitments – often understood to be the holy grail of any 

empiricist philosophy. A traditional goal of empiricism ever since Hume, if not before, 

has been to analytically reduce unverifiable statements about unobservable or 

inaccessible entities or matters of fact so as to ‘transform’ them into verifiable 

statements about observable, or at any rate accessible, matters of fact. The empiricist 

tradition has attempted such reductions on problematic concepts such as lawhood 

(often, as in Mill or Mackie identified with nomological regularity or non-accidental 

generalization); causation (which at least since Hume has been thought to be reducible 

to regular continuous succession, or a projection thereof); psychological time and 

personhood, and so on.  In the context of chance and probability this has often translated 



	 67	

into a requirement to express probability statements as claims regarding series or 

sequences of events that can be verified if not in practice at least in principle; and the 

frequency interpretation seems to readily deliver on just such a requirement. 

 

 However, recall that the ‘frequency interpretation’ is not really one single 

interpretation but a family of interpretations, generated by diverse renditions of the 

frequency identity. More precisely, all frequency interpretations obey the frequency 

identity as expressed above, but they differ as to what they take to be the ‘appropriate’ 

sequences in its defining statement. Very generally, we may classify frequency 

interpretations into two families: the finite frequency (FF), and the hypothetical 

frequency (HF) interpretations. Roughly, finite frequencies are ratios of outcomes 

endowed with the given attribute (A) in the actual (and hence necessarily finite) 

frequencies of experimental outcomes of real experiments performed on chance systems 

or set-ups. The FF interpretations thus have the virtue of reducing probability to an 

empirically accessible quantity. Since most if not all frequency interpretations are 

motivated by empiricism, this is clearly perceived to be an advantage.   

 

 Nevertheless, FF interpretations have severe problems or deficiencies; I will 

recapitulate here only the two problems that are most relevant to my purposes – the 

reader can find a full list in (Hajek, 1997). First of all, it is clear that for any actual finite 

sequence, no matter how large, the ratio of the appropriate attribute can in fact diverge 

from the probability. One need not consider weird situations as those described in Tom 

Stoppard’s play Rosencrantz and Guildenstern Are Dead (Stoppard, 1969), in which the 

characters repeatedly toss a coin that increasingly unnervingly always falls on heads. 

For a coin toss, any given odd-numbered finite frequency will necessarily diverge, 
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however minimally, from ½. And we all intuitively understand that it is perfectly 

possible for any frequency, no matter how large, to diverge (and even to diverge 

maximally, as in the weird Rosencrantz and Guildenstern scenario). This sense of 

‘possible divergence’ is built into the very judgement of the probability of any event in 

a series, as long as any outcome event is genuinely independent of any other (i.e. in the 

coin case: as long as the outcome at each toss does not alter the probability of any 

outcome at any later toss). 12 

 

 The capacity of any finite frequency to diverge from the probability it is 

intended to analytically reduce comes under a variety of names in the literature (for 

instance, Hoefer (2018) refers to it as ‘frequency tolerance’). I shall refer to it here as 

‘frequency divergence’, since for every finite frequency exhibited in a regular 

experimental trial, there are myriad ways in which it may diverge from the underlying 

probability it can at best approximate. Note that divergence is not always an actual fact 

but a capacity: a frequency has the capacity to diverge from the probability, even though 

for any given t, the frequency up to t may not have yet diverged.  There are purposes in 

the study of frequencies for which frequency divergence comes in handy, such as in 

assessing or ranking the ‘faithfulness’ or ‘representativeness’ of possible frequencies in 

sequences.  However, as regards the finite frequency version of the frequency identity, 

it is ultimately lethal. For if any finite frequencies can as a matter of principle diverge 

	

12	The	expectation	for	identically	independently	distributed	(IID)	random	variables	

is	widespread,	as	is	the	further	expectation,	to	be	explored	in	the	next	few	

chapters,	that	‘divergences’	ought	to	be	tolerated	(i.e.	assigned	credences	greater	

than	zero).		
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arbitrarily from the probabilities they are supposed to conceptually reduce, then the 

frequency identity is surely false: there can be no sequence S that exhibits the 

appropriate frequency, with any certainty, and this would entail that there is not really a 

probability P (A) of the attribute in question, contrary to the assumption (of divergence).  

Hence finite frequencies – while undeniably centrally involved in any epistemology of 

chance – do not analytically reduce probabilities. Or, conversely, probabilities are not 

finite frequencies, contrary to what strict empiricism requires.  

 

9.2. The propensity interpretation 

 

 It was noted in chapter 7 that a way to circumvent these objections is thus 

precisely to give up on the strict empiricist commitments, and to adopt a realist 

interpretation of objective probability instead – in terms of propensities. Propensity 

interpretations themselves come in a considerable variety. For example, it is customary 

to distinguish long-run from single-case propensities. In a single-case version, the 

underlying propensity is manifested in every single run of the experiment as a 

probability P (A). In the long-run version of the propensity interpretation, by contrast, 

the function P (A) is rather identified with the long-run frequency – thus (Gillies, 2000, 

ch. 8), asserts the single-case probabilities can only be subjective if anything. One may 

then substitute a propensity identity in place of the frequency identity, roughly as 

follows: ‘P (A) is the probability of some event type A if and only if A is a possible 

outcome of a chance set-up S endowed with a certain propensity P (A) to generate 

outcome A in the long run.’ 
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 However, any propensity interpretation - of either variety - that adopts a strict 

identity between probabilities and propensities fails too for reasons that have been 

explored extensively in the literature, e.g. in (Eagle, 2004), (Humphreys, 1985), 

(Salmon, 1979), (Suárez, 2013). First of all, it is well-known that many well-defined 

objective probabilities cannot be identified with any propensities. In fact, many 

conditional probabilities that have a straightforward propensity interpretation also often 

have well-defined inverse conditional probabilities that fail to have any propensity 

interpretation. (Salmon, 1979)’s original example involved shooting’s propensity to kill, 

which precludes any interpretation of killing as a propensity to shoot. But one can think 

of a myriad other examples: smoking has a certain propensity to produce lung cancer, 

while lung cancer does not have a propensity to generate smoking – yet, for any control 

population, if the conditional probability of lung cancer given smoking is well defined, 

so is the inverse conditional probability of smoking given lung cancer. And so on.  

 

 The underlying problem, recall, is that propensities exhibit an asymmetry akin to 

cause and effect, and this is an asymmetry lacking in probabilities. Any propensity 

identity that identifies the two will ensue in contradiction: this shows that they cannot be 

the same thing. Humphrey’s paradox (Humphreys, 1985) provides the definitive 

objection, since it shows that many bona fide propensities are not interpretable as 

conditional probabilities, on pain of contradiction with the Kolmogorov classical 

calculus. While there are a number of possible resolutions to this ‘paradox’, 13 they all 

	

13	See	(Berkovitz,	2015)	for	a	detailed	exposition	of	ongoing	attempts	to	overcome	

the	paradox	and	retain	the	propensity	identity.	To	my	mind	the	best	such	attempt	

involves	rejecting	the	Kolmogorov	axioms	in	favour	of	an	altogether	different	
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involve giving up the propensity identity in some respect. As has been shown already 

the best rendition of propensities is not as an identity or analytical reduction of any sort 

for probability. Thus a defensible statement relates propensities to probabilities for 

outcomes in experimental trials or set ups, but it does not identify them: ‘P (A) is the 

objective probability or chance of outcome A if and only if A is produced by a chance 

set-up S endowed with a certain propensity to generate each A with some probability P 

(A).’ In this statement, a propensity is ascribed to a set up when an objective probability 

obtains for some outcome of that set up – yet the propensity and the probability are not 

identified, but rather kept entirely distinct. 

 

 We may conclude that the propensity identity is a flawed but necessary 

presupposition in a long-run version of the propensity interpretation. It is also 

commonly adopted for single-case versions, but it does not turn out to be in fact 

necessary. On the contrary, as has been pointed out (Mellor, 2005; Suárez, 2013), there 

is a kind of single-case propensity that does not entail or require any identification with 

	

formal	axiomatization	of	probability,	such	as	the	one	in	(Renyi,	1955).	Such	

alternative	axiomatizations	have	not	caught	on,	but	recent	critiques	of	the	ratio	

definition	involved	in	the	fourth	Kolmogorov	axiom	independently	support	such	

alternatives	(Hájek,	2003),	so	the	issue	remains	intriguingly	open	.	At	any	rate,	the	

rejection	of	the	propensity	identity	does	not	invalidate	the	concept	of	propensity	

per	se.	On	the	contrary,	as	I	argue	in	the	next	chapters,	propensities	are	an	

essential	part	of	objective	probability.	However,	their	role	is	explanatory	rather	

than	interpretational,	which	does	not	sit	in	well	with	the	identification	of	

propensity	with	probability	anyway.					
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probability, and it is the notion adopted in the remaining of this book, particularly in 

chapter 10. 

 

9.3. The explanatory argument 

 

 I now turn to a different argument against any analytical reduction of probability 

by means of any identity thesis. It is related to the explanatory power of chances or 

objective probabilities – so we may refer to it as the ‘explanatory argument’. This 

argument will provide the basis for the discussion of statistical modelling practice in the 

remainder of the book. The point is best made in the context of attempts to reduce 

probability to frequency by means of the frequency identity (although it applies to a 

propensity identity too). Objective probabilities in practice often explain regular 

occurrences of types of outcomes in different kinds of sequences. For instance, we 

explain the relative frequencies of a game of roulette, or dice, in virtue of the chances 

that are presumably operative in the game in question. If you ask me why I got 5 heads 

and 5 tails in tossing a coin, I can legitimately offer the explanation that it is a fair coin - 

that it is built so as to display such a probability. More generally, science will often 

invoke theoretically grounded probabilities in the explanation of observed frequencies. 

The difference between the observed decay rates of two pieces of radioactive material 

may be explained by reference to their half-lives, which are consequences of their 

different atomic structures. The difference between the recovery rates of two sorts of 

patient afflicted by the same condition may be explained by reference to the efficiency 

of the different kinds of treatment they have been subjected to, and so on.  
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 This is a basic explanatory fact, which I will at this point in the argument take as 

primitive: probabilities are often invoked and used – in ordinary cognition and scientific 

practice alike – in order to explain frequencies. Yet, if the FF interpretation is correct, 

probabilities are frequencies, and it is impossible for a frequency to explain itself. It 

may be objected that the frequency explained is not the frequency involved in the 

explanation, so that the situation is not as blatantly circular as it may at first seem. As 

we shall see, this is essentially the response adopted by sophisticated Humean accounts, 

such as (Hoefer, 2018): perhaps not all frequencies are explanatorily on a par. Yet as 

long as we restrict ourselves to finite frequencies (as the FF interpretations do), it is 

very hard to see what the explanatory power of some frequencies over others could be. 

They are after all just the same kind of thing, and explanatory power requires some 

distinct property to be doing the explaining. It cannot serve to explain the actual finite 

frequency ratio in a chancy experiment to merely point out to another actual finite 

frequency ratio in that experiment: to do so would seem to merely expand the demand 

for explanation.  

 

 The issue may have less to do with circularity than with the weakness of the 

explanations provided by frequencies in any case. The larger actual frequency does not 

seem to add much from a robustly explanatory point of view. In other words, it may be 

thought at this point that the problem lies with the finiteness of the frequencies. As 

noted in chapter 6, finite frequencies (FF) may be expanded into hypothetical 

frequencies (HF). An HF interpretation identifies probabilities with hypothetical 

frequencies over ideal infinite sequences of experimental outcomes that contain the 

appropriate finite sub-sequences whose properties are to be explained. For instance, in 

the case of a tossing coin, the appropriate frequency that identifies the objective 
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probability or chance is supposed to be only definable in the abstract as the limiting 

frequency of the hypothetical infinite sequence of tosses. Presumably if the coin is fair 

the limiting frequency in the hypothetical infinite sequence is precisely ½.  This may 

answer the first objection from frequency divergence in Chapter 9.1, since any finite 

frequency is allowed to diverge from the much larger (hypothetical and infinite) 

frequency. The large number theorem shows that the degree of divergence is inversely 

proportional to the length of the sequence, or in other words the finite frequencies will 

approach the limiting frequency as the finite sequence grows – and the finite frequency 

will become the actual probability in the infinite limit. However, that is just another way 

to concede that for any finite frequency, no matter how large, there can always be a 

degree of divergence.  

 

 The move to HF interpretations is not really successful in resolving the problems 

generated by the reference class problem, and in fact raises additional and important 

difficulties. There are at least two reasons why HF interpretations fail. First of all, for 

any given finite frequency there is a large number of consistent hypothetical 

frequencies, since for any finite subsequence, there are a large number of sequences that 

would include the subsequence as their initial segment. The large number theorem is no 

retort, since it presupposes that there is an actual probability, and then goes on to show 

that the limiting frequency will arbitrarily approach it. However, the point of a 

frequency interpretation of probability is not to presuppose the existence of an actual 

probability that frequencies can be shown to approach in the infinite limit. The point of 

a frequency interpretation is to identify the probability itself as the frequency in 

accordance with the frequency identity discussed above. In other words, the large 

number theorem cannot really help to define probabilities as limiting frequencies in 
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hypothetical sequences – rather the theorem only works on the assumption that there are 

probabilities independent of any frequencies or their limiting character. 

 

 At any rate, the explanatory argument remains; for the explanatory power of a 

frequency in a hypothetical sequence remains elusive. (A similar argument applies to 

long-run propensities). On the one hand, if the explanatory power relies on merely 

subsuming the finite sequences whose frequencies are to be explained within the 

hypothetical sequences that putatively explain them, we have the recurrent problem 

above with FF interpretations: we seem to have merely expanded the demand for 

explanation. If, on the other hand, the appeal is to antecedent explanatory probabilities, 

as in the large number theorem, we restore the explanatory power but at the expense of 

postulating probabilities over and above any frequencies, or long-run propensities. What 

does the explanatory work in all these cases are facts that go beyond frequencies and 

long-run propensities. The explanatory power rather derives from the objective chances 

that frequencies may only be said to approximate in some limit.  
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10. Metaphysical Pluralism: The Tripartite Conception 

 

 The first half of the book provided a lengthy argument for the limitations of any 

reductionist project. It suggested instead to adopt pluralism regarding probability. 

Rudolf Carnap (Carnap, 1945), Frank Ramsey (Ramsey, 1926), and Ian Hacking 

(Hacking, 1975), amongst others, already argued that we must carefully distinguish 

objective probability (chance) from subjective probability (credence, or partial logical 

entailment). Carnap moreover argued that the conflation of these forms of probability 

leads to contradictions, confusions, and / or paradoxes, which only the correct formal 

explication of the concept is able to resolve. Ramsey and Hacking did not explicitly 

embrace such hopes of co-existence, but all their views are united in the rejection of the 

view that there is one single thing that probability is – or measures. Thus, all these 

authors emphasize distinct uses and historical origins in subjective and objective 

probabilities14. This is not yet pluralism about chance or objective probability, but it 

suggests that such a pluralism is one natural step on the road – and pluralism about 

specifically objective probability is exactly what I shall be urging in this chapter. 

 

 Earlier, in chapter 8, I distinguished two kinds of pluralism. The first kind of 

pluralism, recall, invites the thought that there are different types of probability, and 

urges that the term ‘probability’ is in need of disambiguation. Carnap distinguished 

probability1 and probability2, and the distinction between credences and chances is 

	

14	This	undeniably	glosses	over	the	important	differences	on	other	grounds	that	

exist	between	Ramsey’s,	Carnap’s	and	Hacking’s	accounts	of	probability.	
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nowadays entrenched. To go further down the pluralist road in this sense involves 

acknowledging that each type of probability may be further subdivided. Carnap’s terms 

‘probability1’ (or ‘subjective probability’, or ‘credence’), and ‘probability2’ (or 

‘objective probability’, or ‘chance’) may themselves require disambiguation in just the 

same way. 15 Thus, I shall suggest that objective probability (‘probability2’) can be 

further subdivided into three different categories, that are mutually irreducible 

(including to pairwise combinations of the other two), namely: ‘propensity’ ‘single-case 

chance’, and ‘frequency’. Our conceptual repertoire contains the relevant notions, and it 

is sensible, in light of the discussions reviewed earlier in the book, to countenance the 

corresponding metaphysical distinctions.16  

 

 The tripartite distinction then orders the different notions in a natural 

explanatory order. The propensities of the systems investigated – which, recall, on this 

	

15	My	focus	here	is	on	objective	probability,	so	I	have	nothing	to	say	about	

whatever	ambiguities	are	involved	in	‘subjective	probability’.	But	note	that	a	

similar	disambiguation	is	plausible	between	betting	quotients,	descriptive	degrees	

of	belief,	and	normative	or	ideal	credences	of	the	sort	that	characterize	objective	

Bayesian	approaches	(Williamson,	2010).	

16	See	(Suárez,	2013,	2017a,	2018).	These	papers	represent	roughly	an	application	

of	the	sort	of	transcendental	argument	characteristic	of	naturalistic	metaphysics	

(Cartwright,	1999,	pp.	23ff.).	Thus,	I	let	well-established	conceptual	divisions	–	as	

they	emerge	in	our	cognitive	practice	–	guide	the	metaphysical	distinctions	we	

draw	in	nature,	as	opposed	to,	conversely,	attempting	to	build	conceptual	

distinctions	upon	some	prior	metaphysics.	
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view are dispositional properties of simple or composite complex systems taken on their 

own – when placed within sufficiently stable chance set ups, give rise to, or ground, an 

array of single-case chances that manifest such propensities. 17 There is a sense in which 

the dispositional properties naturally explain the single-case chances that emerge within 

each context, but it is important to note that the possession conditions of propensities 

are not in turn also sufficient conditions for the manifestations: Each system – whether 

simple or composite – can and typically will manifest different chances when placed in 

different setups. The propensities ‘carry with them’ this plethora of possible 

manifestations. 18 

 

 In a further step, the single-case chances so established are then employed in 

order to explain a range of observed data, and in particular the frequencies exhibited by 

certain related attributes in the modelled data. This explanation typically takes the form 

of an embedding of the frequencies within the chance functions, either by showing that 

the ‘surface’ or experimental probabilities in the data models coincide with the chance 

	

17	The	term	‘manifestation’	is	here	employed	in	the	dispositional	sense	of	Mellor	

(2005)	and	Suárez	(2013),	and	it	involves	no	requirement	that	the	single-case	

chances	be	observable	or	in	any	way	directly	ascertainable	by	the	senses.		

18	This	thought	may	be	cashed	out	either	in	terms	of	conditionals	made	true	by	the	

possession	conditions	of	the	propensities,	or	in	terms	of	realist	ascriptions	of	

multiple	properties	encoded	in	each	propensity.	At	any	rate	the	relation	between	

the	propensities	and	their	manifestations	is	not	prima	facie	–	or	not	always	–	one	

of	simple	cause	and	effect,	but	is	best	understood	as	multiple	partial	causation,	or	

even	a	species	of	grounding.	For	further	elaboration	see	(Suárez,	2018).	
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functions for the elements in the range sets of both functions; or in the case of finite 

frequency data, by embedding those discrete frequencies within the continuous 

distributions in the chance functions. 

 

 The tripartite distinction may be illustrated by some epidemiological models of 

contemporary currency. Models of infectious diseases, such as the SIR (Susceptible-

Infectious-Recovered) model due to (Kermack and McKendrick, 1927) postulate a 

number of chances, such as the infectivity rate of an individual at a particular stage in 

the development of his or her disease (𝜙1). While this variable mainly depends on 

biological properties (the physiology of the individual, as well as the characteristics of 

the infectious agent), it is manifested differently (i.e. takes different values) depending 

on environmental factors, such as the average mobility of the individuals, the density of 

the populations they interact with, as well as particular environmental circumstances 

that may affect it, such as atmospheric pressure, weather, presence of antigens or other 

pathogens that may interfere with the course of the infection, and so on. For each of 

these sets of environmental conditions, the same physiology and infectious agent can 

result in greatly varying infectivity rates. Moreover, Kermack and McKendrick (1927, 

p. 718) show that when the ratio of susceptible to recovered in the population is close to 

the threshold value for herd immunity, very slight changes in infectivity rates can lead 

to dramatic differences in the course of the epidemic. Obviously in any practical 

application of epidemiological models, all these variables are then tested against the 

time-evolving frequency ratios of ‘susceptibles’, ‘infectives’ and ‘recovereds’ in the 

observed population (Kucharski, 2020).  
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 I shall return to the representation of the diverse variables within the SIR model 

in the next chapter; what is relevant here is that there are three distinct notions at play in 

these models, which reflect the tripartite categories of propensities (i.e. the dispositional 

properties of organisms and infectious agents), single-case chances (probabilities of 

infection, or transmissibility of the pathogen that the propensities of organisms give rise 

to within particular environmental conditions), and frequencies (of observable 

dynamical attributes within the population as the infection spreads). Thus, our practice 

vindicates a metaphysical pluralism about objective probability itself; it is not only 

impossible to reduce single case chances to propensities or frequencies (or viceversa), 

but the three notions play a distinct and identifiable role within statistical modelling 

practice. 

 

 In chapter 8, I noted that a second kind of pluralism that will in addition remain 

significant, namely: there are a number of ‘subjective’ considerations that come into the 

determination of objective probabilities. Some of the ‘subjective’ judgements involved 

in applying the tripartite conception in statistical modelling of the phenomena shall be 

discussed in the next chapter. I end this chapter commenting on several subjective 

considerations which, in a more robust way, may come into the very notion of chance 

involved in the tripartite conception.  

 

 First note that the truth-makers of statements involving each of the notions in the 

tripartite conception are suitably distinct. Statements about propensities are made true 

by the properties ascribed to the systems of interest (even if identifying and isolating the 

‘system of interest’ is no trivial matter – as we shall see in the next chapter). Statements 

of frequencies are, on this account, made true rather simply by the proportions of items 
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with a given attribute within a sequence (even if the selection of the ‘sequence’ is also 

driven by data modelling). But what are the truth-makers of single-case chance 

statements? There are several proposals in the literature, and the point of the tripartite 

conception is not so much to avoid discussion of the nature of chance, as to attempt to 

regiment it better. Thus, earlier I pointed out that my tripartite pluralism is compatible 

with a no-theory-theory of such chances, such as (Sober, 2010)’s, according to which 

there are no truth-makers for chance statements beyond their assertion conditions within 

models. Yet, there are also some more substantive proposals, which help somewhat to 

understand the explanatory role that chances play in practice, such as Nina Emery’s 

(2017), which grounds the nature of chance as nomological probability upon modelling 

and theorizing methodology. A similar account is (Lyon, 2011)’s, who countenances 

what he calls counterfactual probability as a distinct form of objective probability, 

beyond ‘primitive’ propensity. As we shall see in the next chapter, ‘subjective’ elements 

come into the judgements routinely employed in such methodologies, so there is an 

element of subjectivism in this account too – even if the truth-makers of chance 

statements on this account are whatever nomological posits make them true.  

 

 Finally, there are extant philosophical accounts of chance that bring in subjective 

notions in a more robust manner as part of the very definition of chance. One such 

account, already noted, is (Skyrms, 1977), which proposes to analyse chances (from our 

point of view confusingly referred to as ‘propensities’) as robust or resilient subjective 

probabilities. More recently, there have been attempts – in the tradition of Lewis (1980) 

–, to derive ‘Humean’ objective chances (HOC) as the posits of the best system analysis 

of spacetime coincidences and their regularities ((Loewer, 2004); (Hoefer, 2018); 

(Ismael, 2008; Forthcoming)). In (Hoefer, 2018)’s version, chances are the 
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representations of all actual frequencies in the strongest, fittest and simplest theory of 

what he calls stochastic nomological machines, the sorts of chances set-ups endowed 

with propensities that give rise to stable single-case chances, in our terminology. 19  

Since there are pragmatic judgements involved in the assessment of strength, simplicity, 

and fit – not to mention their best balance – the nature of chance itself is subjective and 

relies on such pragmatic judgements. Yet, the theory has the advantage that it gets 

around the explanatory argument I developed in chapter 9.3. The chances explain the 

finite frequencies that we observe simply by embedding the sequences these frequencies 

belong to within the larger (indefinite, if not infinite) regularities that make up the 

chances in the best system theory.  

 

Any of the accounts of single-case chances that I have here described (Sober’s 

deflationary, Emery’s nomological, Lyon’s counterfactual, Skyrm’s resilient, or 

Hoefer’s Humean objective chances) is compatible with the tripartite conception, and I 

do not wish to insist on any one of them in particular. It is even possible, and in line 

with the pluralism that guides this book, that each of them describes one way in which 

some chances are. What all these accounts have in common is their emphasis on the 

explanatory role that chance plays vis a vis frequencies within statistical modelling 

methodology, and that is the subject of the next chapter in this book.  

 

	

19	Hoefer	is	here	following	(Cartwright,	1999),	whose	non-Humeanism	inspires	my	

account	too.		
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11. Methodological Pragmatism: The ‘Complex Nexus of 

Chance’ 

 

 In scientific modelling practice, chance appears in a nexus of properties that 

typically includes probabilistic dispositions or propensities (represented by certain 

parametrizations of the phenomena); single-case chances (represented as the model’s 

formal probability distribution functions); and frequencies in actual or imagined data 

(represented as limiting ratios, or ‘surface probabilities’ within models of data). The 

complex nexus of chance (CNC) is the set of interrelations between these three distinct 

notions in modelling practice. In adopting the terminology of ‘propensities’ as the 

dispositional properties of chance set-ups that ground probabilities (Suárez, 2018), my 

view moves decisively away from long-run propensity theories that ultimately identify 

propensities with either finite, infinite, or hypothetical frequencies. In distinguishing the 

formal probability functions that represent single-case chances from either propensities 

or frequencies, any interpretational identification of the former in terms of the latter is 

precluded. Finally, in emphasizing the role of finite experimental frequency data, the 

nexus of chance retains an empiricist outlook, which justifies probability statements 

empirically in terms of their relation to the actual data collected in genuine experimental 

and observational contexts (broadly in agreement with a long tradition including 

(Suppes, 1962), (Van Fraassen, 1993) and (Mayo, 1996, 2018)). On this view the only 

genuine frequencies are proportions or ratios of outcome-types within the actual 

sequences of experimental outcome events; any limiting or hypothetical frequencies 

will appear only as extrapolations within models.  
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 One of the immediate consequences of the view is that propensities are not 

automated interpretations of chance functions, but rather the sorts of properties of 

chancy systems that give rise to those chances; hence they are postulated or 

hypothesized as part of the CNC, since they appear as prepared descriptions of the 

phenomena. It follows that, like with any other theoretical postulate, propensity 

ascriptions are subject to empirical testing. We test them typically indirectly via the 

chance functions they generate in particular experimental contexts; but we also have 

plenty of knowledge about the mechanisms that may be operative and routinely probe 

into those background assumptions by the usual means: checking for their compatibility 

and overall coherence with other assumptions – in other words, their prior plausibility in 

light of other knowledge we possess. 20 

 

 While the tripartite conception has been defended already at a theoretical level, 

the nexus of chance remains to be studied at the level of modelling practice. The last 

	

20	Hence,	we	can	apply	the	theory	of	confirmation,	and	in	particular	Bayes’	

theorem	(see	chapter	4),	to	these	assumptions,	in	order	to	assess	the	weight	that	

evidence	has	on	them.	That	is,	we	estimate	subjective	prior	probabilities	for	the	

assumptions	(P(T)),	and	the	evidence	(P(e)),	calculate	the	probability	of	the	

evidence	in	the	light	of	these	assumptions	(P(e/T)),	and	thus	arrive	at	relative	

values	for	the	probability	of	the	theoretical	assumptions	in	the	light	of	the	evidence	

(P(T/e)).	The	assumptions	regarding	propensities	lead	to	the	ascription	of	

objective	chances	for	particular	happenings	out	of	the	systems	we	are	

investigating,	so	this	Bayesian	checking	procedure	is	yet	another	instance	of	how	

subjective	probabilities	are	involved	in	postulating	any	objective	chances.		
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three chapters of this book are an attempt to establish a philosophical research 

programme into the workings and operations of the CNC in modelling practice. Note 

that statistical modelling involves not merely formal descriptions of correlation 

phenomena; it is rather typically employed with explanatory purposes. In other words, 

the typical explananda are already prepared descriptions of statistical correlation 

phenomena between a set of inter-related ‘observable’ variables – which may indeed be 

observational variables in a data model, but may also represent properties of an 

underlying phenomenon in a controlled experiment, or the results of various 

interventions carried out in laboratory conditions. The basic explanatory tool in chance 

explanations of such statistical phenomena is a model featuring probabilities evolving in 

accordance to some dynamical law. In other words, the chances that figure in the 

propensity models are the putative explanans for the frequencies that appear in the data 

models and stand as the explanandum. If so, the explanatory relation is essentially one 

between two different types of models.  

 

 Thus, the probabilistic models deserve some attention. A common assumption in 

the philosophical literature is to suppose that a probability model is simply a probability 

or chance distribution function defined over the observable variables.  To take the 

common - and apparently most simple - illustration of the coin toss: if a coin is tossed 

repeatedly, under identical conditions, the series of outcomes would constitute the 

observable data. Suppose the finite data exhibits a 47 per cent incidence of heads and a 

53 per cent incidence of tails. A probability model is then, in accordance to this 

common view, an ascription of a probability distribution that can account for, or make 

sense of, this distribution. It is obvious that a 47-53 per cent probability distribution is 

the one that best accounts for, and makes sense of, this distribution, but others may do 
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too within acceptable margins of experimental and systematic error. (What ‘acceptable’ 

margins of error are is an eminently relevant question, and the object of considerable 

debate – see (Mayo, 1996, 2018)).  

 

 I do not have any fundamental quarrel with this simple definition of a 

probability model – as long as it is clearly understood that it is not the same notion as 

the more sophisticated statistical model that statisticians and scientists use in their 

everyday modelling practice. To illustrate the difference, it is worth considering again 

what the model of a fair coin would be. On the philosophical notion of a probability 

model, this could only be the ascription of a flat probability distribution r (i.e. equal 50-

50 probabilities) over the head (h) and tail (t) outcome events: 𝜌: {ℎ, 𝑡} ⟶ :;<= ∈ ℝ. But 

as we shall see, in chapter 12, the statistical model of the phenomenon of coin tossing, 

even for a fair coin, turns out to be a much more complex and interesting entity.  

 

 The SIR models in epidemiology that we discussed briefly in the last chapter 

provide another illustration. The nowadays much discussed basic reproducibility 

number of an epidemic, ℜA, is calculated after some ‘statistical model’ assumptions 

have been put in place, including those that lead to particular values of the critical 

objective chances at the basis of epidemiological predictions. 21 In any SIR model the 

	

21	See	(Kucharski,	2020),	which	moreover	describes	the	role	of	mechanical	

assumptions	–	regarding	what	I	would	argue	are	the	underlying	propensities	–	in	

the	epidemiological	modelling	tradition	inaugurated	by	Ross	(1910),	to	which	

(Kermack	and	McKendrick,	1927)	belong.	For	a	recent	summary	of	epidemiological	

models,	see	also	Bird	(forthcoming).		
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population as a whole is divided cleanly into three mutually exclusive classes, those 

susceptible to infection (S); those already infected, and hence infective (I); and those 

recovered (R), who are no longer susceptible or infective. It is thus assumed that 

infection leads to permanent immunity; that the population mixes homogeneously, and 

that there is an objective chance 𝜏 for any infective on average to infect a susceptible 

person, on any given day, in a population where everyone else is susceptible. Then, the 

size of the population N (also assumed to be constant in time, so that deaths and births 

nicely cancel out) is just the sum of S+I+R, and if the daily average number of personal 

encounters of significant proximity for the transmission of the pathogen is n, then the 

total number of susceptible infected daily by this one infected person is 𝛽 = 𝜏𝑛. 

Another variable, 𝜈, describes the chance of recovery of any infected person on a given 

day on average, and is similarly derived from a combination of physiological and 

biological factors regarding the pathogen’s action in the human body and the standard 

duration of the infection. The basic reproducibility number, which must be kept below 

one for the epidemic to be contained, is then calculated as the ratio: ℜA =
F
G
, and is a 

dynamical variable, since both 𝛽, 𝜐 are. It may only be estimated within a ‘statistical 

model’ in light of a number of relatively strong assumptions regarding the propensities 

of the systems involved, and their dynamical evolution. (For the fascinating history of 

ℜA, see (Heesterbeek, 2002).) 

 

 Two critical differences between probability and statistical models emerge. 

First, in a statistical model there is not a single chance distribution function but a 

parametrized family of functions, in a sense to be specified. Second, a statistical model 

is dynamical: the chance functions in a statistical model either evolve in time, or they 

may apply to different stages of a dynamical process. It is the conjunction of these two 
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distinguishing features (multiple parametrization, dynamics) that endows a statistical 

model with explanatory power.  

 

 An influential article (McCullough, 2002, p. 1225) expresses the first feature as 

follows: ‘A statistical model is a set of probability distributions on the sample space 𝓈’ 

(my italics). That is, a statistical model requires an antecedent parametrization of the 

phenomenon: a typically dynamical description of the phenomenon under some set of 

parameters. It is only once the phenomena to be modelled is so described that a properly 

parametrized statistical model can be provided for it, by ascribing to each parameter a 

distinct probability function over the sample space: ‘A parametrized statistical model is 

a parameter set Q together with a function 𝑃: Θ ⟶ 𝜌(𝓈), which assigns to each 

parameter point 𝜃 ∈ Θ a probability distribution 𝑃1	𝑜𝑛	𝓈’ (McCullough, p. 1225). 

Hence a statistical model is most abstractly defined as a function that ascribes to a 

specific element in some antecedent parametrization of the phenomenon a probability 

function from a family defined over the sample space. In other words, not only does a 

statistical model involve a whole family or set of probability functions, the model itself 

is best thought of as a composite or multiple function from parameters into 

probabilities. In many statistical models this composite complex entity already 

presupposes the sorts of distinctions characteristic of the tripartite conception, since it 

involves parametrizations (representing propensities) and probability distributions 

(single-case chances); and is intended to account for, or embed, models of experimental 

data (frequencies).  

 

 In applying or building a probability model, the most sensitive judgement 

concerns the selection of the sample space. And indeed, it is a well-known philosophical 
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lesson that choosing the appropriate sample space – that is, selecting the outcome events 

or types that are to go into the space – is critical, and that the choice may importantly 

alter the properties of the model description. Statisticians by contrast, see this selection 

as the final and simpler stage in a more complex modelling process, one that requires 

first of all to judiciously choose an appropriate parametrization of the phenomenon, 

secondly to choose the probability distributions that best correspond to each parameter, 

and only thirdly, and consequently, to choose the sample spaces. The ‘art of statistical 

modelling’ concerns all of these stages, and it is mainly the most sensitive first two 

stages that David Cox has in mind when he writes (Cox, 2006, p.197): ‘Formalization 

[…] is clearly of critical importance. It translates a subject-matter question into a formal 

statistical question and that translation must be reasonably faithful and, as far as is 

feasible, the consistency of the model with the data must be checked. How this 

translation from subject-matter problem to statistical model is done is often the most 

critical part of the analysis.’ 

 

 In many cases of statistical modelling in the natural, life and social sciences, the 

first parametrization stage is where considerations regarding dispositional properties in 

the chance setups – or propensities – enter. Thus, the relationship between the parameter 

and the sample spaces (Θ, 𝓈) is at the heart of the distinct roles of propensities and 

chances in the CNC. It makes sense to discuss those roles in the light of the second 

distinguishing feature of statistical models, namely their dynamical character, to which 

we now turn. 
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12. Two Types of Statistical Modelling 

 

 In a typical statistical model in the natural sciences, the relevant parameters 

include time, and the parametrized description will be time dependent. As a result, the 

probability functions will be dynamical and evolve in time in accordance with some 

law, often described in a differential or master equation. Statistical models differ on 

account of the kind of laws that they employ, and I shall in particular distinguish two 

kinds, reserving the term pure probabilistic model for those that are endowed with a 

deterministic dynamics only, while employing pure stochastic model for those that obey 

exclusively an indeterministic dynamics. Many models are hybrid and include 

deterministic and indeterministic laws. Hence statistical models lie on a spectrum from 

pure probabilism to pure stochasticity. By investigating both pure types we also 

investigate the end extremes of this spectrum. 

 

12.1. Pure probabilism: The method of arbitrary 

functions 

 

 The main aim of many statistical models is to generate chance distributions over 

the outcome space that to a good approximation match the frequencies observed in 

experiments run on the modelled systems. This amounts to a type of explanation of the 

resulting frequencies that suits Nina Emery’s explanatory requirement on chances 

(Emery, 2015, 2017). If the dynamics in the model is deterministic, the laws on their 

own cannot provide those chances – a deterministic law may only generate probabilities 

out of probabilities. Hence a probabilistic model (a statistical model with a 
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deterministic dynamics) can only dynamically explain statistical phenomena if it acts on 

a set of probability distributions over the initial conditions of the system. Many systems 

generating statistical phenomena at the macro level (including most well-known games 

of chance, such as dice, roulette, etc.) are on the face of it deterministic, since they obey 

classical mechanical or Newtonian laws. How can probabilistic models account for such 

phenomena? 

 

 A long and distinguished tradition in mathematical physics provides a template. 

The method of arbitrary functions (MAF) begins with von Kries and Poincaré at the 

turn of the nineteenth century, and it remains relevant today in important work in 

mathematical statistics. 22 The central idea in the MAF is the thought that some systems 

are dynamically stable or invariant under permutations (within some range given by 

some formal constraints) of the initial probability distributions over the initial 

conditions of the system. In other words, the probability distributions over the outcome 

events are independent of the distribution over the initial conditions; they rather mainly 

depend only on the precise form of the deterministic dynamics. The phenomena 

modelled by MAF are thus in some sense the converse of chaotic phenomena: while the 

latter exhibit extreme sensitivity to (small variations in) initial conditions, the former 

display extreme resilience from (changes in the probability distributions over the) initial 

conditions.  

 

	

22	See	(von	Plato,	1985)	for	a	historical	review,	and	(Engel,	1992)	for	state-of-the-

art	methodology.	
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The MAF is a method that falls well within the kind of more complex 

parametrized dynamical modelling practice that I have here referred to as ‘statistical’ 

modelling. Another, more specific reason to discuss it, is that it furnishes a genuine 

dynamic probabilistic model for the paradigmatic example that I have been employing 

for a chance system, the coin toss. (Keller, 1986) provides the most sophisticated 

treatment, which employs a highly idealized parametrized description of the 

phenomenon – what this book urges as the essential first stage in any statistical model. 

There are a number of idealizing assumptions involved because the model purports to 

reduce the set of free parameters to just two: the initial upwards velocity at which the 

coin is spun at its ejection (n), and the angular momentum through its trajectory (w). To 

achieve such a reduction of the relevant dynamical variables a streamlined parametrized 

description is needed of what is in reality a more complex phenomenon. These 

idealizations allow the modeller to neglect every dynamical variable other than those 

representing the relevant propensities (see figure 1), and include: 

 

- The coin’s radius is a and it remains constant throughout its motion. 

- The coin is assumed to be of negligible thickness, or infinitely flat. 

- Hence the coin’s geometrical centre is its centre of gravity. 

- At every instant t through its motion the coin’s centre of gravity finds itself at 

𝑦(𝑡) = 𝑥. 

- At the initial stage t=0 the coin finds itself at precisely height a: 𝑦(0) = 𝑎. 

- At the end of the motion, the coin’s landing position is final (no rebound). 

- Air friction is negligible; and the coin is not slowed down as a result. 

- The coin’s angular velocity is constant throughout its motion: Q
<1(R)
QR<

= 0, where 

q is the angle subtended to the upwards motion. 
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Figure 1 (adapted from Keller, 1986): The y-axis marks height, the x axis marks time. 
The coin radius is a; the coin diameter is 2a. The centre of the coin stands at a distance 
a from the floor. The angle subtended by the head side to the y-axis is q.  
 
 

 

 

     q 

     a 

 

 

It is then possible to show, by applying classical mechanical equations of 

motion, that any arbitrary distribution over the initial upwards velocity n and angular 

velocity w, as long as it fulfils minimal requirements, yields a final probability 

distribution over the Heads and Tails outcomes, which in the case of a fair coin (i.e. one 

not bent), is the equiprobable: Prob (H)= Prob (T) = ½. The requirements receive 

different names in the literature, and they have been the object of a considerable and 

intricate discussion. 23 The relevant point here is that a parametrization is implicit 

already in the selection of the relevant quantities that the initial probability functions 

will range over.   

	

23	(Poincaré,	1912)	and	(Hopf,	1932)	explicitly	require	that	the	initial	distribution	

functions	be	‘continuous’	and	the	dynamics	be	such	as	to	wash	out	the	differences	

between	any	such	functions.	(Strevens,	2003)	and	(Abrams,	2012)	propose	

versions	of	these	requirements,	called	the	‘macro-linearity’	and	‘micro-constancy’	

conditions.	All	these	approaches	have	identical	consequences	for	our	purposes.		
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In other words, the ascription of probabilities to the possible Heads (H) and Tails 

(T) outcomes of a given coin-tossing experiment is not the result of a simple application 

of the principle of indifference, or any other variety of a principle of sufficient reason. 

Philosophers sometimes assume that the principle of indifference on its own will yield 

probability ½ for each possible outcome of the toss of a fair coin. A ‘probability’ model 

is just such an ascription of probabilities (i.e. prob(H) = prob (T) = 0,5) on the basis of 

indifference. There is not any need for any dynamical model of coin tossing in order to 

arrive at the conclusion: a simple inspection of the geometrical properties of the coin 

would do. By contrast, a ‘statistical’ model of the phenomenon of coin tossing will 

necessarily be much more involved. A coin may well be perfectly symmetrical and fair 

in the sense that its outcomes are equiprobable; but the reason for the fairness of the 

coin is not, in a statistical model, to be found in the symmetries of the object. It is rather 

to be found, as in Keller’s model, in the complex dynamics of the entire coin-tossing 

phenomenon under a suitable idealized parametrization. The system as modelled is not a 

thing, or entity, at a given time, but a rather complex dynamical process evolving in 

time, as described under a set of relevant parameters – endowed with certain 

propensities. 

 

 To sum up, the MAF employs what I have called pure probabilistic models. These 

are models of systems that yield a stable or resilient probability distribution over 

macroscopic variables of their chance setup solely out of some deterministic dynamics 

acting on a range of distribution functions over initial microscopic variables of the 

system:  
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𝑝T U
𝑠W
𝑠X
𝑠Y
→ 𝐿𝑎𝑤Q.R.]^T_T`RTa → 𝑝b c

𝑜W
𝑜X 

 

The critical feature of MAF models is their ability to generate resiliently the 

same probability function, given the same parametrization of the phenomenon, as 

ideally described. A different probability function p’i would result only out of a 

different parametrization, with a distinct set of initial conditions {s’1, s’2, …., s’n}, in 

turn resulting from a different set of idealizations in the model:  

 

𝑝′T e
𝑠′W
𝑠′X
𝑠′Y

→ 𝐿𝑎𝑤Q.R.]^T_T`RTa → 𝑝′b c
𝑜W
𝑜X 

 

For instance, in the case of coin tossing, this entails relaxing the idealization that 

the coin is fair, for example, because the coin is no longer modelled as infinitely flat, or 

as having its centre of gravity at the geometrical centre, or because it is assumed to be 

experiencing precession, and hence its angular velocity is far from constant. 24 Most 

games of chance may be modelled in this fashion – and the methodology extends 

further to complex systems with underlying deterministic dynamics (Strevens, 2003, 

2013). The invariance of the output probabilities under changes in initial conditions, 

given a parametrization, is indicative of stable single-case chances, those precisely 

grounded upon the propensities of the system and set-up; while the breakdown in 

invariance elicited by a new parametrization introduced in response to changes in the 

system’s physical properties suggests that a change in the underlying propensities 

	

24	See	(Diaconis	et	al.,	2007)	for	some	of	the	relevant	de-idealizations.	
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brings about corresponding changes in the chances. 25 This expresses the sort of 

counterfactually robust dependence typical of the explanatory relation sought after. 

 

12.2. Pure stochasticity: Indeterministic dynamical 

modelling 

 

By contrast, in a pure stochastic statistical model the probabilities emerge out of 

the dynamics by itself, without recourse to any initial probability distributions over 

initial micro or macroscopic conditions: 

 

U
𝑠W
𝑠X
𝑠Y
→ 𝐿𝑎𝑤`Rfagh`RTa → 𝑝b c

𝑜W
𝑜X 

 

	

25	There	is	nonetheless	some	debate	regarding	the	nature	of	the	distribution	

function	over	the	initial	conditions	in	MAF.	Strevens	(2013)	and	Abrams	(2012,	

2015)	regard	it	as	some	kind	of	objective	frequency,	while	Myrvold	(2012)	

interprets	it	as	a	subjective	probability	reflecting	an	agent’s	degrees	of	belief	over	

the	exact	initial	conditions.	This	would	reduce	the	propensity	base	of	the	chance	

ascription	to	only	the	features	in	the	coin	and	the	toss	that	are	relevant	to	the	

distribution	given	the	uncertainty	over	the	initial	conditions;	it	would	also	provide	

yet	another,	third,	sense	in	which	‘subjective’	considerations	are	necessary	to	

determine	objective	probabilities	(I	thank	an	anonymous	referee	for	the	

observation).			
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 The laws in pure stochastic models are indeterministic or stochastic and generate 

objective probability distributions over the outcome events out of very precise 

specifications of the actual initial state of the system. The probability functions Pf 

predicted by such models are hardly ever invariant under changes in initial conditions – 

they are therefore sensitive not just to the parametrization entailed by the idealized 

description of a system, but also to the initial probability functions themselves, 

including their sample spaces. Since the underlying dynamics is not deterministic, these 

cases tend to lie outside the domain of ordinary macroscopic phenomena. Two 

examples include collapse interpretations in quantum mechanics and stochastic models 

for genetic variance in evolutionary theory.  

 

 Collapse theories in quantum mechanics assume an indeterministic change of the 

state of a quantum system (its wavefunction) either as a result of interaction with the 

open environment (as in quantum state diffusion or QSD theory) or spontaneously with 

a certain frequency (as in the so-called Ghirardi – Rimini – Weber or GRW theory). The 

overall dynamics is not deterministic; the changes in the values of the dynamical 

quantities are rather sudden and stochastic: one can only determine their probability, in 

the form of either transition probabilities or relaxation times. Thus, for example, a 

model for a quantum state diffusion process is a statistical model that yields continuous 

probability distributions for the evolution of the state in an abstract space, such as a 

Bloch space. As such the motion of the state vector in the space appears random when 

as a matter of fact it is highly constrained by the probabilistic equations of motion. 

Gisin and Percival (1992, p. 5679) make it clear that these equations derive from a 

master equation including a drift term and stochastic fluctuations, and they are therefore 

irreducibly indeterministic: ‘[…] there can be no general deterministic equation for the 
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pure states |𝜓⟩. But there are stochastic equations, as might be expected from the 

probabilistic nature of the interaction with the environment. In time dt the variation 

|𝑑𝜓⟩ in |𝜓⟩ is then given by the Itô form: |𝑑𝜓⟩ = m𝑣⟩𝑑𝑡 + ∑ m𝑢rs𝑑𝜉rr , where |𝑣⟩𝑑𝑡 is 

the drift term and the differential stochastic fluctuations are represented by a sum over 

independent Wiener processes’. The process may be understood as a sort of random 

walk on the Bloch sphere where states are represented: the QSD models are ‘purely 

stochastic’ in our terminology. 

 

The Ghirardi-Rimini-Weber (GRW) theory is similar except that it does not require 

open systems in constant interaction with the environment but rather postulates 

stochastic and spontaneous ‘shocks’ on the wavefunction which bring it regularly into 

the eigenstates of macroscopically well-defined observables. The relaxation times are 

construed in such a way that any finite-time observation on any macroscopic composite 

typically yields a definite outcome. There is no macroscopic superposition due to the 

aggregate of the non-linear stochastic terms added to the Schrödinger dynamics. The 

GRW modification of the dynamics in effect ‘leaves things unchanged for microscopic 

objects, while, for macroscopic objects, it transforms quantum mechanics into a 

stochastic mechanics in phase space exhibiting the classical features’ (Ghirardi et al., 

1986, p. 34). This somehow inverts the traditional picture, since the Schrödinger 

equation is a deterministic equation on the wavefunction; while the GRW theory 

presupposes that the fundamental stochastic collapses it postulates for the wavefunction 

manifest themselves at the macrolevel. Since GRW fixes the nature of the ‘shocks’ in 
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terms of a universal constant, it is plausible to think of it as providing a mixed statistical 

model, which is not purely probabilistic nor purely stochastic, but a mixture of both. 26 

 

Another field that illustrates statistical modelling in its stochastic variety is 

evolutionary biology – particularly population genetics, but more generally in the study 

of variability across populations, or in ecosystems. As for the former, consider the 

celebrated Wright – Fisher model for genetic drift. 27 The model describes the time-

evolution of a population of N genes, under considerably strong idealizing conditions. 

For instance, it assumes that populations are finite and do not vary in size from one to 

the next generation, and that the generations do not overlap – they are replaced 

wholesale every time. According to this model, the number of alleles in generation g+1 

is obtained by drawing with replacement from the gene population in the previous 

generation g. Thus if there are i alleles of type A in generation g, then the number of 

type A alleles in generation g+1 has a binomial distribution yielding a Markov process 

or chain with a transition matrix given as: 𝑃Tr = uvrw x
T
vy

r
x1 − T

vy
v|r

, for 0 ≤ 𝑖, 𝑗 ≤ 𝑁. 

Each expression for i, j provides a transition probability for the number of alleles in a 

later generation. 

 

	

26	For	a	discussion	of	the	propensities	involved	in	GRW	see	(Frigg	and	Hoefer,	

2007),	or	my	own	(Suárez,	2007,	pp.	432-33)	

27	For	an	exposition	see	e.g.	(Blythe	and	McKane,	2007),	or	the	seminal	(Fisher,	

1930).	
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The model can be refined and extended by suitably weakening the idealizations and 

varying the range of parameters. (Kimura, 1968) introduced the hypothesis of neutrality: 

some gene mutations have no effect whatever on fitness, and hence such alleles cannot 

vary out of natural selection; so genetic drift must account for a larger share of gene 

pool variability than previously thought. This invites the thought that the idealizations 

in the original Wright – Fisher model may be too strong. A new stochastic model then 

developed allowing for overlaps amongst generational populations. Once again, a 

parametrization of the phenomenon, under some idealized description, is critical in 

order to establish the appropriate probability functions and their domains. Many models 

in evolutionary biology are neither purely probabilistic, nor purely stochastic, but lie 

somewhere in the spectrum. 28 

 

  

	

28	(Rice,	2008).	It	must	be	noted	that	most	phenomena	underdetermine	the	type	of	

model	that	they	can	be	represented	by	–	and	in	particular	whether	a	‘pure	

probability’	or	a	‘pure	stochastic’	model	–	see	(Werndl,	2013).	Hence,	not	

surprisingly,	some	philosophers	have	claimed	genetic	drift	is	best	modelled	by	

means	of	what	I	would	call	a	‘pure	probability’	model.	See	(Strevens,	2003,	2016)	

for	some	excellent	discussion	of	the	issues	involved,	including	a	similar	distinction	

between	parameters	and	variables	as	applied	to	micro-constancy.	
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13. Towards a Methodology of Chance Explanation 

 

Statistical modelling is a complex activity that centres around providing explanatory 

as well as descriptive models for observed or presumed correlation phenomena. The 

models invoke dynamical laws and employ particular parametrizations, often describing 

the phenomena in a highly idealized form. Whether the laws employed are deterministic 

or stochastic, the models appear to have an explanatory role. This often reflects the fact 

that the idealized parametrizations represent the underlying mechanisms, causal powers, 

or capacities operating in the system, as the models’ essential posits in the ‘nexus of 

chance’.  

 

The explanans employs an idealized description of the propensities – or probabilistic 

dispositions – inherent in the system. As the idealizations change, so do the required 

parametrizations, and the ensuing description of the chances generated in the system.  A 

biased or precessing coin has distinct chances to land heads or tails if tossed, and it must 

be modelled so; the propensities of an open quantum system in interaction with the 

environment are displayed in a chance distribution to localize as a result; gene 

populations possess certain propensities to pass on types of alleles to the next 

generation with a given chance; and so on. In all these cases, there is a complex relation 

between (i) the propensities in the systems or chance set-ups, as revealed in the 

parametrization employed; (ii) the chances yielded over the outcome events, often at a 

macroscopic level; and (iii) the frequencies that are presumed or observed in 

experimental runs, which provide the empirical basis for our chance claims, and which 

are ultimately the object of our models’ explanation.  
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This is the nexus of chance in action; its distinct parts (propensities, chances, 

frequencies) are all required in order to make sense of the methodology employed in 

statistical modelling. The order of explanation seems to entail a distinct hierarchy, with 

the propensities at the highest level of explanation, the chances as the dynamical 

consequences of the propensities, and the finite frequencies as the putative 

consequences or explananda. Most minimally, the explanation is a variety of the model 

explanations that have been recently discussed in the literature (Bokulich, 2008). The 

essential explanatory posits in these models are precisely the components in the nexus 

of chance: propensities, understood as probabilistic dispositions, give rise within the 

highly idealized model descriptions to chance distributions over the outcomes; these in 

turn imply certain finite frequencies in particular experimental set-ups, which are 

counterfactually robust in pre-established ways. This is to say that they provide 

explanations for the finite frequencies observed, or their generalizations in data models. 

To the extent that a phenomenon P is minimally explained by the essential posits of a 

successful model representation for it, it follows that the nexus of chance is involved 

essentially in all of these explanations. 

 

The complex nexus of chance (CNC) only confronts the question of the nature of 

chance indirectly – and, as we saw in chapter 10, a number of options remain open. It 

assumes that objective probability is a complex and plural notion, requiring us to 

consider the interaction in modelling practice of its distinct parts – propensities, 

chances, frequencies –, while refusing to reduce any of them, or indeed the whole 

complex nexus to just one of its parts. Does this plural and pragmatist attitude to 

objective probability enable a different inquiry into the nature of chance?  
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Whilst there is no doubt that some new avenues open up for such types of inquiries, 

the safe and more limited conclusion of this chapter is this: regardless of what the 

ontology of chance in fact is, the methodology of chance explanations via statistical 

models presupposes a plural metaphysics of chance and a pragmatist outlook on its 

application. The CNC thus becomes a constraint on any further inquiry. There are 

arguments in favour of this conclusion coming from the irreducibility of chances to 

either propensity or frequency. But the most significant argument for pragmatic 

pluralism about objective probability derives from scientific modelling practice itself. 

CNC is the interlinked set of practices that employ dispositional probabilities – or 

propensities – as the grounds for the formal probability distributions over outcome 

spaces typical of chancy phenomena. This suggest that no serious philosophical inquiry 

into the nature of chance can start from very different assumptions. For instance, any 

philosophical inquiry that presupposes a unique ontology would need to painstakingly 

explain away why the methodology of statistical modelling is on the face of it so 

strikingly diverse in its assumptions.  

 

There is by now an entrenched view in the philosophy of science that scientific 

knowledge does not just reduce to abstract hypothetical theory and concrete observable 

data, but that a lot of our knowledge is contained in between – in approximations, 

idealizations, models of the data and phenomena, and all sorts of modelling techniques 

involved. The distinction between theories, phenomena, and data originates in (Suppes, 

1962), and is further developed by (Bogen and Woodward, 1988); while the claim that 

there are autonomous models that mediate between theory and the world goes back to 

(Morgan and Morrison, 1999). There is a sense, which I have explored elsewhere 

(Suárez, 2017a), in which the tripartite conception of objective probability that I 
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advance in this book, as part of a defence of the CNC reflects the above distinctions in 

general philosophy of science and modelling. Theories are not tested directly in 

comparisons with bare data, but via mediating models of the phenomena, which are in 

turn not mere descriptions, but autonomous and creative generalizations of the data  

Similarly, in the CNC propensities (understood as dispositional properties of chance 

setups) are not tested against finite frequency data, but against probability distributions 

within statistical models of the phenomena. These models are similarly autonomous and 

creative, requiring a very developed sense of practical fit, and involving complex and 

highly educated judgements regarding the choices of descriptions (parametrizations) of 

the general phenomena of interest.  

 

The formal concept of probability plays a critical role in representing the singl- case 

chances that mediate between theoretical descriptions of mechanisms, machines or 

complex dispositional setups, on the one hand, and frequency data obtained under 

constrained experimental conditions, on the other. This formal concept has been tailored 

to its role as a universal tool in statistical modelling, but what it represents in reality 

remains elusive. A number of philosophical approaches are available, and the 

suggestion in this book is that there may be no univocal essence to chance functions, or 

formal probabilities, other than their ubiquitous practical role in the application of 

statistical models. And just as mediating models (Morgan and Morrison, 1999) cannot 

be reduced to either pure theoretical knowledge, or bare experimental data, similarly 

chance, and objective probability, cannot be reduced to either propensity or frequency. 

From this point of view, the failure of reductive projects about chance and objective 

probability is hardly surprising.  
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Together propensities and chances can be employed to account for, or to explain (in 

a minimal sense of model explanation), the kind of finite frequency data so common in 

experimental runs on chance setups.  In this respect, statistical modelling is no different 

from any other form of scientific modelling practice. A large part of what is required in 

understanding chance is related to understanding the practice of statistical modelling. 

There are positive and negative reasons that support this conclusion, and they all have 

been canvassed in this book. The first half of the book made a case for a dual concept of 

probability through history, one that does not grant a univocal understanding of 

probability. There are both objective and subjective probabilities in the world, and 

moreover they both play a role in any philosophical understanding of either. The second 

half of the book argued that the very practice of statistical modelling supports a plural 

metaphysics for objective probability – the tripartite conception – together with a 

pragmatist approach to the methodologies involved in its application in practice.  

 

The overall take-up of this book is then that understanding chance requires us not 

just to engage in philosophical interpretation. The first half of the book led the reader 

through the morass of the historical development of probability, and its implications for 

an interpretational stance on chance. While this is valuable work, which ultimately 

shows that propensities, chances and frequencies ought to be kept distinct, an 

understanding of objective probability from a functional pragmatic perspective is also 

required. If we want to understand chance fully, we need to study its uses: both in 

historical terms, and in terms of how it is applied nowadays in the sciences. The second 

half of the book continued the argument for pluralism, this time as applied to objective 

probability only. It argued that objective probability itself must be understood as 

involving a tripartite distinction between propensities, single-case chances and 
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frequencies. It then went on to add a pragmatist thesis regarding the uses of this 

tripartite conception in modelling practice (CNC). What CNC shows, I suggest, is the 

importance of what Deborah Mayo (2018, p. 13) calls ‘statistical philosophy’: the study 

of the complex nexus of principles, methods and interpretations involved in actual 

statistical practice.  This study has the promise to shed light upon foundational issues 

regarding the nature of objective probability, and it should complement the more 

traditional epistemological and ontological approaches to the nature of chance.  
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