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Abstract

Nowadays cyber and telecommunication criminal activities are becoming more sophisticated
and hazardous. Often, adversaries form large teams composed of hundreds of highly skilled
members to raise the level of sophistication and perform well-organized attacks. As such,
enterprises face enormous difficulties to detect such attacks and this is confirmed by several
studies. The lateral movement attack is a stealthy, persistent and well-organized attack that
mainly targets organizations and institutions to exfiltrate sensitive and valuable data. In
addition, in the telecommunication industry, it is a matter of major concern to enterprises
PBX fraud activities that allow adversaries to make free calls and gain financial benefit.

In this thesis, we develop innovative ensemble learning methods to better detect the lateral
movement attack and PBX fraud activities. Our contribution is threefold. First, we propose
a supervised and an automatic semi-supervised approach based on ensemble learning to
detect all the related activities to the lateral movement attack. Then, we present how to detect
PBX fraud activities by developing approaches based on unsupervised learning coupled
with ensemble learning. Finally, we propose a one class classification method coupled with
ensemble learning that learns unsupervised representations to improve the detection rate of
several anomaly detection problems.

Our experimental datasets, extracted from well-known institutions where the privacy and
the confidentiality were ensured, support our contributions. In addition, real-life enterprise
data, provided by POST Luxembourg, were extracted to address the problem of detecting
PBX fraud activities. In this thesis, we provide the motivations of our anomaly detection
research project, describe the theory employed to improve state-of-the-art approaches and
quantitatively evaluate our methodologies.
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Chapter 1

Introduction

According to Andrew Moore, former-Dean of the School of Computer Science at CMU,
“Artificial Intelligence is the science and engineering of making computers behave in ways
that, until recently, we thought required human intelligence.” Siri and Google Assistant
are two artificial intelligence–powered virtual assistants which learn from the interaction
with the user and provide personalized user experience. They are probably the most iconic
examples of artificial intelligence abilities of gadgets. Artificial intelligence contains many
sub-fields, including: (i) Machine Learning, (ii) Computer Vision, (iii) Natural Language
Processing (NLP). Computer vision algorithms interpret and understand the visual world. In
particular, such algorithms give the ability to machines to accurately identify and classify
objects, capture and interpret images or videos in real time, and also react to what they “see.”
NLP gives the ability to computers to analyze, understand and generate human language,
including speech. Machine learning is a sub-field of AI that automatically learns and
improves from experience without being explicitly programmed. According to Tom Michael
Mitchell, former Chair of the Machine Learning Department at CMU, "Machine Learning is
the study of computer algorithms that allow computer programs to automatically improve
through experience". Machine learning algorithms are inspired by neural networks, statistics,
operations research and physics in order to find hidden patterns. The most distinguished
subset of machine learning algorithms is the family of deep learning techniques that is
steadily gaining popularity due to its achievements. The essence of deep learning is the
neural network or artificial neuron [95]; an elementary unit receiving a weighted input. Deep
learning is behind driverless cars, object detection in videos or images, language translation,
song composition etc. A typical deep learning model is composed of different layers of
neural networks where the first layer receives the input data and the last layer of neurons
outputs the processed information. The intermediate or hidden layers perform nonlinear
transformations of the inputs.



4 Introduction

Machine learning techniques can be divided into the following broad categories: (i) super-
vised learning, (ii) semi-supervised learning, (iii) unsupervised learning, (iv) reinforcement
learning. Learning with supervision means that someone can guide us towards to the right
answer. Likewise, in the machine learning context, supervised learning methods require a
full set of labeled data to train an algorithm to the correct answer. However, in real-world
scenarios, obtaining fully labeled data sets is difficult because it is a time intensive task that
requires huge manual work and significant domain knowledge. In addition, supervised learn-
ing approaches are mainly useful for classification problems and regression problems. On the
other hand, unsupervised learning approaches are able to extract patterns from data without
any supervision. In particular, unsupervised learning methods are mainly used for (i) cluster
analysis, (ii) anomaly detection, (iii) dimensionality reduction, (iv) density estimation. It
should be noted that, in an unsupervised learning setting there is no specific desired outcome
or correct answer. Semi-supervised learning is halfway between supervised and unsupervised
learning. It is suitable for the scenarios where a large amount of unlabeled data is available in
conjunction with a small amount of labeled data. Semi-supervised learning can be based on
either transductive learning or inductive learning [55]. Finally, reinforcement learning meth-
ods learn an optimal policy that maximizes a reward based on a set of actions, or decisions.
Reinforcement learning methods develop intelligence by interacting with the environment
and rely on the concept of trial and error. It is essentially inspired by the way humans or
other intelligent beings learn. Recently, deep reinforcement learning [103, 255, 187], which
refers to the combination of reinforcement learning with deep learning, is gaining popularity.

Ensemble learning has demonstrated a great success in the machine learning field. More
precisely, ensemble learning techniques use multiple learners, which are usually called
base-learners, to solve the same problem. The objective is to combine those learners to
ultimately produce a meta-model that outperforms the individual models. In other words, the
objective of ensemble learning is to improve the generalization ability of the base learners.
Typically, an ensemble is constructed either in a parallel or sequential fashion. In a parallel
ensemble, multiple base-learners are independently executed of one another whereas in a
sequential ensemble there is a dependency between the base-learners in a sense that the
first base learner influences the subsequent base-learner(s). A good ensemble, is composed
of base learners that are as much accurate and diverse as possible [152]. Bagging [37]
(Bootstrap Aggregation), Boosting [84] and Stacking [262] are three representative and
effective examples of ensemble learning that can be applied to the problems of regression
or classification. Boosting methods, such as AdaBoost [85], are based on improving the
accuracy of a weak classifier by focusing on correcting instances that are not classified
correctly by the previous classifiers. Weak classifier is a classifier that performs better than
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random guessing. Bagging methods, such as Random Forest [38], are based on learners
that suffer from high variance. The objective is to combine these learners by following
the bootstrapping technique in order to reduce the total variance. Bootstrap samples are
obtained by subsampling with replacement. Stacking is a two-phased ensemble learning
paradigm where a number of first-level individual learners are employed. Afterwards, the
output of those first-level learners is leveraged by a second-level learner which is called as
meta-learner.

A lot have changed from the first computer worm attack in 1989, The Morris Worm [132],
that distributed via the internet and infected around 6000 computer. However, the only
thing that remained unchanged is that attacking tactics are evolving at a rapid pace without
slowing down. From computer worms to large data breaches, attacks take any shape and
size. In regards to the most sophisticated and hazardous cyber attacks, Advanced Persistent
Threats (APTs) is the most representative example. In particular, a team (count tens or even
hundreds of people) of highly-skilled intruders establish a long-term presence on the network
of high-profile victims. The goal is to stealthily exfiltrate valuable and sensitive data. Hence,
due to how well organized and sophisticated these attacks are, most of the security systems
are not able to detect or prevent such type of attacks. APTs usually target physical critical
systems and Stuxnet [130] is the most infamous attack that devastated Iran’s nuclear program.
The aforementioned facts show that no-one can feel totally protected against cyber attacks.
This is also confirmed by the findings of a study conducted by Kaspersky in 2018. The
findings of this study show that cyber-threats are considered as one of the top 3 developing
risks in two years’ time by almost half of all organisations. Additionally, in the last twelve
months, 91% of organisations have experienced at least one attack most commonly in the
form of malware. Moreover, Robert S. Mueller, III, former Director of the FBI made the
famous quote: “There are only two types of companies: Those that have been hacked and
those that will be hacked”. As such, adversaries are capable of finding their way to hack the
assets of organizations or institutions or enterprises.

Telecommunication services go hand in hand with the internet and technology and this is
also depicted in Fig. 1.1. As a result, nowadays there are numerous ways to communicate
vocally that do not rely on the PSTN (Public Switched Telephone Network) such as Facebook
chat, Skype, WeChat, WhatsApp, Zoom etc. Today’s digital environment has reduced
cost and increased availability of telecommunications equipment capable of hacking inter-
carrier trust. As such, adversaries find fertile ground for fraud activities to gain financial
benefit. According to Financial Times [83], the financial cost of telecommunication fraud
reaches $17bn in revenue a year. Telecommunication fraud schemes rely more and more
on exploiting the vulnerabilities of the internet. As such, cyber-telecommunication crime
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Fig. 1.1 Timeline of telecommunication evolution [153]

blooms and can be as effective as traditional cyber-crime. The authors in [82] provide
a thorough analysis of the cyber-telecommunication fraud environment and discuss how
challenging is for telecommunication carriers to defend against criminals. A global and
unified threat intelligence that shares intelligence and techniques is crucial to fight the cyber-
telecommunication crime that is a multi-billion dollar industry. Hence, it is critical not to be
idle but to constantly enhance security against cyber and cyber-telco criminal activities.

In this hostile and constantly evolving cyber-criminal environment, the enterprises have
to advance their detection mechanisms against cyber and cyber-telco criminal activities.
The amount of such activities is steadily increasing at such levels that manual investigation
is no longer a viable solution. In addition, it is vital for the survival of enterprises and
organizations to detect cyber-criminals pro-actively instead of re-actively. In order to achieve
it, enterprises can take advantage of the unparalleled technology advancements that give the
opportunity to store and quickly analyze data. To give an example of these advancements we
compare today’s computers that crunch petaFLOPS (quadrillion FLOPS) with ENIAC, the
first computer, that processed about 500 FLOPS (Floating Point Operations). Furthermore,
enterprises can improve their detection mechanisms by leveraging the latest techniques
originated from the intersection of computer science and statistics, such as machine learning
(ML) and artificial intelligence (AI). These techniques are able to identify complex rules
and patterns thus are suitable to expose the sophisticated behavior of criminals. To better
understand the research problems of this thesis, we elaborate on these generic terms and the
techniques related. Although there is no distinct boundary between the notion of AI and ML
we try to amplify their differences and shed light in this novel field. Artificial intelligence
and machine learning share the same configuration which is composed of a dataset used to
employ an algorithm that is capable to find rules, patterns within this dataset.
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1.1 Machine Learning for Anomaly Detection

It is natural to expect that anomaly detection techniques take advantage of AI and ML
advancements to reach their objectives. In particular, anomaly detection methods rely on
machine learning and artificial intelligence to identify unexpected and outlying behaviors
that are in someone’s interest. Detecting anomalies is crucial in many domains, including
for example, fighting several types of crime such as financial crime, cyber crime, cyber-
telecommunication crime, detecting tumor in image data, identifying pathologies in medical
data, detecting faults in industrial systems and visual inspection using drones. The decision
how to address an anomaly detection problem could be influenced by multiple factors but
the most prominent is the ground truth availability. Hence, the large majority of anomaly
detection approaches could be either supervised or unsupervised or semi-supervised. More
specifically, supervised learning methods require fully labeled datasets in which the anoma-
lous behavior is known in advance. Learning with supervision helps the algorithms find rules
or patterns regarding how to distinguish normal and abnormal behavior. Supervised anomaly
detection approaches are a special instance of the family of supervised algorithms due to
the relatively few members of the anomalous class. Furthermore, unsupervised learning
methods play a key role in the anomaly detection field. Unsupervised learning methods
in contrast to supervised learning do not require any knowledge related to the anomalous
behavior which makes such methods a natural approach to the problem of anomaly detection.
Unsupervised learning methods can classified into the following groups: (i) proximity-based
that model outliers as points which are isolated from the remaining data. LOF [39] (Local
Outlier Factor) is one of the most popular algorithm of this group. (ii) statistical-based that
model data using probability distributions. Extreme Value Analysis (EVA) [197] is one
of the most popular algorithm of this group. (iii) subspace-based that find relevant lower
projections of the data. Feature Bagging [159] is one of the most popular algorithm of this
group. (iv) one-class classification-based. One-Class SVM [223] and SVDD [242] are two
of the most popular algorithms of this group. Finally, semi-supervised learning approaches,
that use both unlabeled data and labeled data [55], provide a viable solution for the problem
of anomaly detection. More specifically, such methods aim at finding a description of the nor-
mal class and anomalies are exposed by assessing the divergence from the normal behavior.
SV DDneg [243] is the most popular semi-supervised algorithm for anomaly detection.

Furthermore, ensemble learning has demonstrated success in the problem of anomaly
detection by combining diverse results originating from different models. Ensemble learning
methods not only collectively improve the overall performance of the final model but also
alleviate the user from the subjectivity and ambiguity that profoundly influence the definition
of anomalies. This ambiguity and subjectivity are depicted in each attempt to formally define
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what is an anomaly [105, 28, 97]. Specifically, one of the first definitions of anomaly is
given by Grubbs et al. in [97]: “An outlying observation, or outlier, is one that appears to
deviate markedly from other members of the sample in which it occurs”. It is not difficult
to observe that the adverb "markedly" carries a lot of subjectivity that is transferred to the
anomaly detection algorithm. As such, anomaly detection algorithms are designed to be
biased towards a part of the total anomalous truth. In other words, they are designed to
partially expose outliers or anomalies. On the other hand, by combining diverse biases it is
possible to produce a more effective final model compared to each individual model. The
effect of combining diverse ensemble members is illustrated in Fig. 1.2 whereas Fig. 1.3
illustrates a counterexample.

Fig. 1.2 Diverse outlier scores [279]. In
red are coloured the ensemble members,
in blue the final ensemble model, in green
the ground truth

Fig. 1.3 Non-diverse outlier scores [279].
In red are coloured the ensemble mem-
bers, in blue the final ensemble model, in
green the ground truth

1.2 Research Problems

Throughout this chapter, we have discussed several challenges of the cyber-security and
cyber-telecommunication domain. Existing defensive approaches against adversaries are not
sufficient and they fail to effectively detect anomalous activities. Hence, there is plenty of
room for innovation and improvement. Moreover, we shed some light on the differences
between artificial intelligence and machine learning. In addition, basic anomaly detection
and ensemble learning concepts were discussed. The motivation of this thesis is to propose
innovative and novel machine learning methods to address the discussed challenges in the
cyber-security and cyber-telecommunication domain. Novel solutions in real-world scenarios
are introduced to increase the defensive barriers of enterprises and protect their Achilles heel
against adversaries. More precisely, we take advantage of the merits of ensemble learning to
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detect anomalous behavior in a robust and effective way. Therefore, in this thesis we develop
methods that address the following research problems:

• We focus on the effective detection of a sophisticated cyber-attack, called Lateral
Movement Attack, that is considered as Advanced Persistent Threat due to its charac-
teristics. Currently, the largest body of research on detecting Lateral Movement Attack
is restricted on identifying anomalous entities instead of identifying anomalous events.
Hence, there is a need to provide actionable insights to analysts by answering questions
related to when exactly and at which systems a malicious event happened. In addition,
there is lack of research on ensemble learning methods for the Lateral Movement
attack. As such, we interested in developing ensemble learning techniques for the
problem of detecting the Lateral Movement Attack. In other words, can we introduce
innovative ensemble learning methods to effectively capture anomalous patterns of
this particular cyber-attack?

• We focus on the effective detection of telephony crime on the network of POST Lux-
embourg without any historical knowledge related to anomalous activities. Currently,
there is a large scarcity in real-world datasets and limited academic work in telecom-
munication area that makes mandatory the need for novel fraud detection models.
Additionally, the importance of developing robust and effective fraud detection ap-
proaches is high. For use in real-world business applications a method that can perform
well on different types of data ensures that the introduced method will not impact that
business in unexpected ways. As such, we are interested in detecting telecommunica-
tion fraud activities by introducing innovative anomaly detection models that do not
need supervision and are based on well-established ensemble learning principles. In
other words, can we introduce innovative ensemble learning methods to effectively
capture anomalous patterns of telephony crime?

• We focus on the effective detection of novel anomalies by learning unsupervised repre-
sentations. Novel anomalies correspond to previously unseen patterns of anomalies and
their detection is critical in many real-life applications. The main areas of application
could be the detection of faults in complex industrial systems, of structural damage,
and of failure in electronic security systems, credit card fraud activities. Currently, the
problem of learning unsupervised representations to detect novel anomalies has not
been addressed properly. State-of-the-art methods require learning with full supervi-
sion to detect novel anomalous patterns. However, one-class classification methods
have demonstrated success in the problem of detecting novel anomalous patterns. As
such, we are interested in detecting novel anomalies by introducing an innovative
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ensemble learning method based on one-class classification algorithms and unsuper-
vised representations. In other words, can we introduce innovative ensemble learning
methods to effectively capture novel anomalous patterns regardless the application
domain?

1.3 Contributions

• In Chapter 2 of Part I we introduce a novel supervised ensemble learning method that
is based on three individual classifiers and advanced graph-based feature engineering.
It is able to effectively identify anomalous activities by achieving 0 false negative rate
and on average a false positive rate of 0.0019. In Chapter 3 we introduce a sequential
semi-supervised ensemble learning method that is developed using unsupervised outlier
detection algorithms and one-class learners. It manages to improve the performance
of the state-of-the-art. Our introduced methods not only are the first of their kind that
follow ensemble learning techniques to address the problem of detecting the Lateral
Movement attack but also provide actionable insights to the cyber-analysts.

• In Chapter 2 of Part II, we propose unsupervised outlier ensembles for the problem of
detecting telecommunication fraud activities. In addition, we provide insights regarding
the impact on selecting different ensemble components. Overall, our method effectively
identifies the fraud activities happened in the network of the POST Luxembourg. Our
introduced method attempts for the first time to detect real-life telecommunication
fraud activities by developing ensemble learning approaches.

• In Chapter 1 of Part III we introduce a novel one-class classification ensemble frame-
work that is built on unsupervised representations to improve baseline approaches with
statistical significant results. In addition, our method, successfully extends existing
supervised learning works that are developed using unsupervised representations. Our
extensive experiments show that it is able to improve the detection rate in real-world
scenarios especially when knowledge of the anomalous activity is scarce. Our intro-
duced method is the first of its kind that effectively learns unsupervised representations
and develops one-class classification ensembles in order to detect novel anomalies.

1.4 Thesis Structure

In the second chapter of Part I, we provide an introduction to the problem of anomaly
detection, present the different settings of anomaly detection methods and discuss the main
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challenges. Additionally, we elaborate on the ensemble learning for anomaly detection and
present the state-of-the-art on this field. Ensemble learning for anomaly or outlier detection
is increasing popularity due to its merits to overcome the typical difficulties of the anomaly
analysis. A list of publicly available software is also provided. This thesis is divided into
three disjoint parts that extensively discuss and provide innovative solutions to three different
problems. The most significant commonality between these parts is that all the proposed
solutions rely on Ensemble Learning foundations. The first part provides details related to the
nature of a sophisticated and well-organized attack, namely Lateral Movement (LM) Attack.
Additionally, it discusses the state-of-the-art detection methods of the LM attack. Moreover,
this part is divided into two individual chapters in which we propose two ensemble learning
based methods that are able to effectively detect the LM attack. The first method needs full
supervision whereas the second is free of supervision. Both methods are evaluated on a freely
available real-world dataset collected within Los Alamos National Laboratory’s corporate,
internal computer network. The objective of the conducted experiments is to demonstrate the
effectiveness of our introduced ensembles in a cyber security application. The second part of
this thesis, we present details regarding the telephony fraud ecosystem and also discuss the
challenges and issues that fraud detection systems have to overcome in order to be effective.
Additionally, we present current works that focus on fraud detection of telecommunication
with the use of data mining techniques. In this part, we propose an unsupervised anomaly
detection method that detects fraudulent Private Branch Exchange (PBX) phone calls made
on the network of the largest provider in Luxembourg, POST Luxembourg. PBX is a critical
enterprise technology that enables enterprise customers to manage their internal and external
communication needs. The third part introduces an innovative one-class classification and
ensemble method that addresses the novelty detection problem with the aid of unsupervised
representations. More precisely, one-class classification learners are used to accommodate the
scarcity of sufficient labelled training sets. By using unsupervised outlier scoring algorithms
it is possible to learn unsupervised representations of the initial features of a dataset that are
able to better expose outliers.





Chapter 2

Ensemble Learning for Anomaly
Detection: Background and Related
Work

Anomalies are also referred as outliers, abnormalities, or deviants [13] and one of the first
definitions of outliers is given by Grubbs et al. in [97]: “An outlying observation, or outlier,
is one that appears to deviate markedly from other members of the sample in which it
occurs”. Hawkins et al. in [105] defined what an outlier is as it follows: “An outlier is an
observation which deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism”. Barnett et al. in [28] defined what an outlier is as it
follows: “An observation (or subset of observations) which appears to be inconsistent with
the remainder of that set of data”. It is apparent that subjectivity and ambiguity is present
in each of the aforementioned definitions. As such, this subjectivity and ambiguity pose
the most dominant challenge in the way to identify anomalous or unusual or unexpected or
interesting or unlikely patterns. Therefore, before identifying data that exhibits such patterns
it is crucial to determine what is an anomaly (outlier). The procedure of identifying data that
exhibits anomalous or unexpected patterns is called anomaly (outlier) detection.

Fig. 2.1 illustrates how the different aspects of an anomaly detection problem influence
the decision of the finding the appropriate algorithm for a given problem. In addition, Fig. 2.1
categorizes anomaly detection problems based on the (i) learning scenario, (ii) type of data,
(iii) data structure, (iv) type of anomalies and highlights the different ways an anomaly
detection problem could be approached. Detecting anomalies is very important in many
domains, including for example, detecting financial or cyber crime, identifying pathologies
in medical data, forensic applications or detecting faults in industrial systems. Furthermore,
in this chapter we elaborate on well-established ensemble learning principles and techniques.
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Fig. 2.1 A taxonomy of Anomaly Detection Approaches

More specifically, ensemble learning methods aim to alleviate the user from the subjectivity
and ambiguity that profoundly influence the definition of anomalies. Finally, existing works
related to ensemble learning methods for the problem of anomaly detection will be presented.

2.1 Anomaly Detection

As previously discussed, anomalies could be considered as data objects that do not conform
to expected normal behavior. On the other hand, it is challenging due to several reasons
not only to define a region that represents the normal behavior but also to assess which data
objects belong to this region. Below, the major challenges are presented:

• Often there is no clear border that distinguishes normal and abnormal behavior thus is
difficult to label observations that lie close to the boundary.

• There is a huge scarcity of sufficiently labeled data for evaluating of anomaly detection
methods.

• The notion of an anomaly is not the same between different application domains and
very often normal and/or anomalous behavior shifts. As such, the current behavior is
not representative anymore.

Type of Anomalies

Hence, due to the aforementioned challenges (i) detecting anomalies is not a trivial task,
(ii) most of the anomaly detection techniques are able to partially capture the anomalous
patterns.
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Fig. 2.2 A two-dimensional illustration of global anomalies (x1, x2), a local anomaly x3 and a
micro-cluster c3. [94]

In addition, the nature of the desired anomaly to be detected could classify anomalies into
different types. As such, the nature of anomalies influences the anomaly detection approach
that will be followed. Chandola et al. in their survey paper [54] classify anomalies into the
following three categories:

• Point Anomaly: An individual data object that is anomalous in regard to the rest of
data. In addition, point anomalies can be divided into Local and Global anomalies as
illustrated in Fig. 2.2. Global anomalies are considered anomalous relatively with all
other data objects whereas Local with a subset of data objects.

• Contextual Anomaly: A data object that is considered as anomalous only in a specific
context. It is also referred to as conditional anomaly [232]). In other words, the same
data object may not be considered anomalous in a different context. Fig. 2.3 illustrates
an example of time series data.

• Collective Anomaly: A subset or collection of data object is considered as anomalous
but the individual data objects are not necessarily considered as anomalies. In particular,
it is their collective occurrence that deviates significantly from the entire data set.
Fig. 2.4 illustrates an example of collective anomaly. The highlighted region (grey
colour) is considered as an anomaly because low values exist for exceptionally long
time.

How to select the appropriate anomaly detection algorithm?

The phase of selecting the most suitable family of algorithms is crucial. It heavily depends
on our existing knowledge related to the anomalous behavior. In addition, the objective of an
anomaly detection task also influences the decision of selecting the appropriate family of
algorithms. For instance, given the fact that there is a limited knowledge related to anomalous
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Fig. 2.3 A temperature time-series where t2 is a contextual anomaly. Despite that temperature
values at t1 and t2 are same, t1 is not considered as an anomaly [54].

Fig. 2.4 Collective anomaly on data from a human electrocardiogram [93].

data objects are we interested in (i) distinguishing between normal and anomalous classes
based on existing knowledge or (ii) detecting previously unobserved anomalous patterns?.
The underlying objective of the first question is to learn a decision function to classify new
and unseen data objects as anomalous or normal. The core element of this approach is that
classified anomalies, can only help us to identify anomalies of a certain shape, colour or
texture in the new and unseen data objects. In the second question, the underlying objective
is to learn a model for the normal data objects and identify which new and unseen data
differ in some respect from the normal model. The characteristic of such an approach is
that anomalies of different shape, colour or texture in the new and unseen data objects could
be identified. In this chapter in Sec. 2.3 we extensively discuss and elaborate on different
learning scenarios.

2.2 High-dimensional data

High dimensional data are composed of a high number of features or independent variables.
It is of high importance to detect anomalies in high-dimensional data because of the large
number of applications such as banking fraud, network intrusion detection and financial
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applications. However, outlier detection in high-dimensional data poses extra challenges
for outlier detection with the most prominent, the ‘curse of dimensionality’. The authors
in [14, 283] discuss the effect of the ’curse of dimensionality’ on exposing outliers in
high-dimensional data. In particular, due to the ’curse of dimensionality’ a high portion
of irrelevant and noisy attributes may exist and as a result the contrast between inliers
and outliers is diminished. Furthermore, the authors in [11, 113] investigate the impact of
distance-based algorithms in scoring outliers and if the notion of neighborhood sustains in
high dimensions.

Subspace outlier detection approaches constitute a possible solution to the problem of
masking outliers by irrelevant dimensions. More specifically, such approaches assume that
the outlying behavior is masked by full-dimensional analysis and outliers are often hidden in
low-dimensional spaces (subspaces). As such, it might be more effective to search for lower
projections in which the anomalous behavior is emphasized. Subspace based methods have
demonstrated a huge success in anomaly detection [147, 190, 221, 131]. As such, by taking
into consideration the behavior of the data in lower projections it could possible to design
more effective algorithms. On the other hand, searching for relevant lower projections or
subspaces could be computationally infeasible due to the high dimensionality of the data. In
addition, as it pointed out in [10] selecting the “correct” or meaningful subspace is a process
that leads to make mistakes. Hence, it is suggested to combine predictions from different
subspaces in order to avoid making mistakes. Finally, we provide an example to illustrate
how full-dimensional outlier detection analysis fails to effectively expose outliers. More
specifically, in Fig. 2.5, four different 2-dimensional views of an artificially generated dataset
are illustrated. Each of these views correspond to a disjoint set of dimensions. Data points
’A’ and ’B’ are exposed as outliers in the first and fourth view of the dataset respectively.
However, neither of ‘A’ and ‘B’ are exposed as outliers in the second and third views of
the data set. Therefore, the second and third views of the dataset are noisy and quite non-
informative for exposing ‘A’ or ‘B.’ as outliers. As such, it is evident that (i) not all the views
or lower projections are meaningful for the outlier detection analysis, (ii) outliers might be
lost in a full-dimensional outlier detection analysis.

2.3 Learning Scenarios for Anomaly Detection

Anomaly detection approaches could be categorized into supervised and unsupervised based
on whether the ground truth is known. The goal of unsupervised learning is to find interesting
structure in the data whereas the goal of supervised learning is to learn a decision function
given a set of labeled examples. In addition, except for supervised and unsupervised methods,
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Fig. 2.5 Four different two-dimensional views of an artificially generated dataset [10]

semi-supervised learning approaches have been introduced to address the problem of anomaly
detection. The typical scenario of semi-supervised learning is that normal data objects are
available whereas outlier data objects are rare.

Imbalanced Data: Learning from imbalanced data is a common problem regardless
the learning scenario (i.e. supervised, unsupervised, semi-supervised). According to [107]:
"Any dataset that exhibits an unequal distribution between its classes can be considered
imbalanced.". An imbalance ratio of 100:1, 1,000:1, and 10,000:1 is very common in two-
class imbalanced datasets as well as anomaly detection problems. In other words, imbalanced
datasets [45] could be used to evaluate anomaly detection methods. In this thesis we focus
on three commonly used learning scenarios for anomaly detection: (i) Supervised learning,
(ii) Unsupervised Learning, (iii) Semi-supervised Learning. Learning from imbalanced data
with supervised approaches implies an imbalanced classification problem. On the other
hand, learning from imbalanced data with unsupervised approaches implies a problem of
data characterization. Following, we elaborate on the differences between these three large
families of algorithms and we extensively discuss their applicability in the anomaly detection
problem.
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2.3.1 Ensemble Methods in Supervised Learning

Supervised Learning for Anomaly Detection

Supervised anomaly detection problems could be considered as very imbalanced classifica-
tion problems due to the fact that the outlier class has relatively few members. Imbalanced
classification problems are more than challenging because the majority of classifiers is de-
signed assuming balanced classes; equal number of examples for each class. Imbalanced
classification problems could affect either multi-class [60, 5, 234] or two-class classification
scenarios. Henceforth, we are solely interested in the binary imbalanced learning prob-
lem which is closely related to the anomaly detection problem with numerous real-life
applications [53, 207, 149].

Several studies [79, 29, 259] show that for a number of classification algorithms, balanced
datasets improve their predictive performance compared to imbalanced datasets. As such,
re-sampling methods are used to balance the skewed distribution of imbalanced data set in
order to minimize its impact on the learning process. Re-balance is accomplished by (i)
utilizing oversampling techniques that focus on artificially generating new data objects for the
minority class. Various approaches are introduced to generate new data objects which span
from methods that are based on nearest neighbors to deep learning methods [106, 156, 101,
56, 47, 165], (ii) utilizing undersampling techniques that focus on removing data objects from
the majority class. Such techniques are mainly based on nearest neighbors methods [150,
175, 247, 102] (iii) combining oversampling and undersampling techniques. In addition,
advanced re-sampling techniques [162] are proposed in order to preserve the structures of
the classes and/or generate new data by sampling from the underlying distributions.

In addition, cost-sensitive learning methods [76] show success in addressing the imbal-
anced learning problem. More specifically, such methods incorporate varying costs (penalty)
for each group of data objects to boost the performance of the learner. A higher cost is
assigned to misclassified data objects that are less represented. Cost-sensitive learning ap-
proaches focus on minimizing the bias of a given learner towards majority groups. As such,
they are a viable solution to imbalanced learning problems [48, 258, 245, 217]. Furthermore,
several surveys [107, 108, 88, 173, 36] capture and provide a great overview of the recent
advances in the imbalanced learning field.

Supervised Learning & Ensemble Learning for Anomaly Detection

Ensemble learning has become an effective and popular approach in addressing imbalanced
learning problems [100, 143, 88]. Ensemble learning essentially is the combination of
several models to ultimately produce a meta-model that outperforms the individual models.
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Bagging (Bootstrap Aggregation) and Boosting are two examples of ensemble learning
methods that can be applied to many statistical learning methods such as regression or
classification [71, 152, 278]. Boosting methods, such as ADABOOST [85], are based on
improving the accuracy of a weak classifier by focusing on correcting instances that are
not classified correctly by the previous classifiers. Bagging methods, such as Random
Forest [38], are based on learners that suffer from high variance. The objective is to combine
these learners by following the bootstrapping technique in order to reduce the total variance.

Random Forest is an well established ensemble learning algorithm that grows unpruned
classification or regression trees and uses random feature selection to improve performance.
Random Forest is used in [57] address the problem of class imbalance. More specifically,
the authors in [57] (i) introduce a cost-sensitive version of the Random Forest by penalizing
misclassifications of the minority class and as a result, (ii) down-sample the majority class and
growing trees on balanced datasets. BalanceCascade [168] is another example of supervised
ensemble algorithms that its goal is to overcome inefficiency of the traditional random
undersampling method. In particular, it develops an ensemble of classifiers by iteratively
under-sampling the imbalanced dataset using an estimator. In addition, ensemble techniques
are applied with the the SVM algorithm [7] to address the imbalanced problem. SVM is
a non-parametric kernel-based algorithm that its objective is to construct a hyperplane in
a high-dimensional space to maximize the separation margin between the support vectors
and the hyperplane. However, the authors in [263] show that in imbalanced scenarios the
decision boundary is largely biased toward the minority class. Hence, several works based on
ensemble methods accompanied by re-sampling techniques (undersampling or oversampling)
are introduced to minimize this bias [257, 129, 169].

2.3.2 Ensemble Methods in Unsupervised Learning

Unsupervised Learning for Anomaly Detection

Anomaly detection is inherently an unsupervised problem due to the fact that very often
examples of outliers are not available. In an unsupervised setting, proximity-based approaches
are the most established. The fundamental assumption of such approaches is that proximity
of an outlier to its nearest neighbors is significantly different compared to proximity of
an arbitrary data object to most of the other data objects in the data set. Proximity-based
methods quantify the similarity between data objects using distance measures. As such, they
are considered unsupervised approaches and as a result they do not leverage the ground truth
in order to identify outliers. Furthermore, such methods could be classified into two types
based on the type of output they produce. In particular, labeling outlier detection methods
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output a binary vector that represents whether a given object is an outlier or not. Scoring
outlier detection methods assign each object a score that express the degree of outlierness.
Finally, proximity (similarity) can be defined in several ways and the most common are the
following:

Cluster: Outlier detection and clustering problems have a very close relationship. In
particular, the membership of a data point in any cluster is used to define proximity (sim-
ilarity). More specifically, normal data points form dense clusters whereas outliers either
do not belong to any clusters or form sparse clusters. The authors in [246] employ the
well-established DBSCAN [80] algorithm with multiple parameters to detect anomalies in
network traffic. In addition, the authors in [177] develop a three-phased method that uses
the Affinity Propogation (AP) [86] clustering algorithm to detect anomalies in multi-view
data; individual objects are described from several disjoint perspectives or views. In addition,
the Global-Local Outlier Scores from Hierarchies method (GLOSH) outlier detection algo-
rithm is a byproduct of the clustering algorithm HDBSCAN [43]. It is designed based on
hierarchical density estimates computed by HDBSCAN.

Distance: Distance based outlier detection algorithms use the distance of a data point to
its k-nearest neighbor to define proximity. Large k-nearest neighbor distances are indicative
to expose outliers. On the other hand, often is computationally expensive to calculate the k-
nearest neighbor distances of each data point. Different variants of distance based algorithms
have been proposed in the literature. In particular, ODIN [104] is an algorithm that uses the
number of reverse k-nearest neighbors to expose outliers. Furthermore, the authors in [206]
use the distance of a point to its kth nearest neighbors as a proximity measure.

Density: The density around a data point is compared with the density around its local
neighbors. This comparison is called relative density of a data point and is used to define
proximity. Density based algorithms assume that the density of a normal data point is similar
to the density around its neighbors. On the other hand, this is not the case for outliers. The
Local Outlier Factor (LOF) [39] method is a well-established algorithm that compares the
local density of an object to the local densities of its neighbors in order to expose outliers.
Several variants have been proposed that are similar to LOF such as Local Correlation
Integral (LOCI) [196] and LDOF (Local Distance-based Outlier Factor) [272].

Furthermore, unsupervised anomaly detection is also present in the one-class classi-
fication (OCC) context. More specifically, OCC approaches for outlier detection belong
to the broader one-class classification family of algorithms in which the objective is to
learn a decision function that distinguishes between normal and unusual observations. In
addition, OCC methods could be categorized into two broad categories (unsupervised and
semi-supervised) based on the availability of outliers examples. In particular, unsupervised
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one-class classification approaches do not have any mechanism to directly use label infor-
mation learn the decision function. In addition, if one-class classifiers are able to use label
information they are considered semi-supervised learning approaches. We provide details
regarding semi-supervised OCC in the next section. Finally, one-class learners could be either
density methods or boundary methods or reconstruction methods. Boundary methods define
a boundary around data in order to accept as inliers (normal) observations that fall within
the boundary. Observations that fall outside of the boundary are considered as outliers. The
Support Vector Data Description (SVDD) method [242] is one of the most popular boundary
based OCC approach. PCA [125] and Autoencoder [? ] are two of the most popular OCC
methods that expose outliers by assessing the reconstruction error of the input space. Density
based OCC methods use training data to estimate the p.d.f of the data and new observations
are classified using this p.d.f.. Gaussian density is a commonly used OCC that is based on
density [32].

Unsupervised Learning & Ensemble Learning for Anomaly Detection

Ensemble learning approaches for unsupervised learning are more challenging to be designed.
However, the authors in [10, 12] show that outlier analysis and classification share similar
theoretical foundations. Aggarwal et al. in [12] extensively discuss the bias-variance problem
in the unsupervised outlier detection context. In addition they point out that even though
the ground truth is unknown in an unsupervised setup, bias and variance can still be defined.
They discuss the effect of bias in constructing outlier ensembles, how bias and variance
could be minimized and also they review the feature bagging [159] technique and it variants.
Zimek et al. in [279] transfer the accuracy and diversity principles of supervised ensemble
construction into the unsupervised ensemble construction. They highlight the fact that, in an
unsupervised setup, it is almost impossible to measure accuracy during the learning phase in
contrast to diversity that can be measured.

Often, outlier detection algorithms score data objects according to their outlierness. As
discussed previously, diversity of outlier detection models is a core ingredient of constructing
good outlier ensembles. As such, in Fig. 2.6 and Fig. 2.7 the effect of diverse outlier scores in
constructing outlier ensembles is illustrated. Our example is constrained in a two-dimensional
world where each outlier detection algorithm produce a two-dimensional outlier score vector.
The corresponding two-dimensional score vectors are coloured in red while in green is
coloured the ground truth. Finally, in blue is coloured the outlier ensemble (two-dimensional
score vector) that is constructed by calculating the average of the six individual outlier
two-dimensional score vectors. Fig. 2.7 illustrates a scenario where diversity is limited or
even missing while in Fig. 2.6 there is diversity in some extend. It should be noted that
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in both scenarios all the individual outlier scores are quite accurate but when diversity is
missing the accuracy of the constructed ensemble is negatively affected. In addition, it can
be seen that in Fig. 2.7 all individual outlier detection results make the error and they form a
tight cluster. On the other hand, in Fig. 2.6 the outlier detection results make different errors.

Fig. 2.6 Diverse outlier scores [279] Fig. 2.7 Non-diverse outlier scores [279]

The authors in [159] introduce for the first time an outlier ensemble method method that
is inspired by the well-established bagging technique. High diversity increases the chance
that the models will make different errors. As such, the authors in [281], induce diversity
by proposing an outlier detection method based on the subsampling technique. The authors
[198] induce diversity by using both techniques; subsampling and bagging. Randomness
is frequently used in order to induce diversity and construct good outlier ensembles. Such
ensemble methods use arbitrary random data projections in order to obtain accurate results.
An example of such ensemble methods is the isolation forest algorithm [167] which uses a
randomized process to expose outliers in local subspaces of low dimensionality. Additionally,
a randomized version of the hashing technique is the basis of ensemble subspace-histogram
approaches [221, 222] that build histograms on random data subspaces and also scale linearly.
LODA (Lightweight On-line Detector of Anomalies) [200] is another example of using
random projections to build outlier ensembles.

Unsupervised combination of individual models into an ensemble

Combining different outlier scoring algorithms requires the same meaning of outlierness
between the combined models. Often, this is not the case because outlier scoring algorithms
produce outlier scores that differ in their semantics and meaning. As such, re-scaling outlier
scores provides a solution to make feasible the combination of results from different models.
Also, re-scaling often increases the contrast between inlier scores and outlier scores to better
expose outliers. The authors in [146] show that re-scaling outlier scores increase the contrast
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between outlier and inlier scores. In addition, the authors discuss the differences between
normalization and standardization and they propose scaling methods for several algorithms
in order to increase the contrast between inliers and outliers. Additionally, they introduce a
novel procedure for normalizing outlier scores by using the gaussian and gamma distribution.

Recently, the authors in [44] inspired by supervised boosting methods and introduced the
BootSelect strategy to construct unsupervised outlier ensembles. This is the first attempt to
transfer supervised boosting methods in the unsupervised world. Their experiments showed
that they outperform existing model selection methods. The authors in [224] introduce an
unsupervised greedy heuristic to optimize diversity in outlier ensembles. Furthermore, the
authors in [209] propose an unsupervised method that builds an ensemble by examining
which results to combine from several different methods. In addition, majority voting or
weighted majority voting techniques [151] could be used to combine the predictions of
several individual models. Another example of unsupervised ensembles is proposed by the
authors in [59]. They build an ensemble using the autoencoder method and obtain high quality
results by allowing each autoencoder to overfit and inducing randomness. The experimental
setting demonstrate that the introduced ensemble gains in efficiency.

Supervised and Unsupervised Learning for Anomaly Detection

Furthermore, the idea of leveraging the best of the supervised and unsupervised world
inspired the authors in [183] who first presented such an approach. In particular, outlier
detection algorithms that are able to score data according to their outlierness were used. The
produced outlier scores were concatenated with the original features to train a supervised
outlier detection method. More specifically, they used the logistic regression model with
the `2 penalty trained with re-sampling and bagging to deal with class imbalance. They
improved detection performance by comparing their proposed method against the original
feature space. This work inspired others, but all of them addressed the supervised outlier
detection problem. The authors in [184] proposed an extension with a feature selection
method based on a finite budget related to the number of computations. The authors in [274]
inspired by [184] and applied the XGBoost [62] classifier to deal with imbalanced data.
Finally an application in credit card fraud detection [49] is introduced. Overall, all existing
works tackle the supervised problem either with re-sampling techniques accompanied by
penalization strategies or employing ensemble classifiers.
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2.3.3 Ensemble Methods in Semi-Supervised Learning

Semi-supervised learning approaches use both unlabeled data and labeled data [55]. In the
anomaly detection context semi-supervised methods aim at finding a compact description
of the normal class. As such, they anomalies are detected by assessing the divergence from
the normal behavior. The authors in [114] discuss the three fundamental approaches to the
problem of outlier detection (supervised, unsupervised, semi-supervised) and they name
the semi-supervised methods as novelty detection methods. As such novelty detection and
semi-supervised learning are inextricably linked.

Novelty detection aims to identify data objects that are not consistent with normal
expectations. Typically, novelty detection methods include a training phase where the normal
behavior is learnt. Afterwards, test data that diverge in some respect from the normal
behavior are considered as novelties. Novelty detection could be find in the literature as
anomaly detection, outlier detection, concept learning, one-class classification, single-class
classification, or data description [63, 211, 123, 96, 223, 54]. In addition, the problem of
novelty detection is very common in real-world scenarios such as machine diagnostics [243],
faults and failure detection in industrial systems [240] or video surveillance [178, 70].

Despite the fact that using label information improves the performance of the anomaly
detection task, very few approaches are developed on a semi-supervised setting. Research on
semi-supervised ensemble learning is almost solely relayed to the classification problem [142,
171, 271, 228, 267, 238]. Such methods, assume that similar data objects belong to the
class [55] but in the anomaly detection context this assumption holds only for the normal
class; anomalies are not necessarily similar to one another.

SV DDneg [243] is one of the well-established semi-supervised method for anomaly
detection namely. It is an extension of the unsupervised SVDD [243] (Support Vector Data
Description) algorithm where anomalies are used to tighten the data description. The SVDD
algorithms has inspired thousands of works to either propose an extension or address real-
world problems [160, 191, 161, 58].In Fig. 2.8 is illustrated how different parameters of the
SVDD algorithm shape different data descriptions and as a consequence the performance is
affected. Recently, the authors in [212] extended the SVDD algorithm to the semi-supervised
setting by developing a deep neural network method to detect anomalies. They use the
backpropagation method to optimize their method and the evaluation is solely on image data
i.e. MNIST and CIFAR-10. Furthermore, the authors in [96] propose a semi-supervised
method anomaly detection method that extends the SVDD algorithm in order to leverage
unlabeled and labeled data. Methods that are originating from the unsupervised world
are appropriate for identifying new and unknown anomalies in contrast to those that are
originating from the supervised world. In addition, semi-supervised learning effectively
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Fig. 2.8 Data description trained with Gaussian kernel with different widths and different C
values. Support vectors are indicated by the solid circles whereas the solid white line is the
description boundary. [243]

addresses the problem of novelty detection. The authors in [33] reduce the problem of
semi-supervised anomaly detection to semi-supervised classification with a user-specified
constraint a which represents the false positive rate. There is an increased interest in the semi-
supervised setting for the problem of novelty detection. Several studies [75, 192, 15, 67, 68]
are developed which they span from the adversarial training technique and VAE (Variational
Autoencoders) [138] to shallow methods such as SVM.

.

2.4 Evaluation Measures

Anomaly or outlier detection research mainly focus on developing new methods and com-
putationally improving these methods. However, it is crucial not to neglect the importance
of evaluating the performance of existing methods in a meaningful way. In addition, it is
equally important to fairly compare different methods and assess their similarity in order
to ultimately select the best method. Outlier detection is an inherently highly imbalanced
problem. As such, the evaluation measures of outlier detection methods should take into
consideration the class imbalance problem.

The most popular and meaningful evaluation measure of anomaly detection methods
is based on the Receiver Operating Characteristic (ROC) curve. ROC nicely addresses
the typical problem of imbalance of class sizes; the amount of outliers (positive class) is
excessively low compared top inliers (negative class). More specifically, the ROC curve is
obtained by plotting the true positive rate versus the false positive rate. The true positive
rate represents the proportion of outliers correctly identified whereas the false positive rate
represents the proportion of outliers that falsely identified as outliers. Comparisons between
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different curves is challenging thus a summarization of the ROC curve into a single value is
preferred. More specifically, the area under the ROC curve (ROC AUC) summarizes a ROC
curve and ranged between 0 and 1. A ROC AUC value of 1 is the corresponds to the perfect
ranking whereas a ROC AUC value of 0 corresponds to the worst ranking.

Often the user of an anomaly detection method is only interested in a small subset
consisting of the n top-ranked objects or top-n outliers. Several evaluation measures have
been proposed in order to assess the performance of outlier detection methods based on
the delivered top-n outliers. As such, it is natural to calculate the precision of a method
at the top-ranked objects. More specifically, precision at n (P@n) [66] evaluation measure
uses the correctly identified outliers results in the top-ranked objects. In a similar fashion,
it is natural to calculate the recall of a method at the top-ranked objects. More specifically,
recall at n (R@n) [13] evaluation measure is defined as the proportion of actual outliers that
are correctly detected. In addition, by choosing n = |O| (n is equal to the number of actual
outliers) the R-Precision measure [66] is calculated. This measure assumes that the number
of actual outliers is known in advance, which is not always the case.

It should be noted that, the aforementioned measures require knowledge of the ground
truth; labels identifying outliers and inliers. Often, in real-world anomaly detection problems
labelled examples are missing. As such, measures that do not rely only on labeled knowledge
would be more useful. These measures are called internal evaluation measures and are
well established in unsupervised cluster analysis [170, 210, 189]. On the other hand, in
outlier analysis there is huge scarcity of such internal measures. In the literature the only
available internal evaluation measure is proposed by the authors in [179] but is considered as
computationally expensive in multiple studies [45, 280].

2.5 Other Methods & Publicly Available Software

Deep learning methods is a family of machine learning algorithms that has demonstrated a
great success in the task of anomaly detection. Several surveys [51, 154, 166, 27, 139] have
been published that provide an overview of deep learning techniques for anomaly detection.
Different architectures of the deep learning models have been introduced to detect anomalies
in several applications. More specifically, Chalapathy et al. in their survey paper [51] review
proposed deep learning architectures for anomaly detection and propose a categorization
based on the input data. Table 2.1 provide details regarding this categorization.

Amongst the deep learning family of algorithms, the auto-encoder (AE) method has been
quite effective in the task of anomaly detection. This is confirmed by the extensive body of
research works [20, 193, 35, 270, 186, 24, 218, 277]. Auto-encoder was firstly introduced by
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Table 2.1 Proposed deep anomaly detection model architectures in literature categorized
based on the input data [51]. AE: Auto Encoder CNN: Convolution Neural Network, LSTM:
Long Short Term Memory, RNN: Recurrent Neural Network

Type of Data Application Deep Learning Model
Sequential Video, Speech, Time Series CNN, LSTM, RNN
Non-Sequential Image, Sensor, Other CNN, AE and its variants

Fig. 2.9 An auto-encoder with one hidden layer.

the authors in [214] and is an unsupervised method that attempts to copy its original input x
to its output. By assessing the magnitude of the reconstruction error of x (difference between
the network’s input and output) we are able to detect anomalies. In addition, auto-encoder is
able to find linear or non-linear compressed representations of the original input x that could
be used either for dimensionality reduction or feature learning. In Fig. 2.9 an auto-encoder
method is illustrated; the input and output layers must be composed of the same number of
nodes.

In Table 2.2 a summary of the publicly available software dedicated to anomaly detection
approaches is presented. We categorize software based on the programming language and the
capability of constructing ensemble methods. The large majority of the available software is
written in Python.

Table 2.2 Summary of the publicly available software

Name Related Research Language Ensemble Methods
ELKI 1 Schubert and Zimek [225] JAVA Yes
pyod 2 Zhao et al. [276] Python Yes
SUOD 3 Zhao et al. [273] Python Yes
imbalanced-learn 4 Guillaume et al. [162] Python Yes
Deep One-Class Classification 5 Ruff et al. [213] Pytorch No
One Class Neural Network 6 Chalapathy et al. [52] Keras-Tensorflow No
datastream.io 7 - Python No
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2.6 Conclusion

Ensemble learning has shown success in the problem of anomaly detection. In particular,
several works successfully employed ensemble learning principles to outperform the indi-
vidual ensemble members. In addition, regardless the learning scenario, i.e. unsupervised
learning or supervised learning, these works could be divided into two broad categories:
(i) a single anomaly detection algorithm is used in conjunction with a method like feature
bagging and/or subsampling, (ii) multiple anomaly detection algorithms are combined to
induce greater diversity. However, selecting the most suitable category for a given problem
is data and application dependent.

In the next chapters, we deal with two applications of anomaly detection: (i) the detection
of sophisticated cyber-attack, (ii) the detection of telecommunication fraud. More specifically,
we introduce novel anomaly detection ensembles that span from supervised learning to
unsupervised to effectively detect anomalous behavior. Well-established theory of ensemble
learning [279, 10] is followed to develop scientifically rigid methods. Finally, we demonstrate
the improvement of ensemble learning by experimentally evaluating our proposed methods.





Part I

Detection of Lateral Movement Attack





Chapter 1

Background and Related Work

According to Cisco [65]: "Cyber-attack is a malicious and deliberate attempt by an individual
or organization to breach the information system of another individual or organization".
Often, the attacker seeks some type of benefit from disrupting the victim’s network. In
addition, the most common types of cyber-attacks are: (i) Malware, (ii) Phishing, (iii) Man-
in-the-Middle, (iv) Denial-of-service, (v) SQL injection, (vi) Zero-day exploit, (vii) DNS
Tunneling. We refer to [65] for extensive details.

In this chapter, we elaborate on an attack namely Lateral Movement which is a well-
orchestrated and sophisticated attack. In addition we provide thorough details related to how
this attack is performed and also discuss possible detection methods.

1.1 APTs and Lateral Movement Attack

Advanced Persistent Threats are the most sophisticated and hazardous cyber attacks. In
particular, a team (count tens or even hundreds of people) of highly-skilled intruders establish
a long-term presence on the network of high-profile victims. The goal is to stealthily exfiltrate
valuable and sensitive data. Hence, due to how well organized and sophisticated these attacks
are, most of the security systems are not able to detect or prevent such type of attacks. APTs
usually target physical critical systems and Stuxnet [130] is the most infamous attack that
devastated Iran’s nuclear program. A report from Fireeye [50] summarizes the key findings
of advanced persistent attacks:

• Intruders had established presence on victims’ network for 205 days before they were
discovered.

• 69% of victims detect ongoing attacks only with the help of a third party.
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• Over the last year, intruders have introduced new stealthy lateral movements to stay
undetected on victim’s network.

Ussath et al. in [253] analyze the techniques and methods of 22 different recent APT
incidents and determine common methods that are used within the different phases of APT
attacks. They conclude that a common strategy of the intruders is to dump credentials to
move laterally through the network. As such, the attackers are able to hide between legitimate
traffic and activities and this fact makes the detection difficult while it allows them to bypass
existing security systems.

Lateral Movement (LM) attack is a well-known and sophisticated cyber-attack that
belongs to the category of APTs. Attackers maintain unauthorized access to a network for
a long period of time without being undetected. The most common method to perform
the initial compromise and ultimately cross the network perimeter border is achieved via
a social engineering attack [176, 122, 41]. Upon compromising an initial computer of the
organization, the adversaries use lateral movement techniques to access other hosts and mine
sensitive resources. The ultimate goal of a LM attack is conquering the Domain Controller
because it provides full control of the network.

Fig. 1.1 presents the typical scenario of an APT with lateral movement. LM is is a 2-step
attack where at the first step the attackers capture credentials from a source host and at the
second step they use stolen credentials to access another host or resources. Throughout this
chapter we refer to lateral movement attacks as unauthorized connections from a source host
to a targeted host using valid stolen credentials of an account (i.e., user or service account).

Soria et al. in [233] discuss possible ways to detect a lateral movement attack. They
mention that there is no difference at protocol level between a legitimate connection and a
connection with stolen credentials using a hacking technique. Pass-the-hash and Pass-the-
ticket are two the most well known techniques (see [233] for details). As such, a LM attack
does not exploit weaknesses at a protocol level but create anomalies at a behavior level. More
specifically, a simple indicator of a potential lateral movement could be when a domain
admin account is supposed to be used only from a specific workstation but eventually it is
used from another workstation.

1.1.1 Techniques to perform a Lateral Movement Attack

This section discusses the most commonly used techniques to move laterally within a network.
Lateral movement techniques are not lacking in number or diversity and the authors in [1]
list and describe different techniques and mitigation strategies. These techniques may be
different, but there is a clear pattern regarding the paths they follow to move within a network.
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Fig. 1.1 Typical lateral movements in case of APTs [233]

It should be noted that, the lateral movement attack is typically executed behind the security
network boundaries of an organisation.

Logon scripts: Windows operating systems permit logon scripts to be run whenever
someone logs into a system. These scripts can be used to execute other programs or send
information to an internal logging server.

Pass the Hash: This technique belongs to credential theft attacks and is a two-step
process in which an attacker steals credentials and then uses those credentials to get access
to other computers. In particular, the attacker dumps the hash of a compromised system to
acquire all stored account credentials. Afterwards, the attacker uses the stolen credentials to
move laterally on the network by acquiring account credentials close to domain controller.
The risk associated with a Pass-the-hash attack varies depending on if an adversary manages
to get administrative privileges on a compromised system. Recently, Microsoft published an
article [126] to propose possible solutions regarding how to mitigate the effect of Pass-the-
Hash attacks.

Remote Desktop Protocol: Microsoft designed the Remote Desktop Protocol (RDP) [2]
to provide remote display and input capabilities. Moreover, Remote Desktop Service (RDS)
is a Windows service that implements RDP. Usually, adversaries expand access by connecting
to a remote system over RDP/RDS and they manage to get access to other accounts.
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1.2 Evidence of an Attack

Attackers’ actions can be detected by analyzing trace evidences in system logs. The most
important data sources (evidences) available to an analyst are the following:

• Event logs: Operating systems record important software and hardware events from
various sources and stores them in a single collection called an event log. Investigating
security incidences heavily rely on event logs which is a critical resource [22]. Recently,
Windows introduced the Sysmon [3] tool that offers an advanced log system.

• Flow data: Flow data are collected from IP network traffic as it enters or exits an
interface. NetFlow is the most popular flow format.

• Domain Name System (DNS) logs: DNS translates domain names to IP addresses.
However, several types of DNS-based attacks can be performed such as: (i) Domain
hijacking, (ii) Domain flood attack (iii) Distributed Reflection Denial of Service (iv)
DNS tunneling (v) DNS spoofing.

• Web logs Web traffic is typically allowed through firewalls. This makes web traffic
attractive for attackers to hijack communication by installing malware on connected
machines.

1.3 Related Work

In this section, we discuss existing works related to anomaly detection methods for the
detection of the lateral movement attack. Existing works can be divided into three categories
namely Machine Learning-based Anomaly Detection, Statistical-based Anomaly Detection
and Graph-based Anomaly Detection.

1.3.1 Machine Learning-based Anomaly Detection

Over the last years machine learning and data mining techniques have successfully addressed
anomaly detection problems [54, 283, 280, 51, 9]. As such, researchers have developed
machine learning based detectors to address the problem of lateral movement detection or
malicious authentication actions detection. The primary focus of the following works is the
detection of unauthorized connections (authentications) from a source host to a targeted host
using valid stolen credentials of an account.

Siadati et al. in [229] propose a method based on market basket analysis to uncover
associations between items. In particular, login patterns are extracted from user authentication
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histories in order to learn behavioral patterns and use these patterns to identify suspicious
behavior. Their proposed method based on association rules is scalable for large datasets
and consists of two classifiers, an exact matching classifier and a pattern matching classifier.
Their system yields 82% recall and 99.7% precision in detecting malicious logons.

Siadati et al. in [230] propose a visualization tool, APT-Hunter that integrates security
analysts’ knowledge into the detection system. In other words, this detector does not enhance
the existing knowledge of the cyber analysts via informing them for novel anomalous patterns
but instead integrates known rules of anomalous actions. A tool that enables the analysts
to enhance their existing knowledge regarding the anomalous patterns is of paramount
importance. APT-Hunter is basically composed of (i) a login processor and (ii) an aggregator
and pattern matcher. The authors report that after providing a 30 minutes training on APT-
Hunter two participants are able to detect 349 out of 749 (46.5%) read team flagged malicious
logins. However, they do not mention how much time those two users needed to find those
anomalies

Chen et al. in [61] propose a a semi-supervised learning detector that is based on network
embeddings. In particular, they construct a host communication graph from a variety of data.
Then they learn features from the graph using network embedding methods and keep the
most informative. Finally, autoencoders are used to reduce the dimensionality of the dataset
and learn more informative features. Overall, Chen et al. demonstrate accuracy of 99.9% and
precision of 91.3% in a balanced dataset which is not always the case in real-world problems.

Holt et al. in [116] introduce a method based on autoencoders with deep architectures.
They test shallow and deep autoencoder architectures composed of different number of layers.
They perform feature engineering by transforming input data into conditional probabilities of
the authentication events in the network in order to improve performance. Their comparative
analysis is very limited, composed of only two previous works. As such, despite the fact that
their results are promising we can not consider them as strong.

Bohara et al. in [34] propose an unsupervised approach to detect malicious LM. In
particular, they develop two unsupervised approaches on different data sources to combine
their outputs and ultimately generate the final set of compromised hosts. The first detector
is based on PCA and Kmeans and the second on PCA and extreme value analysis. They
evaluate their approach by injecting artificial attacks into the LANL dataset. However, these
simulated attacks may be subjective and not represent real attacks. Finally, the evaluation
of this approach demonstrates the effectiveness of the introduced method on detecting long
chains of infected hosts. In this thesis, we are interested in discovering infections composed
of one malicious login.
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Bai in [26] highlights the limitations of two publicly available authentication datasets
from Los Alamos National Laboratory [252, 134]. In addition, he proposes an anomaly based
method to detect malicious Remote Desktop Protocol (RDP) sessions. RDP is designed
by Microsoft to provide remote display and input capabilities, while Remote Desktop
Service (RDS) is a native service on Microsoft Windows platform that implements RDP [2].
Distinguishing between legitimate and malicious RDS use is challenging and thus attackers
take advantage of this fact. As such, RDP is a primary tool used by attackers during a
lateral movement attack. Bai investigates various supervised ML techniques and constructs
ensembles from these models. The conducted evaluation and comparative analysis shows
that a stand-alone model (LogitBoost [87]) performs the best in classifying RDP sessions
and outperforms a state-of-the-art model in detecting malicious authentication events.

Bian et al. in [31] develop a supervised approach to early detect LM using the LANL
dataset. In particular, they are inspired by our work [127] to (i) employ several supervised
learning models and ultimately they develop an ensemble, (ii) utilize advanced feature
engineering based on graphs. Finally, they compare their approach with the state-of-the-art
and demonstrate improvement. In Chapter 2 we elaborate on our supervised method that
inspired Bian et al..

1.3.2 Statistical-based Anomaly Detection

Heard et al. in [109] construct a directed authentication graph (V, E) where an edge e 2 E
represents the presence of a directed connection from source computer x to destination
computer y. Additionally, vertices represent destination computers and for each y 2 V a
separate statistical model will be constructed for the identities of the sequence of source
computers x1,x2, ...xn that connect to y as a destination. In particular, the Dirichlet process
is used to model the distribution of source connections for each of the destination systems.
Anomalies are found based on degree distributions of the source and destination computers.
Dirichlet process [244] is a stochastic process that assumes that interchangeable sequences
of x1,x2, ...xn which is not always the case in a lateral movement attack; the order of the
sequence is vital to trace back the attack. The typical scenario of anomaly that this method
tries to capture is a small number of source computers tries to connect to many destination
computers.

Turcotte et al. in [251] models interaction counts between users and systems using the
Poisson process. In particular, a Poisson factorization model for collaborative filtering is
utilised and two user activities are considered: the processes run by the user, and machines
on which users authenticate. A recommendation system is built for each of these observed
activities and allow the model to capture different peer group structures to model each activity
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type. Anomalies are reported using the Precision at N evaluation measure which is calculated
for each user in the test set. In particular, the top N most anomalous users are reported
and also a sensitivity analysis of the N parameter is performed. Their experimental results
demonstrate better precision performance for recommending processes than authentications.
A possible explanation is that the machines which users authenticate to are more sparse and
diverse than the processes.

Price et al. in [203] present a change-point detection methodology to detect periodic
sub-sequences. The authors claim that by separating sub-sequences that represent automated
events from sub-sequences caused by human activity, the anomaly detection capabilities are
enhanced. Change-point methods partition a sequence of data into smaller segments where
each segment arises from a single generative model. Finally, the evaluation is performed on
artificial data and real-world data; the LANL dataset [252] was used as real-world data. Their
method is robust to duplicate and missing event data and identifies meaningful sub-sequences
of event times.

1.3.3 Graph-based Anomaly Detection

Hagberg et al. in [99] represent authentication activity as a set of relationships between users
and computers using graphs. As it was discussed in Sec. 1.1, LM is difficult to both detect
and defend against and many studies introduce strategies to mitigate the risk associated with
credential stealing. This study models authentication events as dynamic bipartite graphs in
order to mitigate this risk. In particular, the authors compute the largest connected component
of this graph as a quantitative measure of the network’s vulnerability to such attacks. Their
experiments show that an effective method to limit the number of credentials stored across
networked computers was identified.

Amrouche et al. in [19] introduces a method that is appropriate for root cause analysis.
They construct authentication graphs by using known malicious events. In particular, the
authors investigate and visualize malicious authentication events and their proposed method
could be used improve the existing solutions.

Kent et al. in [136] provide an analysis of how privileged and non-privileged users
differ. They construct network authentication graphs and illustrate the difference in terms
of complexity between a typical user without administrative access and a typical user with
administrative access. For this illustration and for their analysis the LANL dataset was used.
Finally they employed a logistic regression to determine inappropriate administrator-like
behavior within the enterprise network. The AUC of this model is equal to 0.89.

Purvine et al. in [205] study cyber attacks which have a lateral movement component and
propose a metric to recommend mitigation strategies to cyber analysts. In addition, a minimal
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model that captures only the essential features of a generic lateral movement is introduced. It
should me noted that, since networks are evolving over time the authors propose a dynamic
threshold to be used to mitigate the lateral movement attack over time. All the experiments
were performed on the LANL dataset and show the capabilities of their model.

1.4 Conclusion

In this chapter, we discussed the characteristics of the lateral movement attack and presented
the techniques that intruders use to effectively execute such an attack. Moreover, existing
works related to anomaly detection methods for the detection of the lateral movement attack
were extensively discussed. More specifically, we discuss the main three categories of such
anomaly detection works, namely machine learning-based, statistical-based and graph-based
.



Chapter 2

Supervised Learning Ensemble Method

Anomaly detection on security logs is receiving more and more attention. Authentication
events are an important component of security logs, and being able to produce trustful and
accurate predictions minimizes the effort of cyber-experts to stop false attacks. Authentica-
tion events could be classified as Normal, for legitimate user behavior, and Malicious, for
malevolent behavior. These two behaviors (normal and malevolent) consistently produce
imbalanced data which make the classification problem challenging.

In the commonly used real-world dataset for cyber-security research analysis, provided
freely by the Los Alamos National Laboratory, the malicious behavior comprises only
0.00033% of the total. As such, the level of class skewness in this dataset creates a highly im-
balanced scenario. This chapter addresses such a highly imbalanced scenario by introducing
a novel feature engineering strategy followed by a ensemble supervised learning approach to
further classify authentication events trustfully. The ensemble is composed of three uncorre-
lated classifiers (i) Random Forest, (ii) LogitBoost and (iii) Logistic Regression. Finally, the
unweighted majority voting method is employed to leverage the individual predictions of the
previous models to ultimately produce a final prediction for each authentication event. To
the best of the authors knowledge, this chapter is the first attempt to address the supervised
problem of detecting abnormal authentication events.

2.1 Introduction

The lateral movement attack is executed by repeatedly creating malicious authentication
events. Malicious authentication events happen when attackers impersonate legitimate users
by stealing their credentials, allowing them to acquire access to enterprise networks. Stealing
credentials play a key role in cyber attacks and this is confirmed by Verizon’s report [256]
where 63% of confirmed data breaches involved leveraging weak/default/stolen credentials.
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This chapter addresses the supervised learning problem of anomaly detection in order
to accurately and trustfully classify authentication events. In particular, a novel method is
introduced that aims at detecting individual malicious authentication events in order to defend
against a possible lateral movement attack. A common characteristic of authentication events
or login logs is being comprised of multidimensional categorical variables. Categorical
variables stem from discrete entities and their properties, e.g. source user, destination
computer, or protocol type. The underlying values of this type of variables are inherently
unordered and as a consequence it is often hard to define similarity between different values
of the same variable. Detecting anomalies on discrete data is challenging and is not a well
studied topic[9] in the data mining field ; the primary focus is on continuous data.

One of the major challenges of detecting malicious authentication events (anomalous
objects) is the inherited nature of of the problem. In particular, malicious authentication
events are scarce relative to the events produced by normal network operations. As a
consequence, the classes of the authentication events are highly imbalanced. A common
approach to deal with class imbalance is the random under-sampling of the dominant class
(the Normal class in our context), or the over-sampling of the under-represented class (the
Malicious class in our context) by synthetically generating data observations. In this work, a
random under-sample approach of the normal events was elected. Re-sampling techniques
is a very active research topic where sophisticated techniques [188, 90] have potentiality
of improving classification performance. Additionally, another challenge is to create new
features, known as feature engineering, out of a purely categorical space.

The main research question guiding our efforts is: "can we detect malicious authentica-
tions accurately and trustfully in a supervised learning setting?". Additionally, the main
contributions of this work are the following:

• Advanced feature engineering using a graph-based model

• Fine grained classification of authentication events – as Normal or Malicious – instead
of the common approach of classifying users

• A method for combining classification methods as an ensemble to predict authentication
events trustfully

2.2 Overview of Methodology

The introduced supervised ensemble anomaly detector is composed of three supervised
predictive algorithms LogitBoost, Random Forest and Logistic Regression. These supervised
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algorithms are designed differently and by employing them we aim to capture different
anomalous patterns. The final step of our methodology is to combine [151] the predictions
of each classifier and the uniform weighted majority voting technique is used to combine
these predictions. Fig. 2.1 illustrates the pipeline of our methodology.
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Fig. 2.1 Visual illustration of our methodology

The following sections provide details of the different steps of our method.

2.3 Primary Feature Engineering

In this section, we provide extensive in details regarding the advanced feature engineering
of this work. The performance of a classification task is dependent on the ability of the
features to reveal patterns that assist the classifiers in separating the classes. Additionally to
the original features (columns of the given dataset) we extracted composite features, aiming
to expose those patterns. To ease the comprehension of our feature engineering strategy, we
formally define what an authentication event is:

Definition 1 Authentication Event: An authentication event, e, is defined as a vector:

e = < T,SrcUser,DstUsr,SrcCmptr,DstCmptr >

The individual elements are formally defined as:

• T: time 2 [0, timemax],

• SrcUser@domain,DstUsr@domain 2 U ,

• SrcCmptr,DstCmptr ⇢C,
SrcCmptr 6= DstCmptr
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As a next step, we present three examples of an authentication event in a increasing T
order:
e1 = <50556, U1534, U1534, C13868, C1624>
e2 = <50687, U1534, U1534, C13024, C1624>
e3 = <50152, U832, U832, C3176, C2825>

Furthermore, we refer to the set of users and computers as C and U respectively. Addi-
tionally, we define a Malicious User as it follows:

Definition 2 Malicious User: A user ui 2 U is called a Malicious User if this user has
produced at least 1 malicious authentication event in his entire user activity.

The set of those features described below, is the result of extensive experimentation. We
have identified the following necessary features and have decomposed them into tangible
properties of the data.

• Distribution of time difference of events between systems and from user to sys-
tem: captures the spread of activity over time

– The Median of time differences in seconds.

– The 95th Percentile of time differences in seconds.

– The Standard Deviation of time differences in seconds.

• User activity and connection frequency: describe the prevalence of network actions

– The Frequency as the amount of past similar events

– The First Occurrence, a flag denoting an event without any prior similar event

• Distribution of Malicious events if we see every event as a trial: quantify how
probable is the first of success (Malicious event) when we observe a number of
failures(Normal events).

– The Geometric Distribution of malicious events within a sequence of similar
events

• User variance: quantify the significance of a specific user within the history of events

– The Popular User as the user value with the most occurrences within a sequence
of similar events.
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– The Diversity as the number of different users within a sequence of similar events.

We introduce the notion of similar events in order to calculate the aforementioned features.
Similarity between two events is inspired by bipartite graphs and is a very important element
of the introduced feature engineering design. Following we formally define what it means
for two events to be similar.

Definition 3 Event similarity: We define events ei and e j as similar when either of the
following conditions are met:

ei ' e j )

(
SrcUseri = SrcUser j

DstCmptri = DstCmptr j

or(
SrcCmptri = SrcCmptr j

DstCmptri = DstCmptr j

(2.1)

Definition 2.1 is inspired by bipartite graphs and by following it all the aforementioned
features can be calculated. The bipartite graphs are built using sets of events, per specific
combinations of user and computer values. In particular, we refer to the set of all events in
the dataset as E. Furthermore, we define the sets hi and ri, which are two supporting sets of
every event ei, as it follows:

Definition 4 Event history: We define the history hi of event ei at time Ti as the set of events
e j at time Tj before Ti.

8ei,e j 2 E ! hi = {e j : e j ' ei,0  Tj < Ti}

Definition 5 Event recent past We define the recent past ri of event ei at time Ti as the set of
events e j within one hour prior to Ti.

8ei,e j 2 E ! ri = {e j : e j ' ei,0  Ti �1h < Tj < Ti}

It always holds that ri ⇢ hi, and ri = hi when Ti  1h.

2.4 Feature Engineering with bipartite graphs

For each event ei in the dataset, we construct two tuples of bipartite graphs (HU,i, HC,i) and
(RU,i, RC,i), constructed from hi and ri sets respectively. The new composite features will be
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extracted from properties of those graphs. Each tuple consists of one graph (HU,i or RU,i)
using the features SrcUser and DstCmptr as left and right nodes respectively, and a second
graph (HC,i or RC,i) constructed in a similar manner using SrcCmptr and DstCmptr as nodes.
To construct the nodes we use only those values that match those of the initial event ei. An
event involving two nodes on either graph constitutes an edge between them. Duplicate
nodes and edges are merged but persist their information in an attribute Ai as a vector of
tuples Ai = [(Time j,SrcUser j)]. Ai is constructed from the elements of all the events e j

that produce each graph. SrcUser is included in the Ai attribute of graphs HU,i and RU,i to
maintain one algorithm for all graphs, albeit redundant.

ei
<50722, U1534, U1534, C13024, C1624>

hi
<50687, U1534, U1534, C13024, C1624>
<50556, U832,   U832,   C3176,   C2825>
<50152, U1534, U1534, C13024, C1624>

<40081, U1535, U1534, C13024, C1624>
<40056, U1534, U1534, C13025, C1624>
<39240, U330,   U330,   C6064,   C1532>
<36860, U330,   U330,   C6064,   C1532>
<36743, U3998, U3998, C10054, C10344>
<36515, U499,   U499,   C4554,   C631>

<33638, U1534, U1534, C13868, C1624>
<33627, U1534, U1534, C13868, C2148>

...
...

...

HU,i

...

U1534 C1624
Ai = [(50687, U1534)
         (50152, U1534)

         (40056, U1534)

         (33638, U1534)
                                   ]

HC,i

...

C13024 C1624
Ai = [(50687, U1534)
         (50152, U1534)

         (40081, U1535)
                                  ]

...
...

...

Fig. 2.2 Example of graphs HU,i and HC,i from an arbitrary excerpt of hi, given ei. Events
that do not match the ei values for the features used to build each graph are discarded.

Figure 2.2 presents a simple example of these graphs; notice that in graph HU,i of
Figure 2.2, the event at time 40081 is filtered out, since the SrcUser feature does not match
the initial event. As a consequence of its construction, each graph will only have 2 nodes and
1 edge.

In addition to the already calculated features, we use the Ai vectors to calculate the
following mix of numeric and categorical features:

• The Median: the median of time differences.

• The 95th Percentile of time differences in seconds.

• The Standard Deviation of time differences in seconds.
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• The Frequency as the number of elements in vector Ai.

• The First Occurrence boolean denoting if Ai is empty.

• The Geometric Distribution where success is having a malicious event.

Using only graphs HC,i and RC,i we calculate the last two features:

• The Popular User as the user value with the most occurrences.

• The Diversity as the number of different users.

The calculated composite features provide the contextual modeling of the data which will
enable our predictive models to enhance their accuracy. It should be emphasized that all the
introduced composite features do not contain information for the future. It is very important
to ensure that there is no information leakage.

2.5 Predictive Models

We use one algorithm from each sophisticated ensemble learning techniques so-called meta-
algorithms: Boosting and Bagging. These techniques combine several machine learning
algorithms into one predictive model in order to decrease the bias (boosting), and the variance
(bagging). The bias is a part of the error caused by bad model and the variance is a part of
the error caused by the data sample. Following are presented the selected classifiers:

• LogitBoost [87] belongs to the Boosting family of algorithms; it is based on decision
trees, which are considered weak learners, but performs as a strong learner. It optimizes
logistic loss instead of exponential loss.

• Random Forest [38] belongs to the Bagging machine learning algorithms, which
reduce variance to avoid overfitting.

• Logistic Regression [140] measures the relationship between the categorical depen-
dent variable and the independent variables by estimating probabilities using a logistic
function.

The selected models have pairwise uncorrelated classification methodologies and produce
uncorrelated predictions which are vital for building a good ensemble classifier. All the
selected models are able to handle categorical variables without any encoding transformation.
Finally, the majority voting [151, 195] method with uniform weights is applied in order to
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combine the predictions. The majority voting technique classifies every event by extracting
the most predicted class from the classifications of all other models. By combining uncor-
related predictions we not only build a good ensemble but we also increase the trust and
robustness of our method. The increased trust in our proposed methodology arises from the
fact that the reported classifications are achieved with the aid of three predictive models.

2.6 Training

The core ingredient that could affect the classification process is the skewness of the class
distribution. During the training of each model, we randomly under-sampled the most
prominent class and repeated 5 times the 10-fold Cross-validation technique. Under-sampling
the major class helps to train the models in a stratified way, by containing equal percentage
of events of both classes, and to increase the performance of the classifiers on unbalanced
datasets. Repeated Cross-Validation aims to avoid overfitting, making the models generalize
well. Also, we tuned LogitBoost and Random Forest narrowly by finding the set of hyper-
parameters that perform the best. For LogitBoost we tuned the number of boosting iterations
(nIter) and for Random Forest we tuned the number of features that will be used to build the
trees (mtry). Logistic Regression was applied without any parameter tuning.

Classify
Batch 1

Primary Training
using

10-fold Cross Validation

Retrain 
including 
Batch 1

Phase 1: Training Phase 2: Prediction

Majority
Voting

on Batch 1

Repeat with Batch 2..n

Fig. 2.3 Basic diagram of the training process

Multi-training updates the distribution of the primary dataset by extending the number of
events. In detail it allows to:

1. take into consideration a real case of incoming new batch through the time,

2. measure the accuracy of prediction algorithms in the expanding dataset by predicting a
fixed size dataset,

3. take into consideration the streaming data which is considered as a future work.
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2.7 Conclusion

In this chapter, for the first time an ensemble supervised learning method is introduced to
address the problem of detecting malicious authentication events. In particular, bipartite
graphs were used to model the interactions between individual users and computers in order
to perform feature engineering. Finally, three uncorrelated classifiers combined by following
basic principles of ensemble learning to trustfully classify authentication events.





Chapter 3

Automatic Semi-supervised Ensemble
Method

Cyber-attacks become more sophisticated and complex especially when adversaries steal user
credentials to traverse the network of an organization.Detecting a breach is extremely difficult
and this is confirmed by the findings of studies related to cyber-attacks on organizations. A
study conducted last year by IBM found that it takes 206 days on average to US companies
to detect a data breach. As a consequence, the effectiveness of existing defensive tools is in
question.

In this chapter, we introduce an automatic semi-supervised ensemble method to detect
malicious authentication events. The automatic nature of our methodology essentially springs
from (i) the sequential procedure that is followed, (ii) the fact that the normal behavior
is learnt by established unsupervised outlier ensemble theory. An one-class classification
ensemble is developed by leveraging the knowledge of the normal behavior.

The main challenges that this chapter addresses are the following: 1. developing an
effective outlier detection method on an excessively class imbalanced scenario, 2. developing
an effective outlier detection method on a pure categorical feature space that is produced by
the authentication event logs, 3. developing such a method that detected outliers are true
malicious authentication events. The performance of our detector is evaluated on a real-world
cyber security dataset provided publicly by the Los Alamos National Lab. In addition, by
detecting malicious authentication events, compared to the majority of the existing works,
which focus solely on detecting malicious users or computers, insights can be provided
regarding when and at which systems malicious login events happened.
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3.1 Introduction

The JP Morgan Chase [231] and Target hacks [144] are two well known examples of hacks
where the adversaries stayed undetected while they traversed network. The lateral movement
attack belongs to a category of attacks called Advanced Persistent Attacks, where the
prominent characteristic is that they are stealthy, well orchestrated and the adversaries stayed
undetected for a long period of time. Specifically, during the execution of a lateral movement
attack the adversaries gain shell access and make use of legitimate credentials to log into
systems. Afterwards, they escalate privileges and subsequently manage to traverse a network
without any detection.

Researchers have addressed the detection of malicious (unauthorized) authentication
events by evaluating their methods on a real-world cyber security dataset provided freely by
the Los Alamos National Lab [133]. Existing works focus on detecting malicious users or
computers which leads to classifying all the generated events from a user or computer as
malicious or legit. As a result, they fail to specify which events are malicious and to provide
any information regarding at which systems the adversaries managed to impersonate benign
users. Additionally, most of the existing approaches on this dataset are questionable and the
authors in [204] provide further details.

A common characteristic of authentication events is being comprised of multidimensional
categorical variables. Categorical variables stem from discrete entities and their properties,
e.g. source user, destination computer, or protocol type. The underlying values of this type
of variables are inherently unordered and as a consequence it is often challenging to define
similarity between different values of the same variable. Moreover, the prominent challenge
in the cyber defensive world is to develop effective approaches and sufficient labelled training
sets are absent.

A possible solution to this point comes from the semi-supervised approaches [137] that
do not require anomalous instances in the training phase. These approaches model the normal
class and identify anomalies as the instances that diverge from the normal model. Instances
only from the normal class (target class) are used during the learning phase in order to build
the normal model. The task is to define a boundary around this class to minimize the chance
of accepting objects from the anomaly class. Finally, the learnt model is used to assess if an
unseen observation belongs to the target class or not.

In this chapter, the aim is to detect unauthorized events to services or computers in
contrast to the majority of the existing work by analyzing freely available Los Alamos
authentication dataset [133]. An embedding based and automatic semi-supervised outlier
detector is introduced to reduce the false positives produced by an unsupervised outlier
ensemble. In particular, our approach is comprised of two ensemble outlier detection
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components that are connected in a sequential manner. An unsupervised outlier ensemble
is developed to identify the most confident normal data points which afterwards feed an
one-class classifier [242] to ultimately detect outliers. The authors in [13, 279] extensively
discuss the details of ensemble learning for outlier detection tasks.

Additionally, the contributions of our proposed approach are:

• We produce an embedding space via the Logistic PCA [155] algorithm that has
potentiality of better representing the normal behavior.

• We develop the Restricted Principal Bagging (RPB) technique, an improved variant
of the well established feature bagging technique [159], that works on the principal
components space.

• We introduce a new unsupervised combination function, Vertical Horizontal Procedure
(VHP), that leverages gradually the predictions of individual and smaller scale ensemble
members.

• We automatically build an automatic semi-supervised ensemble by combining the
aforementioned novel components to effectively detect malicious events.

Overall, our approach improves current state-of-the-art methods and enhances the un-
derstanding related to the anomalous patterns produced by malicious authentication events.
Detecting malicious events compared to previous works that detect malicious users or com-
puters give us the opportunity to answer more actionable questions. The introduced method
could also be used to extend existing methodologies, which detect malicious users or comput-
ers, to further detect individual malicious authentication events. To the best of our knowledge,
this work is the first automatic semi-supervised attempt that aims at detecting anomalous
authentication events.

3.2 Overview of Methodology

In this chapter, an automatic semi-supervised ensemble is introduced that is developed on
categorical data produced by authentication events logs. In particular, the introduced method
automatically creates the training set of an one-class classification ensemble. This training
set is "non-polluted" by outliers and represents the normal behavior. More specifically, first it
builds an unsupervised outlier ensemble to identify, with a relative confidence, authentication
events that are normal. Secondly, it develops an one-class classification ensemble detector
which learns a decision boundary around the normal class using only the predicted normal
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authentication events derived from the first phase. Finally, the one-class classification
ensemble classifies authentication events, that are not present in the training set, as belonging
to the learned normal class or not. Figure 3.1 illustrates the sequential and automatic nature
of our approach. Throughout this work we use outliers and anomalies interchangeably.
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Fig. 3.1 Auto Semi-supervised Outlier Detector

3.3 Phase 1

Unsupervised outier detection algorithms detect outliers by scoring data according to their
algorithmic design [282]. In this phase, we reverse the problem of leveraging outlier scores
in order to identify the most outlier observations. The aim is to identify, with a relative
confidence, non-outlier observations in order to be used as training sets by multiple one-class
classifiers. In particular, the most non-outlier observations are identified by constructing an
outlier ensemble on bagged subspaces and composed of two unsupervised scoring detectors.

3.3.1 Generation of Embeddings

Recently, word embeddings [185, 92, 163] have been introduced to map phrases from a
vocabulary to vectors of real numbers. In this chapter, an embedding technique is followed
to map objects from a categorical space with many dimensions to a continuous space with
a much lower dimension. Specifically, authentication events produce a pure categorical
space and the Logistic PCA algorithm [155] is applied to perform the mapping. As such,
the produced principal components are leveraged in order to develop our outlier detection
method. It should be noted, that before the Logistic PCA algorithm is applied, the categorical
space has to be transformed into a feature space totally comprised of binary values.
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A high percentage of explained variance by the principal components ensures that the
embeddings space encloses information very close to the information included in the original
variables. Also, we leave a sensitivity analysis related to number of principal components for
the future. Additionally, according to Theorem 2 of [155] we select columns to decrease the
deviance the most. In particular, the authors proved that: For logistic PCA with k = 1, the
standard basis vector which decreases deviance the most is the one corresponding to column
with mean closest to 1/2. In addition, they proved that this theorem can be easily extended
to k larger than 1 which is our case.

Furthermore, in Fig. 3.2 an example of mapping five data points from a binary feature
space to a 2 dimensional continuous space using the Logistic PCA algorithm.

PC-1

PC
-2Fig. 3.2 An example of five data points embedded into to 2-D

3.3.2 Restricted Principal Bagging

Our motivation for developing the RPB (Restricted Principal Bagging) technique is to add
randomness in a similar way like the Feature Bagging technique [159]; randomness is a key
ingredient of outlier ensemble techniques [279]. Additionally, RPB is constructed in such way
that upper bounds the sample space of the principal components. Moreover, our introduced
technique aims at capturing the individual contribution of each principal component to the
total explained variance. In other words, the Feature Bagging technique [159] is adjusted to
work for principal components. Algorithm 1 presents in pseudo-code the steps of the RPB
technique.

Firstly, we denote by PCs the principal components that we keep after we have applied
the Theorem 2 of [155]. Afterwards, a set called V composed of all S j is created, where
S j = p⇤PCs and p is the percentage of the first p principal components. Afterwards, for each
S j and for Iter iterations RPB samples from a uniform distribution U(d/2, d �1) without
replacement, where d is the dimensionality of S j. Hence, for each Iter iteration Ni principal
components are randomly sampled and create a dataset Fi is created. Finally, an unsupervised
outlier detector with random parameters is applied to Fi.
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Algorithm 1 Restricted Principal Bagging
Input:

• V the set of all the S j
• OD is an unsupervised Outlier Detection algorithm which outputs numeric outlier scores
for each data point
• Iter represents how many times we perform feature sampling

Output
• E is a vector composed of oulier scores for each data point

Procedure:
1: for S j in V do
2: for i = 1,2,3,4, ...Iter do
3: Randomly sample from a uniform distribution between

⇥
d/2

⇤
and (d � 1),

where d is the number of the principal components in S j
4: Randomly pick, without replacement, Ni principal components to create a subset

Fi
5: Apply OD on Fi feature space

3.3.3 Unsupervised Outlier Detectors

Two well performing and established unsupervised detectors are combined to identify the
most confident non-outlier (normal) observations. Our method intentionally selects heteroge-
neous detectors in order to capture different patterns of anomalies. It is worth noting that,
our method remains identical in case more than two unsupervised detectors are selected to
build the ensemble.

Firstly, the iForest [167] algorithm is employed which is a tree-based and state-of-the-
art detector and performs the best across different contexts [78, 72, 264]. Secondly, the
LOF [39] algorithm is employed which is a proximity-based method and designed to detect
local outliers (see [13] for local and global outliers). It is a state-of-the-art outlier detection
algorithm with an extensive body of research [159, 94, 18, 282].

It should be emphasized that our method is very flexible. As a consequence, Phase 1
could be composed of a different number of unsupervised outlier detection algorithms. Also,
the selected algorithms could be substituted by other unsupervised algorithms.

LOF and iForest independently apply the RPB technique on set V to build the ensem-
ble version of LOF and iForest respectively. Henceforth, we call LOF - RPB scores j and
iForest - RPB scores j the produced outlier scores by applying the RPB technique on a subset
S j and employing the LOF and iForest respectively. The final step is to combine these results
and for this reason the VHP combination function is introduced.
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3.3.4 VHP Combination Function

The RPB algorithm builds a couple of ensembles on each S j called LOF Ens and iForest
Ens. Hence, a combination function is introduced to effectively combine these ensembles
instead of applying a global combination function across all the results; LOF - RPB scores j

and iForest - RPB scores j. The authors in [275] propose a novel local combination function
and highlight its effectiveness compared to global functions.

In our strategy the average function is utilized to calculate the average scores of ensemble
members. The average function is robust and widely used in the outlier ensemble litera-
ture [64]. Combining effectively outlier ensemble members without leveraging the ground
truth is challenging and the authors in [13], [146], [279] extensively discuss the topic.

In particular, firstly all the LOF - RPB scores j and iForest - RPB scores j are normalized
to z-scores before calculating the average scores of each S j. As such for each subset S j we
build an ensemble produced by these combined RPB outlier scores. This ensemble is denoted
by LOF Ens & iForest Ens. Afterwards, we convert the numeric outlier scores of each LOF
Ens & iForest Ens ensemble (j in total) to binary values based on a threshold. Finally, we
combine these binary values by utilizing the unweighted majority voting [254] technique to
produce the output of Phase 1. Specifically, W is comprised of the most confident non-outlier
(normal) data points and O the least confident non-outlier (normal) data points.

The conversion to binary values is referred as the Vertical Strategy and the combination of
the binary values as the Horizontal Strategy. Henceforth, we call this combination function
as VHP, Vertical Horizontal Procedure. All the outlier scores are normalized with the Z-
score normalization scheme which is the most commonly used in outlier detection literature
(see [13] for details in different normalization schemes).

3.4 Phase 2

This phase leverages the produced W dataset by Phase 1 to build the semi-supervised
ensemble. This dataset is composed of the most confident non-outlier (normal) data points
which are used as training sets by multiple one-class classifiers. Hence, the introduced
method is sequential and automatic at the same time. The desired outcome of Phase 2 is to
reduce significantly the number of false positives produced during Phase 1.

In particular, the One-Class SVM (OCSVM) algorithm [223] is used at Phase 2. This
algorithm is one of the most widely used one-class classifiers and performs well on several
problems [235, 158]. OCSVM is a boundary method that attempts to define a boundary
around the training data (normal class), such that new observations that fall outside of this
boundary are classified as outliers [236].
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The training of the OCSVM algorithm is performed on the dataset W with multiple and
independent executions with random parameter values. Afterwards, each training execution
the algorithm is tested on dataset O and an outlier score vector is produced. This vector has
length equal to the number of observations of O dataset. Finally, all the produced outlier
score vectors are combined to ultimately produce the final outlier score vector. The procedure
of running a detector over a range of parameters and combining the produced results is
interpreted as an ensemble(see [13] for details). Overall, both Phase 1 and Phase 2 of our
proposed approach are developed without leveraging the ground truth.

3.5 Conclusion

In this chapter, an automatic semi-supervised detector for malicious authentication detection
was introduced that outperformed existent supervised approaches and tools with the human
in the loop. The proposed method was able to capture all the underlying mechanisms that
produced anomalous authentication events. Moreover, it managed not to miss any malicious
authentication event by evaluating it on the most widely used real-world authentication log
dataset. In addition, it demonstrated improvement compared to state-of-the-art methods.
Also, the conducted sensitivity analysis of Phase 1 showed that the user defined threshold of
the ranked outliers did not affect at all the true positive rate of Phase 1. On the other hand,
regarding the true positive rate there is some effect which is not so noticeable.



Chapter 4

Experiments, Results and Discussion

In this chapter, we elaborate on a widely used and freely available real-world dataset related
to authentication events. This dataset enabled us to validate our research methods for the
purposes of cyber security. In addition, the experimental setting and experimental results of
the ensemble learning detectors, introduced in Chapters 2 and 3, are explained in detail. The
objective of the conducted experiments is to demonstrate the effectiveness of our introduced
ensembles in a cyber security application related to detecting malicious authentication events.
Furthermore, not only we provide comparisons of the introduced ensembles of this thesis
with the state-of-the-art but also we compare them against each other. Finally, this chapter
concludes with insights gained from our analysis.

4.1 Dataset

This section provides details related to the dataset we used to address the problem of detecting
malicious authentication events. Specifically, the Los Alamos National Laboratory (LANL)
provides a publicly accessible comprehensive dataset [134, 133] to be used for cyber security
analytical purposes1. Its content was collected over a period of 58 consecutive days and
is comprised of 1.05 billion authentication events (70GB is the total uncompressed size)
from multiple sources, such as individual computers, servers, and Active Directory servers
running the Microsoft Windows operating system. Following are presented the attributes of
the authentication events:

• Time: Timestamp of the event

• Source User@Domain: Which specific user is launching the event.
1It is available at https://csr.lanl.gov/data/cyber1/
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• Destination User@Domain: The user that the event is terminating at.

• Source Computer: Which specific computer is originating the event.

• Destination Computer: The computer that the event is terminating at.

• Authentication Type: Authentication events can have several types such as Negotiate,
Kerberos and NTLM based on authentication protocol type.

• Logon Type: The logon type of event could be an Interactive keyboard session, a
Batch event, a system Service, a screen saver Lock or Unlock and several others.
Missing values might occur because of the undetermined logon type.

• Authentication Orientation: This attribute indicates whether it is a Kerberos TGT or
TGS, a log on or log off event.

• Success or Failure: This attribute indicates whether the authentication event was
successful or not.

In addition, the authors in [134, 133] provide a data element that presents bad behaviour;
the RedTeam table. A group of authorised attackers, commonly known as a red team is
responsible for creating the events in this table. In particular, 749 authentication events are
known to have been performed by the red team using stolen user credentials. This table
could be used as ground truth to classify the authentication events as malicious or normal. In
Fig. 4.1 the counts of user and computer is illustrated. There is a strong periodicity where
non-work days show lower counts. On the other hand, the total volume of the authentication
events remains consistent.

4.2 Hardware & Software

The experiments were performed in the R and Python programming languages. Also, a 2.4
GHz Intel Xeon E5, 50 GB RAM, running Ubuntu 16.04 machine was used to carry out all
the experiments.
Supervised Learning Ensemble Method: The modeling and the feature engineering imple-
mented by using the packages caret package [261] and data.table package [73] respectively.
One-Class Classification Ensemble Method: The logisticPCA [155] R package was used
for the implementation of the Logistic PCA algorithm and the data.table [74] R package for
fast data manipulation. The iForest, LOF and OCSVM algorithms were executed using the
Python scikit-learn library [199].
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Fig. 4.1 Authentication volume by computer, user and event count per day (58 days in
total). [135]

4.3 Supervised Learning Ensemble Method

In this section, we present the experimental results of our approach introduced in Chapter 2.

4.3.1 Data

As presented in 4.1, the dimensionality of the complete dataset is exceptionally large and
as a consequence it is challenging to be processed without adequate big data infrastructure.
As such, sampling was performed to overcome this challenge and introduce our method.
In particular, 21 out of the 98 malicious users were randomly selected in order to obtain
adequate malicious authentication events. It is worth noting that, even the malicious activity
of malicious users is excessively scarce. This is confirmed by the following finding: The
corresponding percentage of each malicious user in our random sample is less than 0.65%.
Furthermore, Table 4.1 presents the level of class imbalance for those randomly selected
users by categorizing the absolute number of malicious events.

In addition to the aforementioned sampling, we filter out the authentication events that
are Local. Authentication events are characterized as Local or Remote if the source and
destination computer values are the same or different respectively. Local compared to Remote
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Table 4.1 User event class comparison

Malicious Events avg % of total p.u.
1 0.035

(1,9] 0.119
(9,19] 0.291

(19,inf) 0.245

Fig. 4.2 Number of users (out of 98) grouped by their percentage of malicious events over
their total events

events are potentially less harmful. This is conformed by our analysis that showed that all
malicious events of our sample are of Remote type.

We analyzed the 30 first days of authentication events and the corresponding percentage of
the malicious class is equal to 0.00033% out of the total number of events. We disaggregated
the total skewness of the class distribution to the skewness for all the malicious users.
Figure 4.2 shows the relative amount of source users grouped by their percentage of malicious
events over their total events. The overwhelming majority has less than 1% of malicious
activity within the 30 day subset.

4.3.2 Evaluation

In our experiments, we have followed the multi-training procedure (see subsection 2.6 for
details) where at each iteration the prediction dataset size is extended by 700 new events.
In addition, the training dataset contains 12.5 consecutive days or 199090 authentication
events. The prediction set is composed of 37 iterations, with a events batch size of 700 each,
or 25900 total events. The events in each batch are consecutive over time. The evaluation of
our methodology is performed using the following metrics and measures. The positive class
is composed of Malicious events.

• False Positive Rate (FPR): Normal events misclassified as Malicious.

• False Negative Rate (FNR): Malicious events misclassified as Normal.
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• Balanced Accuracy (BACC): the arithmetic mean of True Positive Rate (TPR) and
True Negative Rate (TNR) – also known as "Strength" [46]. It is a different way to
measure correct classification rate.

• Positive Predictive Value (PPV): Number of True Positives
Number of Predicted Positives . It represents the probability

that a person has a disease or condition given a positive test result.

• F1-measure (F1): the harmonic mean of TPR and PPV.

• Prevalence (Prev): the ratio of Positive condition size (TP + FN) over the sample
size [46].

For the purposes of our analysis, we group separately the iterations which introduce events
of both classes (Group A) and those with events from only the Normal class (Group B). Most
of the aforementioned metrics require both classes for their application, allowing in-depth
evaluation of the classifier performance. Group B iterations can be evaluated only via FPR,
however having Group B iterations i) models true network conditions more realistically, and
ii) emphasizes the significance of the achieved FPR and FNR in Group A. We first analyze
Group A, which consists of 7 out of the 37 total iterations. Afterwards, we go through Group
B; in the absence of true malicious events, only the FPR and Prev metrics can be evaluated.

4.3.3 Results and Comparative Analysis

Results

Table 4.2 presents the 99% bootstrap confidence interval and standard deviation of the average
false positive rate of each individual classifier and the produced ensemble classifier.

Table 4.2 Bootstrap CI 99%

Models Lower Upper Std Dev
Random Forest 0.0016 0.0141 0.0027
LogitBoost 0.0007 0.0069 0.0014
Logistic Regression 0.0002 0.0022 0.0005
Ensemble 0.0004 0.0032 0.0007

Both classes - Group A: Majority Voting produced a 0 FNR; in other words, no malicious
events were misclassified. Class imbalance has a considerable effect on these cases, hence
the perfect FNR is a noteworthy result.

Table 4.3 presents the performance metrics considering the Majority Voting results. The
average FPR is 0.0076 and the standard deviation of the rate is 0.00942. The BACC metric
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Fig. 4.3 Bar chart of the false positive rate per model over all iterations. Group A Iterations
are in bold
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Fig. 4.4 False Positive Rate produced by the ensemble classifier for all iterations. Group A
Iterations are in bold

is on average 99.62%. F1 is on average 0.6587. Prev of Malicious events is very low and
affects the predictive values. For instance, if Prev doubles, while the TPR and the PPV stay
the same, the F1 increases by 16%.

Only normal class - Group B: Majority Voting produced 0 FPR for 24 out of 30 prediction
iterations; no Normal event was misclassified as malicious. The average FPR of all the
iterations is 0.0026 and Prev is constantly 0. Figure 4.4 presents the Majority Voting FPR for
each iteration. The aggregated average FPR is 0.0019. The FPR per classifier is shown in
Figure 4.3.

Comparative Analysis

Our method introduced in Chapter 2 was the first ensemble supervised learning approach
with graph-based feature engineering that aims to detect lateral movement attacks. Recently,
Zhenyu Bai in [26] employed several machine learning algorithms (supervised and unsu-
pervised) using the major part of feature engineering work. The exact list of the features



4.3 Supervised Learning Ensemble Method 65

Table 4.3 Performance Metrics for the prediction iterations of Group A

Iteration FPR BACC PPV Prev
1 0.0172 0.9914 0.2 0.0043
2 0.0243 0.9878 0.15 0.0043
5 0.0014 0.9993 0.66 0.0028
7 0.0029 0.9986 0.66 0.0057

10 0.0057 0.9971 0.6 0.0086
27 0.0014 0.9993 0.5 0.0014
33 0.0000 1.000 1.0 0.0014

Table 4.4 Our supervised learning ensemble vs Zhenyu Bai [26]. *: Model validation without
user-name, source and destination features

Classifier Accuracy Precision Recall F1 Training Time (s)
Zhenyu Bai 99.99% 99.87% 99.73% 0.998 11.28
Our Ensemble 99.98% 100% 98.67% 0.993 20.48
*Zhenyu Bai 99.99% 99.87 99.47% 0.992 10.53
*Our Ensemble 99.98% 100% 90.66% 0.951 18.19

that was used is provided in [26]. Zhenyu Bai implemented our approach and compared his
LogitBoost [87] classifier against our ensemble. Table 4.4 presents the performance of our
ensemble and Zhenyu Bai’s method and the best results are in bold. The recall and F1 scores
of our model are slightly lower than Zhenyu Bai’s but precision is better. The training time of
our ensemble, which is composed of three individual models, is close to double the training
times of Zhenyu Bai’s method. Furthermore, the author in [26] exclude few attributes of
the events logs (see Sec. 4.1 for details) and presents the corresponding results. There is a
significant drop in terms of performance for our ensemble when these attributes are excluded.
However, excluding attributes from the modelling phase without performing feature selection
is not an advisable approach.

Bian et al. in [31] implemented the semi-supervised learning detector of Chen et al.
in [61] and our supervised learning detector to further evaluate their method. Table 4.5
presents the performance of the three competitors where the best results are in bold. In
particular, our ensemble perrforms better than Bian et al. in precision and marginally
improves the F1 measure. However, our feature engineering and model training times are
magnitudes higher than both Chen et al. and Bian et al.. In addition, Bian et al. evaluate
the robustness of the aforementioned approaches on never seen data. Table 4.6 shows that
the model of Bian et al. model outperforms the competitors and report better generalization.
However, their implemented version of our ensemble does not include the re-sampling
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Table 4.5 Our supervised learning ensemble vs Bian et al. [31] and Chen et al. [61]

Classifier Precision Recall F1 Feature Extraction Time (s) Training Time (s)
Bian et al. 97.02% 93.04% 0.95 169.35 1.45
Chen et al. 73.12% 7.24% 0.13 0.69 5.29
Our Ensemble 100% 93.47% 0.97 100.81 23332.37

Table 4.6 Our supervised learning ensemble vs Bian et al. [31] and Chen et al. [61]

Classifier Precision Recall F1 Feature Extraction Time (s) Training Time (s)
Bian et al. 61.24% 94.05% 0.74 475.46 2.56
Chen et al. 4.64% 9.52% 0.06 11.22 0.66
Our Ensemble 9.58% 45.83% 0.16 40488.56 1903.24

technique that we utilized. Hence, this might have affected the performance of our model
because in highly imbalanced data it is crucial to balance the classes.

4.3.4 Discussion

Group A iterations showcase the extreme imbalance of the classes in the data with a preva-
lence of 0.0040 on average. However, our method manages to correctly classify all malicious
events. From a cyber-security perspective this translates into a 100% successful detection
of true attacks. Unfortunately, the 0.0019 FPR translates into 49.2 Normal events falsely
classified as Malicious for the subset we analyzed.

If we accept the 0.0019 FPR value as a potential constant result, it would give 1995000
falsely classified events over the total dataset of 58 days, or 34396 events per day, an 81%
reduction over the total average events per day from the Los Alamos dataset. This number
is huge for any security team to handle manually, and the absolute number of events is too
large to block indiscriminately. Nonetheless, being able to reduce the search space by 81% is
a great improvement for any cyber-security expert trying to detect attacks in a busy network.
In addition, the harmonic average probability of a Malicious classified event to be truly
Malicious is 0.6587, indicating that our approach performs above average and is a promising
first step.

An important factor to consider when using supervised algorithms is the frequency for
updating the model.

We have selected 700 events as our iteration length which corresponds to on average
54 minutes of consecutive events. The motivation of selecting 700 events was to find
an appropriate number of events that maximally spreads Malicious events over different
iterations. It should be noted that, it was an arbitrarily picked number that gave a sufficient
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spread and wasn’t the result of thorough experimentation. Furthermore, network intrusion
attacks are usually spread so thinly over time that iterations lacking true Malicious events
is highly probable regardless of iteration length. An analysis over the effect of the iteration
length is worth exploring and will be included in subsequent publications.

4.4 Automatic Semi-supervised Ensemble Method

In this section, we present the experimental results of our approach introduced in Chapter 3.

4.4.1 Data

As presented in 4.1, the dimensionality of the complete dataset is exceptionally large and as a
result it is challenging to be processed without adequate big data infrastructure. Additionally,
except for the set of attributes that the LANL dataset in 4.1 is comprised of, a new attribute is
created based on the case where the source computer and destination computer are the same
or different. This new boolean feature quantifies the Local or Remote rule respectively. In
addition, the time variable is excluded from the conducted analysis and as a result a purely
categorical feature space is produced.

Sampling from an excessively imbalanced dataset usually produces samples composed
of observations belonging solely to the prominent class. As a consequence, it is impossible
to evaluate the performance of method on detecting anomalous objects. Additionally, an
extensive experimentation regarding the scalability of the selected unsupervised and one-
class classification algorithms is conducted. A sample composed of 150,000 consecutive
authentication events is considered a good choice. Also, this sample has to contain at least 5
malicious events in order to thoroughly evaluate the anomalous class. As such, the resulting
data sample is composed of 150,000 consecutive authentication events and the total number
of the malicious events is equal to 10. As such, the corresponding percentage of malicious
events is 0.0066%. Finally, the one-hot technique is applied to produce the input space of
the Logistic PCA algorithm. The dimensionality of the resulting binary space is 150,000 ⇥
2700 and we refer to this dataset as D.

4.4.2 Experimental Setting

The major objective of our experiments is to investigate the effectiveness of our proposed auto
semi-supervised detector compared to state-of-the-art works. Additionally, the conducted
experiments do not leverage the ground truth to tune the performance of our detector.

Generation of Embeddings
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The dimensionality of dataset D, that is the output of the one-hot procedure, is 150,000
⇥ 2700. The Logistic PCA is applied on D and 900 principal components that explain 93%
of the total variance, are kept. Afterwards, we apply Theorem 2 that explained in Sec. 3.3.1
to reduce the number of the principal components. Finally, the total number of principal
components is 500 and those will be the embeddings feature space. Henceforth, we refer to
the embeddings feature space as PCs.
Phase 1

As extensively discussed in 3.3, this phase involves the utilization of two unsupervised
outlier detection algorithms; LOF [39] and iForest [167]. LOF is an algorithm that is
neighborhood based and as a consequence the neighborhood size is the only input parameter.
iForest is a tree based algorithm based on recursive partitioning and its input parameters that
can be adjusted are more than one. In particular, the exact parameter values of each algorithm
are presented in Table 4.7. LOF is employed with different neighborhood size and iForest is
employed with the following cartesian product IF =

�
(Number Of Estimators ⇥Maximum

Samples⇥Maximum Features)
 

.
It should be noted that, the outcome of this phase is an ensemble which constructed in

an unsupervised manner. Hence, no ground truth is leveraged to find the best performing
parameters. In an unsupervised and ensemble setting, the algorithms run multiple times with
random parameters. Afterwards, their predictions are combined in an unsupervised way in
order to construct the ensemble. Hence, the challenge now is how to effectively combine
individual predictions. The fundamental principles to build a good unsupervised ensemble
are presented in [282, 279, 12, 282].

Table 4.7 Setting parameters

subsets S Parameters
LOF V = {4% ,10% ,20%, Neighbors = {5,10,15,20,30,40,50,60,70,80,90,100}

30%, 40%, 100%}
iForest V = {4%, 10%, 20%, NumberEstimators = {100, 200, 300, 400}

30%, 40%, 100%} MaximumFeatures = {10%, 20%, 40%, 60%}
MaximumSamples = {10%, 30%, 50%}

Finally, we refer to the ensemble of Phase 1 as VHP-Ensemble. This ensemble, uses
the RPB algorithm to create bagged spaces and afterwards combines the results using the
introduced VHP function. Also, we refer to the baseline model as the Vanilla-Ensemble.
This ensemble leverages the whole PCs embeddings space and uses the feature bagging
technique introduced by Lazarevic [159]. The combination function is the average function.
Table 4.8 presents in detail the components of both ensembles.
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Table 4.8 Ensembles of Phase 1

Detector principal components of subsets S combination Bagging
Ensmbles LOF iForest 20 50 100 150 150 200 500 VHP Avg. RPB Lazarevic

VHP Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes No
Vanilla Yes Yes No No No No No No Yes No Yes No Yes

Table 4.9 Setting parameters

nu {0.0001, 0.0005, 0.001, 0.005}
gamma {0.01, 0.05, 0.09, 0.001}
kernel {"rbf", "sigmoid"}

Phase 2
As extensively discussed in Sec. 3.4, this phase involves the utilization of the OCSVM

algorithm. In the same analogy as in Phase 1 the one-class classification ensemble is
developed in an unsupervised manner. Table 4.9 presents in detail the parameter values that
the OCSVM algorithm uses. The authors of the OCSVM algorithm [223] conclude that
n 2 (0,1] and g are the most suitable parameters to tune. Additionally, except for the n and g
parameters we select different kernel functions. The n parameter represents an upper bound
on the fraction of training errors and a lower bound of the fraction of support vectors and the
g parameter represents the kernel coefficient. Hence, in our experiments we use the gaussian
and the sigmoid kernel and we optimize the n and g parameters. Finally, the average function
is utilized to combine the outlier scores of all OCSVM executions.

4.4.3 Evaluation

Recall at N (R@N) and Precision at N (P@N), are widely used for evaluation in outlier
detection [13, 45] and are appropriate for binary predictions. In particular, Precision at n is
defined in [66] as the proportion of correct results in the top n ranks. For a dataset D of size
N, consisting of outliers O ⇢ D and inliers I ✓ D (D = O [ I), P@n can be formalized as:n

P@n =
|o 2 O|rank(o) n|

n
(4.1)

On the other hand, Recall at N (R@N) computes the fraction of ground-truth positives,
which are captured in the top n ranks. Between recall and precision there is clear trade-off
which means that the better the precision the worse the recall and vice versa.
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Table 4.10 Precision and Recall of the output of Phase 1

Enembles P@1500 R@1500 P@5000 R@5000 P@7000 R@7000

VHP 0.015 1.0 0.008 1.0 0.007 1.0
Vanilla 0.005 0.8 0.0016 0.8 0.0011 0.8

4.4.4 Results, Comparative Analysis and Discussion

Results of Phase 1
Table 4.10 summarizes the performance of the VHP-Ensemble and Vanilla-Ensemble. The

output of Phase 1 is two sets, W and O which represent the most and least confident outlier
objects respectively. Hence, the precision and recall evaluation measures are appropriate
measures.

In addition, the threshold of the top n ranks is adjusted to showcase the sensitivity of
our introduced ensemble. VHP-Ensemble is developed in a pure unsupervised setup so it
is important to investigate the sensitivity of the n parameter in top n ranks of outliers. As
such, we investigate the effect of Phase 1 on building the semi-supervised ensemble detector.
Hence, different numbers of top n ranks of outliers in P@N and R@N are reported. In our
analysis N plays the role of the relative confidence to identify the non-outlier data points.
Table 4.10 presents the performance of the VHP-Ensemble with three different numbers
of top n ranks of outliers (top 1500, top 5000 and top 7000 data points are considered as
outliers) and the Vanilla-Ensemble. The performance of the ensembles is a typical example
of the trade off between precision and recall. In our proposed approach the cost of higher
precision is less than the cost of higher recall.
Results of Phase 2 and Comparison

The performance of the ensemble constructed at Phase 2, which represents the perfor-
mance of our introduced methodology, is demonstrated and compared with existing works.
As such, previous works that focus on detecting malicious authentication events are consid-
ered as competitors. Unfortunately, existing works that focus on detecting malicious users or
computers can not be considered as competitors because a huge amount of events have to be
further analyzed to identify which specific events are malicious. In addition since the number
of existing works on malicious events is limited, we decided to enlarge the competitors
list by comparing our proposed detector with any machine learning scenario (supervised,
semi-supervised, unsupervised) that is tested on authentication events. Hence, we evaluate
our method with i) Siadati et al. [230], ii) Lopez et al. [172], iii) our supervised learning
work [128] presented in Chap. 2
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We denote by Detector-1500 the semi-supervised ensemble detector, which is developed
when a threshold rank N=1500 is chosen for the VHP-Ensemble. The most outlier point
among the N=1500 reported outliers has a rank of 1. In the same fashion, we develop
Detector-5000 and Detector-7000 where N=5000 and N=7000 respectively. Our motivation
for selecting so large N is that we want to feed the semi-supervised detector with the most
confident normal data points. We identify them based on our intuition for the outliers
percentage in our dataset. In our case, N is at least 150 times greater than the number of true
malicious authentication events.

In Fig. 4.5 a summary of the FPR and TPR scores produced by all the competitors is
presented. Amongst the competitors, Siadati et al. [230] achieves the lowest FPR whereas
our supervised learning work [128] and all the variants of our semi-supervised method
achieve the highest TPR; they do not miss any malicious login. In addition, Detector-1500
achieves the lowest FPR among all the competitors. Ultimately, Detector-1500 improves the
FPR of our supervised detector by 10% (150 login events) and more than doubles Siadati’s
TPR. Siadati et al. detector is based on integrating security analysts knowledge into the
detection system in the form of rules that define login patterns. In other words, this detector
does not improve the existing knowledge of the cyber analysts for anomalous patterns, but
instead relies on known rules to detect anomalies. As a consequence, the Siadati’s rule based
visualization detector misses 53% of the malicious logins.

In addition, each of the aforementioned approaches outperforms the logisitic classifier of
Lopez et al. [172] which achieves AUC 82.79%. We do not plot their reported FPR and TPR
scores in figure 4.5 because their FPR scores are at least 5 times worse than the maximum
FPR value in figure 4.5. Consequently, we avoid presenting a figure that is less readable and
informative for the majority of the competitors.

4.5 Conclusion

In this chapter, two novel ensemble methods were evaluated to address the problem of
malicious authentication events detection. In literature, there is a limited work that targets the
prediction of malicious authentication events with the aid of machine learning algorithms.

First, a supervised learning ensemble anomaly detection method was proposed. Authen-
tication events were modeled as bipartite graphs in order extract knowledge with feature
engineering techniques. Overall, the proposed ensemble achieved a zero false negative rate
and a zero false positive rate for 68% of the prediction steps. In addition, on average low
values of false positive rate achieved for the remaining 32% prediction steps. The excessive
class imbalance of the authentication event makes false positives an unavoidable problem.
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Fig. 4.5 Comparison of the Auto Semi-supervised Outlier Detector

On the other hand, the proposed method managed to control the false positive rate in low
levels. Hence, this method managed to control the error rate in low levels and classify each
event in a trustful way.

Second, an automatic semi-supervised ensemble anomaly detection method was proposed.
This method managed to outperform the state-of-the-art that is related to detecting malicious
authentication using supervised learning algorithms and tools with the human in the loop.
The ensemble was tested on a real-world authentication events dataset and demonstrated that
it did not miss any malicious login event. In addition, the one-class classification ensemble
of Phase 2 improved the false positive rate of the unsupervised ensemble of Phase 1 almost
9 times. Also, the conducted sensitivity analysis showed that the rank threshold at Phase 1
did not affect at the true positive rate of the one-class classification ensemble at Phase 2. In
particular, all the ensembles that we constructed based on different levels of rank thresholds
did not miss any true malicious login events; true positive rate is equal to 1. On the other
hand, the false positive rate did not affected noticeably by the rank threshold.
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Detection of Telecommunication Fraud





Chapter 1

Background and Related Work

In this chapter, we elaborate on the fraud ecosystem and discuss the different fraud areas
i.e. telecommunication fraud, bank fraud etc. In addition, we present the challenges and
issues that fraud detection systems have to deal with. It is of paramount importance to know
in advance the most common issues that a fraud detection system has to overcome to be as
effective as possible. Furthermore, we focus on telephony fraud and provide details regarding
the most used types of telephony fraud schemes. Finally, this chapter presents existing works
for detecting telephony fraud with data mining techniques. It should be noted that, there is
little academic work in telecommunication area and this is confirmed by multiple studies.

1.1 Fraud Ecosystem

Fraud could be described as an intentional deception or misrepresentation that results in some
unauthorized benefit to the fraudster or another person [115]. As such, any technological
system that involves money and services can potentially be fraudsters’ target, i.e. the credit
card system and telecommunication system [17]. Recently, Abdallah et al. in their survey
paper [4] presented statistics of published works, from 1994 to 2014, related to the most
prominent fraud areas. Fig. 1.1 illustrates these statistics and shows that the least studied
area, between 1994 and 2014, is the telecommunication area. The fact that there is little
academic work in telecommunication area is also confirmed by Sahin et al. in [216] and
Sahin’s thesis [82]. Following we present the reasons for lacking academic work in the
telecommunication area based on their findings:

• The complexity of the telecommunication network

• The lack of publicly accessible data for conducting experiments
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Fig. 1.1 Overview for the quantity of most researched area of fraud [4]

• The privacy constraints

In addition, across all fraud areas two mechanisms are in common and their goal is to
defend against fraud activities. More specifically, fraud detection and fraud prevention
are two layers of defence that can be found in every fraud area. As such, it is important to
provide details in order to distinguish between these two layers. Fraud prevention describes
measures to avoid fraud occurrence and secures the technological systems against fraud.
In particular, it is the first defensive layer that aims to restrict, suppress, destruct, destroy,
control, remove, or prevent the occurrence of fraud. An example of a fraud prevention
mechanism is encryption algorithms that are applied to communication data. Fraud detection
systems are the next layer of protection and can only be applied once a fraud activity has
occurred. In other words, fraud detection systems have an effect once fraud prevention has
failed. Moreover, fraud detection could be informally defined as the process of identifying
fraud activities as quickly as possible. Therefore, effective fraud detection systems are being
developed by integrating data mining methods in order to surpass the limited capabilities
of systems that heavily depend on predefined a and subjective rules stated by experts [164].
Finally, a survey paper from Phua et al. [201] categorises, compares, and summarises data
mining-based fraud detection methods and techniques published between 2000 and 2010.

In particular, anomaly or outlier detection methods are a sub-group of data mining
methods interested in finding interesting data objects deviating in their behavior considerably
from the majority and, as such, providing new insights. As such, fraud detection systems take
advantage of such methods to identify any deviation from the norm and ultimately detect
fraud. Developing a fraud detection system based on data mining methods is challenging
and finding the most appropriate approach is subject to multiple factors. The most important
factor that affects the selection of the approach is at which extend we are aware of the fraud
activities. Hence, anomaly detection methods can be categorized into three groups based on
the existing fraud knowledge; unsupervised, semi-supervised and supervised (see chapter 2
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Fig. 1.2 Distribution of fraud detection articles based on issues and challenges [4]

for details). Abdallah et al. in their survey paper [4] summarize the multiple challenges that
fraud detection methods have to deal with in order to be robust enough. Fig. 1.2 illustrates
the distribution of published fraud detection articles based on issues and challenges. The
concept drift [260, 249, 89] and the large amount of data are the most frequent issues that
fraud detection systems face.

1.2 Telephony Fraud

A survey conducted last year found that compared to 2017, fraud losses as a percent of global
telecommunication revenues grew 37% to $28.3 Billion USD, or 1.74% of total revenues.
In addition, this study found that almost half of fraud departments are less than 7 years old
which leads us to the conclusion that more and more organizations are interested in detecting
fraud activities. In this section, we elaborate on telephony fraud, we describe the most used
types of telephony fraud schemes.

Fraud in the telecommunication industry comes in many different forms with subscription
fraud being the biggest concern for telecommunication operators. More specifically, sub-
scription fraud, as it alone amounted to a loss of 5.22 billion dollars in the US in 2013 [23].
Subscription fraud occurs when a fraudster uses stolen identity credentials or provides fake
information to obtain mobile services with no intention to pay. The problem of detecting
subscription fraud has been addressed using data mining methods [220, 81] and classification
methods based on privacy-preserving [110].

In PBX dial-through fraud, compromised PBXs can be used to make free calls, while
the call charges are attributed to the PBX owner. Private Branch Exchange system allows
enterprise customers to manage their internal and external communication needs. A PBX
is made up of both hardware and software that connects to communication devices such
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Fig. 1.3 Fraudsters are hacking an enterprise PBX to forward calls to a high cost destination

as telephone adapters, hubs, switches, routers, and telephone sets. IP-PBX systems can
be compromised by malware or accessing an IP address connected with the PBX box to
bypass the company’s firewalls. In general, IP-PBX systems are vulnerable to the same
threats as those that affect any data network including, DoS attacks and interception of
communications. Fig. 1.3 illustrates a scenario where fraudsters hack a PBX to place calls
to a high cost destination. Several works address the problem of toll evasion fraud against
IP-PBX or demonstrate IP-PBX vulnerabilities [98, 269, 181, 182, 268]. The main difference
between PBX and IP-PBX is the way the provide connection. A PBX uses standard telephone
lines whereas an IP-PBX uses the Internet Protocol (IP).

Over-The-Top (OTT) services (e.g., WhatsApp, Viber, Zoom) use the internet to imple-
ment services without involving any telecommunication operators. OTT bypass or OTT
hijack is a fraud technique where a normal phone call is diverted over IP to a voice chat
application on a mobile phone, instead of being terminated over the normal telecommunica-
tion infrastructure[215]. More specifically, the OTT provider have to partner with a transit
operator to hijack regular calls [82]. This rerouting (or hijack) is performed without explicit
authorization from the all the involved parties; caller, callee and their operators. As such, the
fraudsters manage to collect a large share of the call charge and induce a significant loss of
revenue to the bypassed operators. Ighneiwa et al. in [117] developed an machine learning
based method to detect bypass fraud.

International Revenue Share Fraud (IRSF), is one of the most problematic types of
fraud [82]. In IRSF, calls to certain destinations are hijacked by fraudulent operators and
diverted to the so-called ‘international premium rate services’. Premium Rate Numbers
(PRN) are used to provide wide range of services such as gambling, live chat; through voice
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Fig. 1.4 Multiple call transfer fraud scenario

call or SMS. The cost of calling a premium rate number is much higher than a regular call to
cover the cost of services provided [82]. Finally, after hijacking the fraudster generates high
traffic calls to high cost destinations and gets revenue from the sharing agreements. Fig. 1.4
illustrates a multiple call transfers scenario. The attacker hacks an enterprise PBX to set up
hundreds of simultaneous calls to high cost destinations.

Voice spam is one of the most visible types of voice fraud targeting customers and
consist significant annoyances for telephone users. Disseminating telephone spam co-evolves
with technology and as a result disseminating telephone spam has never been easier. As
such, robocalling automatically dials and delivers a prerecorded message to a list of phone
numbers [250]. Voice spam can take many forms, and recently Badawi et al. in [25] provide
the first systematic study related to the Game Hack Scam (GHS) where the scammer promise
unlimited resources or other advantages for their favorite game. In general, an effective
execution of spamming (regardless of the medium) is composed of three basic elements:
a recipient list, content, and a mass distribution channel [250]. Several works have been
developed to address the problem of voice spam [265, 180, 118]

1.3 Related Work

In this section, existing works related to anomaly detection with data mining methods for
fraud detection of telecommunication will be discussed. In particular, due to the fact that
(i) telephony fraud takes many different forms, (ii) there is little academic work related to
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telecommunication fraud, we present existing works developed using data mining techniques.
However, due to the aforementioned reasons, we are not able to focus on any specific type of
telecommunication fraud.

Taniguchi et al. in [239] present supervised and unsupervised approaches to detect fraud.
First, a feed-forward neural network (supervised learning) is used to classify subscribers as
fraudulent and legitimate. Secondly, a Gaussian mixture model (unsupervised learning) is
applied to model past behavior of each subscriber and abnormalities are detected based on
the past model. Lastly, two Bayesian networks (unsupervised learning) are used to model the
behavior of fraudulent and legitimate subscribers. Their models demonstrate at least 0.7 true
positive rate while the the false positive rate is zero. They dataset stems from call records
used for billing purposes but it is described poorly and it is private. Additionally, each of the
aforementioned approaches is applied on different set of features which leave us with the
impression that the analysis is biased.

Hilas et al. in [111] investigate the effectiveness of supervised and unsupervised learn-
ing approaches to the problem of fraud detection in the telecommunications area. More
specifically, feed-forward neural network (supervised learning) was used to classify users as
normal and fraudster, and hierarchical agglomerative clustering (unsupervised learning) to
test whether cases from the same class tend to form coherent clusters. Before applying their
models the principal component analysis was performed to reduce the dimensionality and
produce uncorrelated feature vectors. Their methods are evaluated on a real-world data (pri-
vate) that covers a period of eight years and is composed of call detail records (CDRs). CDRs
(see [112] for details) contain information such as: the caller ID, the chargeable duration of
the call, the called party ID, the date and the time of the call etc. A user’s data are aggregated
in different ways to construct five profiles for each user and find the appropriate user profile
(behavior characterization). Overall, the supervised approach managed achieve 0.8 true
positive rates and 0.02 false positive rate. They also highlight the lack of interpretability of
the feed-forward neural network models.

Elmi et al. in [77] develop a feed forward neural network (supervised learning) to detect
a specific type of telecommunication fraud, namely the SIM box fraud. A SIM box is
VoIP device that maps the call from VoIP to a SIM card of the same mobile operator of the
destination mobile. The aim of their work is to detect SIM box fraud subscribers. In particular,
they alter the architecture of the neural network to investigate the learning potentials of neural
networks and identify useful features. The dataset is a CDR based dataset (private) but the
authors do not provide information regarding its origin and how it was obtained. In addition,
there is lack of transparency regarding the procedure followed to identify the final set of
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features that effectively detects SIM box fraud activity. The experimental results demonstrate
high classification accuracy but they fail to provide insights.

Furthermore, Elmi et al. in [219] extended their previous work [77] in detecting SIM
box fraud. In particular, except for the artificial neural network (ANN) algorithm they also
employ the SVM algorithm to conduct a comparative analysis. The experimental results show
that SVM outperforms ANN in terms of accuracy, false positive rate and training duration.

Farvaresh et al. in [81] propose a sequential multi-phased method that aims at detecting
subscription fraud on a real-world scenario. In the first phase data cleaning and the PCA
algorithm are applied. Afterwards, the K-means algorithm is used to cluster the data where
the optimal number of clusters and initial centers are found with the SOM (self-organizing
map) algorithm. Moreover, clustering results are used as inputs to the last phase; a supervised
learning approach. Specifically, the feature space is augmented with three new features.
At the third and final phase several classification algorithms and approaches are developed.
In particular, the decision tree, SVM, neural network, random forest and boosting trees
algorithms are applied. Also, ensemble approaches such as stacking and majority voting are
implemented. Finally, the authors justify the need of the multiple phases by comparing the
performance of the classifiers with and without the corresponding algorithms at each phase.
For instance, they compare the performance of models with and without using clustering
features. Their experiments are performed on a dataset (private) composed of CDR and
financial information coming from the Telecommunication Company of Iran. Based on their
experimental results, the boosting tree algorithm is the best performing model which achieves
0.948 AUC.

Xing et al. in [266] propose a generative statistical model called LDA (Latent Dirichlet
Allocation) to build user profile signatures of the normal behaviour. As such, fraudsters
are detected via detecting deviations from normal behaviour. The LDA algorithm answers
questions related to if a call is generated by a specific account given the feature values of
the call. The basic idea of the LDA is to represent accounts as random mixtures over latent
classes, where a latent class is characterized by a multinomial distribution. The data used
for their experiments consisted of 67 days of CDR for the city of Glasgow. Their proposed
method outperforms Taniguchi’s method [239] and reports a rejection rate at the level of
2.25%.

Furthermore, Papadimitriou et al. [194] extend the work of Xing et al. [266] to detect
fraudulent behavior. More specifically, they use the LDA algorithm and introduce four
methods for approximating the KL-divergence between two LDAs. In addition, they compare
their method with Taniguchi’s gaussian mixture model [239] and show improvement. Their
methods achieve 0.9833 AUC whereas Taniguchi’s 0.9111.
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1.4 Conclusion

Several works have been developed using data mining techniques but a significant part of
them require a considerable amount of fraud knowledge. Hence, the practicality of these
works is in question due to lack of such knowledge in fraud detection problems. In addition, it
is apparent that the telecommunication area has not fully taken advantage of the advancements
in the machine learning field to develop sophisticated fraud detection techniques.

In the next chapter, we address the problem of fraud detection in the telecommunication
area by constructing unsupervised outlier ensembles. More specifically, we follow well-
established theory of unsupervised outlier ensembles [279, 10] to conduct an experimental
and comparative analysis. In an unsupervised setting there is no need for fraud knowledge
to develop a method. To the best our knowledge, this analysis is the first that addresses the
problem of the telecommunication fraud detection with outlier detection algorithms. As such,
we differentiate ourselves from all the existing works.



Chapter 2

Unsupervised Ensemble Learning

Today, cellular networks and Voice over IP (VoIP) technology are incorporated into the
global telephony network and provide many different services. In particular, Private Branch
Exchange (PBX) is a technology that enables enterprise customers to manage their internal
and external communication needs. This technology, as well as many other technologies,
could be vulnerable to fraud activities in order to gain financial benefits. However, valuable
telecommunication data sources are of paramount importance to develop effective fraud
detection methods. More specifically, every time a call is placed on a telecommunications
network, descriptive information about the call is saved. This descriptive information is
called Call Detail Records (CDR) and is related to each call routed (originated, terminated
or transited) over the network of an operator. CDRs include various information, such as
originating and destination phone numbers, inbound and outbound routes, date, call duration
and call type.

In this chapter, we deal with the detection of fraudulent private branch exchange phone
calls made on the network of the largest provider in Luxembourg, POST Luxembourg.
Established unsupervised learning principles are followed to address the challenging problem
of fraud detection. In particular, an experimental research is conducted to investigate the
performance of unsupervised outlier detection algorithms in a real-world fraud detection
problem. For use in real-world business applications it is important to obtain a robust
detection method, i.e. a method that can perform well on different types of data, to ensure
that the method will not impact that business in unexpected ways. As such, unsupervised
outlier ensembles are developed to expose the factors that affect the robustness of an outlier
detection approach. Overall, our analysis demonstrates that despite the collective power of
outlier ensembles they are still affected by i) data normalization schemes, ii) combination
functions iii) outlier detection algorithms.
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2.1 Introduction

Outlier detection is the process of identifying those observations that deviate substantially
from the remaining data. In particular, identifying outliers in high-dimensional data can
provide important insights into many real-world applications, e.g., detection of frauds, sensor
failures, or outlying gene expressions. Choosing an unsupervised outlier detection method
over a supervised or semi-supervised approaches is heavily influenced by the availability of
labels [94].

Supervised outlier detection methods need sufficient labeled training and test sets. How-
ever, in real-world outlier detection problems the ground-truth related to the outlier class is
missing. Outliers are naturally scarce and as a result such data will be heavily imbalanced
which poses a problem for most classifiers. Most importantly, supervised methods struggle
to detect novel types of anomalies because no labeled training examples have been collected.

Unsupervised outlier detection approaches do not rely on labeled datasets. Each outlier
detection algorithm is based on a model making specific assumptions on the nature of outliers.
Hence, every algorithm is able to capture specific data patterns and fits only to some aspects
of the total ground truth. In other words, the subjectivity of each model influences the outlier
detection performance.

Outlier ensembles take advantage of the individual subjectivity of each algorithm by
combining several different outlier detection results to build more robust detectors. The
authors in [13, 279] point out the challenges related to developing good outlier ensembles.
The two major challenges are:

• How to deal with accuracy? Since in an unsupervised learning setting no ground truth
is available the evaluation is difficult.

• How to assess diversity? Since in an unsupervised learning setting no ground truth is
available diversity is usually based on randomness. The diversity of ensemble members
is one of the most important ingredients of good ensembles [279].

Telecommunication frauds are malicious usage and/or exploitation of telephone connec-
tions for criminal purposes.These can range from finance gain for fraudsters to damaging
public reputation of enterprises. More often than not, they cause substantial financial loses
for victims. In this chapter, we deal with the detection of fraudulent private phone exchange
(PBX) phone calls made on the network of the largest provider in Luxembourg, POST
Luxembourg. In particular, we focus on unauthorized calls to international premium-rate
numbers. These calls can cause large costs within short time frames. Quick and reliable
detection and mitigation of fraudulent calls is therefore extremely important. We use Call
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Detail Records (CDRs) logs to develop unsupervised outlier ensembles in order to identify
fraudulent calls. Unsupervised learning approaches compared to supervised learning meth-
ods are not able to find the best performing parameters in order to tune their performance.
The authors in [13, 8, 283, 279] present the core elements of good outlier ensembles and
following these elements are summarized:

• Data normalization is followed to scale each attribute to [0,1] or to make it follow a
N(0,1) . The authors in [45] show that outlier detection algorithms perform better on
normalized datasets in contrast to unnormalized datasets.

• Subspace outlier detection to avoid irrelevant attributes and learn diverse models

• Normalization of outlier scores to make comparable the scores produced by hetero-
geneous outlier detection algorithms

• Combination functions to combine the outlier scores of the ensemble members.

The motivation of our analysis is to experimentally investigate the effect of the aforemen-
tioned core elements in the detection of fraudulent calls. Hence, (i) four different transfor-
mations are used to perform data normalization, (ii) the feature bagging technique [159] is
used as the subspace outlier detection technique, (iii) the Z-score method is used to perform
normalization of outlier scores, (iv) the average and maximum combination functions are
used to combine the outlier score vectors.

The analysis conducted here helps us identifying selection criteria for robust ensemble
unsupervised methods. Ultimately, this analysis is an important and mandatory step towards
the automation of hybrid supervised learning approaches guided by outlier ensembles without
the involvement of domain experts in the modelling phase.

2.2 Methodology

In this section we are giving details about the methodological part of our analysis and we are
guided by a primary question: "What is the performance effect on an unsupervised outlier
ensemble when it is constructed with different variants of the same ensemble core elements?".

Developing an unsupervised outlier ensemble is challenging when it comes to decide
what will be the best performing alternative components. In this section bagging outlier
ensembles are constructed with all possible combinations of the four core elements discussed
in Sec. 2.1.
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2.2.1 Data normalization

One of the main pre-processing steps for many statistical learning tasks is data normalization.
The authors in [45] show that outlier detection methods on normalized datasets perform
better compared to non normalized datasets. We normalize all the numerical attributes based
on the following schemes.

• Minimum and maximum normalization (Min-Max) transforms the numerical at-
tributes x of a dataset based on the formula: x�min(x)

max(x)�min(x) . This transformation is linear
and each numerical attribute is mapped to the [0,1] range.

• Mean and standard deviation normalization (Mean-SD) transforms the numerical
attributes x of a dataset based on the formula: x�mean(x)

sd(x) . This transformation is also
known as the Z-score transformation and ensures that the attributes distributions have
mean = 0 and std = 1.

• Median and the IQR normalization (Median-IQR) transforms the numerical at-
tributes x of a dataset based on the formula: x�median(x)

IQR(x) where IQR(x) is the interquar-
tile range of x. This transformation maps the attributes to have median = 0 and std =
1.

• Median and median absolute deviation normalization (Median-MAD) transforms
the numerical attributes x of a dataset based on the formula: x�median(x)

MAD(x) where
MAD(x) = median(| x�median(x) |) and each x is transformed to have median =
0 and std = 1.

As such, in our analysis the effect of four normalization schemes is investigated in relation
with the detection performance of unsupervised outlier ensembles.

2.2.2 Subspace Outlier Detection

In our analysis, the feature bagging [159] technique is used as a subspace technique to
discover relevant subspaces. In feature bagging, an outlier detection algorithm is applied
to various random lower dimensional projections, i.e. using only a subset of the available
features. As such, at each projected space the outlier detection algorithm scores the data
according to their exceptionality. Afterwards, the outlier scores from the projected spaces are
combined to produce a final outlier score vector; the target vector. In the rest of this chapter
we refer to an outlier detection algorithm as detector or base detector.
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2.2.3 Normalization of Outlier Scores

Different detectors may often score data on different numeric scales. Therefore, before
combining the outlier scores of heterogeneous detectors the normalization of outlier scores
is mandatory. Otherwise, some algorithms might dominate in the combination score. In
addition, the ordering obtained by the outlier scores should be the same for all the detectors.
Hence, inversion of the outlier scores might be needed.

In our analysis, the Z-score normalization scheme is employed in order to normalize the
outlier scores of all detectors. The motivation of using this specific normalization is that the
authors in [13] suggest that using Z-scores turns out to be quite effective in many settings.
It should be noted that, in cases where a detector produces smaller scores as indicators of
greater outlierness the negative of the Z-value should be used.

2.2.4 Combination functions

Ensemble learning methods combine the predictions from different base detectors in order
to create more robust results. As such, ensemble model is often more powerful than the
individual detectors. In our analysis, we use combination functions to unify the outlier scores
obtained by the feature bagging technique. In particular, a detector with different parameter
values is employed on random and lower dimension projections of the data. Afterwards, the
produced outlier scores are combined to ultimately develop the corresponding unsupervised
outlier ensemble.

In our analysis, the mean of scores and the maximum of scores are used as combination
functions. The authors in [13] explain the benefits of using the mean and maximum as
combinations functions. As such, the effect of two widely used combination functions is
investigated in relation with the detection performance.

2.2.5 Assessing Diversity

The benefit of diverse outlier scores is that the true result will be close to detectors’ predicted
truth if they are accurate to some extent. Hence, our strategy is to select such detectors that
the produced outlier scores obtain great diversity.

The Our work takes into consideration the findings of [224, 279] in order to select the
detectors that generate dissimilar scores. In addition, we increase the diversity of the models
by inducing randomness to each detector. More specifically, random parameters are used
for each detector with the feature bagging technique. Moreover, based on the analysis
of [45] we select detectors that their detection biases are different. For instance, if it was
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to select the KNN [206] algorithm we should have avoided to also select the KNNW [21]
algorithm. The outlier scores of these algorithms are highly correlated. Finally, the feature
bagging technique produces uncorrelated results by inducing randomness on finding lower
data projections [281].

2.2.6 Detectors

The strategy for selecting the detectors and perform our experimental analysis discussed
on 2.2.5 section. In principle, however, one could choose any detector to perform a similar
analysis as long as the strategy is the same. Hence, the following algorithms are the base
detectors of the conducted experimental analysis.

1. KDEOS (Kernel Density Estimation Outlier Score) [226], computes a kernel density
estimation over a user-given range of k-nearest neighbors. In particular, the gaussian
kernel is used to estimate the density.

2. LoOP (Local Outlier Probabilities) [145], computes a local density based on proba-
bilistic set distance for observations, with one parameter the k-nearest neighbors. The
density is compared to the density of the respective nearest neighbors, resulting in the
local outlier probability.

3. iForest (Isolation Forest) [167] detects anomalies in a tree ensemble fashion. It isolates
observations by randomly selecting a feature and then randomly selecting a split value
between the maximum and minimum values of the selected feature.

2.2.7 Pipeline of constructing Bagging Ensembles

In this section we are describing the steps followed to construct the outlier ensembles of
experimental analysis. First, we normalize all the numerical attributes based on the four
formulas we discussed in 2.2.1. Afterwards, the feature bagging technique is applied as the
subspace outlier detection technique. Next, the produced the outlier scores are normalized
employing the Z-score function. Finally, the average and maximum combination functions
are used to unify the outlier scores and ultimately construct the outlier ensembles. Therefore,
given a detector and all the possible combinations of the aforementioned components, eight
outlier ensembles can be constructed. As such, our experimental analysis is comprised of
24 ensembles are constructed which stem from the three detectors, KDEOS, LoOP, iForest.
Fig. 2.1 illustrates the procedure that is followed to construct the ensembles of our analysis. In
blue is coloured the process that is followed to construct one particular ensemble. Henceforth,
we refer to each of the 24 ensembles as Bagging Ensemble.
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Fig. 2.1 The Pipeline of constructing Bagging Ensembles

2.3 Experimental Setup

2.3.1 Dataset Description

Our analysis uses a dataset comprised of CDRs (Call Detail Records) related to private
branch exchange phone calls made on the network of POST Luxembourg. This dataset is a
high-dimensional dataset which includes information related to calling number, calling time,
calling duration, number of called parties, total calling cost and destination countries of the
called parties. Henceforth, we refer to this dataset as D. CDR data are mainly used for billing
purposes, but in this research such data are used for fraud detection and mitigation purposes.
It is worth noting that, due to GDPR compliance rules POST Luxembourg has applied
aggregation by time windows of 10 minutes and anonymization before the experimental
analysis. Additionally, Table 2.1 presents details regarding the fields and notation of D.

Table 2.1 Notation

Field Notation
Average number of distinct calls previous 3h AvgDc

Average calling times previous 3h AvgCount
Average cost previous 3h AvgCost
Number of distinct calls Dc

Destination countries Countries
Calling number ANumber
Number of calls Count

Call duration Duration
Call cost Cost

Time Time
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The dimensionality of D is 64000 ⇥ 10 and in Table 2.1 these 10 attributes are listed. In
addition, POST’s experts have manually labeled all the data points of the dataset as fraudulent
and non-fraudulent. The fraudulent calls have been confirmed as fraudulent whereas the
non-fraudulent are not necessarily non-fraudulent, but may contain previously unnoticed
types of fraudulent calls. All call activities were made across a time span of one month.
There are 40930 unique calling numbers (ANumber) in D and only 0.04% of them have at
least 1 fraudulent call.

Henceforth, we refer to a ANumber (calling number) whose calling activity is comprised
of at least 1 fraudulent call as a fraud calling number. Conversely, we refer to a ANumber
(calling number) whose calling activity is comprised of zero fraudulent call as a normal
calling number. The overall percentage of fraudulent calls is 0.57% which makes D signif-
icantly imbalanced and suitable for developing unsupervised outlier detection techniques.
Additionally, the authors in [208] provide a set of datasets that have been widely used in the
outlier detection literature. The outlierness percentage of these datasets varies significantly
between 0.03% and 32% whereas the number of data points varies between 129 and 567479
data points.

2.3.2 Exploratory Data Analysis

In this section, an Exploratory Data Analysis (EDA) is performed tto develop an understand-
ing of our data. The easiest way to perform an EDA is to ask questions and then focus on the
appropriate part of the dataset that will helps us to answer the questions. This type of analysis
is crucial to find the most suitable machine learning model. As such, Fig. 2.3 illustrates the
total number of individual call that are made exclusively by the fraud call numbers; 12 in
total. Additionally, this figure helps us to visualise the class imbalance of our fraud detection
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problem. The fact that fraud call numbers produce a considerable amount of normal calls
makes our problem highly imbalanced.

Moreover, in Fig. 2.2 the density of average call duration for all the ANumbers is
visualized. The motivation of generating this plot is to try to answer the question: Is there any
difference between the Fraud Calling Numbers and the Normal Calling Numbers regarding
the call duration distribution?. Fig. 2.2 illustrates a clear difference between fraudsters and
legitimate customers which helps us to conclude that fraud calls last longer than the normal
calls.

2.3.3 Feature Engineering

In an unsupervised setting the ground truth is missing in order to find the best performing set
of features. Hence, domain knowledge is significantly important to translate this knowledge
into informative features that also will not be noisy. As a result, we take advantage of POST’s
domain knowledge aiming to expose more informative patterns. More specifically, two
groups of features are calculated (i) Time agnostic features (i) Time dependent features.
Time agnostic features

• Month, Day, Weekday, Hour

• Continent percentage: What fraction of countries called belong to Europe, Africa,
Asia, etc.?

• What is the difference of continent percentage between 2 calling events from the same
ANumber?

• Duration difference of two consecutive calls (Calculated by ANumber and ANumber &
Dc)
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• How much time passed between two calls? (Calculated by ANumber)

• How many times called distinct calling numbers

• Duration per distinct call

• Cost for each Continent

• Average cost per call

• Average cost per destination calling number

• Count of call for each Continent

• Call duration duration by Continent

The above composite features have been calculated by ignoring the time variable. Hence,
we calculate features that are used when time series problems are transformed into machine
learning problems. More specifically, lag features are able to reveal time dependent patterns.
Below, the calculated lag features are described.
Time dependent features

• Rolling Average of Duration for the last 3 calls made by each ANumber

• Rolling Average of Duration for the last 3 calls made by each ANumber per hour of
the day

• Rolling Average of Cost for the last 3 calls made by each ANumber

• Rolling Average of Cost for the last 3 calls made by each ANumber per hour of the day

• Rolling Average of Dc for the last 3 calls made by each ANumber

• Rolling Average of Dc for the last 3 calls made by each ANumber per hour of the day

In the rest of this chapter, S is the high-dimensional dataset which is comprised of the
attributes of D and all the above handcrafted features. More formally,
S = D [ Time dependent features [ Time agnostic features. The dimensionality of S is equal
to 64000 ⇥ 91, where all the 91 attributes are numerical. In addition, it should be noted
that the construction of the ensembles was developed using parallel computer architecture to
improve efficiency.
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2.3.4 Hardware & Software

The experiments were performed in the R and Python programming languages. Also, a 2.4
GHz Intel Xeon E5, 50 GB RAM, running Ubuntu 16.04 machine was used to carry out all
the experiments.

Furthermore, the R and Python programming languages were used to conduct the ex-
periments. R was used for the feature engineering part with the data.table package [73]
and implemented KDEOS and LoOP detectors by using the DDoutlier package [174]. The
iForest detector implemented using Python’s scikit-learn library [199].

2.3.5 Evaluation Measures

ROC curve is the most widely-used evaluation measure in unsupervised outlier detection.
This curve is obtained by plotting all possible true positive rates versus all possible false
positive rates. Furthermore, the area under the ROC curve (AUC) measure summarizes the
ROC curve by a single value. The perfect AUC score is equal to 1, whereas an inverted
perfect AUC score is equal to 0. In our analysis, the AUC evaluation measure is used to
evaluate the unsupervised outlier detectors.

Frequently, the user of a method is only interested in a small subset of the results that
consists of the top-ranked objects (most anomalous data objects). Hence, the number n
should be specified in advance which represents the n top-ranked objects. Afterwards, the
precision at n (P@n) van be calculated. More formally, for a dataset D of size N, consisting
of outliers O ⇢ D and inliers I ✓ D (D = O [ I), P@n can be formalized as:

P@n =
|o 2 O|rank(o) n|

n
(2.1)

In our analysis, the first n = 400 events with the greatest outlier score are used as the
top-ranked objects in order to calculate the precision measure; P@400. The number 400 is
selected based on our intuition regarding the outlierness percentage of the dataset.

2.4 Results and Discussion

In Fig. 2.4, 2.5, 2.6, 2.7 box plots are presented that are related to AUC performance of
all the bagging executions of all detectors. The only difference between these figures is
the normalization scheme that is followed. More specifically, the variance in the box plots
is produced due to the randomness between all the executions of the detectors during the
bagging procedure. Each box plot summarizes 100 different executions of a base detector
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(KDEOS, LoOP, iForest) created by different parameter values and random projections to
lower dimensions.

Fig. 2.8 produced by combining the results of each detector in Fig. 2.4, 2.5, 2.6, 2.7 with
the average or the maximum combination function. For instance, the top left plot in Fig. 2.8
is produced when the outlier scores produced by LoOP,KDEOS and iForest using the feature
bagging technique are combined with the average and maximum combination function. The
outcome of this procedure is an unsupervised outlier ensemble for each detector and each
combination function. Overall, Fig. 2.8 presents all possible Bagging Ensembles of our
experimental analysis as discussed in Sec. 2.2.7.

LoOP detector performs slightly better than random guess and iForest shows the highest
values of the AUC. iForest managed to detect all the fraud calling numbers.

In addition, Table 2.2 and 2.3 show the standard deviation of AUC for Bagging En-
sembles with two different levels of aggregation. More specifically, Table 2.2 presents the
standard deviation of the Bagging Ensembles constructed with either the average or maximum
combination function across all the normalization schemes. In other words, Table 2.2 demon-
strates how robust is an ensemble, constructed with the maximum or average function, to
the different normalization schemes. Additionally, Table 2.3 presents the standard deviation
of Bagging Ensembles regardless the normalization scheme and combination function. In
other words, in 2.2 is presented how robust is each detector to all possible combinations to
construct a Bagging Ensemble.

Overall, the Bagging Ensemble constructed with the KDEOS algorithm and either the
average or maximum combination function demonstrates the largest standard deviation. In
addition, the KDEOS outlier detection algorithm demonstrates the largest standard deviation
to all possible combinations to construct a Bagging Ensemble. Hence, the KDEOS detector
is the most influenced algorithm by data normalization schemes and combination functions.
On the other hand, the iForest algorithm demonstrated the most robust performance across
different normalization schemes and/or combination functions.

Table 2.2 Standard deviation of AUC values across all normalization schemes for each
Bagging Ensemble

Detector Combination Function Std.

iForest Maximum 0.0001
Average 0.0001

KDEOS Maximum 0.1718
Average 0.1116

LoOP Maximum 0.0494
Average 0.0626
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Table 2.3 Standard deviation of AUC values across all the normalization schemes and all
combination functions for all the Bagging Ensembles

Detector Std.
iForest 0.0001
KDEOS 0.1555
LoOP 0.0755

One key benefit of outlier ensemble learning is the ability to take advantage of diverse
ensemble members (outlier detection algorithms) in order to construct better performing
detectors than the individual ensemble members. Especially well-established subspace
techniques induce diversity by inducing randomness in the resulting models and make
the ensemble perform better. An example of the improvement achieved by a good outlier
ensemble is the KDEOS detector of our analysis. In particular, Fig. 2.4 illustrates that this
detector do not manage to obtain a single execution with AUC higher than 0.7. However,
Fig. 2.8 presents that KDEOS Bagging Ensembler constructed with the average combination
function produces AUC values higher than higher than 0.8.

Furthermore, the Bagging Ensemble that uses the LoOP detector improved itself the least
compared to its individual executions. The LoOP detector achieves the best performance
when both the Median-MAD normalization scheme and the average combination function
are applied. In addition, the iForest algorithm is the only detector that is not affected at all
by data normalization schemes and combination functions. It steadily shows performance
close to the perfect; AUC values equal to 1. One possible explanation is that this detector
is an ensemble by its design compared to KDEOS and LoOP and that probably leads more
accurate and robust predictions.

In addition to the AUC evaluation measure, the P@N (Precision at n) evaluation measure
is used. Fig. 2.9 presents the Precision (P@n) results of (i) all the individual Bagging Ensem-
bles (ii) the combination of all the Bagging Ensembles using a) the average combination
function, b ) the maximum combination function. Hence, Fig. 2.9 is vertically splitted into
two parts where on the left the maximum function is used and on the right the average.
Furthermore, Fig. 2.9 illustrates that that the combination of all the Bagging Ensembles
using either the average or maximum function improves the performance of each individual
Bagging Ensemble except of iForest; the best performing algorithm. The average combi-
nation function outperforms the maximum combination function at the three out of four
normalization schemes; except for the Min-Max normalization.
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2.5 Conclusion

Constructing outlier ensembles on high-dimensional data is challenging and this paper
highlights the difficulty in selecting the best core components of an outlier ensemble pipeline.
Addressing a real-world problem with unsupervised techniques requires overcoming these
challenges to obtain both robust and accurate predictions. Researchers often develop novel
unsupervised methods in artificial environments using toy data sets and therefore do not need
to analyze the sensitivity of their approach. In contrast, problems encountered by companies
need to address the problem of results varying significantly in order to deploy a robust and
reliable solution based on these methods.
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Fig. 2.8 AUC Performance of all the Bagging Ensembles
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Fig. 2.9 Precision (P@400) of all the Bagging Ensembles and their combination. On the left,
the Maximum combination function is used for iForest, KDEOS, LoOP, and, the ultimate
combination of all Bagging Ensemblers. On the right the Average combination function is
used.
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Chapter 1

OCC Ensembles with Unsupervised
Representations to Detect Novelty

Supervised anomaly detection approaches learn from already classified objects whereas
unsupervised anomaly detection algorithms score data according to their exceptionality.
Recently, improvement has been demonstrated in the problem of supervised anomaly de-
tection by leveraging the strengths of both worlds; supervised learning and unsupervised
learning. Supervised learning approaches demand sufficient labelled training sets but usually
the knowledge related to the anomalous class is not sufficient. More specifically, in many
anomaly detection scenarios training data are available and describe objects belonging to a
particular class (usually normal objects), but very little data (if any) describing objects that
do not belong to this class (abnormal objects).

In this chapter, we address the problem of novelty detection with the aid of one-class
classification learners to accommodate the scarcity of sufficient labelled training sets. In
particular, a framework is introduced that first leverages the strengths of unsupervised
scoring algorithms to learn new data representations and afterwards develops two one-class
classification ensembles to detect novelty. The introduced method is the first attempt to detect
novelty with one-class classification ensembles developed on unsupervised representations.

1.1 Introduction

A novelty can be considered as a specific type of anomaly that does not fit well with the
previously learned distributions [202]. Novelty detection is of paramount importance to real
world applications such as credit card abuse detection in financial transactions data or the
identification of fraudulent calls in telecommunication data. Additionally, the problem of
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novelty detection is also known as one-class classification [242] where data from one class,
the target class, is used during the learning phase. The task is to define a boundary around
this class to minimize the chance of accepting anomaly or outlier objects. Afterwards, the
learnt model is used to classify if an unseen observation belongs to the target class or not.
It is worth noting that, it is hard to decide on the basis of just one class how tightly the
boundary should fit in each of the directions around the data. Throughout this chapter the
terms ”anomalies” and “outliers” [114] are used interchangeably.

In the absence of labelled training data, unsupervised outlier detection algorithms or
unsupervised detectors are the most suitable techniques [283, 10]. These detectors assign to
each object a score reflecting its “outlierness“ and the study in [45] extensively evaluates a
plethora of unsupervised detectors which are based on neighborhoods in Euclidean space.
Recently, Micenková et al. [183] for the first time leveraged the strengths of unsupervised
outlier scoring detectors to improve supervised outlier detection. Specifically, unsupervised
scoring detectors learn new feature representations that can be used to augment the original
data and improve anomaly detection performance in a fully supervised setting. In the same
spirit of the best of both worlds (supervised and unsupervised), the authors in [274, 184, 49]
have introduced different variants of this approach, all of which address the supervised outlier
detection problem.

This work investigates the improvement of novelty detection by introducing a framework
composed of One-Class Classification (OCC) ensembles developed on enriched unsupervised
representations. Additionally, this work is motivated by: 1. the authors of [242] who suggest
one-class classifiers as the preferable approach to address scenarios where few outliers are
known, 2. Micenková et al. [183] who first leveraged the strengths of unsupervised outlier
scoring detectors to improve the anomaly detection rate. As such, firstly well-studied outlier
detection algorithms [45] are used from the Knowledge Discovery in Databases (KDD) field
to learn unsupervised representations. Afterwards, these unsupervised representations are
leveraged in two different ways to build two one-class classification ensembles. Finally, these
ensembles are randomly instantiated and compared against the OCC learner developed on
the original feature representation. In addition, we make the following contributions:

• We address the one-class classification problem compared to existing works that
leverage unsupervised representations to detect anomalies.

• We propose a novel strategy regarding how to build one-class classification ensembles
to accommodate the inability of OCC learners to perform feature selection in contrast
to supervised classifiers.
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• We perform a more comprehensive experimental investigation by analyzing 175
datasets from the repository [45] to thoroughly evaluate our framework. We increase
14.5 times the number of datasets of the most extended supervised-learning work [184].

• In addition, our framework’s ensembles demonstrate statistically significant improve-
ment compared to existing works that leverage unsupervised representations to detect
anomalies; they fail to demonstrate a statistically significant performance improvement.

To the best of our knowledge, this paper introduces for the first time a framework to
detect novelties in an one-class classification setting by learning effectively unsupervised
representations to eventually build two one-class classification ensembles.

The rest of the paper is organised as follows. We introduce our method in Sect. 1.2 and
we evaluate our method on a large collection of outlier datasets in Sect. 1.3. Finally, we
present the experimental results and conclude the paper in Sect. 1.4 and Sect. 1.5 respectively.

1.2 One-Class Classification Ensembles with Unsupervised
Representations

In this section the design of our framework is described. First, it learns unsupervised
representations by using well-studied outlier detection methods from the Knowledge Dis-
covery in Databases field, such as LOF [39] and LoOP [145]. Afterwards, it constructs two
one-class classification ensembles by inducing diversity in ensemble models [279]. Finally,
it combines classification predictions on random representations to eventually produce a
global classification target vector.

1.2.1 Unsupervised Representation Learning

We select unsupervised outlier detection algorithms Wi that have the ability to output a
scoring vector. This vector is influenced by the detector’s bias and describes the degree
of outlierness. More formally, when a detector Wi is employed on a dataset D with n data
objects, it produces a real valued scoring vector Wi(D) 2 Rn⇥1. Throughout this work, this
scoring vector is considered as an one-dimensional unsupervised representation of a given
dataset D.

Let X 2 Rn⇥k denote the original feature space of a given dataset D. We employ a set of
heterogeneous unsupervised outlier detection algorithms, W = {W1,W2, ...,Wm}, where m is
the total number of detectors. An unsupervised representation of X is learnt by applying W
on X . Different biases and notions of outlierness from different detectors are captured by
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using a collection of heterogeneous unsupervised detectors W. We refer to the unsupervised
representation of X as Unsupervised Feature Space (UFS):

UFS = [W1(X),W2(X), ...,Wm(X)] 2 Rn⇥m (1.1)

Working with heterogeneous detectors emerges a problem related to the fact that different
algorithms differ widely in their scale and meaning. The authors in [146] provide a unification
approach that translates arbitrary outlier scoring vectors to values in the range [0,1]. We
follow normalization techniques introduced in their study to re-scale all set members of W
and in subsection 1.3.2 further details are provided.

In addition to the unsupervised representation of X , we construct an augmented version
of the original feature space X by leveraging the already produced UFS. In particular, we
refer to the augmented representation of X as Augmented Feature Space (AFS) which is
defined as it follows:

AFS = [X ,UFS] 2 Rn⇥(k+m) (1.2)

The augmented version of the original feature space X was firstly proposed by the authors
in [183].

1.2.2 Construction of the One-Class Classification Ensembles

The core idea of how we build our ensembles is aligned with methods for constructing outlier
ensembles [279, 13], classification ensembles [40], or clustering ensembles [91]. The authors
in [279, 13], extensively discussed the importance of having diverse ensemble members to
build good ensembles. In this study, we induce diversity by introducing randomness. In
particular, from equations (1.1) and (1.2) we observe that a different parameterization of at
least one Wi is sufficient to lead to a different realization (instance) of UFS and, consequently,
of AFS. We formally define below what such random realizations are.

Definition 6 UFS-RR: An UFS-Random Realization is a random unsupervised representa-
tion produced by randomly assigning user-defined parameter values to all Wi 2 W.

Definition 7 AFS-RR: An AFS-Random Realization is a random augmented representation
produced when we concatenate the original feature vectors of X with a UFS-RR.

As a next step, we exemplify what an UFS-RR and AFS-RR is:
Let W = [KNN(F = 2),LOF(F = 99),LoOP(F = 48)] be a collection of unsupervised
detectors composed of the algorithms KNN [206], LOF [39], and LoOP [145] employed
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Algorithm 2
Input: URL := a set of w UFS-RR, ARL := a set of w AFS-RR; w 2 N
Output: OSURL := Global Classifications of URL, OSARL := Global Classifications of

ARL (both binary column vectors)
1: for i = 1 to w do . w is the cardinality of URL and ARL
2: data := URLi or data := ARLi
3: train data := 80%
4: hold-out data := 20%
5: employ OCC on train data . Learn optimal parameter values ith K-fold Cross

Validation for an One-Class Classifier (OCC)
6: OSi := outlier scores of hold-out data . Predict with optimal parameter values
7: OS := [OS1, OS2,..,OSw ] . Matrix of w outlier score vectors
8: Outlier Classification of each OSi, i 2 {1,2, ..,w} . OSi is a binary vector
9: OSURL := GlobalClassi f ication(OS) or OSARL := GlobalClassi f ication(OS)

with parameter values F = 2, F = 99, and F = 48, respectively. All these algorithms take as
input only one parameter (F represents the neighbourhood size) which is randomly drawn
from a uniform distribution U [1,100]. Next, by employing W on X 2 Rn⇥k, an UFS-RR
2 Rn⇥3 and AFS-RR 2 Rn⇥(k+3) are produced. Overall, our novelty detection framework is
composed of two ensembles developed on the following representation spaces:

1. EnsembleUFS is developed on multiple UFS-RR

2. EnsembleAFS is developed on multiple AFS-RR

In particular, we construct our ensembles by following the steps of Algorithm 2. Let w be a
user defined parameter which reflects the number of different UFS-RR. As such, it receives as
input, w UFS-RR to create the set URL (Unsupervised Representation Learning) and w AFS-
RR to create the set ARL (Augmented Representation Learning) (i.e. |URL|= |ARL|= w).
Afterwards, for each set member of URL and ARL, which are considered as datasets in
the following steps, we employ a K-fold cross-validation procedure as in [242, 241, 236,
119, 121] to estimate the performance of the OCC algorithm (Section 1.3 provides details
regarding the exact procedure). Finally, by classifying new data in the hold-out set, w OCC
outlier score vectors are produced by the URL set and w OCC outlier score vectors are
produced by the ARL set.

In our framework the w parameter has more weight regarding the predictive capabilities
compared to the cardinality of the W set. In other words, we rely more on the number
of the ensemble members that our one-class classification ensembles are composed of, in-
stead of the total number of the heterogeneous detectors in W. As such, we overcome the
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inability of OCC learners to perform feature selection by keeping low the cardinality of
the W set in order not to considerably affect the dimensionality of the original feature space X .

Outlier Classification: For the sake of simplicity we explain the remaining steps for the w
OCC outlier score vectors produced by the URL set. It is worth noting that each of w OCC
outlier score vectors are real valued; wi 2 Rn⇥1. Combining individual classifications to a
final prediction is a vital step to construct an ensemble and we are inspired by the authors
in [248] who combine classifications from different subspaces to produce a final prediction.
Hence, we transform all the w OCC outlier score vectors to binary vectors based on a thresh-
old influenced by the OCC’s design. For instance, outlier scores produced by the One-Class
SVM [223] algorithm represent the signed distance to the separating hyperplane where
the distance is positive for an inlier and negative for an outlier. In addition, outlier scores
produced by the SVDD algorithm [243], represent the distance to the decision boundary
where it is positive for an outlier observation. Henceforth, we call as Outlier Classification
the outcome of this transformation procedure where outliers and inliers take the values of 1
and 0 respectively. Finally, we concatenate all the w Outlier Classifications (binary vectors)
to create a matrix called OS 2 Rn⇥w.

Final Target Vector: The vectors OSURL 2 Rn⇥1 and OSARL 2 Rn⇥1, are created by com-
bining w Outlier Classifications (binary vectors). The combination is achieved by defining
what a global outlier and inlier is. As such, by following Definition 8 an observation x is a
global inlier if it is an inlier in all Outlier Classifications. Additionally, an observation x is a
global outlier if x is an outlier in at least one Outlier Classification. Definition 8 is inspired
by the authors in [248] who combine classifications from different subspaces to produce a
final prediction.

Definition 8 (Global Classification) Let a set of w Outlier Classifications OS1, . . . , OSw be
given. A global classification for these Outlier Classifications is a function

f (x) =

(
1, i f Âw OSw(x)> 0
0,otherwise

Finally, Algorithm 2 lists all the above steps in pseudo code and Fig. 1.1 visually illustrates
our framework. It is worth noting that steps 1 and/or 5 of Algorithm 2 could be implemented
by following parallel computing approaches for speedup.
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Fig. 1.1 One-Class Classification (OCC) Ensembles of our framework

1.3 Experiments and Evaluation

In this section, a set of experiments is developed to investigate whether our framework’s
one-class classification ensembles outperform baseline approaches. This investigation will
help us to answer the research question: "Does incorporating unsupervised representations
by following our proposed learning algorithm improve novelty detection?".

1.3.1 Datasets

A benchmark data repository for outlier detection [45] that is composed of 23 basic datasets
was used to perform our experiments. These datasets are processed in different ways to pro-
vide variants with different percentage of outliers, different handling of dataset characteristics
such as duplicates, attribute normalization, and categorical values. As suggested in [45], we
select the normalized without duplicates version of datasets. In addition, where applicable,
we select the 10 versions with the smallest rate of outliers. Overall, for our analysis we use
175 datasets which come from 22 basic datasets and Table 1.1 presents their characteristics.
The KDDCup99 dataset was excluded from our analysis due to its large size that more than
severely affected training time [30]. Figure 1.2 illustrates the outlier percentage and the
number of attributes of the datasets coloured the category they represent.

The datasets in the repository [45] can be divided into two broad categories: 1. seman-
tically meaningful datasets where the vast majority is related to medical applications, 2.
datasets that have appeared in the outlier detection literature. Table 1.1 is a summary of the
datasets in our experiments. Furthermore, almost 93% of the datasets in our analysis (163
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Table 1.1 Datasets characteristics

Name Versions Observations Attributes Outliers Percentage Category
ALOI 1 50000 27 1508 3.04% Literature
Glass 1 214 7 9 4.21% Literature
Ionosphere 1 351 32 126 35.90% Literature
Lymphography 1 148 3 6 4.05% Literature
PenDigits 10 9868 16 20 0.20% Literature
Shuttle 10 1013 9 13 1.28% Literature
Waveform 10 3443 21 100 2.90% Literature
WBC 10 223 9 10 4.48% Literature
WDBC 10 367 30 10 2.72% Literature
WPBC 1 198 33 47 23.74% Literature
Annthyroid 10 6729 21 134 1.99% Semantic
Arrhythmia 10 248 259 4 1.61% Semantic
Cardiotocography 10 1681 21 33 1.96% Semantic
HeartDisease 10 153 13 3 1.96% Semantic
Hepatitis 10 80 19 13 4.29% Semantic
InternetAds 10 1630 1555 32 1.96% Semantic
PageBlocks 10 4982 10 99 1.99% Semantic
Parkinson 10 53 22 5 9.43% Semantic
Pima 10 510 8 10 1.96% Semantic
SpamBase 10 2579 57 51 1.98% Semantic
Stamps 10 315 6 16 1.90% Semantic
Wilt 10 4655 5 93 2.00% Semantic

out of 175) contain less than 5%. In addition, the datasets are diverse in terms of number of
attributes and the application scenarios. Hence, based on the aforementioned facts we ensure
that our proposed framework is more than well tested.
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Fig. 1.2 Scatter plot of the datasets characteristics

1.3.2 Experimental Setup

Reproducibility
Our experiments were implemented in R and Python using the freely available libraries1.
Also, all experiments were carried out on a 2.4 GHz Intel Xeon E5, 50 GB RAM, running

1R packages: reticulate, data.table, Python libraries: scikit-learn
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Ubuntu 18.04. The corresponding Github code is freely available on URL2.

Unsupervised Representation Learning:
12 neighborhood-based unsupervised outlier detection algorithms studied in [45], are used
to learn the unsupervised representations. In particular, for each detector a parameter
value, which represents the neighborhood range, is randomly drawn from a uniform dis-
tribution U [1,100].The bounds of this uniform distribution are studied in [45]. Instead of
re-calculating the outlier scores, we leverage the freely available outlier score results3 pro-
vided by [45]. The outlier detection algorithms of our experimental setting are: KNN [206],
KNNW [21], LOF [39], SimplifiedLOF [227], LoOP [145], LDOF [272], ODIN [104],
FastABOD [148], KDEOS [226], LDF [157], INFLO [124], and COF [237]. The descrip-
tion of these algorithms is omitted due to brevity. Henceforth, W is composed of all the
aforementioned outlier detection algorithms, |W|= 12.

Furthermore, in order to create the UFS-RR and AFS-RR it is important to normalize all
Wi 2 W. Hence, the min-max normalization which is a linear transformation is applied to
transform the outlier scores of all Wi 2 W into the interval [0,1]. The authors in [146] suggest
that for the ABOD (FastABOD 2 W) algorithm it is important to do an inversion and to
stretch the outlier scores which are concentrated at very small values(for details see section
3.2.3 of [146]). As such, the logarithmic inversion is applied to ensure that before and after
the inversion outliers keep their ranking. The logarithmic function is monotone, and as a
consequence the inversion is ranking-stable. Finally, on top of the logarithmic inversion, the
min-max normalization is applied to transform the outlier scores into the interval [0,1].

One-class Classifier
We employ one of the most popular one-class classifiers, the One-class SVM (OCSVM) [223].
The motivation of this work is not to compare different OCC algorithms thus we employ a
state-of-the-art one one-class learner to focus on evaluating the novelty detection improve-
ment. It is worth noting that our framework’s ensembles are able to be constructed with any
OCC algorithm.

The authors of the OCSVM algorithm [223] prove that the Gaussian kernel has the
advantage of always separating the data from the origin. In addition, they conclude that
n 2 (0,1] and g are the suitable parameters to tune. Hence, in our experiments we use the
Gaussian kernel and we optimize the n and g parameters.

2URL will be included on paper release due to double blind review process
3The authors used the ELKI [225] public software
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Learning Scenario
One-class learners do not have any mechanism to use label information directly to train
the decision function. Instead, they could learn this decision function by being exposed to
training data composed of labeled inliers only or leverage negative examples SV DDneg [243],
SSAD [96]. The final goal of a one-class classifier is to find a generalizable solution by
minimizing the false positives and false negatives. Unfortunately, false negatives cannot
be estimated when no outlier objects are available. To accommodate this issue the authors
in [242] proposed different ways to generate artificial4 outliers. In this study, we employ
one-class classifiers exposed to inliers during the training phase. Also, we minimize the false
negatives by using limited knowledge from the true outlier distribution. We purposely avoid
investigating different ways of generating artificial outliers because it would add significant
complexity to our attempt to answer the research questions of this work. It should be em-
phasized that our proposed methodology remains identical in cases that outliers need to be
artificially generated.

Evaluation
We follow a K-fold cross-validation [Kohavi et al.] procedure as in [242, 241, 236, 119,
Janssens and Postma] to estimate the performance of the OCSVM algorithm applied on each
UFS-RR or AFS-RR data set. We split the UFS-RR and AFS-RR data sets using the popular
80%-20% rule. As such, a hold-out set containing 20% randomly selected data points of the
entire data set is reserved. With the remaining 80% a 10-fold cross-validation procedure is
applied to optimize the parameters of the OCSVM. Afterwards, the OCSVM is trained with
the optimal parameter values obtained by the cross-validation with respect to ROC-AUC. We
recall that the OCSVM is trained only on the normal data points; the training set consists of
nine folds and the test consists of one fold. To minimise the bias introduced by the random
selection of folds, we repeat the 10-fold cross-validation 30 times. Finally, an OCC outlier
score vector for a UFS-RR or AFS-RR is produced and its size is equal with the size of the
hold-out subset. This vector is considered as an ensemble member of the EnsembleUFS or
EnsembleAFS.

The output of the EnsembleUFS or EnsembleAFS is a binary column vector regardless of
the number of ensemble members are composed of (see Algorithm 2 and section 1.2.2 for
details). Hence, we evaluate the novelty detection performance by evaluating this binary
column vector. Recall at N (R@N) and Precision at N (P@N) [13, 45], are widely used for
evaluation in outlier detection and are appropriate for binary predictions. A rank list of the
outliers is needed for both measures in order to evaluate the top-N outliers that are the first N

4The corresponding MATLAB toolbox [241]
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in the ranking. N = |O| where O is the number of outliers presented in the hold-out set is a
widely used choice in order to evaluate the detection performance on all the outliers. In this
work, R@N and P@N are evaluated at N = |O|. For each basic dataset we average across
the 10 versions (where applicable). Finally, we repeat 30 times this procedure and report the
average P@N and R@N values of the 30 repetitions.

To analyze the performance differences among multiple algorithms we use the non-
parametric Friedman test followed by Nemenyi post-hoc test5 as proposed in [69]. We
consider p < 0.05 to be statistically significant. In addition, in [69] the author introduces the
critical difference plot to check visually the differences. For a significance level a the test
determines the critical difference (CD) in order to assess the difference between the average
ranking of two algorithms.

Competitors
We generate multiple random instances of our framework’s ensembles, EnsembleUFS and
EnsembleAFS, which are composed of w = [5, 10, 15, 20, 25, 30] UFS-RR and AFS-RR
respectively. As such, following are the competitors: (i) UFS-5RR the EnsembleUFS com-
posed of 5 UFS-RR , (ii) UFS-10RR, (iii) UFS-15RR, (iv) UFS-20RR,(v) UFS-25RR, (vi)
UFS-30RR, (vii) AFS-5RR the EnsembleAFS composed of 5 AFS-RR, (viii) AFS-10RR, (ix)
AFS-15RR, (x) AFS-20RR, (xi) AFS-25RR, (xii) AFS-30RR, (xiii) Original baseline model is
the OCSVM employed on Original data X .

1.4 Results and Discussions

5Both tests are freely available by the R package [42]
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Prediction Performance Analysis
Table 1.2 and Table 1.3 show the R@N and P@N results of our experiments. For clarity,
all instances of EnsembleAFS are marked with * and all instances of EnsembleUFS with #
in Table 1.2 and Table 1.3. The best performer for each dataset is highlighted in bold.
The Friedman test illustrates that there is a statistically significant difference among the
competitors for both R@N (c2 = 188.03, p < 0.001) and P@N (c2 = 34.7, p < 0.001).
As such, we can safely reject the null hypothesis that all the algorithms perform the same.
Once we verified that not all the performances of the algorithms are the same, the next step
is analyzing which are different.

As such, we perform the Nemenyi test that compares all the one-class classification
competitors to show statistically significant pairwise differences. For significance level a =

0.05 we produce Fig. 1.3 and Fig. 1.4 that illustrate the critical difference plots of P@N
and R@N respectively. In the critical difference plots, the classifiers that are not joined by
a line can be regarded as different. In particular, Fig. 1.4 illustrates all instances achieve
higher average ranking than the Original baseline model and that the great majority of the
produced instances of our framework are not joined by a line with the Original baseline
model. As a consequence, the great majority of our framework’s instances achieve statistically
significant greater R@N scores than the Original baseline model. On the other hand, the
critical difference plot in Fig. 1.3 illustrates that there is no statistically significant pairwise
difference between the instances of our framework and the Original baseline model.

Fig. 1.5 illustrates the P@N and R@N performance scores of all the competitors of our
experimental setting. In green are coloured all the UFS-RR instances, in red all the AFS-RR
and in black the Original baseline model. The perfect score is achieved when P@N and
R@N are equal to 1.0; top right part of the plot. In addition, Fig. 1.5 shows the overall
improvement of our framework on the 175 datasets that we used and is a visual representation
of Tables 1.2 and 1.3. In Fig. 1.5, the vast majority of the datasets our instances hit right
and higher parts of the plot than the Original baseline model. In cases where P@N scores
are equal between our instances and the Original baseline model, greater R@N scores are
observed for our instances.

Furthermore, Table 1.2 and Table 1.3 show that the instances of EnsembleAFS which are
composed of more than 15 AFS-RR achieve the best P@N and R@N combined results on all
the datasets. In particular, by taking into consideration both evaluation measures, P@N and
R@N, the average combined ranking of AFS-30RR is 5.8, AFS-25RR is 6.2, AFS-20RR is 6.5
and AFS-15RR is 6.1 whereas the Original baseline model performs the worst among all the
competitors; 13 in total. Any instance of the four aforementioned instances bring on average
18% statistically significant improved R@N and equal P@N scores on 175 datasets. Hence,
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our extensive analysis shows that the augmented feature space does improve the novelty
detection but deciding the best number of AFS-RR is non-trivial and possibly data-dependent.
Taking into consideration the findings of our extensive analysis on a large variety of datasets
characteristics, we argue that instances of EnsembleAFS which are composed of more than 15
AFS-RR is a safe choice.

4 5 6 7 8 9 10
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Fig. 1.3 Average ranking of all competi-
tors over all data sets w.r.t. Precision@N;
critical difference plot

3 4 5 6 7 8 9 10 11 12

CD

UFS−30RR
UFS−25RR
UFS−20RR
AFS−30RR
UFS−15RR
AFS−25RR

UFS−10RR
AFS−20RR
AFS−15RR
UFS−5RR
AFS−10RR
AFS−5RR
Original

Fig. 1.4 Average ranking of all competi-
tors over all data sets w.r.t. Recall@N;
critical difference plot
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Fig. 1.5 Precision-Recall scores of all competitors on all datasets

Limitations and Future Directions:
This study produces our framework’s instances in an unsupervised way. In other words, we
do not leverage the ground truth to present the best performing instance but we investigate
the performance of a finite number of instances. Recently, Campos et al. [44] and Rayana
et al. [209] introduced unsupervised selection methods to find the best ensemble members.
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As such, we plan to develop a framework that produces ensembles comprised of the best
performing number of ensemble members. Furthermore, most of the existing OCC learners do
not scale well [30] thus we prioritize a more scalable solution based on sampling techniques.
Finally, explainable techniques are going to be incorporated to provide explanations to the
user of our framework regarding the predicted novelties.

1.5 Conclusion

In this chapter, an one-class classification ensemble framework has been introduced to detect
novelty. The proposed framework extends previous supervised outlier detection works [183,
184, 274] that used unsupervised scoring detectors to learn richer feature representations
than the original feature space. However, in anomaly detection problems the most usual
scenario is that sufficiently labelled training sets are absent and supervised approaches face
considerable difficulties. In particular, there is in abundance training data that describe
objects belonging to a particular class (usually normal objects) and for the fortunate scenarios
there is a possibility to obtain very limited knowledge describing objects that do not belong
to this class (abnormal objects). This work employs one-class classification algorithms which
by design [242, 223] are able to address highly class imbalanced scenarios compared to fully
supervised approaches that heavily depend on re-sampling (oversampling or downsampling)
techniques. As such, a distinct direction is followed regarding how to accommodate such
scenarios and in addition to address the inability of one-class learners to perform feature
selection.

Our experimental results demonstrate statistically significant improvement in detecting
novelties compared to baseline approaches. In particular, several OCC ensembles of the
introduced framework bring on average 18% improved results. In our analysis, a benchmark
data repository [45] is used to evaluate our proposed methodology. We select all the available
downsampled dataset versions with the smallest rate of outliers to ensure that: (i) the presence
of outliers is appropriate for the outlier detection task, (ii) our framework is well-tested in
terms of robustness against different distributions of the outlier class. The introduced
framework, analyzes 175 datasets and demonstrates enough robustness to handle a great
diversity of scenarios in terms of number of attributes, percentage of outliers and the category
they represent. To the best of our knowledge, this paper introduces for the first time a
framework to detect novelties in a one-class classification setting.
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Conclusion and Future Work

In this chapter, we recap the advancements and innovation of this doctoral thesis and we
highlight the main contributions. Throughout the different chapters of this thesis we proposed
advanced analytical techniques and novel machine learning methods to address real-life
cyber and cyber-telecommunication problems. The current state-of-the-art is inadequate
and fail to protect enterprises against adversaries. As such, we first proposed an ensemble
method that requires very limited knowledge in order to detect the stealthy Lateral Movement
attack. Then, we discussed unsupervised methods that are able to avoid the need of learning
with supervision. More specifically, we developed two ensemble learning methods to
address the problems of (i) detecting a stealthy and sophisticated cyber attack namely
Lateral Movement attack, (ii) detecting fraudulent telephone calls made on the network
of POST Luxembourg. We finally proposed an application domain agnostic method that
learns unsupervised representations to improve novelty detection by developing one-class
classification ensembles.

Supervised and Unsupervised Ensemble Learning to Detect
the Lateral Movement Attack

The level of digitization in our modern age put enterprises in risk due to the increasing number
of cyber threats. The situation escalates when adversaries form large teams, composed of
more than one-hundred members, raise the level of sophistication. The Lateral Movement
attack is one representative example of stealthy and well-organized attacks that targets big
enterprises and organizations to mainly mine sensitive data. Such attacks are hard to be
detected and usually it takes many days to be detected. We therefore proposed two methods
based on supervised and unsupervised ensemble learning models to address the problem
of detecting the Lateral Movement attack. Ensemble learning is a bunch of techniques
that has demonstrated huge success especially in designing supervised learning methods
that are based on either bagging or boosting to significantly improve the performance of
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weak learners. Apart from supervised learning, ensemble learning is gaining popularity in
the problem of anomaly or outlier detection and produces methods that are called outlier
ensembles. As such, in this thesis we proposed two novel ensemble learning methods to
address the real-life problem of detecting the lateral movement attack. Our experimental
results are evaluated on the most popular public dataset related to the lateral movement and
provided by the Los Alamos National Laboratory enterprise network.

Supervised Learning Approach

First, we proposed an independent and supervised outlier ensemble method to detect the
lateral movement attack1. The components of this method are independently executed of one
another. More precisely, we built our method by employing and combining predictions of
three different classifiers, Random Forest, Logistic Regression and LogitBoost. The output
of each individual model is a probability assigned to each data object that represents how
likely is each data object to be an outlier. Majority Voting is used as ensemble learning
technique that leverages the predictions of all individual models and gives the final prediction.
In our experiments we underline that our proposed supervised ensemble is able to effectively
detect the lateral movement attack despite very limited knowledge of the anomalous class.
Additionally, our method enriches the initial set of features by proposing an advanced feature
engineering strategy that is performed on graphs. We measured the performance of our
method by using the false negative rate and false positive rate metrics. In overall we achieve
0 false negative rate (i.e. no attack was missed), and on average a false positive rate of 0.0019.
In addition, the balanced accuracy metric is on average 99.62%.

Future Work

• In short term we aim to strengthen the graph-based feature engineering of our method.
More precisely, we are going to represent authentication data as graphs and extract
graph properties such as in- and out- degree of nodes, centrality indicators, and other
metrics. In addition, we aim to employ stacking [262, 16] that is a well-performing
ensemble machine algorithm. More specifically, stacking combines multiple models
via a meta-learner to improve predictions.

• In long term we aim to integrate the evolution of bipartite graphs into the prediction
process of the supervised learning ensemble. Temporal graphs are essentially graphs

1This chapter of the thesis was published in the 2018 NOMS IEEE/IFIP Network Operations and Manage-
ment Symposium.
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that change with time and gives us the opportunity to explore the dynamic properties
of data. Moreover, our goal is to investigate active learning [6] methods for anomaly
detection in order to give the opportunity to experts to guide the predictions.

Automatic Semi-supervised Learning Approach

Second, we proposed a sequential and unsupervised ensemble learning outlier ensemble
method to detect the lateral movement attack 2. The components of sequential ensembles are
executed sequentially in such a way that there is a clear dependency between them. More
precisely, we design our first component to be composed of an unsupervised ensemble using
state-of-the-art unsupervised outlier detection algorithms. Regarding the second component
of our sequential method we built an one-class classification ensemble that leverages the
predictions of the first component. Additionally, the very first step of our method was
to produce embeddings using the Logistic PCA technique, a variant of the popular PCA
technique, to better represent the normal behavior. Our experiments showed that our proposed
method that does not need supervision is able to improve the detection performance of the
state-the-art methods. More precisely, our proposed detector outperforms existing algorithms
and produces a 0 false negative rate without missing any malicious login event and a false
positive rate which improves state-of-the-art approaches.

Future Work

• In short term, we are going to extend our work by improving the one-class classifi-
cation ensemble. In particular, we are going to use multiple heterogeneous one-class
classification algorithms instead of using one one-class classifier.

• In long term, we intend to replace the logistic PCA technique with network representa-
tion learning techniques and deep learning models in order to produce the embeddings.
Additionally, we are going to investigate unsupervised feature selection methods to
find subspaces that better expose anomalies.

2This chapter of the thesis was published in the 1st Workshop on Machine Learning for Cybersecurity
(MLCS) in conjunction with the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD 2019).
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Unsupervised Ensemble Learning to Detect Telecommunica-
tion Fraud

The fraud ecosystem is relying more and more on the internet and fraudsters bring new types
of fraud in order to get some unauthorized benefit. In particular, fraudsters can potentially
target any technological system that involves money and services i.e. the credit card system
and telecommunication system. In this chapter, we discussed the challenges and issues that
any fraud detection systems have to deal with. We underlined the importance of knowing
in advance the most common issues that a fraud detection system has to overcome in order
to build effective detection systems. In addition, we extensively discussed and provided
details related to different telephony fraud schemes and how researchers used data mining
techniques to expose telephony fraud. We focused on a technology called Private Branch
Exchange (PBX) which enables enterprise customers to manage their internal and external
communication needs. Similarly to many other technologies PBX could be vulnerable to
fraud activities in order to gain financial benefits. As such, proposed a machine learning
method 3 that deals with the detection of fraudulent PBX phone calls made on the network
of the largest provider in Luxembourg, POST Luxembourg. This method follows well-
established unsupervised learning principles to ultimately build outlier ensembles. More
specifically, several unsupervised outlier ensembles are developed to investigate the factors
that affect the robustness of an outlier detection approach. Hence, an experimental research
was conducted to highlight the impact of that factors on the performance of outlier ensembles
in a real-world telecommunication fraud detection problem. The telecommunication area
is the least studied area and due to multiple reasons there is a lack of academic work. This
is also conformed by Abdallah et al. in their survey paper [4] that examines all published
papers related to the most prominent fraud areas between 1994 and 2014. In this chapter,
for the first time an unsupervised outlier ensemble method is developed for the problem of
detecting fraudulent telecommunication activities. The experimental results of our method
demonstrate the potentiality of similar approaches in the real-life fraud detection problem.
More precisely, the isolation forest algorithm of our method managed to detect all fraud
activities performed on POST’s network by reaching an AUC score of 1.0.

3This chapter of the thesis was published in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM)
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Future Work

• In short term we aim to enrich the feature space by learning unsupervised representa-
tions guided by outlier detection algorithms. Several one-class classification algorithms
will be used to develop an ensemble and learn the normal behavior.

• In long term we aim to extend the work of Chen et al. [59] in unsupervised outlier
ensembles using Autoencoders. In particular, we aim to develop outlier ensembles by
investigating variants of the Autoencoders technique such as Variational Autoencoders,
Adversarial Autoencoders and Generative Adversarial Networks.

One-Class Classification Ensemble Learning for Novelty De-
tection

Many real-life problems such as machine diagnostics, faults and failure detection in industrial
systems, video surveillance, intrusion detection, and fraud detection aim to identify data
objects that are not consistent with normal expectations. Our method focuses on this category
of problems that are called novelty detection problems and typically include a training phase
where the normal behavior is learnt. In addition, we shed light among the different terms that
are used in the novelty detection context. Based on the literature in the anomaly detection
field, one-class classification algorithms compose the most suitable approach in the novelty
detection problem where their objective is to learn a decision function that distinguishes
between normal and unusual observations. We proposed an innovative ensemble learning
method that uses one the most popular one-class classification learners to address the problem
of novelty detection, regardless the application domain of the problem 4. More precisely,
we took advantage of the merits of outlier scoring algorithms in order to learn multiple
unsupervised representations. These unsupervised representations enrich the information
included in the initial feature space by incorporating the concept of outlierness. In particular,
outlier scoring algorithms such as LOF [39] assign an outlier score to each data object that
represents the degree of ’outlierness’. Our ensemble learning method relies on randomness
that we induce to the way that unsupervised representations are learnt. As we discussed in
Chapter 2 randomness is a fundamental element of ensemble learning and our method learns
multiple random but informative representations in order to ultimately build an ensemble.
In our extensive set of experiments, a benchmark data repository for outlier detection [45]
was used. In particular, for our analysis we used 175 datasets that can be divided into two

4This chapter of the thesis is under submission
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broad categories: 1. semantically meaningful datasets where the vast majority is related
to medical applications, 2. datasets that have appeared in the outlier detection literature.
Overall, our method managed to bring on average 18% statistically significant improved
R@N (Recall@N) and equal P@N (Precision@N) scores on 175 datasets.

The diversity of the datasets in our analysis and the fact that 93% the datasets in our
analysis contain less than 5% of outliers, ensures that our proposed method is more than
well tested. We showed not only the ability of our method to effectively learn unsupervised
representations but also the statistical significant improvement of our method compared
to baseline approaches for novelty detection. Our method, extended existing works on
supervised learning that leverage unsupervised representations. In particular, we successfully
managed to move from fully-labeled scenarios to partially-labelled scenarios. In such
scenarios, there is in abundance data that describe objects belonging to a particular class
(usually normal objects) whereas there is very limited knowledge related to objects that do
not belong to this class (abnormal objects).

Future Work

• In short term we aim to investigate techniques that are responsible for selecting the
best performing ensemble members in an unsupervised way. An effective example of
such techniques is the adoption of the boosting technique by the unsupervised learning
field in order to produce better performing ensemble methods.

• In long we prioritize more scalable solutions because the majority of one-class classifi-
cation learners do not scale well. Sampling techniques and deep learning methods are
going to be investigated to overcome the scalability limitation.
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