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Abstract

Cytokines orchestrate responses to pathogens and in inflammatory processes but they also play an
important role in cancer by shaping the expression levels of cytokine response genes. Here, we
conducted a large profiling study comparing miRNome and mRNA transcriptome data generated
following different cytokine stimulations. Transcriptomic responses to STAT1- (IFNy, IL-27) and
STAT3-activating cytokines (IL6, OSM) were systematically compared in nine cancerous and non-
neoplastic cell lines of different tissue origins (skin, liver and colon).

The largest variation in our datasets was seen between cell lines of the three different tissues rather
than stimuli. Notably, the variability in miRNome datasets was a lot -tore pronounced than in mRNA
data. Our data also revealed that cells of skin, liver and colon *issu.'s respond very differently to
cytokines and that the cell signaling networks activated or silence ! in response to STAT1- or STAT3-
activating cytokines are specific to the tissue and the type of cytokine. However, globally, STAT1-
activating cytokines had stronger effects than STATZ indicing cytokines with most significant
responses in liver cells, showing more genes up-resu!ited and with higher fold change. A more
detailed analysis of gene regulations upon cytokine -tiriulation in these cells provided insights into
STAT1- versus STAT3-driven processes in Fep.toccicinogenesis. Finally, independent component
analysis revealed interconnected transcriptior.”l networks distinct between cancer cells and their

healthy counterparts.



Introduction

The transcriptome is a highly dynamic assembly of different RNA molecules that either code for
protein (mRNAs), have structural functions (such as tRNAs, rRNAs, snoRNAs) or are involved in gene
regulation (such as miRNAs, IncRNAs). High-throughput transcriptome profiling can therefore provide
information on cell type characteristics and cellular states including insights into which signaling and
regulatory pathways are active [1-3]. A plethora of transcriptomic profiles of different cell types, in
diseases and at different developmental stages are publically available. With the aim to pinpoint
gene expression changes to specific tissues or cancers and to improve tailored drug treatment, the
so-called NCI-60 study was the first milestone study analyzing 60 car..>r cell lines derived from more
than 10 tissues (such as skin, breast, prostate, lung) [4]. Sinc= th:n, specific changes in gene
expression of many cancers were successfully used to define sub ypes and to predict response to
drugs and overall survival [5, 6].

The ongoing and rapid development of improved technoi. 7ie. allowing for high throughput profiling

of transcriptome changes has fueled large and se2. . able data collections such as the TCGA (The

Cancer Genome Atlas, https://www :anc...gov/tcga), the Expression Atlas
(https://www.ebi.ac.uk/gxa/home), th 2 Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), CCLE (http..//portals.broadinstitute.org/ccle) and many others.
The ENCODE initiative (Encyclopedia . DN.A Elements) has funneled the enormous amounts of
diverse data into well-organised dat~-as.~ with clear technical and quality control guidelines for data

generation, curation and analysis hty, <://www.encodeproject.org/data-standards/).

Cytokines are involved in mzv fu.idamental biological processes [7, 8]. They mainly act via Janus
kinases (Jaks), which trigg 'r ty osine-phosphorylation of STAT transcription factors, 7 of which exist
in humans [9]. The impo: ance of cytokine-induced processes in maintenance and spreading of
tumors is undisputed [10]. Interestingly, STAT1 and STAT3 can have opposing roles in tumorigenesis:
STAT3 promotes tumor cell growth and survival, proliferation, cell migration, angiogenesis, and
inhibits apoptosis while STAT1 is involved in antiviral and immune defense, promotion of apoptosis
and inhibition of angiogenesis and proliferation [11]. In this context, tumors can lose sensitivity to
the IFNy/STAT1 pathway and thus become resistant to the direct anti-proliferative and pro-apoptotic
effects of IFNy [12].

MicroRNAs (miRNAs) are non-coding RNAs produced by a multistep biogenesis pathway, which
generally down-regulate gene expression of specific target mRNAs. Their profound regulatory effects
and their central role in diverse cellular and developmental processes have led to the hypothesis that

dynamic expression changes of miRNAs contribute to human disease, including cancer [13, 14].



Recent studies by our group and others have identified several miRNAs to be induced by cytokine
stimulation and to play an important role in processes involved in cancer development and
maintenance as well as resistance to drugs [15-20]. One of the first reports to demonstrate miRNA
regulation following cytokine stimulation was undertaken in multiple myeloma cells, where miR-21
was up-regulated in a STAT3-dependent manner in response to IL6 [21]. In the following, miR-21 was
shown to be increased by STAT3 in various tumor cell lines (prostate cancer cells, B16 melanoma
cells) promoting proliferation, migration and survival in metastatic tumors [22-24]. The multi-faceted
regulatory influence of miRNAs on cell homeostasis and the many roles of miRNAs in carcinogenesis
have been well documented [13, 25, 26] .

Previously, we have shown [17] that IFNy leads to a strong regu. tion of the miRNome in A375
melanoma cells. Surprisingly, when a similar experiment was perfc rme 1in hepatoma cells stimulated
with hyper-IL6 (HIL6, a “designer cytokine” comprising IL6 Foui.1 to the extracellular domain of
IL6Ra), we observed almost no regulation at the miRNA le.=l. Un the other hand, primary healthy
liver cells stimulated with IL6 showed many robust t: nsc iptomic changes [15]. This led us to
conduct a larger analysis in order to (i) understanc the inter-tissue variations of the whole
transcriptome and miRNome in skin, colon and liv2r, ii) .he differences between cancerous and non-
neoplastic cells, and (iii) to define the impa.t o° S1,T1- (IFNy and 1L27) and STAT3-activating (HIL6
and OSM) cytokines on gene regulatory netwo. “s in the different cell lines. We identified interesting
new and cell type-specific miRNA and m\>NA responses to cytokine stimulations and confirmed
several previously described transcrintor vic regulations. Most profound changes were scored in liver
cells when STAT1- and STAT3-induc.ng cytokine programs were compared: the regulated pathways

are implicated in key cellular prc-es.2s like apoptosis and immune responses.

Materials and Methods

Cell culture and cytokine stimulation

Cells were grown at 37°C in a water-saturated atmosphere at 5% CO, and in culture media as
outlined in Supplementary Figure 1. Further details are given in Supplementary Figure 1B and as
described before [15, 19].

Four cytokines were used for stimulations at previously established saturating concentrations: two
STAT1-activating cytokines, interferon gamma (IFNy, 50 ng/mL, Peprotech) and recombinant human
interleukin-27 (rhiL27, 50 ng/mL, R&D systems) and two STAT3-activating cytokines, hyper-IL6 (HIL6,
20 ng/mL, a kind gift of Prof. Stefan Rose-John, University of Kiel, Germany) and Oncostatin M (OSM,



20 ng/mL, Peprotech). Cells were seeded at day 1 and stimulations were done for 3, 12, 24, 48 and
72 hours. For following western blot analysis and RNA extraction, cells were harvested all together at
the end of the experiment. All cell lines were regularly checked to be mycoplasma-free and were
either purchased shortly before the experiments or authenticated shortly before or after use in this

study (DSMZ, Germany).

RNA extraction

Total RNA from cell lines was isolated using Quick-RNA MiniPrep Kits (Zymo Research) with an
additional in-column DNase | treatment. Purity and quantity of RNA samples were assessed using a
NanoDrop ND-2000c spectrophotometer (Thermo Scientific) and an A zilent Bioanalyzer 2100 (Agilent

Technologies).

Microarray analysis

Microarray experiments were performed in collaboratio'r w.*h the Quantitative Biology Unit at the
Luxembourg Institute of Health (Strassen, Luxembourg). Fxtr.-ted total RNA of duplicate (stimulated)
or triplicate (unstimulated) samples were used (wi h chi exception of three additional independent
replicates for unstimulated PH5CH8 cells, a~ *he 'l.27 stimulation had to be re-done in another
experiment) for downstream microarray stuu.~s using Affymetrix GeneChip miRNA 3.0 Arrays (based
on miRBase version 17) and Affymetrix Ge ~eChip Human Transcriptome Array (HTA) 2.0 according to
the manufacturer's instructions. For PN\ arrays, 24h treatment samples were used; for miRNA
arrays, 72h treatment samples we'e usad as this turned out to be the best time point to analyze
miRNA regulation [17], next to un.-eated controls. The microarray data were pre-processed, quality
was controlled and a filtering _*ep of lowly abundant genes was performed as before [31]. All genes
that were below a defired thre .,hold of 5 in log, scale were removed, which increased the number of
significantly regulated gene s for each cell line with treatment. Before statistical analysis of mRNA
data, Affymetrix features — transcript clusters were summarized at gene level. For miRNA arrays, only
mature human miRNAs were considered. Microarray data are summarized in Supplementary Table
1.

Data and material availability: mRNA and miRNA datasets are available under accession number E-

MTAB-6080 and E-MTAB-9118, respectively.

Western blots

To confirm successful cytokine stimulations, cells were seeded and stimulated in parallel to the cells
for microarray experiments. Cell lysis was performed as described before [19]. The following

antibodies were used: phospho-STAT1 (1:1000, BD Biosciences Cat# 612233, RRID:AB_399556),



STAT1 (1:1000, BD Biosciences Cat# 610116, RRID:AB_397522), phospho-STAT3 (1:1000, Cell
Signaling Technology Cat# 9145S, RRID:AB_561305), STAT3 (1:1000, BD Biosciences Cat# 610190,
RRID:AB_397589) or a-tubulin (1:5000, Santa Cruz Biotechnology Cat# sc-32293, RRID:AB_628412).
The HRP-conjugated secondary antibodies were purchased from Cell Signaling Technologies.
Antibody complexes were detected by using enhanced chemiluminescence (ECL) technology [27] on

a Fusion FX (Vilber) CCD camera system.

Flow cytometry

Cells were resuspended in cold PBS supplemented with 5% FBS and 0.1% sodium azide and incubated
with a mouse antibody specific for OSM-R (200ug/mL, Santa Cruz) ~ the corresponding IgG control
antibody (1pg/uL, Immunotools) for 1h at 4°C. After washing, cell, w. e incubated with a secondary
antibody against mouse IgG coupled with R-phycoerythrin (1:1Fu, ‘ackson) for 1h at 4°C and analyzed
on a FACSCanto Il flow cytometer using FACSDiva (BD Biosc'=2nces) software. Overlays were created

using the FlowJo software.

Principal and Independent Component Analyses (P.7, It A)

Microarray data of cell lines responding to th - « cyw kine treatments (PH5CH8, Hep3B, Huh7, NHEM,
A375, Melluso, NCM460, HCT116 and HT29) v. *re subjected to PCA. Computation and plotting were
performed using R (v3.4.0) and Rstudic (v1.1). The PCA was computed using the R package
FactoMineR (v1.36) [28] and plotted o tie R package factoextra (v1.0.4) [29]. Other plots were
generated using the R package gg Motz (v2.1) [30] and the collection of packages tidyverse (v1.1)
[31]. All experiments were scalc tc the same unit, as the IFNy stimulation for NHEM cells possessed
a larger variance compared to \, = sther experiments.

Consensus independer : co.mor.nent analysis (ICA) was performed by the consICA tool as previously
described [32], with the co’ e computation performed using R package fastICA (v1.2-2). The method
decomposes the expression matrix into statistically independent signals (or components) in the space
of genes and their weights in the space of samples. These signals can be associated with cell types
and biological processes within cells. ICA was performed using 20 components which were associated
to biological processes by GO enrichment analysis using package topGO (v2.38.1) and to
experimental conditions using ANOVA.

Correlation analysis of mMRNA and miRNA as well as comparison to TargetScan predictions was

performed by CoExpress tool [33].

Analysis of publically available datasets from the TCGA initiative



MRNA and miRNA expression data were extracted from TCGA cohorts with UCSC Xena browser. For
MRNA gene expression, RNAseq (PolyA + lllumina pancan normalized) data and for miRNA, miRNA
gene expression (llluminaHiseq) data were used to validate the results. Only patients with matching
pairs (Solid Tissue Normal and Primary Tumor samples) from TCGA Bladder Cancer (BLCA), TCGA
Breast Cancer (BRCA), TCGA Colon Cancer (COAD), TCGA Colorectal Cancer (COADREAD), TCGA
Esophageal Cancer (ESCA), TCGA Head and Neck Cancer (HNSC), TCGA Liver Cancer (LIHC), TCGA Lung
Cancer (LUNG), TCGA Prostate Cancer (PRAD) and TCGA Stomach Cancer (STAD) cohorts were
considered for the analysis with, respectively, 19, 75, 26, 30, 11, 43, 50, 109, 52 and 32 matched

pairs.

Statistical analysis

Matching solid tissue normal and primary tumor samples from va. ous TCGA cohorts were compared
to each other with Wilcoxon matched-pairs signed rank *:st .., GraphPad Prism v7.03 software.

Differential expression analysis was performed using R pa :kag » limma (v.3.42).

Results

Characteristics of analyzed transcriptomes ..a«d miRNomes

We have performed and analyzed a “.c*al <« 186 microarrays, 88 mRNA and 98 miRNA arrays, derived
from 9 cancerous and non-neoplastic <ells lines representing 3 different tissues, stimulated with 4
distinct STAT-activating cytokines A graphical overview of the study and details of cell lines are
shown in Supplementary Fgu. = 1. Each cell line was cultured in cell type-specific media allowing for
optimal growth (Supplei. entary Figure 1B). Different media compositions might influence the
expression of genes and miRNAs when comparing cell lines with each other, however, these effects
are expected to be marginal. Expression of selected cell type-specific transcription factors
(Supplementary Figure 1C) further indicated the authenticity of cell lines. Interestingly, the primary
liver cells PH5CH8 showed expression patterns very similar to melanoma cells for key transcription
factors MITF, HNF1A, HNF4A and CDX2 suggesting overall similar gene and miRNA expression profiles
between these cells, which turned out to be the case.

Optimal time points for measuring mMRNA and miRNA responses following cytokine treatments had
been established before for melanoma cells [17, 33] and by additional pre-tests for other cell lines
(data not shown). In general, miRNA responses peak after mRNA responses and are best analyzed at

72h while mRNAs were profiled after 24h, in order not to miss too many of the early cytokine-



induced signals. Before microarray analyses, successful cytokine stimulation was ensured by

701

detection of phosphorylation levels of phospho-Tyr"""-STAT1 following stimulation with IFNy and I1L27

705

and phospho-Tyr">-STAT3 following HIL6 and OSM stimulation (Supplementary Figure 2A). Three
cell lines (Hep3B, HT29 and NCM460) did not to react to OSM and their lack of the OSM-specific
receptor (OSM-R) was confirmed by FACS analysis (Supplementary Figure 2B). Therefore, microarray
analyses for OSM stimulations of these cells were not performed. Pearson correlation (Figure 1C)
showed a correlation coefficient of mRNA arrays greater than 0.8 for the cell lines derived from the
same tissue (skin in the bottom left corner, liver in the center and colon in the upper right corner).
Surprisingly, PH5CHS8 cells (non-neoplastic liver cells) clustered with colon-derived cells with which
they correlated at more than 0.85, especially with cancerous c.'anocytes (HT29 and HCT116).
Overall, and in comparison to miRNAs (Figure 1), mRNA expressin | "otiles were more robust with
less variability between replicates and among the same tiss'.es. PH5CH8 cells also seemed to be
different from HCC cell lines in the miRNA arrays and clus.~rea here with skin-derived cells. Venn
diagrams indicate the number of tissue-specific MRNAs/r-iRN: s (Figure 1C).

For a first overview of the microarray data, we perfuormeu Principal Component Analysis (PCA)
(Figure 1). One unstimulated sample (Hep3B.Untre. ‘ec.Hep3B_0) was marked as an outlier as the
profile for this sample was incoherent with t'ie \ no ther replicates (Hep3B.Untreated.Hep3B_1 and
_2) and was removed from following analyses. In the PCA, the cancer cell lines of each tissue were
separated from the non-cancer cells while -vtokine stimulation had little effect. This was visible at
the mRNA (Figure 1A) and at the miRNZ2 le sel (Figure 1B) although less pronounced for miRNAs. On
mRNA level (Figure 1A), all samples "om a given tissue clustered closely together, with the exception
of PH5CHS cells. Next, hierarch.-al Jlustering analysis revealed two main groups for mRNAs (Figure
1A). The first cluster contair=a ™2 three skin-derived cell lines (yellow) and PH5CHS cells. All other
liver- and colon-derive. ~e..- formed a second group. Again, miRNA heatmaps underline the higher
variability in miRNA levels » 1d show that the 2 healthy lines, NHEM and PH5CHS8, do not group within
their respective tissues (Figure 1B). Overall, samples from a particular cell line consistently grouped
together irrespective of cytokine treatment indicating that the difference between cell lines was
clearly greater than the transcriptomic changes induced by stimulation with cytokines, even within
the same tissue.

With an overall detection threshold of log, >5 (see Material and Methods), we found that 19803
(61%) features (from 32670 present on HTA arrays) were expressed in at least one sample. These
features corresponded to 18635 annotated genes. Among 12867 non-expressed features, 6960 (54%)
were composed of predicted genes, pseudogenes and non-coding genes. For miRNAs, 1294 of 1733
mature human miRNAs were absent in all 9 cell lines, leaving only 439(25%) of the miRNome

expressed. A summary of feature numbers for mRNA and miRNA arrays is provided in

8



Supplementary Figure 3.Some miRNA gene families showed a tissue-dependent or a cell-specific
expression: the miR-200 family members were exclusively detected in colon cells, miR-122 was
specific for liver, miR-152 specific for skin while the 17 miRNAs of the let-7 family were absent from
cancerous liver cell lines (data not shown). Cell type-specific miRNAs were mainly enriched in 2
tissues: epithelial cells for colon cell lines (FDR=2.5e-3) and hepatocytes for liver cell lines (FDR=2.0e-
2) (Supplementary Table 2A).

In order to identify inversely correlated miRNAs/mRNAs in our dataset, which could be indicative of a
functional connection, we used the CoExpress software ( http://sablab.net/coexpress.html) [33].
With a high confidence threshold of absolute Pearson correlation > 0.925, we found 11 miRNAs
inversely correlated with mRNAs (Supplementary Table 2B) that . ere also predicted, albeit with
generally low scores, by TargetScan. Inverse correlation of miRN is a."d mRNAs from public or own
data sets can be a useful additional parameter to improve targ.t gene predictions. Furthermore,
correlated expression of intronic miRNAs together with theii “host genes” was found for several pairs
such as miR-107/PANK1, miR-139/PDE2A, miR-149/GP''1, 11iR-208/MYH6, miR-211/TRPM1, miR-
326/ARB1, miR-342/EVL, and miR-346/GR1D1 (data not ,how.). These co-regulations are interesting
and their regulatory potential is not yet fully unde -.to.d as intronic miRNA expression levels vary
with up- or down-regulation of their vehicle ge. es. ‘Nhen the host gene is specifically up-regulated
during oncogenic transformation, tissue dam. 7e or in response to stimuli such as cytokines, the
intronic miRNA levels also increase, which might have a negative impact on the respective miRNA
target genes.

To illustrate relationships and poss.hle interactions between mRNAs and miRNAs across the entire
data set, we used independe.t component analysis (ICA), which we recently applied to large

transcriptomic data sets of rmela. >~ ma cells [32].

Tissue-and cancer-specific . 1iRNA and mRNA expression

Next, we analyzed the tissue-specific expression of miRNAs and mRNAs. Features were selected in
the following way. First, mean expression was calculated for replicates in each sample group for each
cell line with and without treatment. Next, a feature was called “stably expressed”, if in one of the
conditions the mean log, expression was above 5. Averaging expression among replicates allowed
reducing randomness of observation. Using this approach, we estimated 15163 stably expressed
MRNAs and 260 miRNAs. Venn diagrams (Figure 1C) show that 604, 645 and 764 mRNAs were
exclusively expressed in liver, colon, and skin, respectively. This corresponds to 4-5% of all herein
stably detected mRNAs. Over 76% of mRNAs were expressed in all tissues. At the miRNA level, about
63% (165) of stably expressed miRNAs were commonly present in all tested tissues and these

miRNAs were connected to general functions like cytoskeleton remodeling, apoptosis, survival or cell



cycle (data not shown). Ten, 18, and 17 specific miRNAs (Figure 1C) were found to be expressed in
liver, colon, and skin, respectively. These low numbers rendered the building of networks or common
pathways difficult. Therefore, we performed ICA analysis [32], which enables the identification of
sources of transcriptional signals, clustering of genes into functional groups and cell type-related
signatures [34] and the deduction of interactions between biological functions [35]. A global
overview of all components representing miRNAs (MICs) and mRNAs (RICs) and their connections is
shown in Figure 2A. The two components with the strongest connection between them (indicated by
the thickness of the line) are highlighted: MIC7 and RIC12. A list of members of these components
(inserted) contains interesting pairs that are known to interact (e.g. AXL and miR-34a [36, 37]) or are
known target genes of cytokines (e.g. IFI6, IFI16). Interestingly, a.” inct MIC and RIC components
were able to discriminate between tissues (Figure 2B).

In order to find cancer-specific mRNAs or miRNAs, we identifiza . 11C and RIC components 1, which
distinguished between cancer cells and their healthy cour.*erparts with high stability (Figure 3A).
Members in these components are involved in immune -esp )nses in general and in viral and IFNy-
induced immune responses in particular, indicating that chese basic cellular responses are distinct in
normal versus cancerous cells (Supplementary Figu - 4)

Next, we generated a list of cancer-relat.a ‘en.s for each tissue by comparing differentially
expressed mRNAs and miRNAs (DEG, FDR (fals ~ discovery rate) < 0.05) between each cancerous cell
line and corresponding non-neoplastic celi. Considering mRNAs found in common between all cell
lines and expressed with a log,|FC| abo’e 1 compared to healthy cells, 28 mRNAs were significantly
regulated, however, only 1 mRNA . ‘as up-regulated in all cancerous cells (FAM171B) while 4 were
down-regulated (Figure 3B anu C). Although the other genes were not consistently up- or down-
regulated, 2 interesting gene< s, ~ved the same expression pattern in all but one cell line: GTSF1 and
DNAJC15. Altogether, .~ iu~nt . fied two mRNAs more abundant (FAM171B and GTSF1) and five less
abundant (FAM21B, FAM43 \, OAS1, REPS2 and DNAJC15) in cancerous versus normal cells.

To extrapolate our findings to a broader range of cancer tissues, TCGA datasets from a panel of ten
cancers (https://www.cancer.gov/tcga) were incorporated. As only data from matching pairs (Solid
Tissue Normal and Primary Tumor) were considered, comparisons were performed on bladder (19
pairs), breast (75), colon (26), colorectal (30), esophageal (11), head and neck (43), liver (50), lung
(109), prostate (52) and stomach (32) cancer cohorts (Supplementary Figure 5). Only few data from
normal tissues were available for melanoma, pancreas and rectal cancer, so no comparison could be
made for those cancers. FAM171B was clearly increased in liver and lung cancer cells (red circles),
while it was reduced in breast and colorectal cells (blue circles). GTSF1 had significantly higher
expression levels in liver, breast and head and neck cancer cells compared to normal cells and inverse

expression levels in colorectal cancer cells. DNAJC15 was slightly less abundant in liver, lung and

10



prostate tumor cells. Overall, this analysis shows that specific genes can either be up- or down-
regulated in cancer versus normal counterpart cells depending on the tissue of origin: 29 mRNAs
(AUC=1) and 4 miRNAs (AUC=0.9) could potentially serve as biomarkers to distinguish cancerous
versus non-neoplastic cells. However, the microenvironment and tissue biology likely also determine
in which way certain genes are regulated upon oncogenic transformation, suggesting that cancer
type-specific biomarkers in form of mRNAs or miRNAs might be more robust thank global markers for

cancer.

Cytokine-specific mRNAs and miRNAs

IFNy, IL27, HIL6 and OSM are known to have different functions in *umor biology. We compared the
miRNome and transcriptome regulations in all cell lines (stimulater ver_‘1s unstimulated) in order to
understand gene regulatory differences between cytokine stim:i i~ cancerous and non-neoplastic
cells of different tissues.

To further investigate transcriptomic regulation, only m"un.*s «nd miRNAs with an FDR < 0.05 and
log,|FC| = 1 or 0.5, respectively, were considered as “s.7nificantly differentially expressed” (in
comparison to the expression levels in the resgac.iv? unstimulated samples) and used in the
subsequent analyzes. Generally, only few miRNA; ‘less than 100) were robustly regulated following
cytokine stimulation (differentially expresse.' r.RNAs in skin: 97 upon IL27, 99 upon IFNy, 69 upon
OSM and 6 upon HIL6; in colon: 2 upon 1.?7, 47 upon IFNy, 7 upon OSM and 6 upon HIL6; in liver: 4
upon IL27, 12 upon IFNy, 26 upon OSI1 -1, 26 upon HIL6). The overall weakest cytokine responses
were seen in colon cells where onlv IFIv " induced 47 gene regulations while the other cytokines had
marginal effects (see numbers ab. 'e). Among liver cells, Huh7 reacted well to IL6-type cytokines and
IL27, with 26 and 10 miRN."s, respectively differentially expressed compared to unstimulated
controls. Among skin cells, NHE vl and A375 showed several interesting miRNA responses to OSM and
IL27, while IFNy evoked th. largest number of differentially regulated miRNAs in A375 cells as we
have previously seen [17]. Numbers of up- and down-regulated genes and miRNAs are summarized in
Supplementary Table 1. Since mRNA responses to the applied cytokine treatments were much more
numerous and overall stronger, we continued to analyze mRNAs in more detail focusing on genes,
which were regulated in at least 2 different conditions (in total 472 genes).

To specifically identify STAT1-regulated genes following IFNy /IL27 treatments versus STAT3-
regulated genes following OSM/HIL6 stimulations, we performed PCA (Figure 4A). Eight conditions,
which had less than 10 differentially expressed genes (HCT116-HIL6 and -OSM, PH5CH8-HIL6, A375-
HIL6 and -OSM, Melluso-HIL6, -OSM and -IL27) were removed from analysis, as this lack of response
affected the overall PCA. The percentage variance of the dataset contributed by the different

dimensions of the PCA was 43.6 % for the first dimension and 13.5% for the second. Thus, the first
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two dimensions of the PCA represented 57.1 % of the total variance of the dataset, containing most
of the information related to cytokine stimulation. For most cell lines, the projection of the
“combined effect” for the different cytokine treatments (represented by the length and direction of
the arrows, with each arrow representing one cytokine treatment condition (e.g. Hep3B-IL27)),
showed a good overlap for IL27 and IFNy. The light blue and dark blue arrows depicting I1L27 and
IFNy, respectively correlated well with the location of the blue ellipse, representing 0.95% of the
quantile distribution of validated IFNy-regulated genes [38]. The IL27 and IFNy responses were very
similar, with the combined effect lines having an almost identical orientation. In contrast, the red and
orange arrows representing HIL6 and OSM, respectively, correlated much less with the location of
the orange ellipse, containing validated IL6-type cytokine-regulate.’ gsenes [38]. This highlights the
fact that the STAT3 response is more heterogeneous throughou : dir‘erent cell types and that the
genes present in our list of validated IL6-regulated genes 1o . ot necessarily reflect the whole
spectrum of responses in our 3 tissue types [39] (Figure «."). An overview of the 77 differentially
regulated genes is shown in Figure 4B.

Interestingly, the mRNA responses to IL6-type cytokinas were inost pronounced in liver cells (134 and
94 differentially expressed mRNAs following OS™M 'nr. HIL6, respectively) while colon cells were
much less sensitive to IL6-type cytokines (S app’emcntary Table 1); some miRNA expression levels
changed in all cell types, but to a generally lov. ~r extent. Therefore, PCA on mRNAs was conducted
with liver cells only (Figure 5A). Here, the p.centage variance of the dataset added up to 71.3 % for
the first two dimensions. Interestinglv, t 1 “combined effect” for the different cytokine treatments,
represented by the direction of the arrows shown in red/orange for IL6-type cytokines (OSM and
HIL6) and blue for IFNy and IL27, _hows almost orthogonal orientations (more or less 90°). This
corresponds to the situatio~. *n v..iich only few genes are co- or counter-regulated with comparable
intensity upon signal’n, o, '_6-type and interferon-type cytokines. The situation in which the
“combined effect” would ~aint into opposing directions would indicate inverse regulation of genes
with comparable intensity, while a matching orientation would indicate co-regulation with
comparable intensity. In PH5CH8 cells, the angle between IL6-type cytokines and interferon-type
signaling is even higher than 90°, which reflects the fact that in these cells a slightly higher number of
genes were inversely regulated by the two types of treatments (Figure 5A). A heatmap of the 115

differentially regulated genes in liver cells is shown in Figure 5B.
Gene regulation following IL6-type and IFN-type cytokine stimulation

Next, we investigated the regulation of individual genes following IL6- and IFNy—type cytokine

treatments in the two PCA analyzes described above. For this, we highlighted and identified those 77
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(all cells; Figure 4B) and 115 (liver cells; Figure 5B) mRNAs, which were significantly differentially
expressed compared to untreated cells and which showed a good projection of the genes in question
(cos2 > 0.75) meaning that they contributed most to the principal components in the 2 dimensions
depicted in the PCAs. The genes annotated in blue or orange (in Figures 4C and 5C) were the ones
found in the lists of validated IFNy- or IL6-type-cytokine-regulated genes respectively [38], while the
genes annotated in black were absent from these lists. In Figure 4C and Figure 5C many of the
validated IFNy target genes can be found to be indeed efficiently regulated by IFNy and IL27. Thus,
the IL27 and IFNy transcriptomic responses were robust and conserved throughout cell lines and cell
types and included genes involved in antiviral responses, antigen presentation, apoptosis and growth
(see discussion). On the other hand, fewer of the validated IL6 targe s were up-regulated upon HIL6
or OSM treatment in our cell lines (Figure 4C), again reflecting t1e h >terogeneity of the IL6/STAT3
response in different tissue types [39]. A higher number of viiida od IL6 targets were up-regulated
upon HIL6 or OSM in liver cells (Figure 5C) indicating that e IL6/STAT3 response is strong in liver
tissue.

To gain insights into cellular functions activated by Il - or IFN-type cytokines, we performed a gene
set enrichment analysis (GSEA, Supplementary "ig. e 6). As expected, various immune response
functions were the overarching and top scc.ing cendlar programs induced by cytokine stimulation,
irrespective of the cell type. In addition to a s.hset of genes regulated effectively by both IL6-type
and IFNy-type signaling (e.g. complemenrt tq ~tors) it was also evident that many of the differentially
expressed genes were regulated by hot.* fae IFNy-type (STAT1) and the IL6-type cytokines (STAT3)
(Figures 4 and 5) although being h.-iently regulated by one and less by the other factor. Since one
of our aims was to specifically Misc.iminate between the IFN type-mediated anti-cancer response
(mainly STAT1-mediated) ~..2 u..: IL6-type pro-cancerous responses (mainly STAT3-mediated), we
used this dataset an<. ,vev.zJs data to generate lists of genes regulated by only one type of
treatment as well as gen~~ counter-regulated by the two treatments (Supplementary Figure 7 and
Supplementary Table 3). This will also allow for a better discrimination between the two types of

treatments in future studies.

Discussion

Many comparative data sets on transcriptomic profiling are available in online repositories. However,
a systematic and meaningful comparison is often hampered by technical variations, platforms, cells

and experimental conditions between the data of interest. Here, we conducted a large profiling study
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ensuring high reproducibility and comparability between data. We have generated a total of 186 data
sets encompassing whole miRNome and transcriptome (mRNA) data from 9 cell lines derived from 3
tissues, representing cancerous and healthy counterparts, stimulated or not with 4 different
cytokines (IFNy, IL27, HIL6 and OSM).

In Pearson correlation heatmaps for mRNAs and miRNAs (Figure 1C), samples from the same cell line
clustered together rather than by treatment indicating that cell-specificities had more impact than
differences induced by stimulation with cytokine, even within the same tissue. However, if only top-
regulated genes were considered, IFNy- and I1L27-stimulated samples were grouped closer together
than cell lines, which was not the case for HIL6 or OSM-stimulated samples. This suggests a stronger
and a more general, cell type-independent gene regulation by STA) *-activating cytokines compared
to STAT3-activating cytokines, which may be explained by the wid: roi. of interferon/STAT1 in innate
immunity and antiviral defense.

Overall, mRNA expression profiles seemed to be more accu. ‘te in defining tissue origin than miRNA
expression. To further characterize tissue-specificity, ge.~< exression comparisons were performed
on all unstimulated samples. For mRNA, more than 85% of expressed genes were commonly present
in all tested cell lines and associated with the . :s2. activity of a cell, including metabolic or
biosynthesis processes, biological regulatior or cen communication. More than 500 genes, mainly
involved in metabolic process, were exclus ‘ely expressed in colonocytes while melanocytes
expressed 686 genes involved, for examoic, in cell-cell adhesion or neurogenesis. Hepatocytes, on
the other hand, specifically expressed a0t 400 genes involved in processes attributed to general
liver functions similar to what has b ~n described before[1, 40].

In the three cancer types analy-=a “ere, only two genes were consistently up-regulated in cancer
cells versus their healthy -nu,*zrparts: FAM171B and GTSF1 (Figure 3C). Interestingly, GTSF1
(Gametocyte Specific « ~ctu~ %) has been suggested, upon knock-out in male mice, to prevent
apoptosis [41]. In melar~.na, breast, head and neck, liver, and colorectal cancer, GSTF1 was
significantly increased (Figure 3 and Supplementary Figure 5) and has recently been put forward as a
diagnostic biomarker for cutaneous T-cell lymphoma [42].

The product of a consistently down-regulated gene, DNAJC15 (Dnal Heat Shock Protein Family
(Hsp40) Member C15) is anchored in the mitochondria inner membrane and involved in the
regulation of the respiratory chain [43] and apoptosis [44]. Additionally, its expression has been
associated with enhanced drug sensitivity in ovarian [45] and breast [46] cancers. We found DNAJC15
significantly down-regulated in melanoma, liver, lung, prostate, and colon cancer (Figure 3C,
Supplementary Figure 5). Overall, the large number of studies looking for prognostic or diagnostic
biomarkers in form of mRNAs and miRNAs for cancer in general and for specific cancers in particular,

have so far not yielded the initially expected success. Also here, no robust candidate was found that
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would show an up- or down-regulation high enough to be considered as a promising specific

biomarker.

In our study, the cytokine-specific transcriptomic responses turned out to be more rewarding. The
IL27 and IFNy transcriptomic responses were robust and conserved throughout cell lines and cell
types while HIL6 or OSM stimulation induced a quite diverse response in the cell lines we
investigated. A closer inspection of the differentially regulated genes in liver cells (PH5CHS8, Huh7 and
Hep3B) showed that IFNy and 1L27 efficiently and specifically up-regulate genes involved in antiviral
defence, a mechanism that is highly conserved in all cell types, involving genes regulating direct
antiviral processes, antigen presentation, immune escape, apoptosi. and growth. Evidently, most of
these processes involved in antiviral defence are also crucial prccess3s in the interferon-mediated
anti-cancer response, as discussed below (see also Figure 6 f.r a.» overview). One subset of genes
regulated efficiently by both IFNy-type and IL6-type cytokine - in liver cells were complement factors
such as C1R, C1S, C2, C3, C4B, CFB and additionally ICAM: and TGM2 (Figure 5B and C).

IFNy and IL27 regulate genes involved in interferon-tne signalling itself, such as STAT1, STAT2, IRF1
and NMI, all of which positively regulate the int :n. 0 -type signalling. IRF1 and STAT1 are crucial
transcription factors regulating IFNy and V.27 responses and NMI is known to enhance STAT1-
dependent effects. IFNy and IL27 (through the!- activation of STAT1) are considered to have anti-
cancer activity while IL6 and OSM (thr~'i1g1, their activation of STAT3) are thought to have tumor
promoting functions. The anti-cancer an ! r,ro-cancer activities of STAT1 and STAT3, respectively are
regulated first by the level of phor pr.orylated STATs found in cancer cells and secondly by the level of
protein expression of the indivia. 3l oTATs and thus by the ratio of STAT1 versus STAT3 [11, 47]. Thus,
a higher ratio of STAT1 ver.u. S1AT3 protein levels (such as the one induced here by IFNy and IL27)
influences the pro-can.e. 3cu.ities of STAT3 negatively (reviewed in [48]).

Secondly, upon IFNy and .27 stimulation, we found an up-regulation of mRNAs of genes coding for
proteasomal subunits (PSMB 8/9/10, PSME2, PSME2P2), other proteases (ERAP1, CTSS, Lap3), HLA
subunits (HLA-B, -C, -E, -H, BTN3A1-3), TAP transporters (Tapl, Tap2) which are involved in the
presentation of cancer antigens by the cancer cell [49] (Figure 5B and C, Figure 6). PD-L1 (CD274),
which we found to be specifically up-regulated by IFNy and IL27 is well known to be involved in
immune tolerance in many cancer cell types [38] (Figure 5B and C, Figure 6). In addition, the
chemokine CXCL10, associated with chemotaxis of cells associated with a Tyl response and the
suppression of angiogenesis, was also specifically up-regulated by IFNy and 1L27 [48]. Finally, IFNy
and IL27 also efficiently regulated genes involved in apoptosis (such as Apol6, IFI6, MLKL, TNFSF10,
TNFRSF10D) and cell growth (RARRES3, considered a tumor suppressor).
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In liver cells, IL6-type cytokines (HIL6, OSM) expectedly up-regulated acute phase proteins like
SPINK1, SERPINA3, SAA4, MBL2, LBP, IL1R1. Additionally, also genes of the IL6-type signalling
pathway itself were induced such as the negative feedback regulator SOCS3 or the OSM receptor
(OSMR). Interestingly, IL6-type cytokines also regulated the chemokines CXCL2 and CXCL5, which
both recruit neutrophils to sites of inflammation or tumors. Other factors from the TME (tumor
microenvironment) induce neutrophils to release high levels of angiogenic factors (e.g. TGFp, ILS,
VEGF) and to directly or indirectly lead to the release of immunosuppressive cytokines (e.g. TGFB,
IL10, IL6) (Figure 5B and C, Figure 6) (reviewed in [50]).

IL6 is also known to promote metastasis in HCC[2, 51]. For example, "RG1, shown to be upregulated
upon stimulation with IL6-type cytokines (Figure 5B and C) and in\ olve 1in a switch in TGFp signaling,
is potentially involved in metastasis. LRG1 binds to TGFP rece.to. - and co-receptors promoting the
use of the TGFBRII/ALK1/SMAD1/5/8 pathway, which in tui mediates angiogenesis and metastasis
[52]. Interestingly, EFNA1 up-regulation by the IL6-type <yto ‘ines is also associated with increased
angiogenesis. Other IL6-type cytokine-regulated genes “ouna in our data set involved in metastasis
are BHLHE40 and LINC00941 which both promote n.- ta-tasis and growth (Figure 5B and C, Figure 6)
[53, 54].

Altogether, our conclusions from the 'iver cei. analysis support the different functions of IFNy-
type/STAT1 and IL6-type/STAT3 signali'is in Lancer. The 1L27 and IFNYy transcriptomic responses are
robust and conserved across varioos el types, having mostly anti-cancer functions (growth
reduction, apoptosis, antigen pre.enw tion, inhibition of angiogenesis). On the other hand, HIL6 and
OSM stimulation up-regulate pt. -angiogenic and -metastatic genes as well as chemokines that
trigger tumor-associated n :uu “phils to produce immunosuppressive cytokines (Figure 6). Apart from
confirming previously des “ribed response genes of STAT1 and STAT3, we identified a more specific
set of genes that have deimned roles in the physiology of healthy liver cells as well as in hepatocellular
carcinoma. Overall, and in contrast to the robust regulation seen at the mRNA level upon cytokine
stimulation, miRNome responses were much more variable and weaker with few miRNAs
differentially regulated following stimulation with the herein investigated cytokines (Supplementary
Table 2). Finally, the analysis and integration of miRNome and transcriptome data sets by ICA,
respectively revealed components, i.e. groups of mMRNAs and miRNAs that together identify biological
functions that would be missed when analyzing either data set alone.

Solid tumors are embedded in their tissue of origin surrounded by cells of the microenvironment
(fibroblasts, endothelial cells, immune cells and others). Types and amounts of cytokines,

chemokines and growth factors secreted by such cells have an impact on the development and
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progression of the tumor. Here, we quantified gene regulatory events on a global scale to provide
insights into anti- or pro-cancerous cellular programs that are stimulated or silenced by comparing
the impact of STAT1 versus STAT3- activating cytokines on healthy cells and cancer cells of three
different tissues. Interestingly and overall, skin and colon-derived cancer cells reacted weaker to
cytokine stimulations with relatively few target gene networks being turned on compared to
hepatocellular carcinoma cells, which revealed robust new and known STAT target genes. In sum,
IL6/OSM>STAT3-activated cellular programs led to angiogenesis and metastasis whereas IFN-
Y/IL27>STAT1 had opposing effects resulting in cell death, growth arrest and increased

immunogenicity against the tumor cells.
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Figure legends

Figure 1: Global overview of transcriptome and miRNome data sets. Principal Component Analysis
(left) and heatmap (right) of mRNAs (A) and miRNAs (B) of colon- (blue), liver- (green) and skin-

derived (yellow) cells upon cytokine stimulation. Heatmaps show unsupervised hierarchical clustering
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of the 472 mRNAs differentially expressed upon 72h of cytokine stimulation (HIL6, OSM, IFNy and
IL27) in colon- (HCT116, HT29 and NCM460), liver- (Hep3B, Huh-7 and PH5CH8) and skin-derived cells
(A375, Melluso and NHEM). (C) Pearson correlation of all microarray data sets. Global unsupervised
correlation analysis for mRNAs and miRNAs of cell lines as described in (B). Venn diagrams indicate

numbers of expressed mRNAs and miRNAs in tissues (regardless of stimulation).

Figure 2: ICA analysis of miRNome and transcriptome data sets of all cell lines. (A) Correlated mRNA
and miRNA components (RICs and MICs) detected by consensus ICA. Edges connect components with
R®> 0.5. Colors of edges corresponds to positive (red) or negative (blue) correlations. (B) Some RICs
and MICs show specificity for different organs. The weights of Ri”3, RIC4, RIC5, MIC3, MIC4 and
MIC12 show specific behavior for cell lines originated from colon, «ve. and skin. ANOVA p-values are

reported for each violin plot.

Figure 3: Discriminating cancer from healthy cells. (A) '~A ¢ »mponent 1 for both RNAs (RIC1) and
miRNAs (MIC1) distinguish healthy from cancer cells acre ss the three different cell types. (B) Table of
significant, up- and down-regulated mRNAs (log2|FL' >7) compared to the respective non-neoplastic
cell line (FDR < 0.05) in unstimulated colon- v. r- axd skin-derived cells compared to the other cell
lines. (C) Expression levels and functions of th. most significantly up- and down-regulated mRNAs in
cancerous versus non-neoplastic cells (red: .'\n-regulated; grey: down-regulated). Full names of genes

are given in the main text.

Figure 4: Global responses of !l . estigated cells to different cytokines. (A) PCA analysis of the
differentially expressed mRMAs ‘"DR < 0.05 and log,|FC| = 1) for all cell lines and for treatments
eliciting a response of - ?5 . ~R"{A regulated (therefore less data derived from HIL6/OSM stimulations
are included). The light bl*'~. and dark blue arrows representing IL27 and IFNYy, respectively, correlate
quite well with the location of the blue ellipse, which represents the 0.95% quantile distribution of
validated STAT1 genes. (B) The heatmap shows genes differentially regulated compared to
unstimulated controls considering the following thresholds: FDR < 0.05, log,|FC| > 1 and cos” 2 0.75.
(C) PCA using the same thresholds as in B. Individual genes are annotated. Their presence in the lists

used for ellipse construction is highlighted by a color code.
Figure 5: Specific responses of liver cells to different cytokines. (A) PCA analysis of the differentially

expressed mRNAs (FDR < 0.05 and log,|FC| = 1) for treatments eliciting a response of > 25 mRNA

regulated in liver cell lines. The light blue and dark blue arrows representing 1L27 and IFNy
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respectively correlate quite well with the location of the blue ellipse, which represents the 0.95%
quantile distribution of validated STAT1 genes. (B) The heatmap shows genes differentially regulated
compared to unstimulated conditions considering the following thresholds: FDR < 0.05, log,|FC| = 1
and cos® 2 0.75. (C) PCA using the same thresholds as in B. Individual genes are annotated. Their

presence in the lists used for ellipse construction is highlighted by a color code.

Figure 6: Schematic representation of the cytokine signaling pathways and important regulated
genes and functions supported by these genes. The different cytokine receptor complexes are
shown alongside distinct responses elicited by the IFNy-type (STAT1) and IL6-type (STAT3) signaling
shown either in green (anti-tumor response) or red (pro-tumor re. onse) writing and arrows. The

genes we found specifically regulated are shown in black writing.

Supplementary Files

Supplementary Table 1. Number of differentic.''v expressed mRNAs and miRNAs. Differentially
expressed mRNAs (A) and miRNAs (B) in li -er- colon-, and skin-derived cells stimulated with IL27,
IFNy, OSM or HIL6 in comparison to uns“imulated control cells. Thresholds: FDR < 0.05, log, |FC| 2
0.5 (miRNAs) and log, | FC| = 1 (mRNAs'.

Supplementary Figure 1. Schemc ic study overview. (A) Scheme illustrating the study design and (B)
Details on used cell lines. (C) 'og, oxpression of a selection of tissue-specific transcription factors is

shown for different cell lin :s.

Supplementary Figure 2. Control experiments of cytokine stimulations. (A) Western blot analysis for
validation of successful cytokine stimulations in colon-, liver- and skin-derived cells. (B) FACS analysis
confirming absence of OSMR expression in selected cell lines. Huh7 cells served as a positive control.
Supplementary Figure 3. Global summary of detected features on mRNA and miRNA microarrays.
Supplementary Table 2: (A) Enrichment analysis. Tissue-specific miRNAs (Figure 1C, Venn diagram)
were submitted to the MIiEAA tool [55]. Expressed miRNAs were chosen as a reference set. Cell type-
specific miRNAs were detected for 2 tissues: epithelial cells for colon cell lines (FDR=2.5e-3) and
hepatocytes for liver cell lines (FDR=2.0e-2). (B) CoExpress analysis. Inverse correlation with a high
coexpression score (CE) of genes and miRNAs indicates potential functional interactions. The very

low TargetScan scores for such pairs are also listed, not predicting interactions.

19



Supplementary Figure 4. ICA analysis. Members of RIC1 and MIC1 are shown. RIC1 is activated in
healthy cells, shows lower weights in cancer cell lines and is linked to immune response (also see

Figure 3). MIC1 shows opposite profiles with higher weights in cancer.

Supplementary Figure 5. Gene expression in TCGA data sets. Comparison of TCGA data of log2
(normalized counts) expression levels of commonly differentially expressed mRNAs in matched
normal (N) and tumor (T) tissues from bladder (N = 19), breast (N = 75), colon (N = 26), colorectal (N
= 30), esophageal (N = 11), head and neck (N = 43), liver (N = 50), . ag (N = 109), prostate (N = 52)
and stomach (N = 32) cancer TCGA data. Error bars represen’ st.ndard deviations. Stars show
statistical significance of Wilcoxon matched-pairs signed ran} te.t: * p-value < 0.05, ** p-value <
0.01, *** p-value < 0.001, **** p-value < 0.0001. Red outl:-es indicate higher expression in cancer
compared to normal tissue and blue outlines show lowe* exp "ession in tumors compared to normal

tissue in unstimulated cells (if p-values < 0.001).

Supplementary Figure 6. GSEA. Gene set er ic. me.:t analysis was performed using the t values of
differential gene expression for HIL6 and IFNy 1. one cell line of each tissue (A375, HCT116 and Huh7)
with ClusterProfiler [56].

Supplementary Figure 7. PCA ana,,<is of cytokine-specific genes. Identification of transcripts that
are affected by IL6-type or IFil -ty e cytokines only or that are counter-regulated are boxed to

highlight the different grour- o1 ;_nes.

Supplementary Table 3. !'st of cytokine-specific genes. List of transcripts of liver cells that are
affected by IL6-type or IFN-y-type cytokines only or that are counter-regulated by these treatments.
The genes marked in blue or red were present in the lists of validated IFNy- or IL6-type-cytokine-

regulated genes, respectively [38].
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Research highlights:

e Characterization of transcriptomic changes in cancer cells of 3 different tissues and following
exposure to 4 distinct cytokines.

o IFNy-type/STAT1 responses mostly involved in anti-cancer signalling networks.

e |L6-type/STAT3-activated gene profiles predominantly found in oncogenic signalling.

e Liver cells had stronger responses to cytokines than skin and colon cells.

o Detailed investigation of gene regulation responses following “.ytokine-triggered activation of
either STAT1 or STAT3 transcription factors.
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