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Abstract 

 

Cytokines orchestrate responses to pathogens and in inflammatory processes but they also play an 

important role in cancer by shaping the expression levels of cytokine response genes. Here, we 

conducted a large profiling study comparing miRNome and mRNA transcriptome data generated 

following different cytokine stimulations. Transcriptomic responses to STAT1- (IFN, IL-27) and 

STAT3-activating cytokines (IL6, OSM) were systematically compared in nine cancerous and non-

neoplastic cell lines of different tissue origins (skin, liver and colon).  

The largest variation in our datasets was seen between cell lines of the three different tissues rather 

than stimuli. Notably, the variability in miRNome datasets was a lot more pronounced than in mRNA 

data. Our data also revealed that cells of skin, liver and colon tissues respond very differently to 

cytokines and that the cell signaling networks activated or silenced in response to STAT1- or STAT3-

activating cytokines are specific to the tissue and the type of cytokine. However, globally, STAT1-

activating cytokines had stronger effects than STAT3-inducing cytokines with most significant 

responses in liver cells, showing more genes up-regulated and with higher fold change. A more 

detailed analysis of gene regulations upon cytokine stimulation in these cells provided insights into 

STAT1- versus STAT3-driven processes in hepatocarcinogenesis. Finally, independent component 

analysis revealed interconnected transcriptional networks distinct between cancer cells and their 

healthy counterparts.  
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Introduction 

 

The transcriptome is a highly dynamic assembly of different RNA molecules that either code for 

protein (mRNAs), have structural functions (such as tRNAs, rRNAs, snoRNAs) or are involved in gene 

regulation (such as miRNAs, lncRNAs). High-throughput transcriptome profiling can therefore provide 

information on cell type characteristics and cellular states including insights into which signaling and 

regulatory pathways are active [1-3]. A plethora of transcriptomic profiles of different cell types, in 

diseases and at different developmental stages are publically available. With the aim to pinpoint 

gene expression changes to specific tissues or cancers and to improve tailored drug treatment, the 

so-called NCI-60 study was the first milestone study analyzing 60 cancer cell lines derived from more 

than 10 tissues (such as skin, breast, prostate, lung) [4]. Since then, specific changes in gene 

expression of many cancers were successfully used to define subtypes and to predict response to 

drugs and overall survival [5, 6].  

The ongoing and rapid development of improved technologies allowing for high throughput profiling 

of transcriptome changes has fueled large and searchable data collections such as the TCGA (The 

Cancer Genome Atlas, https://www.cancer.gov/tcga), the Expression Atlas 

(https://www.ebi.ac.uk/gxa/home), the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/), CCLE (https://portals.broadinstitute.org/ccle) and many others. 

The ENCODE initiative (Encyclopedia Of DNA Elements) has funneled the enormous amounts of 

diverse data into well-organised databases with clear technical and quality control guidelines for data 

generation, curation and analysis (https://www.encodeproject.org/data-standards/).   

Cytokines are involved in many fundamental biological processes [7, 8]. They mainly act via Janus 

kinases (Jaks), which trigger tyrosine-phosphorylation of STAT transcription factors, 7 of which exist 

in humans [9]. The importance of cytokine-induced processes in maintenance and spreading of 

tumors is undisputed [10]. Interestingly, STAT1 and STAT3 can have opposing roles in tumorigenesis: 

STAT3 promotes tumor cell growth and survival, proliferation, cell migration, angiogenesis, and 

inhibits apoptosis while STAT1 is involved in antiviral and immune defense, promotion of apoptosis 

and inhibition of angiogenesis and proliferation [11]. In this context, tumors can lose sensitivity to 

the IFN/STAT1 pathway and thus become resistant to the direct anti-proliferative and pro-apoptotic 

effects of IFN [12].  

MicroRNAs (miRNAs) are non-coding RNAs produced by a multistep biogenesis pathway, which 

generally down-regulate gene expression of specific target mRNAs. Their profound regulatory effects 

and their central role in diverse cellular and developmental processes have led to the hypothesis that 

dynamic expression changes of miRNAs contribute to human disease, including cancer [13, 14]. 
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Recent studies by our group and others have identified several miRNAs to be induced by cytokine 

stimulation and to play an important role in processes involved in cancer development and 

maintenance as well as resistance to drugs [15-20]. One of the first reports to demonstrate miRNA 

regulation following cytokine stimulation was undertaken in multiple myeloma cells, where miR-21 

was up-regulated in a STAT3-dependent manner in response to IL6 [21]. In the following, miR-21 was 

shown to be increased by STAT3 in various tumor cell lines (prostate cancer cells, B16 melanoma 

cells) promoting proliferation, migration and survival in metastatic tumors [22-24]. The multi-faceted 

regulatory influence of miRNAs on cell homeostasis and the many roles of miRNAs in carcinogenesis 

have been well documented [13, 25, 26] .  

Previously, we have shown [17] that IFN leads to a strong regulation of the miRNome in A375 

melanoma cells. Surprisingly, when a similar experiment was performed in hepatoma cells stimulated 

with hyper-IL6 (HIL6, a “designer cytokine” comprising IL6 bound to the extracellular domain of 

IL6Rα), we observed almost no regulation at the miRNA level. On the other hand, primary healthy 

liver cells stimulated with IL6 showed many robust transcriptomic changes [15]. This led us to 

conduct a larger analysis in order to (i) understand the inter-tissue variations of the whole 

transcriptome and miRNome in skin, colon and liver, (ii) the differences between cancerous and non-

neoplastic cells, and (iii) to define the impact of STAT1- (IFN and IL27) and STAT3-activating (HIL6 

and OSM) cytokines on gene regulatory networks in the different cell lines. We identified interesting 

new and cell type-specific miRNA and mRNA responses to cytokine stimulations and confirmed 

several previously described transcriptomic regulations. Most profound changes were scored in liver 

cells when STAT1- and STAT3-inducing cytokine programs were compared: the regulated pathways 

are implicated in key cellular processes like apoptosis and immune responses. 

 

 

Materials and Methods 

Cell culture and cytokine stimulation 

Cells were grown at 37°C in a water-saturated atmosphere at 5% CO2 and in culture media as 

outlined in  Supplementary Figure 1. Further details are given in Supplementary Figure 1B and as 

described before [15, 19].  

Four cytokines were used for stimulations at previously established saturating concentrations: two 

STAT1-activating cytokines, interferon gamma (IFN, 50 ng/mL, Peprotech) and recombinant human 

interleukin-27 (rhIL27, 50 ng/mL, R&D systems) and two STAT3-activating cytokines, hyper-IL6 (HIL6, 

20 ng/mL, a kind gift of Prof. Stefan Rose-John, University of Kiel, Germany) and Oncostatin M (OSM, 
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20 ng/mL, Peprotech). Cells were seeded at day 1 and stimulations were done for 3, 12, 24, 48 and 

72 hours. For following western blot analysis and RNA extraction, cells were harvested all together at 

the end of the experiment. All cell lines were regularly checked to be mycoplasma-free and were 

either purchased shortly before the experiments or authenticated shortly before or after use in this 

study (DSMZ, Germany).  

RNA extraction 

Total RNA from cell lines was isolated using Quick-RNA MiniPrep Kits (Zymo Research) with an 

additional in-column DNase I treatment. Purity and quantity of RNA samples were assessed using a 

NanoDrop ND-2000c spectrophotometer (Thermo Scientific) and an Agilent Bioanalyzer 2100 (Agilent 

Technologies). 

Microarray analysis 

Microarray experiments were performed in collaboration with the Quantitative Biology Unit at the 

Luxembourg Institute of Health (Strassen, Luxembourg). Extracted total RNA of duplicate (stimulated) 

or triplicate (unstimulated) samples were used (with the exception of three additional independent 

replicates for unstimulated PH5CH8 cells, as the IL27 stimulation had to be re-done in another 

experiment) for downstream microarray studies using Affymetrix GeneChip miRNA 3.0 Arrays (based 

on miRBase version 17) and Affymetrix GeneChip Human Transcriptome Array (HTA) 2.0 according to 

the manufacturer's instructions. For mRNA arrays, 24h treatment samples were used; for miRNA 

arrays, 72h treatment samples were used as this turned out to be the best time point to analyze 

miRNA regulation [17], next to untreated controls. The microarray data were pre-processed, quality 

was controlled and a filtering step of lowly abundant genes was performed as before [31]. All genes 

that were below a defined threshold of 5 in log2 scale were removed, which increased the number of 

significantly regulated genes for each cell line with treatment. Before statistical analysis of mRNA 

data, Affymetrix features – transcript clusters were summarized at gene level. For miRNA arrays, only 

mature human miRNAs were considered. Microarray data are summarized in Supplementary Table 

1. 

Data and material availability: mRNA and miRNA datasets are available under accession number E-

MTAB-6080 and E-MTAB-9118, respectively.  

Western blots 

To confirm successful cytokine stimulations, cells were seeded and stimulated in parallel to the cells 

for microarray experiments. Cell lysis was performed as described before [19]. The following 

antibodies were used: phospho-STAT1 (1:1000, BD Biosciences Cat# 612233, RRID:AB_399556), 
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STAT1 (1:1000, BD Biosciences Cat# 610116, RRID:AB_397522), phospho-STAT3 (1:1000, Cell 

Signaling Technology Cat# 9145S, RRID:AB_561305), STAT3 (1:1000, BD Biosciences Cat# 610190, 

RRID:AB_397589) or -tubulin (1:5000, Santa Cruz Biotechnology Cat# sc-32293, RRID:AB_628412). 

The HRP-conjugated secondary antibodies were purchased from Cell Signaling Technologies. 

Antibody complexes were detected by using enhanced chemiluminescence (ECL) technology [27] on 

a Fusion FX (Vilber) CCD camera system. 

Flow cytometry 

Cells were resuspended in cold PBS supplemented with 5% FBS and 0.1% sodium azide and incubated 

with a mouse antibody specific for OSM-R (200µg/mL, Santa Cruz) or the corresponding IgG control 

antibody (1µg/µL, Immunotools) for 1h at 4°C. After washing, cells were incubated with a secondary 

antibody against mouse IgG coupled with R-phycoerythrin (1:100, Jackson) for 1h at 4°C and analyzed 

on a FACSCanto II flow cytometer using FACSDiva (BD Biosciences) software. Overlays were created 

using the FlowJo software. 

 

Principal and Independent Component Analyses (PCA, ICA) 

Microarray data of cell lines responding to the 4 cytokine treatments (PH5CH8, Hep3B, Huh7, NHEM, 

A375, MelJuso, NCM460, HCT116 and HT29) were subjected to PCA. Computation and plotting were 

performed using R (v3.4.0) and Rstudio (v1.1). The PCA was computed using the R package 

FactoMineR (v1.36) [28] and plotted by the R package factoextra (v1.0.4) [29]. Other plots were 

generated using the R package ggplot2 (v2.1) [30] and the collection of packages tidyverse (v1.1) 

[31]. All experiments were scaled to the same unit, as the IFN stimulation for NHEM cells possessed 

a larger variance compared to the other experiments.  

Consensus independent component analysis (ICA) was performed by the consICA tool as previously 

described [32], with the core computation performed using R package fastICA (v1.2-2). The method 

decomposes the expression matrix into statistically independent signals (or components) in the space 

of genes and their weights in the space of samples. These signals can be associated with cell types 

and biological processes within cells. ICA was performed using 20 components which were associated 

to biological processes by GO enrichment analysis using package topGO (v2.38.1) and to 

experimental conditions using ANOVA.  

Correlation analysis of mRNA and miRNA as well as comparison to TargetScan predictions was 

performed by CoExpress tool [33]. 

 

Analysis of publically available datasets from the TCGA initiative 
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mRNA and miRNA expression data were extracted from TCGA cohorts with UCSC Xena browser. For 

mRNA gene expression, RNAseq (PolyA + Illumina pancan normalized) data and for miRNA, miRNA 

gene expression (IlluminaHiseq) data were used to validate the results. Only patients with matching 

pairs (Solid Tissue Normal and Primary Tumor samples) from TCGA Bladder Cancer (BLCA), TCGA 

Breast Cancer (BRCA), TCGA Colon Cancer (COAD), TCGA Colorectal Cancer (COADREAD), TCGA 

Esophageal Cancer (ESCA), TCGA Head and Neck Cancer (HNSC), TCGA Liver Cancer (LIHC), TCGA Lung 

Cancer (LUNG), TCGA Prostate Cancer (PRAD) and TCGA Stomach Cancer (STAD) cohorts were 

considered for the analysis with, respectively, 19, 75, 26, 30, 11, 43, 50, 109, 52 and 32 matched 

pairs.  

Statistical analysis 

Matching solid tissue normal and primary tumor samples from various TCGA cohorts were compared 

to each other with Wilcoxon matched-pairs signed rank test in GraphPad Prism v7.03 software. 

Differential expression analysis was performed using R package limma (v.3.42). 

 

 

Results  

Characteristics of analyzed transcriptomes and miRNomes 

We have performed and analyzed a total of 186 microarrays, 88 mRNA and 98 miRNA arrays, derived 

from 9 cancerous and non-neoplastic cells lines representing 3 different tissues, stimulated with 4 

distinct STAT-activating cytokines. A graphical overview of the study and details of cell lines are 

shown in Supplementary Figure 1. Each cell line was cultured in cell type-specific media allowing for 

optimal growth (Supplementary Figure 1B). Different media compositions might influence the 

expression of genes and miRNAs when comparing cell lines with each other, however, these effects 

are expected to be marginal. Expression of selected cell type-specific transcription factors 

(Supplementary Figure 1C) further indicated the authenticity of cell lines. Interestingly, the primary 

liver cells PH5CH8 showed expression patterns very similar to melanoma cells for key transcription 

factors MITF, HNF1A, HNF4A and CDX2 suggesting overall similar gene and miRNA expression profiles 

between these cells, which turned out to be the case.  

Optimal time points for measuring mRNA and miRNA responses following cytokine treatments had 

been established before for melanoma cells [17, 33]  and by additional pre-tests for other cell lines 

(data not shown). In general, miRNA responses peak after mRNA responses and are best analyzed at 

72h while mRNAs were profiled after 24h, in order not to miss too many of the early cytokine-
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induced signals. Before microarray analyses, successful cytokine stimulation was ensured by 

detection of phosphorylation levels of phospho-Tyr701-STAT1 following stimulation with IFN and IL27 

and phospho-Tyr705-STAT3 following HIL6 and OSM stimulation (Supplementary Figure 2A). Three 

cell lines (Hep3B, HT29 and NCM460) did not to react to OSM and their lack of the OSM-specific 

receptor (OSM-R) was confirmed by FACS analysis (Supplementary Figure 2B). Therefore, microarray 

analyses for OSM stimulations of these cells were not performed. Pearson correlation (Figure 1C) 

showed a correlation coefficient of mRNA arrays greater than 0.8 for the cell lines derived from the 

same tissue (skin in the bottom left corner, liver in the center and colon in the upper right corner). 

Surprisingly, PH5CH8 cells (non-neoplastic liver cells) clustered with colon-derived cells with which 

they correlated at more than 0.85, especially with cancerous colonocytes (HT29 and HCT116). 

Overall, and in comparison to miRNAs (Figure 1), mRNA expression profiles were more robust with 

less variability between replicates and among the same tissues. PH5CH8 cells also seemed to be 

different from HCC cell lines in the miRNA arrays and clustered here with skin-derived cells. Venn 

diagrams indicate the number of tissue-specific mRNAs/miRNAs (Figure 1C).  

For a first overview of the microarray data, we performed Principal Component Analysis (PCA) 

(Figure 1). One unstimulated sample (Hep3B.Untreated.Hep3B_0) was marked as an outlier as the 

profile for this sample was incoherent with the two other replicates (Hep3B.Untreated.Hep3B_1 and 

_2) and was removed from following analyses. In the PCA, the cancer cell lines of each tissue were 

separated from the non-cancer cells while cytokine stimulation had little effect. This was visible at 

the mRNA (Figure 1A) and at the miRNA level (Figure 1B) although less pronounced for miRNAs. On 

mRNA level (Figure 1A), all samples from a given tissue clustered closely together, with the exception 

of PH5CH8 cells. Next, hierarchical clustering analysis revealed two main groups for mRNAs (Figure 

1A). The first cluster contained the three skin-derived cell lines (yellow) and PH5CH8 cells. All other 

liver- and colon-derived cells formed a second group. Again, miRNA heatmaps underline the higher 

variability in miRNA levels and show that the 2 healthy lines, NHEM and PH5CH8, do not group within 

their respective tissues (Figure 1B). Overall, samples from a particular cell line consistently grouped 

together irrespective of cytokine treatment indicating that the difference between cell lines was 

clearly greater than the transcriptomic changes induced by stimulation with cytokines, even within 

the same tissue.  

With an overall detection threshold of log2 >5 (see Material and Methods), we found that 19803 

(61%) features (from 32670 present on HTA arrays) were expressed in at least one sample. These 

features corresponded to 18635 annotated genes. Among 12867 non-expressed features, 6960 (54%) 

were composed of predicted genes, pseudogenes and non-coding genes. For miRNAs, 1294 of 1733 

mature human miRNAs were absent in all 9 cell lines, leaving only 439(25%) of the miRNome 

expressed. A  summary of feature numbers for mRNA and miRNA arrays is provided in 
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Supplementary Figure 3.Some miRNA gene families showed a tissue-dependent or a cell-specific 

expression: the miR-200 family members were exclusively detected in colon cells, miR-122 was 

specific for liver, miR-152 specific for skin while the 17 miRNAs of the let-7 family were absent from 

cancerous liver cell lines (data not shown). Cell type-specific miRNAs were mainly enriched in 2 

tissues: epithelial cells for colon cell lines (FDR=2.5e-3) and hepatocytes for liver cell lines (FDR=2.0e-

2) (Supplementary Table 2A).  

In order to identify inversely correlated miRNAs/mRNAs in our dataset, which could be indicative of a 

functional connection, we used the CoExpress software ( http://sablab.net/coexpress.html) [33]. 

With a high confidence threshold of absolute Pearson correlation > 0.925, we found 11 miRNAs 

inversely correlated with mRNAs (Supplementary Table 2B) that were also predicted, albeit with 

generally low scores, by TargetScan. Inverse correlation of miRNAs and mRNAs from public or own 

data sets can be a useful additional parameter to improve target gene predictions. Furthermore, 

correlated expression of intronic miRNAs together with their “host genes” was found for several pairs 

such as miR-107/PANK1, miR-139/PDE2A, miR-149/GPC1, miR-208/MYH6, miR-211/TRPM1, miR-

326/ARB1, miR-342/EVL, and miR-346/GR1D1 (data not shown). These co-regulations are interesting 

and their regulatory potential is not yet fully understood as intronic miRNA expression levels vary 

with up- or down-regulation of their vehicle genes. When the host gene is specifically up-regulated 

during oncogenic transformation, tissue damage or in response to stimuli such as cytokines, the 

intronic miRNA levels also increase, which might have a negative impact on the respective miRNA 

target genes.  

To illustrate relationships and possible interactions between mRNAs and miRNAs across the entire 

data set, we used independent component analysis (ICA), which we recently applied to large 

transcriptomic data sets of melanoma cells [32].  

Tissue-and cancer-specific miRNA and mRNA expression 

Next, we analyzed the tissue-specific expression of miRNAs and mRNAs. Features were selected in 

the following way. First, mean expression was calculated for replicates in each sample group for each 

cell line with and without treatment. Next, a feature was called “stably expressed”, if in one of the 

conditions the mean log2 expression was above 5. Averaging expression among replicates allowed 

reducing randomness of observation. Using this approach, we estimated 15163 stably expressed 

mRNAs and 260 miRNAs. Venn diagrams (Figure 1C) show that 604, 645 and 764 mRNAs were 

exclusively expressed in liver, colon, and skin, respectively. This corresponds to 4-5% of all herein 

stably detected mRNAs. Over 76% of mRNAs were expressed in all tissues. At the miRNA level, about 

63% (165) of stably expressed miRNAs were commonly present in all tested tissues and these 

miRNAs were connected to general functions like cytoskeleton remodeling, apoptosis, survival or cell 
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cycle (data not shown). Ten, 18, and 17 specific miRNAs (Figure 1C) were found to be expressed in 

liver, colon, and skin, respectively. These low numbers rendered the building of networks or common 

pathways difficult. Therefore, we performed ICA analysis [32], which enables the identification of 

sources of transcriptional signals, clustering of genes into functional groups and cell type-related 

signatures [34] and the deduction of interactions between biological functions [35]. A global 

overview of all components representing miRNAs (MICs) and mRNAs (RICs) and their connections is 

shown in Figure 2A. The two components with the strongest connection between them (indicated by 

the thickness of the line) are highlighted: MIC7 and RIC12. A list of members of these components 

(inserted) contains interesting pairs that are known to interact (e.g. AXL and miR-34a [36, 37]) or are 

known target genes of cytokines (e.g. IFI6, IFI16). Interestingly, distinct MIC and RIC components 

were able to discriminate between tissues (Figure 2B).   

In order to find cancer-specific mRNAs or miRNAs, we identified MIC and RIC components 1, which 

distinguished between cancer cells and their healthy counterparts with high stability (Figure 3A). 

Members in these components are involved in immune responses in general and in viral and IFNy-

induced immune responses in particular, indicating that these basic cellular responses are distinct in 

normal versus cancerous cells (Supplementary Figure 4).  

Next, we generated a list of cancer-related genes for each tissue by comparing differentially 

expressed mRNAs and miRNAs (DEG, FDR (false discovery rate) ≤ 0.05) between each cancerous cell 

line and corresponding non-neoplastic cells. Considering mRNAs found in common between all cell 

lines and expressed with a log2|FC| above 1 compared to healthy cells, 28 mRNAs were significantly 

regulated, however, only 1 mRNA was up-regulated in all cancerous cells (FAM171B) while 4 were 

down-regulated (Figure 3B and C). Although the other genes were not consistently up- or down-

regulated, 2 interesting genes showed the same expression pattern in all but one cell line: GTSF1 and 

DNAJC15. Altogether, we identified two mRNAs more abundant (FAM171B and GTSF1) and five less 

abundant (FAM21B, FAM43A, OAS1, REPS2 and DNAJC15) in cancerous versus normal cells.  

To extrapolate our findings to a broader range of cancer tissues, TCGA datasets from a panel of ten 

cancers (https://www.cancer.gov/tcga) were incorporated. As only data from matching pairs (Solid 

Tissue Normal and Primary Tumor) were considered, comparisons were performed on bladder (19 

pairs), breast (75), colon (26), colorectal (30), esophageal (11), head and neck (43), liver (50), lung 

(109), prostate (52) and stomach (32) cancer cohorts (Supplementary Figure 5). Only few data from 

normal tissues were available for melanoma, pancreas and rectal cancer, so no comparison could be 

made for those cancers. FAM171B was clearly increased in liver and lung cancer cells (red circles), 

while it was reduced in breast and colorectal cells (blue circles). GTSF1 had significantly higher 

expression levels in liver, breast and head and neck cancer cells compared to normal cells and inverse 

expression levels in colorectal cancer cells. DNAJC15 was slightly less abundant in liver, lung and 
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prostate tumor cells. Overall, this analysis shows that specific genes can either be up- or down-

regulated in cancer versus normal counterpart cells depending on the tissue of origin: 29 mRNAs 

(AUC=1) and 4 miRNAs (AUC≥0.9) could potentially serve as biomarkers to distinguish cancerous 

versus non-neoplastic cells. However, the microenvironment and tissue biology likely also determine 

in which way certain genes are regulated upon oncogenic transformation, suggesting that cancer 

type-specific biomarkers in form of mRNAs or miRNAs might be more robust thank global markers for 

cancer. 

Cytokine-specific mRNAs and miRNAs  

IFN, IL27, HIL6 and OSM are known to have different functions in tumor biology. We compared the 

miRNome and transcriptome regulations in all cell lines (stimulated versus unstimulated) in order to 

understand gene regulatory differences between cytokine stimuli in cancerous and non-neoplastic 

cells of different tissues.  

To further investigate transcriptomic regulation, only mRNAs and miRNAs with an FDR < 0.05 and 

log2|FC| ≥ 1 or 0.5, respectively, were considered as “significantly differentially expressed” (in 

comparison to the expression levels in the respective unstimulated samples) and used in the 

subsequent analyzes. Generally, only few miRNAs (less than 100) were robustly regulated following 

cytokine stimulation (differentially expressed miRNAs in skin: 97 upon IL27, 99 upon IFNɣ, 69 upon 

OSM and 6 upon HIL6; in colon: 2 upon IL27, 47 upon IFN, 7 upon OSM and 6 upon HIL6; in liver: 4 

upon IL27, 12 upon IFNɣ, 26 upon OSM and 26 upon HIL6). The overall weakest cytokine responses 

were seen in colon cells where only IFN induced 47 gene regulations while the other cytokines had 

marginal effects (see numbers above).  Among liver cells, Huh7 reacted well to IL6-type cytokines and 

IL27, with 26 and 10 miRNAs, respectively differentially expressed compared to unstimulated 

controls. Among skin cells, NHEM and A375 showed several interesting miRNA responses to OSM and 

IL27, while IFN evoked the largest number of differentially regulated miRNAs in A375 cells as we 

have previously seen [17]. Numbers of up- and down-regulated genes and miRNAs are summarized in 

Supplementary Table 1. Since mRNA responses to the applied cytokine treatments were much more 

numerous and overall stronger, we continued to analyze mRNAs in more detail focusing on genes, 

which were regulated in at least 2 different conditions (in total 472 genes).  

To specifically identify STAT1-regulated genes following IFN /IL27 treatments versus STAT3- 

regulated genes following OSM/HIL6 stimulations, we performed PCA (Figure 4A). Eight conditions, 

which had less than 10 differentially expressed genes (HCT116-HIL6 and -OSM, PH5CH8-HIL6, A375-

HIL6 and -OSM, MelJuso-HIL6, -OSM and -IL27) were removed from analysis, as this lack of response 

affected the overall PCA. The percentage variance of the dataset contributed by the different 

dimensions of the PCA was 43.6 % for the first dimension and 13.5% for the second. Thus, the first 
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two dimensions of the PCA represented 57.1 % of the total variance of the dataset, containing most 

of the information related to cytokine stimulation. For most cell lines, the projection of the 

“combined effect” for the different cytokine treatments (represented by the length and direction of 

the arrows, with each arrow representing one cytokine treatment condition (e.g. Hep3B-IL27)), 

showed a good overlap for IL27 and IFN. The light blue and dark blue arrows depicting IL27 and 

IFN, respectively correlated well with the location of the blue ellipse, representing 0.95% of the 

quantile distribution of validated IFN-regulated genes [38]. The IL27 and IFN responses were very 

similar, with the combined effect lines having an almost identical orientation. In contrast, the red and 

orange arrows representing HIL6 and OSM, respectively, correlated much less with the location of 

the orange ellipse, containing validated IL6-type cytokine-regulated genes [38]. This highlights the 

fact that the STAT3 response is more heterogeneous throughout different cell types and that the 

genes present in our list of validated IL6-regulated genes do not necessarily reflect the whole 

spectrum of responses in our 3 tissue types [39] (Figure 4A). An overview of the 77 differentially 

regulated genes is shown in Figure 4B.  

Interestingly, the mRNA responses to IL6-type cytokines were most pronounced in liver cells (134 and 

94 differentially expressed mRNAs following OSM and HIL6, respectively) while colon cells were 

much less sensitive to IL6-type cytokines (Supplementary Table 1); some miRNA expression levels 

changed in all cell types, but to a generally lower extent. Therefore, PCA on mRNAs was conducted 

with liver cells only (Figure 5A). Here, the percentage variance of the dataset added up to 71.3 % for 

the first two dimensions. Interestingly, the “combined effect” for the different cytokine treatments, 

represented by the direction of the arrows shown in red/orange for IL6-type cytokines (OSM and 

HIL6) and blue for IFN and IL27, shows almost orthogonal orientations (more or less 90°). This 

corresponds to the situation in which only few genes are co- or counter-regulated with comparable 

intensity upon signaling of IL6-type and interferon-type cytokines. The situation in which the 

“combined effect” would point into opposing directions would indicate inverse regulation of genes 

with comparable intensity, while a matching orientation would indicate co-regulation with 

comparable intensity. In PH5CH8 cells, the angle between IL6-type cytokines and interferon-type 

signaling is even higher than 90°, which reflects the fact that in these cells a slightly higher number of 

genes were inversely regulated by the two types of treatments (Figure 5A). A heatmap of the 115 

differentially regulated genes in liver cells is shown in Figure 5B.  

 

Gene regulation following IL6-type and IFN-type cytokine stimulation 

Next, we investigated the regulation of individual genes following IL6- and IFN–type cytokine 

treatments in the two PCA analyzes described above. For this, we highlighted and identified those 77 
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(all cells; Figure 4B) and 115 (liver cells; Figure 5B) mRNAs, which were significantly differentially 

expressed compared to untreated cells and which showed a good projection of the genes in question 

(cos2 ≥ 0.75) meaning that they contributed most to the principal components in the 2 dimensions 

depicted in the PCAs. The genes annotated in blue or orange (in Figures 4C and 5C) were the ones 

found in the lists of validated IFN- or IL6-type-cytokine-regulated genes respectively [38], while the 

genes annotated in black were absent from these lists. In Figure 4C and Figure 5C many of the 

validated IFN target genes can be found to be indeed efficiently regulated by IFN and IL27. Thus, 

the IL27 and IFN transcriptomic responses were robust and conserved throughout cell lines and cell 

types and included genes involved in antiviral responses, antigen presentation, apoptosis and growth 

(see discussion). On the other hand, fewer of the validated IL6 targets were up-regulated upon HIL6 

or OSM treatment in our cell lines (Figure 4C), again reflecting the heterogeneity of the IL6/STAT3 

response in different tissue types [39]. A higher number of validated IL6 targets were up-regulated 

upon HIL6 or OSM in liver cells (Figure 5C) indicating that the IL6/STAT3 response is strong in liver 

tissue. 

To gain insights into cellular functions activated by IL6- or IFN-type cytokines, we performed a gene 

set enrichment analysis (GSEA, Supplementary Figure 6). As expected, various immune response 

functions were the overarching and top scoring cellular programs induced by cytokine stimulation, 

irrespective of the cell type. In addition to a subset of genes regulated effectively by both IL6-type 

and IFN-type signaling (e.g. complement factors) it was also evident that many of the differentially 

expressed genes were regulated by both the IFN-type (STAT1) and the IL6-type cytokines (STAT3) 

(Figures 4 and 5) although being efficiently regulated by one and less by the other factor. Since one 

of our aims was to specifically discriminate between the IFN type-mediated anti-cancer response 

(mainly STAT1-mediated) and the IL6-type pro-cancerous responses (mainly STAT3-mediated), we 

used this dataset and previous data to generate lists of genes regulated by only one type of 

treatment as well as genes counter-regulated by the two treatments (Supplementary Figure 7 and 

Supplementary Table 3). This will also allow for a better discrimination between the two types of 

treatments in future studies. 

 

 

Discussion  

 

Many comparative data sets on transcriptomic profiling are available in online repositories. However, 

a systematic and meaningful comparison is often hampered by technical variations, platforms, cells 

and experimental conditions between the data of interest. Here, we conducted a large profiling study 
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ensuring high reproducibility and comparability between data. We have generated a total of 186 data 

sets encompassing whole miRNome and transcriptome (mRNA) data from 9 cell lines derived from 3 

tissues, representing cancerous and healthy counterparts, stimulated or not with 4 different 

cytokines (IFN, IL27, HIL6 and OSM). 

In Pearson correlation heatmaps for mRNAs and miRNAs (Figure 1C), samples from the same cell line 

clustered together rather than by treatment indicating that cell-specificities had more impact than 

differences induced by stimulation with cytokine, even within the same tissue. However, if only top-

regulated genes were considered, IFN- and IL27-stimulated samples were grouped closer together 

than cell lines, which was not the case for HIL6 or OSM-stimulated samples. This suggests a stronger 

and a more general, cell type-independent gene regulation by STAT1-activating cytokines compared 

to STAT3-activating cytokines, which may be explained by the wide role of interferon/STAT1 in innate 

immunity and antiviral defense. 

Overall, mRNA expression profiles seemed to be more accurate in defining tissue origin than miRNA 

expression. To further characterize tissue-specificity, gene expression comparisons were performed 

on all unstimulated samples. For mRNA, more than 85% of expressed genes were commonly present 

in all tested cell lines and associated with the basal activity of a cell, including metabolic or 

biosynthesis processes, biological regulation or cell communication. More than 500 genes, mainly 

involved in metabolic process, were exclusively expressed in colonocytes while melanocytes 

expressed 686 genes involved, for example, in cell-cell adhesion or neurogenesis. Hepatocytes, on 

the other hand, specifically expressed about 400 genes involved in processes attributed to general 

liver functions similar to what has been described before[1, 40].  

In the three cancer types analyzed here, only two genes were consistently up-regulated in cancer 

cells versus their healthy counterparts: FAM171B and GTSF1 (Figure 3C). Interestingly, GTSF1 

(Gametocyte Specific Factor 1) has been suggested, upon knock-out in male mice, to prevent 

apoptosis [41]. In melanoma, breast, head and neck, liver, and colorectal cancer, GSTF1 was 

significantly increased (Figure 3 and Supplementary Figure 5) and has recently been put forward as a 

diagnostic biomarker for cutaneous T-cell lymphoma [42]. 

The product of a consistently down-regulated gene, DNAJC15 (DnaJ Heat Shock Protein Family 

(Hsp40) Member C15) is anchored in the mitochondria inner membrane and involved in the 

regulation of the respiratory chain [43] and apoptosis [44]. Additionally, its expression has been 

associated with enhanced drug sensitivity in ovarian [45] and breast [46] cancers. We found DNAJC15 

significantly down-regulated in melanoma, liver, lung, prostate, and colon cancer (Figure 3C, 

Supplementary Figure 5). Overall, the large number of studies looking for prognostic or diagnostic 

biomarkers in form of mRNAs and miRNAs for cancer in general and for specific cancers in particular, 

have so far not yielded the initially expected success. Also here, no robust candidate was found that 
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would show an up- or down-regulation high enough to be considered as a promising specific 

biomarker.  

 

In our study, the cytokine-specific transcriptomic responses turned out to be more rewarding. The 

IL27 and IFN transcriptomic responses were robust and conserved throughout cell lines and cell 

types while HIL6 or OSM stimulation induced a quite diverse response in the cell lines we 

investigated. A closer inspection of the differentially regulated genes in liver cells (PH5CH8, Huh7 and 

Hep3B) showed that IFN and IL27 efficiently and specifically up-regulate genes involved in antiviral 

defence, a mechanism that is highly conserved in all cell types, involving genes regulating direct 

antiviral processes, antigen presentation, immune escape, apoptosis and growth. Evidently, most of 

these processes involved in antiviral defence are also crucial processes in the interferon-mediated 

anti-cancer response, as discussed below (see also Figure 6 for an overview). One subset of genes 

regulated efficiently by both IFN-type and IL6-type cytokines in liver cells were complement factors 

such as C1R, C1S, C2, C3, C4B, CFB and additionally ICAM1 and TGM2 (Figure 5B and C). 

IFN and IL27 regulate genes involved in interferon-type signalling itself, such as STAT1, STAT2, IRF1 

and NMI, all of which positively regulate the interferon-type signalling. IRF1 and STAT1 are crucial 

transcription factors regulating IFN and IL27 responses and NMI is known to enhance STAT1-

dependent effects. IFN and IL27 (through their activation of STAT1) are considered to have anti-

cancer activity while IL6 and OSM (through their activation of STAT3) are thought to have tumor 

promoting functions. The anti-cancer and pro-cancer activities of STAT1 and STAT3, respectively are 

regulated first by the level of phosphorylated STATs found in cancer cells and secondly by the level of 

protein expression of the individual STATs and thus by the ratio of STAT1 versus STAT3 [11, 47]. Thus, 

a higher ratio of STAT1 versus STAT3 protein levels (such as the one induced here by IFN and IL27) 

influences the pro-cancer activities of STAT3 negatively (reviewed in [48]). 

Secondly, upon IFN and IL27 stimulation, we found an up-regulation of mRNAs of genes coding for 

proteasomal subunits (PSMB 8/9/10, PSME2, PSME2P2), other proteases (ERAP1, CTSS, Lap3), HLA 

subunits (HLA-B, -C, -E, -H, BTN3A1-3), TAP transporters (Tap1, Tap2) which are involved in the 

presentation of cancer antigens by the cancer cell [49] (Figure 5B and C, Figure 6). PD-L1 (CD274), 

which we found to be specifically up-regulated by IFN and IL27 is well known to be involved in 

immune tolerance in many cancer cell types [38] (Figure 5B and C, Figure 6). In addition, the 

chemokine CXCL10, associated with chemotaxis of cells associated with a TH1 response and the 

suppression of angiogenesis, was also specifically up-regulated by IFN and IL27 [48]. Finally, IFN 

and IL27 also efficiently regulated genes involved in apoptosis (such as ApoL6, IFI6, MLKL, TNFSF10, 

TNFRSF10D) and cell growth (RARRES3, considered a tumor suppressor). 
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In liver cells, IL6-type cytokines (HIL6, OSM) expectedly up-regulated acute phase proteins like 

SPINK1, SERPINA3, SAA4, MBL2, LBP, IL1R1. Additionally, also genes of the IL6-type signalling 

pathway itself were induced such as the negative feedback regulator SOCS3 or the OSM receptor 

(OSMR). Interestingly, IL6-type cytokines also regulated the chemokines CXCL2 and CXCL5, which 

both recruit neutrophils to sites of inflammation or tumors. Other factors from the TME (tumor 

microenvironment) induce neutrophils to release high levels of angiogenic factors (e.g. TGFβ, IL8, 

VEGF) and to directly or indirectly lead to the release of immunosuppressive cytokines (e.g. TGFβ, 

IL10, IL6) (Figure 5B and C, Figure 6) (reviewed in [50]). 

IL6 is also known to promote metastasis in HCC[2, 51]. For example, LRG1, shown to be upregulated 

upon stimulation with IL6-type cytokines (Figure 5B and C) and involved in a switch in TGFβ signaling, 

is potentially involved in metastasis. LRG1 binds to TGFβ receptors and co-receptors promoting the 

use of the TGFβRII/ALK1/SMAD1/5/8 pathway, which in turn mediates angiogenesis and metastasis 

[52]. Interestingly, EFNA1 up-regulation by the IL6-type cytokines is also associated with increased 

angiogenesis. Other IL6-type cytokine-regulated genes found in our data set involved in metastasis 

are BHLHE40 and LINC00941 which both promote metastasis and growth (Figure 5B and C, Figure 6) 

[53, 54]. 

Altogether, our conclusions from the liver cell analysis support the different functions of IFN-

type/STAT1 and IL6-type/STAT3 signaling in cancer. The IL27 and IFN transcriptomic responses are 

robust and conserved across various cell types, having mostly anti-cancer functions (growth 

reduction, apoptosis, antigen presentation, inhibition of angiogenesis). On the other hand, HIL6 and 

OSM stimulation up-regulate pro-angiogenic and -metastatic genes as well as chemokines that 

trigger tumor-associated neutrophils to produce immunosuppressive cytokines (Figure 6). Apart from 

confirming previously described response genes of STAT1 and STAT3, we identified a more specific 

set of genes that have defined roles in the physiology of healthy liver cells as well as in hepatocellular 

carcinoma. Overall, and in contrast to the robust regulation seen at the mRNA level upon cytokine 

stimulation, miRNome responses were much more variable and weaker with few miRNAs 

differentially regulated following stimulation with the herein investigated cytokines (Supplementary 

Table 2). Finally, the analysis and integration of miRNome and transcriptome data sets by ICA, 

respectively revealed components, i.e. groups of mRNAs and miRNAs that together identify biological 

functions that would be missed when analyzing either data set alone.  

Solid tumors are embedded in their tissue of origin surrounded by cells of the microenvironment 

(fibroblasts, endothelial cells, immune cells and others). Types and amounts of cytokines, 

chemokines and growth factors secreted by such cells have an impact on the development and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

17 

 

progression of the tumor. Here, we quantified gene regulatory events on a global scale to provide 

insights into anti- or pro-cancerous cellular programs that are stimulated or silenced by comparing 

the impact of STAT1 versus STAT3- activating cytokines on healthy cells and cancer cells of three 

different tissues. Interestingly and overall, skin and colon-derived cancer cells reacted weaker to 

cytokine stimulations with relatively few target gene networks being turned on compared to 

hepatocellular carcinoma cells, which revealed robust new and known STAT target genes. In sum, 

IL6/OSM>STAT3-activated cellular programs led to angiogenesis and metastasis whereas IFN-

Ƴ/IL27>STAT1 had opposing effects resulting in cell death, growth arrest and increased 

immunogenicity against the tumor cells. 
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Figure legends 

 

Figure 1: Global overview of transcriptome and miRNome data sets. Principal Component Analysis 

(left) and heatmap (right) of mRNAs (A) and miRNAs (B) of colon- (blue), liver- (green) and skin-

derived (yellow) cells upon cytokine stimulation. Heatmaps show unsupervised hierarchical clustering 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

18 

 

of the 472 mRNAs differentially expressed upon 72h of cytokine stimulation (HIL6, OSM, IFNγ and 

IL27) in colon- (HCT116, HT29 and NCM460), liver- (Hep3B, Huh-7 and PH5CH8) and skin-derived cells 

(A375, MelJuso and NHEM). (C) Pearson correlation of all microarray data sets. Global unsupervised 

correlation analysis for mRNAs and miRNAs of cell lines as described in (B). Venn diagrams indicate 

numbers of expressed mRNAs and miRNAs in tissues (regardless of stimulation). 

 

Figure 2: ICA analysis of miRNome and transcriptome data sets of all cell lines. (A) Correlated mRNA 

and miRNA components (RICs and MICs) detected by consensus ICA. Edges connect components with 

R2 > 0.5. Colors of edges corresponds to positive (red) or negative (blue) correlations. (B) Some RICs 

and MICs show specificity for different organs. The weights of RIC3, RIC4, RIC5, MIC3, MIC4 and 

MIC12 show specific behavior for cell lines originated from colon, liver and skin. ANOVA p-values are 

reported for each violin plot. 

 

Figure 3: Discriminating cancer from healthy cells. (A) ICA component 1 for both RNAs (RIC1) and 

miRNAs (MIC1) distinguish healthy from cancer cells across the three different cell types. (B) Table of 

significant, up- and down-regulated mRNAs (log2|FC| >1) compared to the respective non-neoplastic 

cell line (FDR < 0.05) in unstimulated colon-, liver- and skin-derived cells compared to the other cell 

lines. (C) Expression levels and functions of the most significantly up- and down-regulated mRNAs in 

cancerous versus non-neoplastic cells (red: up-regulated; grey: down-regulated). Full names of genes 

are given in the main text. 

 

Figure 4: Global responses of all investigated cells to different cytokines. (A) PCA analysis of the 

differentially expressed mRNAs (FDR < 0.05 and log2|FC| ≥ 1) for all cell lines and for treatments 

eliciting a response of  25 mRNA regulated (therefore less data derived from HIL6/OSM stimulations 

are included). The light blue and dark blue arrows representing IL27 and IFN, respectively, correlate 

quite well with the location of the blue ellipse, which represents the 0.95% quantile distribution of 

validated STAT1 genes. (B) The heatmap shows genes differentially regulated compared to 

unstimulated controls considering the following thresholds: FDR < 0.05, log2|FC| ≥ 1 and cos2 ≥ 0.75. 

(C) PCA using the same thresholds as in B. Individual genes are annotated. Their presence in the lists 

used for ellipse construction is highlighted by a color code.  

 

Figure 5: Specific responses of liver cells to different cytokines. (A) PCA analysis of the differentially 

expressed mRNAs (FDR < 0.05 and log2|FC| ≥ 1) for treatments eliciting a response of  25 mRNA 

regulated in liver cell lines. The light blue and dark blue arrows representing IL27 and IFN 
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respectively correlate quite well with the location of the blue ellipse, which represents the 0.95% 

quantile distribution of validated STAT1 genes. (B) The heatmap shows genes differentially regulated 

compared to unstimulated conditions considering the following thresholds: FDR < 0.05, log2|FC| ≥ 1 

and cos2 ≥ 0.75. (C) PCA using the same thresholds as in B. Individual genes are annotated. Their 

presence in the lists used for ellipse construction is highlighted by a color code.  

 

Figure 6: Schematic representation of the cytokine signaling pathways and important regulated 

genes and functions supported by these genes. The different cytokine receptor complexes are 

shown alongside distinct responses elicited by the IFN-type (STAT1) and IL6-type (STAT3) signaling 

shown either in green (anti-tumor response) or red (pro-tumor response) writing and arrows. The 

genes we found specifically regulated are shown in black writing. 

 

 

Supplementary Files 

 

Supplementary Table 1. Number of differentially expressed mRNAs and miRNAs. Differentially 

expressed mRNAs (A) and miRNAs (B) in liver-, colon-, and skin-derived cells stimulated with IL27, 

IFN, OSM or HIL6 in comparison to unstimulated control cells. Thresholds: FDR < 0.05, log2 │FC│ ≥ 

0.5 (miRNAs) and log2│FC│ ≥ 1 (mRNAs). 

 

Supplementary Figure 1. Schematic study overview. (A) Scheme illustrating the study design and (B) 

Details on used cell lines. (C) Log2 expression of a selection of tissue-specific transcription factors is 

shown for different cell lines.  

 

Supplementary Figure 2. Control experiments of cytokine stimulations. (A) Western blot analysis for 

validation of successful cytokine stimulations in colon-, liver- and skin-derived cells. (B) FACS analysis 

confirming absence of OSMR expression in selected cell lines. Huh7 cells served as a positive control. 

Supplementary Figure 3. Global summary of detected features on mRNA and miRNA microarrays. 

Supplementary Table 2: (A) Enrichment analysis. Tissue-specific miRNAs (Figure 1C, Venn diagram) 

were submitted to the MiEAA tool [55]. Expressed miRNAs were chosen as a reference set. Cell type-

specific miRNAs were detected for 2 tissues: epithelial cells for colon cell lines (FDR=2.5e-3) and 

hepatocytes for liver cell lines (FDR=2.0e-2). (B) CoExpress analysis. Inverse correlation with a high 

coexpression score (CE) of genes and miRNAs indicates potential functional interactions. The very 

low TargetScan scores for such pairs are also listed, not predicting interactions.  
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Supplementary Figure 4. ICA analysis. Members of RIC1 and MIC1 are shown. RIC1 is activated in 

healthy cells, shows lower weights in cancer cell lines and is linked to immune response (also see 

Figure 3). MIC1 shows opposite profiles with higher weights in cancer. 

 

Supplementary Figure 5. Gene expression in TCGA data sets. Comparison of TCGA data of log2 

(normalized counts) expression levels of commonly differentially expressed mRNAs in matched 

normal (N) and tumor (T) tissues from bladder (N = 19), breast (N = 75), colon (N = 26), colorectal (N 

= 30), esophageal (N = 11), head and neck (N = 43), liver (N = 50), lung (N = 109), prostate (N = 52) 

and stomach (N = 32) cancer TCGA data. Error bars represent standard deviations. Stars show 

statistical significance of Wilcoxon matched-pairs signed rank test: * p-value < 0.05, ** p-value < 

0.01, *** p-value < 0.001, **** p-value < 0.0001. Red outlines indicate higher expression in cancer 

compared to normal tissue and blue outlines show lower expression in tumors compared to normal 

tissue in unstimulated cells (if p-values < 0.001).  

 

Supplementary Figure 6. GSEA. Gene set enrichment analysis was performed using the t values of 

differential gene expression for HIL6 and IFN in one cell line of each tissue (A375, HCT116 and Huh7) 

with ClusterProfiler [56]. 

 

Supplementary Figure 7. PCA analysis of cytokine-specific genes. Identification of transcripts that 

are affected by IL6-type or IFN-type cytokines only or that are counter-regulated are boxed to 

highlight the different groups of genes. 

 

Supplementary Table 3. List of cytokine-specific genes. List of transcripts of liver cells that are 

affected by IL6-type or IFN--type cytokines only or that are counter-regulated by these treatments. 

The genes marked in blue or red were present in the lists of validated IFN- or IL6-type-cytokine-

regulated genes, respectively [38].  
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Research highlights: 
 
 

 Characterization of transcriptomic changes in cancer cells of 3 different tissues and following 
exposure to 4 distinct cytokines.  

 

 IFN-type/STAT1 responses mostly involved in anti-cancer signalling networks. 
 

 IL6-type/STAT3-activated gene profiles predominantly found in oncogenic signalling. 
 

 Liver cells had stronger responses to cytokines than skin and colon cells. 
 

 Detailed investigation of gene regulation responses following cytokine-triggered activation of 
either STAT1 or STAT3 transcription factors.  
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