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Testing of deep learning models is challenging due to the excessive number and complexity of the computations involved. As a result,
test data selection is performed manually and in an ad hoc way. This raises the question of how we can automatically select candidate
data to test deep learning models. Recent research has focused on defining metrics to measure the thoroughness of a test suite and
to rely on such metrics to guide the generation of new tests. However, the problem of selecting/prioritising test inputs (e.g. to be
labelled manually by humans) remains open. In this paper, we perform an in-depth empirical comparison of a set of test selection
metrics based on the notion of model uncertainty (model confidence on specific inputs). Intuitively, the more uncertain we are about a
candidate sample, the more likely it is that this sample triggers a misclassification. Similarly, we hypothesise that the samples for
which we are the most uncertain, are the most informative and should be used in priority to improve the model by retraining. We
evaluate these metrics on 5 models and 3 widely-used image classification problems involving real and artificial (adversarial) data
produced by 5 generation algorithms. We show that uncertainty-based metrics have a strong ability to identify misclassified inputs,
being 3 times stronger than surprise adequacy and outperforming coverage related metrics. We also show that these metrics lead to
faster improvement in classification accuracy during retraining: up to 2 times faster than random selection and other state-of-the-art
metrics, on all models we considered.
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1 INTRODUCTION

Deep Learning (DL) systems [18] are capable of solving complex tasks, in many cases equally well or even better than
humans. Such systems are attractive because they learn features by themselves and thus require only minimum human
knowledge. This property makes DL flexible and powerful. As a result, it is increasingly used and integrated with larger
software systems and applications.

Naturally, the adoption of this technology introduces the need for its reliable assessment. In classical, code-based
software engineering, this assessment is realised by means of testing. However, the testing of DL systems is challenging
due to the complexity of the tasks they solve. In order to effectively test the DL system, we need to identify corner
cases that challenge the learned properties. In essence, DL system testing should focus on identifying the incorrectly
learned properties and lead to data that can make the systems deviate from their expected behaviour.
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To this end, recent research [14, 22, 28, 39] focuses on designing test coverage metrics to measure how thoroughly a
set of inputs tests the model. Most of them (e.g. those inspired by neuron coverage [22, 28, 39]) focus on activating
various combinations of neurons and on generating new test inputs to increase the proportion of those combinations.
Others (e.g. [14]) argue that DL models reflect particular properties of the training data and their behaviour is determined
based on the knowledge they acquired during the training phase. As such, they promote coverage metrics that measure
the differences across the inputs rather than within the model.

In this paper, we focus on the problem of selecting test inputs. In DL, test input selection adresses a practical concern:
which subset of unlabelled data one should label to discover faults in DL models. This goal differs from previous methods
that either measure test thoroughness or generate (artificial) test inputs. Our aim is to help with the manual effort
involved when labelling test data (deciding the class of an input). Evidently, data labelling involves extensive manual
analysis (due to the large amounts of data required by DL systems), which could be reduced by using only the most
likely fault revealing test data. Therefore, to reduce this burden, we aim to identify metrics that help selecting the most
interesting (likely to trigger misclassifications) test data.

In the recent years, the scientific community has come up with metrics to support the testing of deep learning models
(read more in Section 2). However, these metrics were studied in different contexts (e.g. adversarial example generation
and detection) or testing scenarios (e.g. measuring test thoroughness). All in all, the capability of existing metrics to
pinpoint misclassified inputs remains unclear. Thus, our contribution is the evaluation of these metrics from a new
perspective; the test input selection. That is serving the purpose of selecting inputs that maximise the chances to trigger
misclassifications. To our knowledge, our work is the only one to study this test selection goal.

We postulate that effective metrics should select inputs that are more likely to trigger misclassifications by the model.
Experience has shown that classification mistakes are incorrectly learned properties that happen due to overlapping
and closely located regions of the feature space. Therefore, the cases residing between the learned categories and their
boundaries are the most likely to be the incorrectly learned ones. In view of this, rather than aiming at the coverage of
specific neurons [28] or test data diversity [14], we aim at the data with properties that are close to the model boundaries.
In other words, we argue that test selection should be directed towards the boundaries of the learned classes.

Accordingly, we consider test selection metrics based on the notion of model uncertainty (low confidence on specific
inputs). Intuitively, the more uncertain a model is about a candidate sample, the more likely the sample will trigger
misclassification. Similarly, the samples for which the model is the most uncertain are also the most informative ones
for learning (should be used to improve the models by retraining). As suggested by Gal and Ghahramani [7], we
approximate uncertainty by the variance in prediction probabilities observed by randomly dropping neurons in the
network multiple times [37]. We also use the actual model’s output probabilities as a certainty measure, which we also
combine with dropout variance.

We evaluate these metrics using image classifiers on three datasets, i.e., MNIST, Fashion-MNIST and CIFAR-10, and
compare them with respect to previously proposed metrics, i.e., the surprise adequacy metrics [14] and several metrics
based on neuron coverage [22, 29]. In particular, we investigate the correlation between the metrics and misclassification
on both real and artificial (adversarial) data. We show that uncertainty-based metrics have medium to strong correlations
with misclassification when considering real data, and strong correlations when considering a mix of real and adversarial
data. In contrast, metrics based on coverage have weak or no correlation, while surprise adequacy has weak correlation.

Interestingly, our results reveal that when considering misclassifications, the prediction probabilities (a simple
certainty metric overlooked by previous work) is among the most effective metrics, significantly outperforming surprise
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adequacy and coverage metrics. However, in the case of retraining, a combination of the dropout variance with prediction
probabilities outruns the other metrics in terms of faster improvements in classification accuracy.

Our contributions can be summarised by the following points:

• We propose to perform test input selection based on a set of metrics measuring model uncertainty, i.e., the
confidence in classifying unseen inputs correctly. We consider the variance caused by multiple dropouts (i.e. the
distribution of the model’s output under dropouts), the model’s prediction probabilities, and metrics combining
the two.
• We perform the first study on the fault revealing ability (misclassification triggering ability) of test selection
metrics. We demonstrate that the uncertainty-based metrics challenge the DL models and have medium to
strong correlations with misclassification (correlations of approximately 0.3 on real data and 0.6 on real plus
adversarial ones). Furthermore, we show that these metrics are significantly stronger than the surprise adequacy
and coverage related metrics.
• We also show that model uncertainty can guide the selection of informative input data, i.e., data that are capable
of increasing classification accuracy. In particular, when retraining the DL model based on the selected data,
the best performing uncertainty metrics achieve up to 2 times faster improvement over random selection and
coverage metrics.

2 RELATEDWORK

Testing of learning systems is typically performed by selecting a dedicated test set randomly from available labelled
data [43]. When an explicit test dataset is not available, one can rely on cross-validation [15] to use part of the training
set to anticipate how well the learning model will generalize to new data. These established procedures, however,
often fail to cover many errors. For instance, research work in adversarial learning has shown that applying minor
perturbations to data can make models give a wrong answer [10]. Nowadays, those adversarial samples remain hard to
detect and bypass many state-of-the-art detection methods [4]. In order to achieve better testing, multiple approaches
have been proposed in the recent years. We distinguish four categories of contributions: (i) metrics for measuring the
coverage/thoroughness of a test set; (ii) generation of artificial inputs; (iii) metrics for selecting test data; (iv) detection
of adversarial samples.

DeepXplore, proposed by Pei et al. [28], comprises both a coverage metric and a new input generation method. It
introduces neuron coverage as the first white-box metric to assess how well a test set covers the decision logic of
DL models. Leaning on this criterion, DeepXplore generates artificial inputs by solving a joint optimization problem
with two objectives: maximizing the behavioural differences between multiple models and maximizing the number
of activated neurons. Pei et al. report that DeepXplore is effective at revealing errors (misclassifications) that were
undetected by conventional ML evaluation methods. Also, retraining with additional data generated by DeepXplore
increases the accuracy of the models. On some models, the increase is superior (1 to 3%) to an increase obtained by
retraining with data generated by some adversarial technique [10]. Pei et al. also show that randomly-selected test data
and adversarial data achieve smaller neuron coverage than data generated by DeepXplore. While they assume that
more neuron coverage leads to better testing, future research showed that this metric is inadequate [14, 23].

In a follow-up paper, Tian et al. [40] propose DeepTest as another method to generate new inputs for autonomous
driving DL models. They leverage metamorphic relations that hold in this specific context. Like DeepXplore, DeepTest
utilizes the assumption that maximising neuron coverage leads to more challenging test data. The authors show that
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different image transformations lead to different neuron coverage values and infer that neuron coverage is an adequate
metric to drive the generation of challenging test data. However, this claim was not supported by empirical evidence.

A related method was proposed by [25]. It works under the assumption that there is a recurring defect in the DNN
model, such that inputs from one particular class are often misclassified. The method is based on differential analysis to
identify features/neurons responsible for this defect, so as to fix the model. On the contrary, the uncertainty metrics
we propose to use are independent of the particular class of the inputs and are lightweight (they do not require more
expensive computations/analyses). Overall, we see our work (lightweight metrics to detect and fix punctual errors) as
complementary to [25] (in-depth analysis to fix recurring defects).

DeepGauge [23] and DeepMutation [24] are two test coverage metrics proposed by Ma et al. With DeepGauge, they
push further the idea that higher coverage of the structure of DL models is a good indicator of the effectiveness of test
data. They show, however, that the basic neuron coverage proposed previously is unable to differentiate adversarial
attacks from legit test data, which tends to indicate the inadequacy of this metric. As a result, they propose alternative
criteria with different granularities, i.e. at the neuron level and the layer level. Their experiments reveal that replacing
original test inputs by adversarial ones increases the coverage of the model wrt. DeepGauge’s criteria. However, they
did not assess the capability of their criteria to prioritize test samples likely to trigger misclassifications.

Similarly, DeepMutation leverages the mutation score used in traditional mutation testing to DL models. From a
given model, it generates multiple mutant models by applying different operators such as, e.g., neuron switch or layer
removal. Then, they define the mutation score of a test input as the number of mutants that it killed (i.e. those that
yield a different classification output for the test input than the original model). Thus, the mutation score assesses how
sensitive the model is wrt. the test inputs rather than how these cover the neurons of the network.

Nevertheless, both DeepGauge and DeepMutation measure the coverage/thoroughness of a test set but do not aim at
selecting individual inputs to undergo labelling. Moreover, a recent study [14] has shown that neuron coverage criteria
do not necessarily increase when more misclassified/surprising inputs are added. Although our contribution starts from
the idea of analyzing the sensitivity of the model by mutating it (using dropouts), our scope differs in that we examine
how mutations can actually support the selection of data for testing and improving by retraining the model.

Later on, Ma et al. [21] proposed DeepCT, a test coverage metric suggesting that within a given layer, all tuples of
neurons should be covered by at least one test input. They also propose an algorithm to generate artificial inputs to cover
as many t-wise interactions as possible. They show, first, that random test selection cannot cover a large part (> 65%) of
the 2-wise neuron interactions. Second, they show that retraining on the inputs generated by their algorithm allows the
detection of up to 10% of adversarial samples that could not be detected by retraining on randomly selected inputs. An
alternative proposed by Xiaofei Xie et al. [44] is DeepHunter, a fuzzing-based test generation algorithm to hunt defects
in DL models. The fuzzing is guided by the coverage metrics defined in DeepXplore [28] and DeepGauge [23]. Their
evaluation shows that the fuzzing algorithm manages to increase the intended coverage metrics. Both DeepCT and
DeepHunter focus on generating artificial inputs and are not directed towards the selection of available challenging
data for testing and retraining.

Most recently, Kim et al. [14] proposed metrics for test coverage and test selection. They highlight the fact that
coverage criteria fail to discriminate the added value of individual test inputs and are therefore impractical for test
selection. They argued that test criteria should guide the selection of individual inputs and eventually help improving
the DL models’ performance. As a consequence, they propose surprise adequacy as a metric that measures how surprised
the model is when confronted with a new input. More precisely, the degree of surprise measures the dissimilarity of the
neurons’ activation values when confronted to this new input wrt. the neurons’ activation values when confronted to
Manuscript submitted to ACM
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the training data. They hypothesise that a set of test inputs is preferable for both testing and retraining when it covers a
diverse range of surprise values. In other words, a good test set should range from very similar to very different inputs
to those observed during training. Kim et al. show experimentally that (a) surprise coverage is sensitive to adversarial
samples and (b) retraining on such samples yields better improvements in accuracy. In our paper, we show that model
uncertainty is more effective at triggering misclassifications and improving the accuracy of the models than input
diversity. Nevertheless, surprise adequacy is complementary to our work since it aims for a diversity of surprise degrees
and thus better applies to models that are not yet well-trained, while uncertainty metrics aim at reinforcing well-trained
models against inputs that remain challenging.

Uncertainty of DL systems was theoretically studied by a number of authors. Gal and Ghahramani [7] proved that the
variance of the softmax function resulting from neuron dropout is a good estimate for model uncertainty. Kendall and
Gal [13] propose a model to capture jointly aleatoric uncertainty (originating from noise inherent to the observations)
and epistemic uncertainty (induced by the fact that the model is not trained on all possible data). The latter type is what
is commonly referred to as model uncertainty, which can be captured by dropout variance [13].

In [36], Smith and Gal provide evidence that uncertainty metrics can be used to detect adversarial samples, although
this does not hold for data that are far away from the training set. Compared with this line of work, our contribution is
to study uncertainty from a new perspective and how well it can achieve the purpose of selecting inputs that trigger
misclassifications. Akin notions were used by Feinman et al. [6] to detect adversarial samples. This method uses Kernel
density estimate of neuron activation (similar to likelihood-based surprise adequacy [14]) and Bayesian uncertainty
based on dropout variance (similar to what we use here). Wang et al. [42] proposed computing how much the labels
predicted by a model change when (after training) this model is slightly altered. They showed that adversarial inputs
are more likely to increase the label change rate. A purely Bayesian generative adversarial method is proposed in [33],
where the adversarial sample generator and the discriminator are Bayesian neural networks trained with stochastic
gradient Hamiltonian Monte Carlo sampling. Specifically, the discriminator network is capable of efficiently detecting
adversarial samples because of the competition-based structure, which forces learning to be a repeated contest between
the generator and the discriminator. Another detection method based on uncertainty is that of Sheikholeslami and
Giannakis [34], which promotes scalability by measuring uncertainty on sampled hidden layers. Pinder’s master thesis
[30] reports other experiments demonstrating that adversarial images yield a significantly greater uncertainty than
original images. In other settings, though, Grosse et al. [11] show that there exist adversarial examples which do not
affect the uncertainty of the model.

Overall, the aforementioned studies aim at detecting adversarial examples. Compared to them our goal is to select
examples that are most likely to be misclassified, be these real or adversarial (studied separately and together). Another
key difference is that we consider both well-classified and misclassified adversarial examples. Doing so, we demonstrate
that the metrics are even more sensitive to the noise introduced by adversarial algorithms than they are to the
classification results, which is in line with the results of [30, 34, 36, 42]. Also, we consider a broad range of metrics,
including (but not limited to) multiple metrics that approximate uncertainty. Specifically, compared to [42], the dropout
variance we use is more fine-grained than label change rate as it is computed over classification probabilities.

3 MOTIVATION AND PROBLEM DEFINITION

DL systems are known for their capability to solve problems with large input space, by learning statistical patterns
from the available data. This is typically the case in computer vision applications (the use case we consider in our
experiments), where the goal is to classify images correctly between two classes or more. An interesting characteristics

Manuscript submitted to ACM



6 Ma, et al.

of such problems is that data (i.e. images) usually proliferate. However, to be useful these data also need to be labelled
(associated with their correct class). They can then be used either to test the model (check that the DL model predicts
the correct label of the image) to (re-)train it (feed new labelled data into the model to improve its predictions). Data
labelling is typically performed by manual or non-systematic procedures. This means that DL system developers have
to put a lot of effort to produce a DL model of acceptable quality. Our key motivation is to support them in this task by
optimizing the effort-reward ratio.

We formulate this problem as follows. Let us assume that developers have access to an arbitrarily large number of
inputs (i.e. data without label) and that they can afford to label only an arbitrary number of k inputs. We name test
input selection the problem of selecting the k most effective inputs to label. Here, effectiveness is measured differently
depending on the considered DL development phase:

• When testing the trained DL model, effectiveness is measured in terms of fault-revealing ability. Misclassifications
being the most obvious defects that occur in DL models, selection methods should maximize the number of inputs

misclassified by the model.
• When re-training the model, the inputs to label should be selected in order to maximize the performance gain (e.g.
maximize accuracy).

Our goal is to address the test input selection problem by providing objective and measurable ways of identifying
effective test inputs. Thus, We thus aim at answering the following two questions:

- How can we select test inputs to challenge (trigger misclassifications in) a Deep Learning model?

- How can we select additional training inputs to improve the performance (increase classification accuracy) of a Deep

Learning model?

We answer these questions by conducting an empirical study evaluating the adequacy of different selection metrics.
Based on our results, practitioners can identify which metrics they should use given their goal (testing or retraining
their model) and their context (e.g. with or without adversarial data).

4 TEST SELECTION METRICS

Our overall goal is to consider a range of metrics related to misclassification and study how effective they are in selecting
misclassified inputs. Particularly, we hypothesize that model uncertainty is strongly correlated to misclassification, that
is, the more uncertain a model is towards a certain input, the more it is likely to misclassify this input. Dropout variance
is the most concrete and simple way to estimate the prediction uncertainty [7], instead of dealing with Bayesian models
whose training can often be quite demanding. Other metrics we consider come from the machine learning testing
literature (e.g. neuron coverage [29], surprise adequacy [14] and etc.) – please refer to Section 4.1 for details. Although
they were not meant for test input selection (as we define in this paper), they relate to the general concept of test
adequacy and remain commonly used to drive test generation. As such, they appear as natural baselines worth of
consideration. Since we aim at experimenting with the test input selection problem (our new perspective), we should
use the most relevant metrics. The remaining metrics represent complementary properties: neuron boundary coverage
is a generalization of neuron coverage; silhouette coefficient is an alternative to surprise adequacy; Kullback-Leiber
divergence is another way of measuring dropout variance that estimates the uncertainty of the model, therefore we
consider them as well.
Manuscript submitted to ACM
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4.1 Metrics Derived from the Machine Learning Testing Literature

The metrics we retain from the literature were initially directed to measuring test thoroughness (“coverage”) rather
than test input selection. Still, they can be used for the latter purpose by selecting the test inputs that reach the highest
coverage.

4.1.1 Neuron Coverage. Neuron coverage was first proposed in [29] to drive the generation of artificial inputs. It is
simply defined as the percentage of neurons that were activated by at least one input of the test set. Accordingly, we
define the coverage of a single input as follows.

Definition 4.1. Let D be a trained DL model composed of a set N of neurons. The Neuron Coverage (NC) of the
input x wrt. D is given by

NC (x ) =
|{n ∈ N | activate (n,x )}|

|N |

where activate (n,x ) holds true if and only if n is activated when passing x into D.

The above definition determines the coverage of an input independently of the other inputs. One can instead define
the additional neurons covered by x that were not covered during training.

Definition 4.2. Let D be a DL model composed of a set N of neurons and trained on a setT of inputs . TheAdditional
Neuron Coverage (ANC) of the input x wrt. D is given by

ANC (x ) =
|{n ∈ N | activate (n,x ) ∧ ∀x ′ ∈ T : ¬activate (n,x ′)}|

|N |
.

We also consider the other test thoroughness metrics that extend the concept of NC: K-Multisection Neuron
Coverage (KMNC), Neuron Boundary Coverage (NBC) and Strong Neuron Activation Coverage (SNAC). A
detailed description of those metrics is omitted and can be found in their original paper [22].

4.1.2 Surprise Metrics. The next two test selection methods are based on surprise adequacy [14]. In their recent paper,
Kim et al. proposed two metrics to measure the surprise of a DL model D when confronted to a new input x . The first
one is based on kernel density estimation and aims at estimating the relative likelihood of x wrt. the training set in
terms of the activation values of D’s neurons. To reduce computational cost, only the neurons of a specified layer are
considered [14].

Definition 4.3. Let D be a DL model trained on a set T of inputs. The Likelihood-based Surprise Adequacy (LSA)
of the input x wrt. D is given by

LSA(x ) =
1

|ANL (TD (x ) ) |

∑
xi ∈TD (x )

KH (αNL (x ) − αNL (xi ))

where αNL (x ) is the vector recording the activation values of the neurons in layer L of D when confronted to x , TD (x )

is the subset of T composed of all inputs of the same class as x , ANL (TD (x ) ) = {αNL (xi ) | xi ∈ TD (x ) }, and KH is the
Gaussian kernel function with bandwidth matrix H .

As an alternative, Kim et al. proposed a second metric that relies on Euclidean distance instead of kernel density
estimation. The idea is that inputs that are closer to inputs of other classes and farther from inputs of their own class
are considered as more surprising. This degree of surprise is measured as the quotient between the distance of the
closest input xa of the same class as x and the distance of the closest input xb from any other class. Like the LSA metric,
all these distances are considered in the activation value space of the inputs.
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Definition 4.4. Let D be a DL model trained on a setT of inputs. The Distance-based Surprise Adequacy (DSA) of
the input x wrt. D is given by

DSA(x ) =
| |αN (x ) − αN (xa ) | |

| |αN (xa ) − αN (xb ) | |

where

xa = argmin
{xi ∈TD (x ) }

| |αN (x ) − αN (xi ) | |

xb = argmin
{x j ∈T \TD (x ) }

| |αN (xa ) − αN (x j ) | |

and where D (x ) is the predicted class of x by D and αN (x ) is the activation value vector of all neurons of D when
confronted to x .

LSA and DSA rely on measuring the density or distance of the clusters formed by the different classes. In essence,
any metrics that can discriminate the consistency of clusters might be also candidate metrics for test selection. For
instance, we propose to use Silhouette Coefficient [32] as another metric. Its advantages are its stability and a limited
range of output, i.e. [−1, 1] (whereas LSA and DSA have a priori no upper bound).

Definition 4.5. Let D be a DL model trained on a set T of inputs. Silhouette Coefficient (Si) of the input x wrt. D is
given by

Si (x ) =




1 −
ax
bx
, ax < bx

0, ax = bx

bx
ax
− 1, ax > bx

where
ax =

1
|TD (x ) \ {x }|

∑
xi ∈TD (x )\{x }

| |αN (x ) − αN (xi ) | |,

bx = min
D (x ),D (xi )

1
|TD (xi ) |

∑
xi ∈TD (xi )

| |αN (x ) − αN (xi ) | |.

4.2 Model Uncertainty Metrics

The starting point for suggesting the use of other selection metrics lies in the hypothesis that test inputs are more
challenging (i.e. more likely to be misclassified) as they engender more uncertainty (as opposed to surprise) in the
considered DL model.

The prediction probabilities of the classes returned by the model are immediate metrics that can indicate how
challenging a particular input is. Indeed, one can intuitively state that more challenging inputs are classified with lower
probability, that is, the highest prediction probability output by the model is low. Using prediction probabilities as
metrics is mostly overlooked by the literature but remains efficient, as our experiments show.

Definition 4.6. Let D be a trained DL model. Themaximum probability score of the input x wrt. D is given by

MaxP (x ) = max
i=1:C

pi (x )

where C is the number of classes and pi (x ) is the prediction probability of x to class i according to D.
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Recently, it has been mathematically proven that neuron dropout [38] can be used to model uncertainty [7, 13].
Dropout was initially proposed as a technique to avoid overfitting in neural networks by randomly dropping (i.e.
deactivating) neurons during training [38]. This is achieved by incorporating so-called dropout layers into the network,
which dynamically simulate the deactivation of neurons during a forward pass.

Dropout can be used to estimate the uncertainty of a trained model wrt. a new input x [7]. More precisely, the
uncertainty is estimated by passing k times the input x into the model (wherein dropout layers were added) and
computing the variance of the resulting prediction probabilities over x . Intuitively, while prediction probabilities can
be visualized as the distances of x from the class boundaries estimated by the model, dropout variance represents
the variance of these distances induced by the uncertainty of our knowledge about the exact locations of the class
boundaries. The motivation towards using dropout variance rather than classification probabilities stems from the
observation that some modern deep neural networks are poorly calibrated [12], i.e. their prediction probabilities do not
correlate with their likelihood of correct classification.

In addition to being a good estimate of model uncertainty [7, 36], dropouts are cheap to compute thanks to their
implementation as dropout layers (as opposed to really generating k altered models from the original one, which
would be more expensive given the high number of neurons that models include). Formally, let D be an original,
well-trained model equipped with dropout layers to simulate random dropping, such that each neuron is dropped out
with probability (i.e. dropout rate) r . Given an input x , we pass x into the network k times and denote by p ji (x ) the
prediction probability of x to class i output on the j-th pass. We also denote by Pi (x ) = {p

j
i (x ) |1 ≤ j ≤ k } the multiset

of prediction probabilities of x assigned to class i resulting from the k passes. Then, the variance of Pi (x ) is a good
estimate of the uncertainty of D when classifying x in class i [7].

Following our hypothesis that uncertain inputs are more likely to be misclassified, we define a metric derived from
dropout variance to assess how much an input x is challenging to D. This variance score is a macroscopic view of
dropout variance in that it averages the uncertainty of D wrt. x over all classes.

Definition 4.7. The variance score of the input x is given by

Var (x ) =
1
C

C∑
i=1

var(Pi (x ))

where C is the number of classes and var denotes the variance function.

A drawback of this metric is that it does not consider the prediction probabilities (thus, the actual distance to
class boundaries). To overcome this, we propose a relative metric that normalizes the variance score with the highest
probability output by D.

Definition 4.8. The weighted variance score of the input x is

Varw (x ) =
(
MaxP (x )

)−1
·Var (x )

While variance and weighted variance scores of x can be regarded as quantitative measures of the uncertainty of the
model wrt. x , we also propose a nominal alternative. Instead of the variance of prediction probabilities, we focus on
the actual class predictions produced by the different mutant models, that is, the classes with the highest probability
scores. We construct a normalized histogram of these k class predictions and we compare their distribution with that of
a theoretical, worst-case, completely uncertain model, where the class predictions are uniformly distributed over all
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Table 1. Datasets and DNN models used in our experiments.

Dataset Model Optim. method # layers (convolution, dense) # neurons (kernels) Accuracy (%)

MNIST / Fashion-MNIST
MLP RMSprop 3 1034 98.51 / 89.33
LeNet SGD + Nesterov 5 236 99.05 / 89.99
WLeNet Adam 5 310 99.57 / 92.88

CIFAR-10 NetInNet SGD + Nesterov 9 1418 90.77
VGG10 SGD + Momentum 10 1674 91.99

classes. Thus, in this worst case, the number of mutants predicting that an input x belongs to class i is approximately
given by k

C .
To compare the actual class prediction distribution with the worst-case distribution, we rely on the discrete version of

Kullback-Leibler (KL) divergence. When the uncertainty of D is high (i.e. the mutants often disagree), the KL divergence
is low.

Definition 4.9. The Kullback-Leibler score of the input x is

KL(x ) =
C∑
i=1

Hi ln
Hi
Qi

where i is the class label, H is the normalized histogram, or frequencies, of the class predictions for x resulting from the
k dropouts and Q is the uniform distribution (i.e. Qi =

1
C ).

5 EXPERIMENTAL SETUP

5.1 Datasets and Models

We consider three image recognition datasets. MNIST [19] contains handwriting number data of 10 classes and is
composed of 70,000 images (60,000 for training and 10,000 for testing). Fashion-MNIST [1] has clothing images classified
into 10 classes and is also composed of 70,000 images, 60,000 and 10,000 for training and testing. CIFAR-10 [2] has 10
categories of images (cats, dogs, trucks etc.). The dataset has 50,000 images for training and 10,000 for testing.

The three datasets are widely used in research and considered as a good baseline to observe key trends, in addition
to requiring affordable computation cost. Furthermore, the diversity of these datasets (in terms of classes and domain
concepts) and the used models provides confidence about the generality of our results.

Thanks to the efforts of the research community, these classification problems can today be solved with high accuracy.
This characteristic makes these datasets challenging and relevant for us; triggering misclassifications in accurate models
is much harder than in inaccurate ones. Indeed, test selection is more beneficial as interesting tests (i.e. misclassified
inputs) are rarer within the set of test candidates (thus, when the model has high accuracy). Considering models with
low accuracy is not relevant, as in this case it is more likely to select misclassified examples.

Table 1 shows the characteristics of the models we use in our experiment. For MNIST and Fashion-MNIST, we use
three simple networks, Multi-Layer Perceptron (MLP), LeNet [19] and a modified version LeNet with more kernels
(WLeNet). For CIFAR-10, we use tow complex networks, NetInNet[20] and 10-layer VGG16 [35] – named VGG10 –
obtained by removing the top layers and inserting a batch normalization layer after each convolutional layer. The
models were trained for 50 epochs (MNIST), 150 epochs (Fashion-MNIST) and 300 epochs (CIFAR-10). The last column
in Table 1 shows the best accuracy of the models (over the epochs) when trained on the whole training set.
Manuscript submitted to ACM
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5.2 Objectives and Methodology

5.2.1 Test Selection with Real Data. Our first step is to assess the abilities of the studied metrics to select test inputs
that can challenge a given DL model D. To achieve this, we determine the correlation between the metrics and
misclassification. We encode the ‘correctness’ of the prediction of D for one particular input x as a binary variable bx
(well- or miss-classified). For each metric, we compute the Kendall correlation between the score given by the metric
to all test inputs and their corresponding binary variables. We used Kendall correlation because, being an ordinal
association metric, it focuses on how well the metrics rank the misclassified inputs first (irrespective of the actual
score values). Thus, if one has to select a limited number of inputs to label and test, one should select the inputs of
higher ranking (irrespective of their score). This is important for the test input selection problem, as the metrics should
allow an effective selection regardless of the actual budget of inputs to label. Given that we study the correlation
between the numeric values returned by the selection metrics and misclassification, random selection is not a relevant
baseline in this experiment, as it is not a metric. Actually, since we consider high-accuracy models which yield few
misclassifications, random selection is inherently ineffective for test input selection.

5.2.2 Test Selection with Adversarial Data. To investigate the fault revealing ability with a larger number of data,
we augment our test data with adversarial samples. Adversarial data result from the successive application of minor
perturbations to original data with the aim of deceiving a classifier. Adversarial samples have been of major concern [17]
and test selection metrics should be robust against them. Moreover, previous research [14, 22] also used adversarial data.
To craft adversarial data, we use five established adversarial data generation algorithms: Fast Gradient Sign Method
(FGSM) [10], Jacobian-based Saliency Map Attack (JSMA) [27], DeepFool (DF) [26], Basic Iterative Method(BIM) [16]
and Carlini-Wagner (CW) [5]. We apply each algorithm separately and add its generated images to the original test
set. Thus, we obtain five new datasets. All algorithms except CW generated 10,000 images and thus doubled the size
of the test set. Regarding CW, we made it generate 1,000 adversarial images as it is much slower, which necessitated
more than one day of computing on our HPC infrastructure. Still, CW remains interesting to study as it is known to
apply less perturbation to the original image. Nevertheless, we use the procedure mentioned previously to compute the
Kendall correlation between test selection metrics and misclassification, in the five datasets using both original and
adversarial images generated by five algorithms.

To further investigate the sensitivity of the metrics on adversarial data, we apply FGSM and CW on 600 images
randomly picked from the datasets. As these algorithms iteratively generate adversarial images (by altering them,
introducing noise), until they succeed, most (66% to 100%) of the intermediate images are well-classified. Thus, we store
3,603 intermediate images generated by FGSM and 18,148 generated by CW over the iterations and compute their score
according to the studied metrics. Since we start from well-classified images and the adversarial generation algorithms
work incrementally (at each iteration they generate images that are closer to misclassification) the number of the
iteration at which an input was generated reflects its distance from the starting point (a later iteration step signifies a
higher chance for misclassification). Therefore, a monotonic relation between the metrics and the iterations signifies a
good capability to quantify the likelihood of misclassification (caused by the adversarial images ultimately produced
at the end of the process). Hence, we compute the Spearman correlation (statistical test measuring the monotonicity
between the studied variables) between the score of the metrics, of these intermediate images, and the iteration number
that they were produced.
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We also study the correlation between the metrics and misclassification when using only adversarial inputs. We
pick the intermediate images and the final adversarial images and associate them with a binary variable (well- or
miss-classified) and compute the Kendall correlations between the binary variables and the metrics.

5.2.3 Data Selection for Retraining. Having studied the adequacy of the metrics to select challenging test inputs, we
focus next on how much the metrics can help selecting additional training data effectively. That is, we study whether
augmenting the training set with data selected based on the metrics can lead to faster improvement. To do this, we set
up an iterative retraining process as shown in Figure 1.

At first, we randomly split the original training set into an initial training set of 10,000 images and a candidate set
that contains the remaining images. The test set remains untouched. In the first round, we train the model using only
the initial training set and compute its accuracy on the test set. After finishing training, we use the best model that we
get (over the training epochs) to compute the test selection metrics on the remaining candidate data.

Then, we add (without replacement) a batch of 5, 000 new images (selected by the metrics) from the candidate set to
the current training set. The selected images are those that have the highest uncertainty (i.e. lowest score for Si, KL and
MaxP, highest score for Var and Varw ) or surprise (LSA or DSA) or coverage (i.e. higher NC, ANC, KBNC, NBC and
SNAC). We retrain the models from scratch using the whole augmented training set for a sufficient number of epochs
to guarantee convergence (150 epochs for MNIST and Fashion-MNIST, 300 epochs for CIFAR-10) so that we can fairly
analyze the different methods. Although incremental training (which re-applies the training algorithms on the current
model using the new data) is more efficient computation-wise, current implementations (e.g. within scikit-learn1) have
shown that incremental training creates biases towards the oldest data, as training algorithms (like stochastic gradient
descent) give less importance to new examples over time (due to a decreasing learning rate). This difference can be
significant if the new data follow a different distribution than the old data. Thus, incremental training is used when
assuming minor concept drift, while training from scratch is used in cases where such assumption cannot be made (or
may not hold). This is actually the reason why many companies retrain from scratch [8]. Nevertheless, the purpose
of our experiments is not to find the computationally optimal way to incorporate additional training samples, but to
make sure that by incorporating additional training samples in the most exhaustive way (to make sure that the model
has been trained well enough) yields the best possible (even by a small difference) results. Thus, to avoid making such
assumptions, we followed the conservative approach of retraining from scratch to make sure that the old and new
training data are treated equally.

1https://scikit-learn.org/0.15/modules/scaling_strategies.html#id2
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We repeat the process for multiple rounds, until the candidate set is empty. We ensure that test data are never used
during training or retraining. To account for random variations in the training process, we repeat the experiments three
times and report, for each obtained model, the average (over the three repetitions) of the best accuracy obtained (over
all epochs).

To assess the effectiveness of each metric, we observe the evolution of the validation loss and accuracy wrt. the
independent test data over the retraining process. Effective metrics should yield fast increases in validation accuracy
and fast decreases in validation loss. Although validation loss has usually a strong negative correlation with validation
accuracy, it is still important to study both, e.g. to detect overfitting models.

Previous studies have shown that increasing the accuracy of models that already have a high accuracy (> 90%)
may result in decreasing their robustness to adversarial attacks [41]. Thus, it is possible that some test selection
metrics increase the accuracy during retraining but reduce robustness. To assess this, we also compute the empirical
robustness [26] (based on FGSM and 100 randomly picked images) of all models at all retraining rounds. This allows us
to check whether there exists a compromise between the metrics (i.e. privileging accuracy or robustness).

5.3 Implementation

We tooled our approach on top of Keras and Tensorflow, and used the library Foolbox [31] to generate adversarial
images. Our tool, together with our replication package, is available online.2 The Model training phase was performed
on GPU K80 and GPU Volta V100.

When the considered DL model (e.g. VGG16) does not use standard dropout for training, we implement it as Lambda
layers. When the DL model includes Dropout layers for training (e.g. WLeNet), we simply keep those Dropout layers
working during testing. Thus, we do not alter the model computations per se but rather alternating the model behaviour
through the dropout layers.

In every case, the hyperparameters of our method are the dropout rate r (probability of dropping-out neurons) and
the number k of forward passes of any input into the network (while randomly dropping neurons on the fly). If r is too
large, the original model competence will be significantly degraded, which will result in poor quality. On the contrary,
a small r results in too small variations for our method to perform well. For VGG10, we experimentally set the drop
rate to 0.25. On the other models, we keep the drop rate as 0.35. We also set k = 50 as it appeared as a good trade-off
between the estimation of the variance and computation cost.

For Surprise Adequacy and Neuron Coverage, we use the source code available on Github3. We re-implemented NC
and Neuron-Level Coverage (NLC) based on the source code in an efficient batch-computing way. Finally, we use the
IBM robustness framework4 to compute the empirical robustness of the retrained models.

6 RESULTS

6.1 Test Selection with Real Data

Table 2 shows the Kendall correlation between the metrics and misclassification. We observe that KL, Var, Varw , MaxP
and DSA have a medium degree of correlation, meaning that they can lead to valuable test data, i.e., those causing
misclassification. Conversely, we observe that both LSA and Si have a weak correlation to misclassification. All these
correlations are statistically significant with a p-value lower than 10−05. Metrics based on neuron coverage have weak

2https://github.com/TestSelection/TestSelection
3https://github.com/coinse/sadl, https://github.com/ARiSE-Lab/deepTest
4https://github.com/IBM/adversarial-robustness-toolbox/
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Table 2. Kendall correlation between misclassification and the metrics on the original (real) test data. Overall, KL and MaxP achieve
the strongest correlations.

Model (Dataset) KL Var Varw MaxP DSA LSA Si NC ANC KMNC SANC BNC
MLP (MNIST) 0.3556 0.1626 0.1627 0.2804 0.1606 0.1396 0.1326 0.0454 N/A -0.0181 0.0006 0.0006

LeNet (MNIST) 0.1253 0.1263 0.1282 0.2076 0.1273 0.1157 0.1143 -0.0430 0.0017 -0.0464 0.0144 0.0105
WLeNet (MNIST) 0.2774 0.0903 0.0905 0.0990 0.0900 0.0766 0.0872 0.0722 N/A 0.0308 0.0047 0.0068

MLP (Fashion) 0.4107 0.3222 0.3339 0.3519 0.322 0.0414 0.1639 0.2112 0.0113 0.1876 0.0171 0.0177
LeNet (Fashion) 0.3048 0.2784 0.3103 0.3369 0.3059 0.1542 0.2601 -0.0234 0.0058 0.0598 0.0057 0.0067

WLeNet (Fashion) 0.4156 0.2896 0.2962 0.3133 0.2941 0.0949 0.2551 0.2429 -0.0139 0.1760 0.0205 0.0188
VGG10 (CIFAR) 0.3404 0.2818 0.2911 0.3647 0.2661 0.1964 0.2560 -0.0101 -0.0087 -0.1092 0.0404 0.0329

NetInNet (CIFAR) 0.4366 0.3337 0.3371 0.339 0.3208 0.2076 0.3302 -0.0236 N/A -0.0228 0.0132 0.0228

to very weak correlations. In particular, we could not compute the correlation of ANC for three models because, in
these models, the test set does not cover new neurons that the training set did not cover already.

Overall, these results indicate that KL, Var , Varw , MaxP and DSA correlate better with misclassifications. More
precisely, KL andMaxP appear as the best metrics for test selection, being up to 3 times more correlated to misclassifi-
cation than all the other metrics. In the particular case of the MNIST dataset models, these two metrics are the only
ones to achieve a medium correlation, while the other metrics reach only weak or very weak correlations. Nevertheless,
the best correlations we found are only moderate, meaning that none of the metrics can perfectly distinguish between
well-classified and misclassified inputs.

KL andMaxP are the best metrics to discriminate misclassified real data from well-classified ones. They correlate
with misclassification up to 3 times more than the others.

6.2 Test Selection with Adversarial Data

6.2.1 Mix of Real and Adversarial Data. Figure 2 records the Kendall correlation between the metrics and misclas-
sification when the original test data set is augmented with each adversarial dataset (separately). Interestingly, the
correlations of all metrics are stronger than they were with real data only. KL, Var, Varw , MaxP, Si and DSA now have
a strong degree of correlation with misclassifications in most cases, while the correlations of LSA reach only moderate
levels. Overall, MaxP achieves the stronger correlations regardless of the algorithm used, except for the WLeNet-MNIST
where KL gets even stronger correlations. As for metrics based on neuron coverage, their correlations remain weak
overall and can be positive or negative. Even on a model-by-model basis, no general tendency tends to appear. Quite
surprisingly, NC performs better than KMNC, NBC and SNAC, and even achieves moderate/strong correlations on the
two WLeNet models.

Nonetheless, the overall strengthening of the correlations can be explained by the fact that adversarial images have
some form of artificial noise that the classifier never experienced during training. This noise makes the classifier less
confident on how to deal with them, a fact reflected by the metrics. We also infer that adversarial data do not form
a challenging scenario to evaluate test selection methods (as performed by related work [14, 22, 28]). Given that the
adversarial images are misclassified, it is possible that the metrics are even more appropriate to distinguish adversarial
and real data than they are to differentiate well- and miss-classified data.
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Fig. 2. Heatmap showing the Kendall correlation betweenmisclassification and themetrics on amix of real and adversarial (misclassified)
data, obtained using five different algorithms. The lighter the color the better. Grey parts in ANC correspond to no increase in neuron
coverage. Overall, MaxP achieves the strongest correlations.
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Fig. 3. Spearman rank-order correlation between the metrics and the iteration number of the images generated by the adversarial
algorithms. The iteration number reflects the distance from a misclassification and, thus, high correlation suggests that the metrics
reflect well the likelihood of misclassification.

Uncertainty- and surprise-based metrics can discriminate well-classified real inputs from all (real and adversarial)
misclassified inputs. They can achieve this with more ease as misclassified adversarial inputs are added. Overall,
MaxP reaches the strongest correlations (between 0.64 and 0.78).

6.2.2 Well- and Miss-Classified Adversarial Data. Figure 3 shows, for each metric, boxplots representing the statistical
distribution (over all models and images) of the Spearman correlation between the number of the iteration at which the
image was produced and the metric value for this image. Metrics based on uncertainty and surprise achieve strong
correlations (Varw being the best in this regard), meaning that they are close to being monotonous over the iterations
and thus capture well the adversarial generation process. On the contrary, the metrics based on neuron coverage reach
very weak or irregular correlations.

Table 3 and Table 4 demonstrates the Kendall correlations between misclassification and the metrics computed on the
intermediate (mostly well-classified) and final (misclassified) images generated by CW and FGSM, respectively. When
considering FGSM, the correlations are similar to what they were when mixing real data with adversarial (misclassified)
data. In the case of CW, however, they get weaker, although they remain medium to strong for some metrics (Varw ,
MaxP, LSA and DSA). In particular, the correlations of KL are disappointing although this metric performed well
in the previous experiments. These regressions can be explained by the fact that CW is known to generate smaller
perturbations than the other adversarial algorithms. Thus, the difference between the intermediate images and the final
images are smaller than what they are in the FGSM case.

When confronted with adversarial inputs only, the test selection metrics lose part of their capability. This is
due to the inherent noise introduced by the adversarial generation algorithms. MaxP still achieves the strongest
correlations overall, outperforming the other metrics in 13/16 cases.
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Fig. 4. Validation accuracy over a fixed set of 10,000 original test data and achieved by successively augmenting the training data
with 5,000 data (at each retraining round) selected by the different metrics. X-axis denotes the size of the training set at each round,
while Y-axis shows the average accuracy over three repetitions (variance is less than 10−5).
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Table 3. Kendall Correlation between misclassification and the metrics on adversarial data generated by CW (mix of well-classified
(intermediate) and misclassified (final) adversarial images).

Model (Dataset) KL Var Varw MaxP DSA LSA Si NC ANC KMNC NBC SNAC
MLP(MNIST) 0.5070 0.5282 0.6261 0.6589 0.5265 0.4419 0.2983 -0.0458 N/A -0.1617 -0.0013 -0.0013
LeNet (MNIST) 0.1011 0.132 0.4474 0.5784 0.5917 0.5465 0.5925 -0.0958 N/A -0.0631 -0.0559 -0.0284
WLeNet (MNIST) 0.4417 0.474 0.5255 0.538 0.4600 0.3041 0.3018 0.0568 N/A -0.1545 -0.0837 N/A
MLP(Fashion) 0.2505 0.2428 0.3631 0.4628 0.3213 0.1394 0.1059 -0.0553 0.0103 -0.0336 -0.0547 -0.0715
LeNet (Fashion) 0.0994 0.1233 0.3126 0.4370 0.4425 0.2777 0.4381 0.0191 0.0201 0.0199 0.0545 0.0545
WLeNet (Fashion) 0.2818 0.2908 0.3855 0.5244 0.2618 0.2109 -0.0528 0.0597 N/A -0.0324 -0.0059 -0.0145
VGG10 (CIFAR) 0.0606 0.0599 0.153 0.5031 0.2643 0.2106 0.2720 0.0434 0.0585 0.0640 -0.0093 0.0117
NetInNet (CIFAR) 0.1380 0.1094 0.2027 0.4560 0.1751 0.0453 0.2968 0.0055 N/A -0.0150 0.0150 -0.001

Table 4. Kendall Correlation between misclassification and the metrics on adversarial data generated by FGSM (mix of well-classified
(intermediate) and misclassified (final) adversarial images).

Model (Dataset) KL Var Varw MaxP DSA LSA Si NC ANC KMNC NBC SNAC
MLP(MNIST) 0.6984 0.6459 0.6989 0.7125 0.5902 0.3736 0.3242 0.1828 N/A 0.1301 0.0237 0.0237
LeNet (MNIST) 0.3009 0.4176 0.7078 0.7081 0.6327 0.5779 0.6326 -0.1206 N/A -0.0361 -0.2202 -0.1007
WLeNet (MNIST) 0.6951 0.5840 0.6927 0.6905 0.5802 0.3364 0.5418 0.2901 N/A 0.3282 -0.3831 -0.1956
MLP(Fashion) 0.576 0.2429 0.5541 0.6645 0.4527 0.0595 0.1444 0.1051 N/A 0.2732 N/A N/A
LeNet (Fashion) 0.2848 0.3315 0.6410 0.6848 0.5292 0.3563 0.4802 -0.0458 -0.0002 0.0112 -0.0514 -0.0514
WLeNet (Fashion) 0.6178 0.4869 0.6064 0.6817 0.4469 0.2845 0.0651 0.1059 N/A 0.0568 -0.1779 -0.1703
VGG10 (CIFAR) 0.2325 0.2480 0.4526 0.7014 0.4346 0.3610 0.3969 -0.0346 -0.0273 0.0364 -0.1121 -0.1138
NetInNet (CIFAR) 0.538 0.5332 0.6236 0.6732 0.4989 0.3411 0.6047 -0.0168 N/A 0.0108 -0.0108 0.0069

6.3 Data Selection for Retraining

Figure 4 shows the best accuracy achieved of each retraining round by augmenting, iteratively, the training data with
5,000 data selected according to the different metrics. Here it must be noted that, while the raw accuracy values may
seem to have small differences, they are due to the high initial accuracy of the model. Improving beyond this level is
challenging.

Overall, we see that uncertainty and surprise metrics outperform those based on neuron coverage, which are
comparable to random selection. For example, at the 3rd training augmentation round and for model WLeNet applied
on Fashion-MNIST, Var achieves a gain in accuracy (compared to the accuracy of the initial training set) more than
45% higher than the best coverage-based metric – ANC – (+2.2% vs +1.5%) on WLeNet (Fashion), while the accuracy
increases by +3% from the initial training set to the final (whole) training set.

On NetInNet applied to CIFAR-10 and at the 3rd round, Var achieves a gain in accuracy more than 20% than ANC
does (+8.4% vs +6.9%), while the accuracy increases by +10.4% from the initial training set to the final training set.
We observe similar conclusions when validation loss is considered. Indeed, metrics based on neuron coverage lead to
slower decreases (similar to random selection), which reveals the inappropriateness of these metrics to select data for
retraining.

In addition to the metrics considered so far, we augment Var and KL with a tie-breaking method: when two inputs
have the same Var or KL scores, we select the input that has the lowest MaxP score. Interestingly, those two new
metrics (denoted by Varp and KLp ) further improve the increase in accuracy of five models out of eight, and the
decrease in validation loss in four models. Overall, those new metrics increase the accuracy up to two times faster
than coverage metrics and random selection. Compared with the other uncertainty metrics, the additional gain is not
Manuscript submitted to ACM



Test Selection for Deep Learning Systems 19

significant, though it keeps the merit to exist. Thus, should one require the use of a single metric, KLp and Varp would
appear as effective choices.

For each model and metric, we computed the evolution of the empirical robustness over the retraining rounds.
Overall, we observed that the robustness score barely varies over the rounds, regardless of the considered model and
metric. Indeed, the largest gap across all models and metrics is 0.022, which is insignificant. Moreover, we cannot
infer that any of the metric is comparatively best or worst than the others in this regard, as the variations are not
monotonous. Thus, uncertainty and surprise-based metrics can increase accuracy faster than coverage-based metrics
without compromising robustness.

Uncertainty-based and surprise-based metrics, in particular the tie-breaking metrics KLp and Varp , are the best
at selecting retraining inputs and lead to improvements up to 2 times faster than random selection. They achieve
this without significant variations of the robustness (< 0.022).

6.4 Threats to Validity

Threats to internal validity concern the implementation of the software constituents of our study. Some are addressed
by the fact that we reuse existing model architectures with typical parameterizations. The resulting models obtain a
high accuracy on state-of-the-art datasets used as is (including their splitting into training and test sets), which indicates
that our setup was appropriate.

We implemented dropout “from scratch” (i.e. as Lambda layers) in one case and, in the other cases, we reused the
implementation natively embedded in the training process. The use of these two alternatives increases our confidence
in the validity of our results. Finally, the implementation of the different metrics was tested manually and through
various experiments. Moreover, we reused available implementations of the surprise-based and coverage-based metrics.
Regarding LSA, it has been shown that the choice of the layers has an impact on the adequacy of the metric [14].
However, Kim et al. could find no correlation with the depth of the layer. As such, we make the same choice as Kim et
al. and compute LSA on the deepest hidden layer.

The threats to external validity originate from the number of datasets, models and adversarial generation algorithms
we considered. The settings we used are established in the scientific literature and allow the comparison of our
approach with the related work. Performing well on such established and generic datasets is a prerequisite for real-
world applications, which generally exhibit biases inherent to their application domain. The replication and the
complementation of our study are further facilitated by the black-box nature of uncertainty metrics: all of them
necessitate only the prediction probabilities to be computed.

Construct validity threats originate from the measurements we consider. We consider the correlation between the
studied metrics and misclassification, which is a natural metric to use (and is in some sense equivalent to the fault
detection and test criteria relations studied by software engineering literature [3, 9]).We also compare with surprise
adequacy [14] and coverage metrics [22, 28], which are the current state-of-the-art methods.

6.5 Discussion and Lessons Learned

Our experimental results shed some light on the ability of existing metrics (coverage- and uncertainty-based) to drive
the selection of test inputs.
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Starting with DeepXplore [28], previous research advocates that increasing neuron coverage is a good way to
perform “better” testing and has been using this criterion for test input generation. Additionally, in traditional (code-
based) software engineering, coverage metrics (like statement and branch coverage) are commonly used to guide test
generation/selection. It is therefore natural for software engineers to consider neuron coverage for test selection in
DL systems as well. Another advantage of neuron coverage is that it provides a natural end-point when testing DL
systems, viz. reaching 100% coverage. Yet, as in traditional (code-based) software, finding an adequate stopping criterion
for testing DL systems remains an open problem. Our results confirm that achieving 100% of neuron coverage does
not guarantee the absence of bugs, just like achieving 100% of statement coverage in traditional software does not.
Even worse, coverage-based metrics exhibit weak correlations to misclassification, sometimes weaker than random
selection. This brings an important message to the community: the misclassified inputs are not necessarily those that
cover new neurons. Overall, while coverage-based metrics are convenient driving criteria for test input generation,
different metrics should be used for test selection.

Regarding the remaining metrics (i.e. those based on uncertainty and surprise adequacy), our results provide new
significant findings. When selecting test inputs to trigger misclassifications, the highest class probability – a simple
metric often overlooked in the literature – performs the best regardless of the nature of the inputs (real or adversarial).
Thus, we show that this simple metric forms a strong baseline for future research and that developers can rely on it
as all-rounder test selection metrics. Another lesson is that dropout variance, the state-of-the-art metric to estimate
model uncertainty, can be improved by normalizing the variance score with the highest class probability (yielding the
weighted variance score). This is revealed by the fact that weighted variance has a stronger correlation than dropout
variance in all our experiments.

When selecting inputs to retrain the model, we observe that combining KL divergence or weighted variance with the
highest class probability yields consistently better results than the other metrics, although by a small margin. Thus, the
difference between the uncertainty (and surprise adequacy) metrics is rather observed when selecting inputs for testing.

Another important finding is that some metrics (like KL divergence) are particularly sensitive to the noise introduced
by adversarial data and significantly lose their capability (to distinguish well-classified and misclassified data) when
confronted to adversarial data only. Indeed, the results of Section 6.2 indicate that introducing misclassified adversarial
data into the test set yields a stronger correlation between the uncertainty metrics and misclassification. This means
that the adversarial examples engender more uncertainty than real ones. This is because most adversarial algorithms
aim at achieving misclassification while minimizing input perturbation. Making the model misclassify those examples
with high confidence (low uncertainty) model is not part of the objective function of those algorithms, although some
studies (e.g. [10]) have shown that this may happen incidentally. Our results in Section 6.2.1 confirm that the uncertainty
of the model increases over the iteration of the adversarial algorithm, due to the increasing noise it introduces over the
iterations.

7 CONCLUSION

We considered test selection metrics for deep learning systems based on the concept of model uncertainty. We experi-
mented with these metrics and compared them with surprise adequacy and coverage related metrics wrt to their fault
revealing ability, i.e., ability to trigger missclassifications.

Overall, our findings can be summarised by the following points:
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• When dealing with original data, uncertainty metrics (in particular, KL and MaxP) perform best, significantly
better than previously proposed metrics (coverage based and surprise adequacy).
• When dealing with a mix of original and adversarial data, MaxP – a simple certainty metric often overlooked by
the literature – is the most effective. Additionally, uncertainty-based metrics are also effective at test selection,
independent from the training set (coverage based and surprise adequacy metrics fall behind).
• Our results also revealed that the use of adversarial data in testing-related experiments should be performed
with caution. All the studied metrics experience significant performance differences when considering original,
adversarial or a mix of them.
• We also demonstrated that the metrics and particularly KLp and Varp , lead to major classification accuracy
improvement (when selecting data for retraining), achieving a gain in accuracy of up to 80% higher than the
previously proposed metrics and random selection.

Our work forms an essential step towards a long-term goal of equipping researchers and practitioners with test
assessment metrics for DL systems. These automatic data selection metrics pave the way for the systematic and objective
selection of test data, which may lead to standardised ways of measuring test effectiveness.
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